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Editorial

Computer aided applications for early detection and diagnosis, histopathological image
analysis, treatment planning and monitoring, as well as robotised and guided surgery will
positively impact health care during the new few years. The scientific community needs
of prepared entrepreneurships with a proper ground to tackle these topics. The Joint
Master Degree in Medical Imaging and Applications (MAIA) was born with the aim to
fill this gap, offering highly skilled professionals with a depth knowledge on computer
science, artificial intelligence, computer vision, medical robotics, and transversal topics.

The MAIA master is a two-years joint master degree (120 ECTS) between the Uni-
versité de Bourgogne (uB, France), the Università degli studi di Cassino e del Lazio
Meridionale (UNICLAM, Italy), and the Universitat de Girona (UdG, Spain), being the
latter the coordinating institution. The program is supported by associate partners,
that help in the sustainability of the program, not necessarily in economical terms, but
in contributing in the design of the master, offering master thesis or internships, and
expanding the visibility of the master. Moreover, the program is recognised by the Eu-
ropean Commission for its academic excellence and is included in the list of Erasmus
Mundus Joint Master Degrees under the Erasmus+ programme.

This document shows the outcome of the master tesis research developed by the
MAIA students during the last semester, where they put their learnt knowledge in prac-
tice for solving different problems related with medical imaging. This include fully
automatic anatomical structures segmentation, abnormality detection algorithms in dif-
ferent imaging modalities, biomechanical modelling, development of applications to be
clinically usable, or practical components for integration into clinical workflows. We
sincerely think that this document aims at further enhancing the dissemination of infor-
mation about the quality of the master and may be of interest to the scientific community
and foster networking opportunities amongst MAIA partners.

We finally want to thank and congratulate all the students for their effort done during
this last semester of the Joint Master Degree in Medical Imaging and Applications.

MAIA Master Academic and Administrative Board
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Abstract

Early detection of breast cancer has a major contribution to curability, and this importance increases when using non-
invasive solutions as mammographic images. Supervised deep learning methods have played a great role in object
detection in computer vision, but it suffers from a limiting property; the need to huge labelled data. This becomes
stricter when it comes to medical datasets which have high-cost time-consuming annotations. As a leveraging method,
Deep Convolutional Generative Adversarial Networks (DCGANs) are proposed here to ameliorate this problem, they
are trained on different-size partial subsets of one dataset and used to generate diverse and realistic mammographic
lesions. The effect of adding these images is tested in an environment where a 1-to-10 imbalanced dataset of lesions
and normal tissue is classified by a fully-convolutional neural network. We show that using the synthetic images in
this environment outperforms the traditional augmentation method of flipping. A maximum of ∼ 0.09 and ∼ 0.013
improvement of F1 score and AUC, respectively, were reported by using GANs along with flipping augmentation
compared to using the original images even with relatively-small dataset sizes. We show that DCGANs can be used
for synthesizing photo-realistic mammographic mass patches with a considerable diversity measured using Frechet
Inception Distance (FID).

Keywords: computer-aided detection, generative adversarial networks, data augmentation, breast cancer, deep
learning, fully-convolutional neural networks, t-Stochastic Neighbor Embedding.

1. Introduction

1.1. Breast Cancer Detection
Cancerous breast cells have been the second deadli-

est disease in women globally coming after lung cancer.
This disease was the most frequently diagnosed cancer
in 154 countries and the first cause of cancer death in
women in 100 countries in 2018 (Bray et al., 2018). In
EU, breast cancer was the first cause of cancer death in
2014 for women, while for men it was lung cancer. Ap-
proximately, over 92000 women are anticipated to die
because of breast cancer in 2019 with a similar number
of deaths in 2014 (Malvezzi et al., 2019). Computer-
aided detection (CADe) systems have shown that they
can assist specialists in decision making although recent
studies show that patient recalls have increased when
using artificial intelligence as a second reader (Le et al.,
2019). Moreover, CADe systems have been a good al-
ternative for double reading to reduce failures resulted

from mainly: visual search mistakes due to fatigue or
other reasons, and mistakes in interpretation due to lack
of decision-making experience for inexperienced inter-
preters (Bazzocchi et al., 2007). These systems can help
reduce the diagnostic accuracy differences between ra-
diologists caused by intra- and inter-observer variability
(Elmore et al., 1994). Particularly, these systems can in-
crease the sensitivity of less-experienced interpreters by
increasing the detection rate by 10% (as a maximum)
and reducing the time needed to detect the disease by
one month in the best case. That said, the benefits
observed in more-experienced readers is much smaller
(Kohli and Jha, 2018). Additionally, CADe systems,
represented currently by neural networks, require large
amounts of annotated data when using supervised learn-
ing. Unsupervised learning is still under research where
there is no need for completely-labelled datasets. How-
ever, a large number of experiments is usually needed
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to teach the system making deep learning in general a
limited-capability tool if the need to a large enough data
is not met properly. Furthermore, publicly-available
medical datasets are usually small and imbalanced due
to concerns mainly related to privacy and the high costs
needed to produce professional annotations by experts.
To alleviate this problem of lack of data, different meth-
ods ranging from conventional data augmentation us-
ing affine transformations such as flipping or scaling,
passing by sampling methods, to the more effective but
complex way using Generative Adversarial Networks
(GANs) (J. Goodfellow et al., 2014).

1.2. Generative Adversarial Networks

To use machine learning tools in CADe systems, a
reasonable amount of medical data is needed to train
the system on capturing abnormalities in input images
that specialists try to detect. These abnormalities dif-
fer from one medical field to another, breast lesions
and lung nodules, for instance. Public medical datasets
usually suffer from unbalanced distribution of images
between the classes under study. Target class images
are commonly rare, for example in INbreast dataset, by
Moreira et al. (2012), one fourth of the dataset contains
breast lesions. Intrinsically, in a mammographic image,
normal tissue patches largely outnumber lesion patches
(the target concept), if there is any, when classifying
with/without lesion images patch wise. When this kind
of problem exists, the learning process becomes more
difficult and sometimes might lead to a loss in generali-
sation (overfitting). To overcome this obstacle, scholars
usually use different methods: oversampling the weak
class (e.g. SMOTE and ADASYN), undersampling the
strong class, or ensembling the weak class with subsets
of the strong class to make multiple smaller balanced
datasets (for instance Easy Ensemble, BestCascade and
NearMiss) (He and Garcia, 2009). Most oversampling
methods, if not all, in general, use either samples repli-
cation, interpolation, or extrapolation. By replication,
the algorithm tries to push the population up by replicat-
ing some samples identically. Interpolation-based meth-
ods insert new samples that are derived from the neigh-
bourhood by averaging the features, i.e., averaging two
neighbouring samples belonging to the same class to
find the midpoint sample. Finally, extrapolation meth-
ods, as image rotation, translation, and zooming, pro-
duce new samples that can increase the generalisation
of the model by reducing (or removing) the contribu-
tion of some sorts of non-pertinent variance–differences
that are unrelated to the discrimination process–in prop-
erties like image angle, center position, and size to de-
cision making (Bowles et al., 2018). However, not all
non-pertinent information is as easy to exclude from
discriminative features as affine transformations, espe-
cially in medical imaging field where there is a lack of
conventional augmentation tools to tackle all sources of

non-pertinent variance. GANs, introduced in J. Good-
fellow et al. (2014), made a revolution in the field of
data synthesisation, where a network (called generator
or G) learns the distribution of the input data implic-
itly by the aid of another network (called discriminator
or D) which, in turns, tries to learn to distinguish real
among fake (synthetically-generated) images and feed
the result back to G to update the weights. In other
words, G learns the mapping Z → X, where Z is the
latent space (noise) and X is the data distribution, while
D learns the mapping X → [0, 1]. These two networks
learn simultaneously in order to get in the end a gener-
ator that can yield realistic and diverse images starting
from a random input (latent vector). In theory, when
the generator and discriminator become experts, G gen-
erates images that are classified as well as real images
with a probability of 0.5, which is known as Nash equi-
librium. To reach near this point, the learning process
should converge in such a way that neither G nor D
learns in a pace that is much higher than the other. Fur-
thermore, GANs have the big advantage of being able
to augment a wide range of variance sources providing
that the dataset has enough examples. As an example,
consider a breast mass detection problem where micro
calcifications should not affect the decision, by apply-
ing traditional methods of augmentation it is hardly ever
possible to add calcification to a mass-only lesion which
can be done using a trained generator. Two main prob-
lems might come up when training GANs (Goodfellow,
2016):

• Mode collapse: this happens when the network
generates images that are replications of one pat-
tern with slight differences. In this case, G has
a many-to-one mapping between the latent space
and the output images. As a consequence, the
diversity of the outputs will be low (low recall)
while realism might be fine. In multi-class prob-
lems, two kinds of mode collapse (or equivalently
mode dropping) might exist: intra-class and inter-
class, where in the former kind, the generator syn-
thesises images for which the per-class diversity is
low, while, in the latter kind, G synthesises images
from one (or a few) class(es) only, ignoring others.

• Oscillation: when the generator keeps generating
different samples but with low realism (low pre-
cision) which are easy for D to reject. Meaning
that the system never converges, this is commonly
caused by imperfect tuning for the learning speed
of G and D, where D learns quickly giving no time
for G to improve. This results in G loss increasing
early in the training process while D loss reaches
low values.

In this paper, Deep Convolutional GAN (DCGAN) was
selected due to training stability as presented in Rad-
ford et al. (2016). It was used to synthesise mammo-
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graphic lesions to use them as data augmentation to sup-
port CADe for breast mass detection. The rest of this pa-
per is organised as follows: section 2 describes in brief
recent works on GANs in medical imaging. Materials
are explained in section 3, while methods are presented
in section 4. Sections 5, 6, and 7 include the results,
discussion and conclusions, respectively. The contribu-
tions of this work are as follows:

1. We show that DCGANs are able to generate im-
ages of 128 × 128 pixels of realistic and di-
verse mammographic mass and calcification le-
sions evaluated quantitatively using Frechet Incep-
tion Distance.

2. We tested the DCGANs performance after being
trained and we show that it provides remarkable
improvements when used to augment an imbal-
anced dataset.

3. We analysed the effect of adding the synthesized
images to an imbalanced dataset as a function of
training set size in a classification problem.

4. We propose one framework (Figure 7) under which
all previous points can be tested combined using 3-
fold cross validation.

5. We show that the generated images belong to
the real images’ distribution by visualizing the t-
Stochastic Neighbor Embedding (t-SNE) of both
real and fake images.

6. We made the trained generators publicly available,
along with the code, to the scientific community to
generate patches of breast masses.

2. State of the art

Korkinof et al. (2018) used Progressive GANs to gen-
erate 1280 × 1024 full mammogram images that show
breast anatomy with acceptable amount of fine details
using the multi-stage adversarial learning introduced in
(Karras et al., 2018). In Salehinejad et al. (2018), 5-
class chest pathology X-ray 256×256 images were gen-
erated using the well-known DCGAN architecture by
Radford et al. (2016). They evaluated the effect of in-
cluding the synthesized images by measuring the bal-
anced test accuracy using three models, namely: real
imbalanced dataset (DS1), real balanced dataset (DS2)
with 2K images from each class, and balanced real +

synthesized images (DS3) with approximately 30K im-
ages from each class. The results clearly showed that
including synthetic images boosted the performance of
the model significantly with average accuracies DS1:
70.87, DS2: 58.90, DS3: 92.1. Conditional infilling for
mammogram lesions was presented in Wu et al. (2018),
where the authors filled a masked region in a patch with
a multi-stage training approach (similar to resolution
pyramids). They proved that starting with small gen-
erated images then enlarging them gradually gave high

resolution images that were useful to augment the un-
balanced dataset and get a higher AUC value. They used
different kinds of loss, where to assure realism they used
feature loss which is the average of squared differences
between the pretrained-VGG-19 feature maps from real
and fake images, but they used boundary loss to get
smooth edges between the generated lesion and the in-
filled component by minimising the difference at the
boundary of the lesion. To evaluate the outcome of the
generator objectively, ResNet 50 was used as a classi-
fier to show performance improvement, ciGANs model
combined with traditional augmentation was reported to
have a +0.014 AUC more than the baseline model (with-
out augmentation) and +0.009 than traditional augmen-
tation. Frid-Adar et al. (2018) used GANs to generate
2D liver lesions by training a DCGAN on 182 images
belonging to three classes with conventional augmen-
tation applied on the input. Thereafter, they generated
images by the trained generator and used these images
as augmentation over the conventional methods of rota-
tion, scaling, and translation. They showed that GANs
improved sensitivity and specificity by 7% and 4%, re-
spectively, with respect to using traditional augmenta-
tion methods only. Additionally, they showed that us-
ing t-distributed Stochastic Neighbour Embedding (t-
SNE) tool, GANs can provide more diverse features
than traditional augmentation. However, they did not
investigate the effect of changing the size of training
set on GANs images quality, and consequently, on the
DCGAN-augmented classification problem. They pre-
sented that two observers were able to achieve approx-
imately 62% and 58% accuracy in differentiating real
from fake images, but they did not show any Frechet In-
ception Distance (FID) or Inception score (IS) to evalu-
ate the realism and diversity of their synthesized images
objectively. They found out that adding more synthetic
images beyond some limit did not improve the classifi-
cation performance any more and they analysed on a
small scale the effect of adding a few more real im-
ages. Bowles et al. (2018) used DCGANs to generate
synthetic segmented Computed Tomography (CT) and
Magnetic Resonance (MR) brain images to enhance the
performance of segmentation networks. They included
an interesting experiment where they studied the effect
of applying conventional augmentation (rotation, flip-
ping, scaling) on DCGAN-generated images and they
found out that the traditionally-augmented GANs im-
ages could improve the performance more than the sum
of GAN and augmentation improvements when trained
separately. Another important point they highlighted
was that GANs do not impose any negative impact on
the classification performance when trained on limited
datasets, on the contrary, when the GAN was trained
on a relatively large dataset, it introduced a decay in
the overall segmentation performance. Douzas and Ba-
cao (2018) exhaustively compared conditional GANs
(cGANs) by Mirza and Osindero (2014) with SMOTE
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Table 1: Dataset Annotations given in Excel files.
Image Information Patient ID

Study ID
Series ID
Image ID

Lesion Information Lesion ID
x1, y1
x2, y2
Lesion status
Lesion type

by Chawla et al. (2002) and its variations of oversam-
pling methods using 71 datasets with different sizes and
imbalance ratios. They used 5 different classifiers; Sup-
port Vector Machines, Decision Trees, Logistic Regres-
sion, Gradient Boosting machines, K-Nearest Neigh-
bours; and three metrics: F score, G mean, and Area Un-
der the ROC Curve (AUC). In conclusion, they reported
that cGANs statistically outperformed other methods
and had the highest mean rank (closer to one) using all
datasets , classifiers, and metrics. However, they did not
include any deep learning method as a classifier and no
qualitative evaluation was mentioned.

3. Materials

The dataset used in this work was OPTIMAM
Halling-Brown et al. (2014) which has around 80,000
processed and unprocessed images extracted from the
National Breast Screening System (NBSS). This dataset
has expert annotations linked to images via exhaustive
Excel files that have all the information required to iden-
tify the image and any clinical observation. Table 1
shows some column headers of the Excel files. Image
information fields link the image to a patient, a study
(where some patients have more than one study), and
a series. Lesion coordinates (x1, y1, x2, y2) are given
in pixels, lesion status can be one of: Breast Imaging
Reporting and Data Systems (BIRADS) levels: B1, B2,
B3, B4, or B5, where B1 categorizes the finding as neg-
ative while B5 is for highly suspicious of malignancy
(Orel et al., 1999). Lesion type can be one of: mass, cal-
cification, focal asymmetry, architectural distortion or a
combination of them. Table 2 shows more columns that
were used later on to filter the dataset. Images included
in this dataset were acquired using modalities made by
different manufacturers: Philips, General Electric, Ho-
logic, Faxitron X-ray Corporation, Lorad, Siemens, or
Bioptics Inc. Model name is the model of the device
used for acquisition (examples are Selenia, Bio Vision,
and L30 Philips). X-ray tube current is the estimated
value of the current used to acquire the image (ranges
from 1 to 1500 mA) with a specific magnification fac-
tor (ranges from 1 to 2.15). Additionally, presentation
states whether the image was processed from origin or

not. In summary, the dataset was heterogeneous com-
bining images from different manufacturers and modal-
ities which resulted in a wide spectrum of distributions.
As it is known in classification problems using deep
learning tools, training images should come from sim-
ilar distributions so the network can learn the general
pattern. Figure 1 shows four different images from the
dataset. Images from the left column have the same
properties (modality, manufacturer, settings) but still (c)
has some measurements that cannot be included in train-
ing the GAN, resulting in filtering these properties due
to the difficulty in distinguishing between cases like (a)
and (c). Case (d) has a distribution that is not aligned
with other images where the background is white and
dense tissues are represented by dark intensities. Case
(b) is a sample from the set of properties selected where
the contrast is relatively better than other cases.

(a)

(d)(c)

(b)

Figure 1: Some different samples that show the importance of filtering
the dataset. (a) is a CC-view of a mammogram by GE Medical Sys-
tems with current 62 mA and magnification factor 1.0 , (b) an MLO
view by Hologic Selenia, current 100 mA and magnification factor
1.0, (c) an MLO by GE Medical Systems Senographe Essential with
current 62 mA and magnification factor 1.0 (notice the magnification
view), (d) an MLO by Philips Digital Mammography Sweden L30
with current 180.0 mA and magnification factor 1.0304.

3.1. Image Selection Criteria

In order to properly train a neural network, the in-
put images should have similar distributions. To satisfy
this requirement, a filtering technique was applied on
the dataset using the annotation files. Exhaustive ex-
periments were conducted to show images belonging to
different sets of configurations. It turned out that images
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Table 2: Acquisition settings criteria.
Criterion Value

Manufacturer Hologic, Inc.
model name Lorad Selenia

X-ray tube current 100
Magnification Factor 1.0

For presentation True

with the characteristics shown in Table 2 had similar in-
tensity distributions, so they were selected for extracting
patches. The idea is first to select one manufacturer and
one model which are Hologic and Lorad Selenia from
where more than half the dataset came. By doing this,
all selected images have experienced the same process-
ing. Second, to avoid images with special magnified
projections (see Figure 1 (c)), the current was fixed to
100 mA and magnification factor to 1. Lastly, only the
processed images were used. After this filtering, 14,549
lesion-free images in addition to 5267 with-lesion mam-
mograms were selected including Craniocaudal (CC)
and mediolateral Oblique (MLO) views from right and
left breasts. This data belonged to 3701 patients (some
patients had more than one study and sometimes more
than one lesion per image).

3.2. Breast Mask Generation

OPTIMAM mammographic images come with no
breast masks, however, there was a need to extract
patches background free. To meet this need, a simple
thresholding algorithm (I > 0; I is a grayscale image)
was applied on the filtered dataset. In other words, if
a pixel has a non-zero intensity, it will be considered
part of the breast, see lines 1-4 in Algorithm 1. As an
example of the mask, see Figure 2. All mask images
were saved with meaningful names by adding the ex-
tension msk to the original image name. In order to
make the process of finding the corresponding pair (im-
age,mask) straightforward, the original folder architec-
ture (batch→ patient → study) was preserved.

3.3. Lesion Groundtruth Localization

To generate lesion patches, a groundtruth image was
needed as a reference. To generate these images, a sim-
ple process was followed (see Figure 2). First, the le-
sion coordinates (x1, y1, x2, y2) are extracted from
the the Excel file. Second, an empty image with the
same size of the mammogram image is created then
the area between (x1,y1) and (x2,y2), including end-
points, is filled with the value 255 (not 1 for visualiza-
tion issues). Third and last, the groundtruth image with
the corresponding image name adding the extension gt
to the end and keeping the original folder architecture
(batch → patient → study) is saved, see lines 5-9 in
Algorithm 1.

Image ID
1.2.840.113...

1
2

3

10

Tissue

Lesion

Tissue

Rejected
Lesion

Mask {0,255} Groundtruth {0,255}

Query Lesion
 Coordinates

Threshold

Patch Extraction

x1x2

y1
y2

range:[0,255]

Original Image

Histogram
Normalization 
 

Figure 2: Data preparation overview. From top to bottom and left
to right: original image, query lesion coordinates represents the pro-
cess of reading the lesion top-right and bottom-left coordinates from
the database, histogram normalization represents the process of trans-
forming the intensity distribution to the range [0, 255], non-zero
thresholding, lesion groundtruth, breast mask, overlayed images (yel-
low overlay: breast mask, cyan overlay: lesion groundtruth, grayscale:
histogram-normalized image), tissue patches (green rectangles) and
lesion patch (yellow rectangle). The red rectangles represent rejected
patches, where normal tissue conditions are violated (the top red rect-
angle has some background, the middle one is located partially inside
the lesion, while, the lowest one has complete background pixels).
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3.4. Image Preprocessing and Patch Extraction
Image preprocessing and patch extraction steps are

summarized in Figure 2. Using the filtering criteria
mentioned in section 3.1, images which do not meet the
inclusion criteria were not included. After filtering, we
read one image (top block in the figure) and create the
corresponding mask image (see section 3.2). If this im-
age contains a lesion, the lesion groundtruth image is
created as described in section 3.3, otherwise an empty
groundtruth image is created (see the left branch in the
figure). Histogram normalization was applied on all fil-
tered images to assure similar intensities range [0, 255]
and data type (unsigned integer on 8 bits). All three
outputs (normalized image + mask + groundtruth) were
used to extract the patches as depicted in Figure 2 bot-
tom part where only three green rectangles are shown
for the sake of a simple figure. In practice, ten ran-
dom normal-tissue patches of 128 × 128 pixels were
extracted, in addition to full-lesion patch(es) if any le-
sion exists. In Algorithm 1, the first three lines read
an image from the filtered dataset after applying his-
togram stretching. Then, the corresponding mask and
groundtruth (see sections 3.2 and 3.3) are created and
the lesion patch is saved with dimensions that might be
different from one lesion to another. Starting from line
12 in the algorithm, patch extraction process includes
extracting 100 random patches and verifying if they be-
long to breast region with white mask (see the first part
of the condition at line 15). Normal tissue patches are
lesion free as indicated in the second term of line 15 in
the algorithm. The algorithm keeps extracting patches
until it reaches 10 valid patches or 5 iterations before
stopping. In this case, for every image, a maximum
of 10 normal tissue (referred to as ’Tis’) patches and a
number of lesion patches (’Les’), which is related to the
number of lesions contained in the image, are extracted.

3.5. Patches Post-Processing
In addition to the previously-described preprocess-

ing steps, some of ’Tis’ patches had a very narrow his-
togram. Those patches did not carry enough intensity
variations to resemble normal tissue patches. A sim-
ple post processing algorithm was applied in which the
number of unique intensity values for each patch was
calculated. Patches with less than 30 different intensity
values were removed from the patch dataset. After all,
5351 lesion (classes include mass, calcification, focal
asymmetry, and architectural distortion) and 147,951
normal tissue patches, extracted from all filtered mam-
mograms regardless having a lesion or not, were saved
for training the GAN and the classifier.

4. Methods

4.1. The Generator
As mentioned before in the introduction, DCGAN by

Radford et al. (2016) was used with some modifications

in this work. The architecture of G is shown in Fig-
ure 3. The aim of the generator is to learn the map-
ping between the latent space (the normal distribution
in this case) and the space of mammographic lesions
in a sense that it can transform a vector from the la-
tent space to a lesion image that can fool the discrim-
inator. Figure 3 shows that the generator (with green
color referring to G in this work) had six layers (it was
5 in the original paper ending with 64× 64 output). The
first layer projects the latent vector and reshapes it to the
first cube shown. Internally, it is a dense layer followed
by reshape. Tconv2d refers to Transpose Convolution
2D with kernel size 4, stride 2 and one pixel padding.
In this implementation, no max pools nor dense layers
were used as suggested in Radford et al. (2016). The
activation function used was LeakyRelu with negative
slope 0.2 and batch normalization on all layers except
the last one where the activation function was hyper-
bolic tangent (Tanh).

4.2. The Discriminator

The discriminator task is to distinguish between real
and fake lesion images outputting realism probability (0
means definitely fake, 1 means definitely real). Figure 4
shows the architecture of the discriminator where it ac-
cepts an image, it resizes it to 128×128, and normalizes
its intensity to the range [-1, 1]. The six layers (five in
the original paper) are similar to the generator’s ones but
the opposite direction. Convolution2d layers were acti-
vated by LeakyRelu with negative slope 0.2. 2D batch
normalization was used in all layers except the first and
last ones. Stride 2 was used to downscale the size until
layer 6 where stride was 1. The kernel size 6 × 6 was
used for all layers with padding two (except for last one
4×4 and 0 padding). The activation function for the last
layer was sigmoid to output a probability between 0 and
1.

4.3. DCGAN Training

As mentioned in Lucic et al. (2018), GANs losses do
not matter as hyperparameter tuning and the availabil-
ity of computational resources. The loss functions used
to train this DCGAN were the ones recommended in J.
Goodfellow et al. (2014), see equation (1) for discrim-
inator loss (J(D)) and (2) for generator one (J(G)). To
give a brief explanation of these loss functions, the dis-
criminator loss is aiming to provide values as close to
1 as possible for real inputs (maximize log(x)), while,
giving as close to 0 as possible for fake inputs (max-
imize log(1 − D(G(z)))). For G loss, this is the mod-
ified version proposed in J. Goodfellow et al. (2014),
where the generator tries to fool the discriminator to get
as close to 1 as possible by generating images that D
gives high realism probabilities, this loss is referred to
as Non-Saturating loss (NS loss). The convergence oc-
curs when the discriminator cannot actually distinguish

1.6



GAN for realistic data augmentation and lesion simulation in x-ray breast imaging 7

Algorithm 1 Patch Extraction
1: read one image from the filtered preprocessed dataset, I
2: H,W = size(I)
3: mask = zeros(H,W)
4: mask[I > 0] = 255
5: GT = zeros(H,W)
6: if hasLesion then
7: fetch lesion coordinates (x1, y1, x2, y2)
8: GT [y1 : y2, x1 : x2] = 255
9: Save I[y1:y2, x1:x2]

10: end if
11: Count = 0
12: while Count < 10 and max iter < 5 do
13: extract 100 random patches (p0, p1, . . . , p99)

p = extract patches2d(I, num = 100, size = (128, 128))

14: for all pi do
15: if

∑
mask[pi ∩ mask] == 255 × 1282 and

∑
GT [GT ∩ pi] == 0 then

16: Save p
17: Count + +

18: end if
19: end for
20: max iter + +

21: end while
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Figure 3: Generator architecture, the input belongs to the normal distribution with 0 mean and 1 standard deviation, TConv2d represents a transpose
convolution 2D (kernel size 4, padding 1, stride 2 except for the first one where stride=1, padding=0), BN stands for 2D batch normalization, LRelu
means leakyRelu with a 0.2 negative slope.
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Figure 4: Discriminator architecture, Conv2d represents a convolution 2D layer (kernel= 6, stride= 2, padding= 2, except for the last one where
kernel=4, stride=1, padding= 0), BN stands for 2D batch normalization, LRelu means leakyRelu with a 0.2 negative slope.
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real among fake cases where the ideal case is to have 0.5
on the output of D for both real and fake inputs (Nash
equilibrium), meaning that the distributions (Px, Pgen)
are completely matched and there is no possibility to
find the boundary for the classifier.

J(D) = −Ex ∈ Px, z ∈Pz [log(x) + log(1 − D(G(z)))] (1)

J(G) = −Ez ∈ Pz [ log(D(G(z))) ] (2)

In Equations (1,2), E refers to averaging over training
examples, Px, Pz refers to training images and noise dis-
tributions, respectively, z is the random vector input to
G, and G(z) is the synthetic output of G. As mentioned
in J. Goodfellow et al. (2014), this G loss is preferred
to log(1 − D(G(z))) because it has higher gradients at
the beginning of the training process which makes G
learn faster, see Figure 5. The optimizer used to train
both G and D was Adam by Kingma and Ba (2014) with
β1 = 0, β2 = 0.99 and learning rates 4e−4, 2e−4 for G
and D respectively. Learning rates were exponentially
decreased by a factor of 0.99 every 10 epochs for G, and
8 epochs for D. The batch size was 64 and the model
was trained for 1000 epochs. Figure 6 shows the train-
ing procedure step by step, where the dense arrows refer
to real-image related processes, while the dashed ones
refer to synthesized-image related processes. Every
training iteration, a batch of random latent vectors are
generated from the normal distribution with zero mean
and unit standard deviation (z ∈ Pz; Pz = N(0, 1)), see
step 1 in the figure. This pure-noise batch is to be first
normalized to the range [−1, 1] then forwarded through
G to generate a batch of fake images (G(z)), see step two
in the figure. These fake images are first normalized to
the range [0, 1] then forwarded through D to get real-
ism probabilities, see step three with dashed arrows. An
equal-size batch of real images is normalized and for-
warded through D to learn the boundary between real
and fake lesion spaces, see step three dense arrow. In
step four, equation (1) is used to calculate the loss for
the discriminator, then backpropagation is done to up-
date D parameters, see step five. Equation (2) is used to
calculate G loss in step six. Then, backpropagation is
done to update G parameters, see step seven. To com-
plete one epoch, this process, from step 1 until seven, is
repeated until all the real images are covered.

4.3.1. Training Techniques used
Training GANs is a precise process that should be

driven carefully to avoid divergence problems (see sec-
tion 1). In this work, different work-arounds have been
used to overcome common problems, such as getting
similar lesions all having the same shape with slight dif-
ferences or even getting unrealistic lesions (see the early
stages in Figure 14 in annex 9.2). As mentioned in Sali-
mans et al. (2016), one-sided label smoothing was a use-
ful technique in which over-confidence problems were
resolved. Every epoch, a value in the range [0.7, 1] is

Figure 5: Generator loss comparison between original minmax loss
(orange dashes) and the non-saturating loss function (the blue solid)
in (J. Goodfellow et al., 2014). D(G(z)) represents the discriminator
output for the generated images and E represents averaging over the
number of generated images.

picked to be the real label for training D and G which
helped to force the discriminator to keep learning so the
gradients never diminish which, as a result, pushes G
to keep enhancing the output results. This does not af-
fect the accuracy (the real label is still higher than 0.5).
Conventional data augmentation, horizontal and vertical
flipping, was used in which the original dataset size does
not change as the flipping happens on the fly. This helps
increase the diversity of the generated images. One of
the critical issues that were faced during training was
the checkerboard effect in which a rough grid shows up
in the synthesized images, which obviously reduces the
realism. The explanation of the problem was that this
artifact was in the blind spot of D (because D and G
kernels were completely aligned before changing) so it
did not contribute enough to the loss function. The so-
lution was inspired by a talk of Goodfellow (2016) 1

where it was suggested to use different kernel sizes be-
tween G and D, so a larger kernel (6×6 instead of 4×4)
was used for D which made that artifact more visible
to D and it could penalize G for it. The results were
significantly improved with a noticeable increase in di-
versity and realism as well. Other techniques, namely:
spectral normalization as in Miyato et al. (2018), layer
normalization as in Lei Ba et al. (2016), pixel shuffle to
resolve checkerboard effect as in Shi et al. (2016), and
label flipping were used but no significant effect on the
results was observed.

4.4. DCGAN Evaluation
To evaluate the generated images by the DCGAN,

different tools were utilized as follows.

1The video is available at: https://channel9.msdn.com
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Figure 6: The top view of training DCGAN, the input belongs to the
normal distribution Pz with mean 0 and standard deviation 1. Dotted
arrows refer to fake-input related values. Steps from one to seven are:
generate a noise batch, forward through G to generate a fake batch,
forward the real and fake batches through D, calculate LD, update D,
calculate LG , and update G, in order.

4.4.1. Training Phase
Frechet Inception Distance (FID), proposed by

Heusel et al. (2017), was calculated to reflect the per-
formance of the generator during the process of training
the DCGAN. The equation for calculating FID is:

FID(R,G) = ||µR − µG ||22 + Tr(ΣR + ΣG − 2
√

ΣRΣG)
(3)

where R, and S are the real and synthesized images
folders, respectively. µR is the mean of feature maps
of Inception-v3 by Szegedy et al. (2016) for the real
folder, µS is the mean of Inception-v3 feature vectors
for the synthetic folder. ΣR is the covariance matrix of
Inception-v3 output feature vectors for the real folder,
ΣS is the covariance matrix of Inception-v3 output fea-
ture vectors for the synthetic folder. Tr is the trace pro-
cess of adding the elements of the main diagonal.

The idea is to use Inception-v3 pretrained on Ima-
geNet as a feature descriptor for real and fake images
(using 2048 activation units), then to calculate the differ-
ence between the means of the two folders as well as the
the second term in equation(3) 2. Within GANs users,
Inception score by Salimans et al. (2016) is one of the
frequently used evaluation metrics, however, this met-
ric has to be computed over large enough generated/real
images (50K as mentioned in the paper) which is ten
times larger than the number of positive examples in
this work. Additionally, Heusel et al. (2017) showed
that FID is more robust against noise and more con-
sistent than Inception score, in other words, the more
similar the generated images to real ones, the lower the
FID. Other works proved mathematically that Inception

2Implementation in Pytorch was adapted from https://github.

com/mseitzer/pytorch-fid

Score worked well on ImageNet but it is not guaran-
teed to be working as well on other, especially smaller,
datasets (Barratt and Sharma, 2018). Additionally, IS
captures precision and inter-class diversity while it fails
to capture intra-class diversity which are all captured by
FID (Lucic et al., 2018). Due to all preceding, FID was
preferred as a guideline during training and sometimes
as a model-saving criterion, see Figure 8 for an exam-
ple of FID progress during DCGAN training. Regard-
ing overfitting, neither FID nor IS can capture because
they are intrinsically optimal when the generated im-
ages match the training ones.

4.4.2. Testing Phase
In order to evaluate the trained generator, an augmen-

tation environment is used where an imbalanced dataset
of lesions (positive minority class) and normal tissue
(negative majority class) is to be classified by a fully-
convolutional neural network. In this setting, the clas-
sifier has almost the same architecture as the DCGAN
discriminator with slight differences (less filters due to
a smaller dataset) using {9, 18, 36, 72, 90} as number of
channels, from first to last layer respectively (see Fig-
ure 4). Additionally, 5% weight decay was used as a
regularizer. Furthermore, the distribution of the gener-
ated images was compared to the real ones’ in the two-
dimensional space of t-SNE (van der Maaten and Hin-
ton, 2008).

4.5. DCGAN for Lesion Simulation

In this work, the DCGAN was trained to generate
mammographic lesions that look like real ones (visu-
ally indistinguishable) using 4536 mass and calcifica-
tion lesions. Other lesion classes of architectural dis-
tortion and focal asymmetry were not used because in
such classes the lesion existence in one breast location
is captured when the two breasts look asymmetric at
this location, (Samardar et al., 2002). This simultaneous
observation of both breasts was infeasible for the clas-
sifier. Horizontal then vertical random online flipping
was used as augmentation. As the complete dataset had
mammographic mass and calcification lesions (some-
times in the same patch), the GAN was trained to gener-
ate mass, calcification, or both in the same patch. These
settings have the advantage of a relatively-large dataset
where the generator can see a wide spectrum of cases
to capture the distribution. The application of this mode
is to train radiologists/observers or other specialists on
different tasks related to lesion detection and annotation
on unseen images with a considerable quality that are
hard to distinguish from real patches. This environment
has a limitation that it gives just a small part of the big
picture, i.e. a patch out of the complete x-ray image.
Consequently, it might be hard to detect lesions related
to architecture asymmetry and architectural distortions
where the corresponding patch of the second breast is
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needed to compare to. The resultant generators can be
used as an augmentation tool in cases where there is no
need to separate calcification from masses (considered
as one class), however, this application was not stud-
ied here in favour of mass class augmentation where
the DCGAN output has a predetermined class which
can make the process of evaluating the augmentation
effect independent from the class of the generated im-
ages, see section 4.6 for more details. In this scenario,
the GAN was trained using the hyperparameters men-
tioned in section 4.3. It is worth mentioning that long
training as well as mismatched sizes for G and D ker-
nels were useful for increasing images quality (to get
rid of checkerboard effect generated by transpose con-
volution layers) and diversity, but that should be accom-
panied by a fine-tuned learning rate decay (we used here
as mentioned before 4e−4 and 2e−4 with 1% decay every
10 and 8 epochs for G and D respectively). It is com-
mon, as observed in Figure 14, that D wins at the end
of the game by obtaining a smaller loss with respect to
G, however, this should not be very early in the train-
ing, otherwise, the generator will find difficulty learn-
ing from small gradients, which ends up with the GAN
diverging. Figure 12 in annex 9.1 includes two 8 × 8
batches, showing real and generated images.

4.6. Mass Lesion Augmentation Using Different Train-
ing Sizes

The aim of this method is to analyse the following
points:

• The effect of increasing the size of the training set
of the positive class, by adding real images ,on the
performance of a classifier keeping the same im-
balance ratio (IR equals to 1:10).

• How the random online augmentation (horizontal
flipping followed by vertical flipping with a proba-
bility of 0.5 for each) affects the classification per-
formance in this unbalanced environment.

• The change in classification performance af-
ter adding the DCGAN-generated images to the
dataset keeping fixed the augmentation ratio AF
= 1.5 and IR= 10 again as a function of the train-
ing size.

To clarify all previous points, a framework is proposed
(see Figure 7) which was inspired by the works of Frid-
Adar et al. (2018), Bowles et al. (2018), and Douzas
and Bacao (2018), where in in the latter they trained
the GAN on the training set of the classifier to avoid
generating images that might have features similar to
the test/validation images’. We combine the idea of
studying the effect of changing the number of the im-
ages used to train the GAN, as well as applying con-
ventional augmentation methods on the generated im-
ages. This was examined on a small scale in Frid-Adar

et al. (2018) due to lack of data, while in this work
we had the advantage of using a larger dataset. The
dataset used to train the DCGAN was a subset of the
dataset described in section 3.4, where 2215 mass le-
sion patches (positive class) were selected, including
benign and malignant cases. After extracting the test
set (33.3%), the remaining part was divided into train-
ing and validation (60%, 6.6%, respectively), and fi-
nally the training part was divided into six overlapping
smaller sets: {Pk; k ∈ {100, 250, 500, 750, 1000, 1300}},
where the subscripts refer to the size of the subset.
All these subsets were picked randomly with a fixed
seed for the random generator so that each set is con-
tained in the next larger one. For instance, P100 ⊂
P250 ⊂ P500, see the dataset and sampler part of Fig-
ure 7. Regarding the negative class (normal tissue
patches), a similar procedure was applied on a 22K sub-
set selected randomly out of the 147K complete nor-
mal tissue dataset to have an IR of 1:10. Six overlap-
ping negative subsets with the size ten times the pos-
itive class were created to use later on in classifica-
tion, namely {N1000,N2500,N5000,N7500,N10000,N13000}.
For training the DCGAN, one positive set Pk was used
at a time, and due to the use of relatively smaller
datasets than the one used in section 4.5, a few hy-
perparameters were changed: horizontal then vertical
flipping was applied as before, in addition to jitter-
ing the brightness and contrast by a random amount
picked from the range [−5, +5] every iteration. Fur-
thermore, the DCGAN was trained for 1000 epochs
to give the generator enough time to learn the dis-
tribution. These settings were fixed for any k. Af-
ter training six DCGANs independently, six generators
{G100,G250,G500,G750,G1000,G1300} were ready to gen-
erate synthetic mammographic patches (size 128×128),
see the top right part of the figure. Thereafter, four clas-
sification modes were investigated (see the middle part
of Figure 7), namely:

• ORG: in this mode, the input for the classifier is
Pk as positive images plus Nk as negative. The aim
of this mode was to see how changing the positive
class size affects the overall classification perfor-
mance keeping IR 10 for all cases.

• Aug ORG: as the name suggests, augmented orig-
inal images were used as input to the classifier.
By augmentation here we mean random horizon-
tal then vertical flipping ending up with one of the
following cases:

– Only horizontal flipping.
– Only vertical flipping.
– Both horizontal and vertical flipping.
– No flipping.

No intensity or rotation/translation augmentation
were introduced here to preserve the content from
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Figure 7: The proposed framework for evaluating the DCGAN when used in data augmentation for supporting the minority class in an unbalanced
dataset.

including any padding or interpolation. The aim of
this mode is to study the effect of conventional aug-
mentation on the unbalanced classification prob-
lem as a function of the the positive class size ,
keeping the imbalance ratio fixed to 10.

• GAN: the input to the classifier in this mode was
k real lesion + 1.5 × k synthetic images generated
by Gk as the positive class, and 10 × k normal tis-
sue patches as the negative class. The aim of this
mode was to analyse the effect of combining the
synthetically-generated images with the real im-
ages to support the under-represented positive class
in the classification problem. 1.5 × k was selected
to give Gk the chance to reflect the learned distri-
bution with a reasonable diversity. The aim of this
mode was to inspect the effect of using multiple
DCGANs trained on datasets with different sizes
on the classification problem.

• Aug GAN: in this mode, the 1.5 × k generated im-
ages as well as the real ones were augmented on
the fly by random flipping (same as Aug ORG) to
extend more the distribution of the input images.
The aim was to see whether flipping the synthetic
images would add any valuable features to the clas-
sifier.

Flipping is considered as an extrapolation method as op-
posed to GANs which are considered as an interpola-
tion method (Bowles et al., 2018). To use flipping only
was inspired by the works of Kamnitsas et al. (2017)

and Wu et al. (2018), where they preferred to use re-
flection only to preserve the architecture without us-
ing any intensity perturbations. This is particular for
medical images where other affine transformations can
change some discriminative features in the patch, for
instance rotation might have introduced padding pixels
while zooming can change the lesion size which may
have an impact on decision making. The classifier used
here is depicted in Figure 7 the bottom right part. It has
the same network architecture as the DCGAN discrimi-
nator apart from number of channels, see section 4.4.2.
It was trained with the same parameters but for fewer
epochs and binary cross entropy as a loss function (in-
stead of the adversarial loss in DCGAN equation (1)),
where for all modes, 20 epochs were enough to reach al-
most 100% training accuracy. Knowing that the dataset
is imbalanced, using accuracy might be misleading and
might give very high values even for a naive classifier
that outputs the negative label always. As a result, F1
score was proposed to be used as a metric which gives
equal importance to precision and recall, see equation
(4).

F1 = 2 × Precision × Recall
Precision + Recall

(4)

To avoid an overfit classifier, for each mode, the model
with the best validation F1 score was saved for testing
phase. As can be seen in Figure 7, the test and validation
sets were fixed for all k. 3-fold cross validation was used
to acquire reliable results.
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5. Results

5.1. Lesion Simulation
After training the DCGAN for 1000 epochs with a

decaying learning rate, D has been trained to discern
real from generated lesions, and in the same time, G
has learned how to generate lesions that look like real
ones by getting skilled more and more as the train-
ing progresses. In line with FID concept explained be-
fore (see section 4.4.1), Figure 8 shows how the value
of FID changes during training where it starts with a
value around 120 and drops drastically until it reaches a
plateau around 20 where generated and real images look
similar for Inception-v3 network. The orange line rep-
resenting average FID is used to show the trend where
the more the DCGAN is trained the lower the average
FID is until convergence. This can be explained by
the fact that at the beginning of the training process,
the quality of the generated images is far from the real
ones’ which makes the discrimination task easy for D,
so it gives very low realism probabilities for G outputs,
consequently G learns quickly, see Figure 5 to see the
fast-moving loss function at the beginning (the blue line
causes larger gradients and faster learning). In testing
phase, the trained G is capable of generating any num-
ber of images by forwarding the same number of ran-
dom vectors. A batch of 64 generated images is shown
along with the same number of real ones in annex 9.1.

Figure 8: FID progress along the training process. The orange line
represents the average FID over five neighbouring points where the
blue values were recorded every 10 epochs.

5.2. Mass Lesion Augmentation Using Different Train-
ing Sizes

The results for methods in section 4.6 are presented
here where the effect of adding different numbers of
generated mass lesions as well as real ones was analysed
in an imbalanced environment with IR = 10 over three
cross validation folds. By looking at Figure 9, the blue
line representing mode ORG is behaving in a way that
shows that adding more real images helps the classifier

Figure 9: Examining F1 score as a function of the real minority train-
ing set size when adding 150% generated images and keeping the
same imbalance ratio 1:10. The horizontal axis represents the size
of the training set of the positive class (mass lesions). ORG stands for
the original dataset without any kind of augmentation, Aug ORG rep-
resents using the online random flipping on the original dataset, GAN
means combining the original dataset with the generated images with-
out augmentation, Aug GAN refers to online flipping applied on real
(positive and negative) and DCGAN-generated images.

to perform better regarding F1 score where it keeps im-
proving until k=750 where it saturates after improving
F1 score by approximately 0.1 compared to when using
100 images.

The green line represents the F1 score when adding
synthetic images to the real ones (GAN mode). The
amount of added images differs from one case to another
but always using 1.5 × k as augmentation factor. Com-
pared to the blue line, the green one shows faster im-
provements which shows that the generator has learned
to unlock unseen images in the real distribution which
help the classifier to distinguish lesions among normal
tissue. At 100, as the plot shows, the improvements
were fairly existing which is due to lack of enough sam-
ples for the DCGAN to learn the distribution of the
real data. As this amount increases to 250, the im-
provement over ORG increases drastically pointing at
a better-performing G. This improvement continued un-
til 1000 where the classifier was no more starving for
data. Surprisingly, at 1300, the DCGAN could generate
samples visually similar to the real ones (see annex 9.4
for an illustration of the effect of increasing the training
set size on the generated images by DCGAN). However,
this had a negative impact on the classification prob-
lem which might be due to overfitting. Additionally, the
amount generated at 1300 (1.5 × 1300 = 1950) is the
largest among all experiments which might have caused
a drop in diversity. Moving on to the orange line rep-
resenting Aug ORG mode where online horizontal and
vertical flipping with probability 0.5 was applied on ev-
ery batch. Flipping was clearly outperforming GAN due
to lack of training images for the DCGAN as opposed
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Table 3: Area Uner the ROC Curve (AUC) for different modes and training sizes (k), the bold-faced values are the highest.

Mode Training Size
100 250 500 750 1000 1300

ORG 0.9836 0.9848 0.9896 0.999 0.9989 0.9989
GAN 0.9843 0.9902 0.9984 0.9997 0.9993 0.9987

Aug ORG 0.9877 0.9896 0.9982 0.9998 0.9997 0.9999
Aug GAN 0.9902 0.9984 0.9996 0.9990 0.9998 0.9999

to Aug ORG where flipping algorithm is independent of
any training. As the number of images, extrapolated im-
ages were increasing until 750 where the improvement
reached a plateau as the classifier became less hungry
to data. Aug ORG and GAN performed approximately
equally in the region between the two extremes (100,
1300) with the difference becoming more obvious as k
increases (see 750, 1000, and 1300). Finally, the red
line represents Aug GAN where the random flipping is
applied online on the combined real and synthetically-
generated images ending up with interpolation and ex-
trapolation happening simultaneously. As can be seen
in the figure, this mode outperformed all other modes.
The amount of improvement was the largest at 250 and
500 as the classifier was in need for positive data, and
became smaller as the classifier has seen enough sam-
ples at 750 and 1000). The last point at 1300 was less
performing than Aug ORG by a negligible amount. The
Area Under the ROC Curve (AUC) was used as an addi-
tional metric to compare the performance with the dif-
ferent modes and training sizes. AUC values are re-
ported in Table 3, the highlighted values are for the
highest of the corresponding size. It can be easily seen
from the table that Aug GAN outperforms other modes
where the highest improvement was for size 250 with
0.0136 over ORG mode while the best improvement
for Aug ORG was for the same size by 0.0047 over
ORG mode. Moreover, to analyse the distribution of
the synthetically-generated images and to compare it to
the distribution of the real images, t-SNE was used to
reduce the dimensionality of the image space by mov-
ing to the 2D feature space. Figure 10 can be used to
visualize the distributions for one case at k = 500. The
algorithm was run for a maximum number of iterations
of 4000 and 250 as the perplexity. Similarly, Figure 11
shows the distributions of real and fake masses along
with normal tissue patches. It should be noted that this
algorithm uses random initialization every time it is run,
as a result, it might show different allocations for the
samples in the figure for different runs. The input for the
algorithm is the patches in the original space (128×128)
for both real and synthetic images.

5.3. Experimental Settings

All models were built using Pytorch 3 package by
Paszke et al. (2017) with the support of online aug-
mentation. Training a DCGAN then a classifier took
on average two hours on NVIDIA TITAN X with 12
GB RAM using CUDA ver.9.0. The generator of the
DCGAN had 5M parameters, while the discriminator
had 8.9M. All these experiments were carried out at VI-
COROB lab at the University of Girona using a work-
station running Linux Ubuntu 18.04.

6. Discussion

Regarding the results for lesion simulation, it has
been shown that DCGAN could generate images that
have considerable realism and diversity by training the
DCGAN on a dataset that has a sufficient number of ex-
amples. The generator could capture the distribution of
the real images (px) and generate samples that are sam-
pled from pgen which is close to the original one. Figure
12 in Annex 9.1 can be used for a qualitative evalua-
tion of the generated images. This figure shows one real
batch of 64 mass lesions (top) along with the same num-
ber of synthetic ones (bottom). The size of the training
set was 4536 mass and micro calcification lesions. For
training details, see section 4.3. By comparing the top
and the bottom batches, it can be seen that the gener-
ator has learned how to generate mass patches as well
as mass accompanied with calcification (see real lesion
(3,1) and fake (6,7)). Furthermore, this figure shows that
the synthetic batch has reasonable diversity ending up in
lesions with different shapes and contrast levels. Some
of the shown synthetic examples seem to contain either
mass only (see (1,5), (6,4), (7,3)), calcification only (see
(6,2) and (8,2)), or a combination of mass and calcifica-
tion (see (5,7), (4,2)). While other works showed how
much observers were fooled when distinguishing real
among fake images, in this work we used FID in Fig-
ure 8 as an objective evaluation method where the gen-
erated images had similar distributions of feature maps
at the 2048-unit layer of Inception-v3. Some oscilla-
tions in FID values appear due to G being learning. As
was mentioned in the talk of Goodfellow (2016), using

3code and trained generators are available at https://github.
com/Basel1991/Projects/tree/master/master_thesis
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Figure 10: t-SNE analysis for real (red x) and generated (green circles) mass patches distributions, where X1 and X2 axes represent the first and
second t-SNE components, respectively.

different kernels between the discriminator and gener-
ator along with long training was useful to remove the
checkerboard effect and improve the diversity. With re-
spect to evaluating the simulated lesions, we proposed
a framework where we train the DCGAN on different-
size subsets of the mass dataset (inspired by the work
of Frid-Adar et al. (2018)), the trained generators were
used to generate synthetic lesions that were used to aug-
ment an imbalanced classification problem (normal tis-
sue as the dominant negative class). It was shown that
the improvement DCGAN introduced was related to the
dataset size. The synthetic images did not improve the
performance at a very early stage (very small dataset
of 100 images), it did not cause any harm at this stage
though. However, the improvement increased with the
size of the training set. Moreover, and in line with the
results of Bowles et al. (2018), the generated images did
some harm for the classifier performance where the F1
score dropped when using the largest subset (P1300) im-
ages for training, this suggests that there is a limit for the
training set size to assure non-harmful GANs. Aligned
with what was interestingly mentioned in Bowles et al.
(2018), applying traditional flipping (online and ran-
dom) method on the real and synthetic images (posi-
tive and negative classes) was powerful enough to make
DCGAN-generated images helpful regardless the size
of the training set (see the red line in Figure 9 for after
augmentation and the green one for without augmenta-
tion). Additionally, we could show that using the real
images only, increasing the size of the training set had
a similar impact of enhancing the F1 score but with a
much smaller rate with a tipping point where the im-
provement stops. The distribution of the generated im-
ages was analysed and compared to real ones in Figure
10 where it is clear that synthetic images support the dis-

tribution of the real ones by filling the gaps in a realistic
way as opposed to naive methods which do the averag-
ing of features as in SMOTE and its variations. Fig-
ure 11 shows the distribution of real masses, synthetic
masses, and normal tissue patches. This figure can show
that by using synthetic images, the classifier can gener-
alise more by seeing more examples sampled from the
distribution of the minority class (a linear boundary can
separate the two distributions). On the one hand, DC-
GAN could detect the features of the main distribution
giving less support to outliers (see the arrow in Fig-
ure 11), traditional flipping, on the other hand, does not
have the ability to distinguish between inliers (main dis-
tribution) and outliers (see the green distribution around
the dotted arrow in Figure 13 in Annex 9.3) which can
be linked to the improvement in Aug GAN over all other
methods in Figure 9 and Table 3. Matches, where at
least one real and one synthetic samples align perfectly
in the t-SNE space (see the solid arrow in Figure 13),
are more common in traditional augmentation than in
synthetic images due to the fact that the generator does
not see the training images.

7. Conclusions

In this study, we used a modified version of DC-
GAN to generate realistic mammographic lesions with
dimensions 128 × 128 pixels that have acceptable di-
versity. To see the effect of using these synthetically-
generated images in action, we simulated an environ-
ment where a dataset of mass lesions (as the positive
class) and normal tissue (as the negative class) had to
be classified with an imbalance ratio of 10. The clas-
sification performance was evaluated using F1 score
and AUC at six different sizes of the positive dataset
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Figure 11: t-SNE analysis for real (red cross) and generated (green circle) mass as well as normal tissue (purple triangle, the negative majority
class) patches distributions, where X1 and X2 axes represent the first and second t-SNE components, respectively.

(100, 250, 500, 750, 1000, 1300) keeping the same im-
balance ratio, and validated using 3-fold cross valida-
tion. We could show that GANs-generated images when
used along with online random horizontal then vertical
reflection (named as Aug GAN) were never harmful and
could provide a significant improvement which is higher
than when using GAN or flipping individually. This
improvement was by the fact that at each size of the
training set, AUG GAN mode was higher than all other
modes resulting in an F1 improvement of approximately
(2%, 9%, 8%, 2%, 2%, 2%) over using real images only
and approximately (0%, 6%, 2%, 0.5%, 0%, 0%) over
using flipping only. Regarding AUC, we could achieve
a max improvement of 0.013 over using real images
only. Moreover, using synthetic images only as aug-
mentation, there was a limitation at the very small or
very large size of the training set where there was either
no improvement or a drop in the performance, respec-
tively, compared to real images only. Traditional image
flipping augmentation did not suffer from such flaws
even without the need for training but could not reach
the same level of improvement that Aug GAN offered.
To sum up, GANs are a powerful tool that can be used
to generate synthetic images to be used in a variety of
applications including augmenting unbalanced classifi-
cation problems and unlocking realistic unseen images.
However, they have to be trained carefully and better be
accompanied with traditional flipping augmentation. In
the future, we plan to extend our work to see the effect of
using the trained generators on supporting mass detec-
tion problems using a different dataset (INbreast). Gen-
erating larger patches or even complete mammograms
can be explored as well. Furthermore, we are collabo-
rating with radiologists from the Autonomous Univer-
sity of Barcelona to get realism evaluations of the gen-

erated mass patches.
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9. Annex

In these annexes, we show the outcome of four ex-
periments. First, we present a real and a fake batches
of 64 images each, where the fake ones were gener-
ated via a DCGAN trained on the complete training
dataset (4536 mass + calcification). Second, a figure
that shows the progress of training the DCGAN accom-
panied with the loss plot and a batch of 4 fake im-
ages enhancement during training. Third, we include
t-SNE analysis for Aug ORG showing real and aug-
mented masses as well as normal tissue in the 2D feature
space of t-SNE. Fourth and last, we show 25 random
samples generated from six different generators trained
on (100, 250, 500, 750, 1000, 1300) images individually
and we compare the quality and diversity.

9.1. A Real And A Fake Batch
In this section, using Figure 12, we show one real

batch of 64 mass lesions (top) along with the same num-
ber of fake ones (bottom) generated by a generator that
was trained on 4536 images (mass + calcification).

9.2. GAN Training Progress
Here we show the progress of G and D loss during

training using the mass + calcification dataset of size
4536. The reflection on images realism and diversity is
explored in Figure 14 where it shows G and D average
loss along with samples of 4 images generated from a
fixed noise batch. By looking at the beginning of the
plot (iteration 0), the loss of G starts high because it
starts with random output which is relatively easy even
for an inexperienced discriminator to realise that it is
not real. In this case, the output of D for the fake in-
put is very low (low realism probability). At iteration
0, D has just started to learn, however, the process of
distinguishing real patches among real ones is consid-
ered easy, however, this becomes tougher when G starts
learning. During iterations 0 to 20,000, G is learning
from its mistakes by modifying the weights relatively
to D output and competing with D which has a merely-
constant average loss. A large drop of more than 70%
in FID is due to the large gradients of NS loss (see Fig-
ure 5). it can be seen from the difference in quality be-
tween the batches at epoch 140 and epoch 420 where the
checkerboard effect was removed with an increase in re-
alism and a decrease in FID. At iteration 25,000, D be-
comes almost professional and no more gets fooled by
G output (D loss is monotonically decreasing), on the
contrary, G loss starts increasing but keeps improving
(see the image at epoch 700 where the lesions have been
improved in terms of contrast and size). Iterations from
50K until 70K have lesser impact due to the learning
rate here being too small compared to the early stages,
still, this period had a subtle contribution to improve-
ments in image diversity. By looking at FID values,
it is clear that the decrease was exponentially decaying

(along with the learning rate). At the end, the gener-
ator seems as it has lost the game by getting the loss
settles at a relatively high value. It should be kept in
mind here that the real label was randomly chosen ev-
ery epoch which had the impact of the oscillations in
the losses. The discriminator could keep detecting real
images among fake ones ending up winning the game,
this is fine as G had enough time to learn.

9.3. t-SNE Analysis for Aug ORG

Figure 13 shows the embeddings for 500 real mass
patches, 750 with random flipping, and 5K normal tis-
sue (negative majority).

9.4. A Sample From Each Gk

I this section, the aim is to evaluate subjectively the
effect of increasing the training set size on the real-
ism and diversity of the generated images. Figure 15
shows six batches containing 25 images each, batches
from top to bottom and left to right were generated
by G100,G250,G500,G750,G1000,G1300 (see section 4.6).
Starting with 100, this batch shows a low diversity (low
recall) in lesions shapes with some similarity between
lesions (see batch 100, (1,4) and (3,1), (3,3) and (4,3)).
This suggests a mode collapse situation with the realism
being not high. Moving on to batch 250, it is noticeable
that lesions here have more contrast than before with
some new shapes, however, there is still some patterns
that are repeated between lesions (see batch 250 (1,1),
(3,3) and (3,4)). Diversity keeps improving as well as
realism when reaching to 500 and 750 where it is hard
to detect such patterns. It can be seen that at 750 the
generator has learned to sample lesions with more de-
tailed architectures than before in batch 100. Batches
1000 and 1300 are where the generator starts to gener-
ate images that are hard to distinguish from real ones.
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Figure 12: Two batches of real and fake images. The top one is the real batch while the bottom one is the fake one. Indices used here are of the
shape (i,j), where i is the row index, j is the column index and the top left being (1,1).
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Figure 13: t-SNE distributions for real masses, flipped masses, and normal tissue patches. A red x represents a real mass patch, a green circle
represents a flipped mass (horizontal, vertical, both, or none), purple triangles represent normal tissue patch. The dotted arrow points at an outlier
while the solid one points at a match.
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Figure 14: GAN progress, showing 5 batches of generated images at different points in the training process, these images were taken from epochs
0, 140, 420, 700, and 990, where the input was fixed to four latent vectors. The horizontal axis is the training iterations, the vertical one is for
DCGAN adversarial loss, see equations (1,2). FID values are approximated and provided for each case.
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Figure 15: From top to bottom and left to right, 25 random samples generated from Gk : k = {100, 250, 500, 750, 1000, 1300}. This figure is to
show the relationship between image quality and diversity, and number of training images for the DCGAN. Indices used here are of the shape (i,j),
where i is the row index, j is the column index and the top left being (1,1).
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Abstract

The comparison of temporal mammograms helps radiologists in breast cancer diagnosis by analyzing interval
changes. The breast’s appearance, however, may vary considerably on mammograms taken at different sessions due
to several extrinsic and intrinsic factors experienced by the breast. Consequently, a direct comparison of these images
may become a complex and exhausting endeavor for the radiologist if no preliminary alignment is done. Therefore,
several techniques have been proposed for mammographic image registration. While some degree of success has been
documented, these methods tend to be time consuming requiring from several minutes to hours.

With the revolution of deep learning in the field of computer vision and image processing in the past few years,
the research community started to leverage the power of neural networks for the medical image registration task.
In line with this trend, a recent paper promoted VoxelMorph as a novel, fast and self-learning framework based on
convolutional neural networks capable of achieving state-of-the-art registration accuracy while requiring orders-of-
magnitude lesser time than traditional techniques.

In this master thesis, we presented VoxelMorphMammography (VMM), an extension of the VoxelMorph framework
adapted for the image registration task of temporal mammograms. The conducted experiments involved using two
different similarity metrics for the loss function and different regularization weights to constrain the deformation.
The evaluation of the registration results were based on a variety of quantitative and qualitative measures: mutual
information, subtraction images, warped images and deformation fields. With all these indicators jointly taken into
consideration, we found that VMM is able to achieve results comparable to a state-of-the-art method based on B-
splines. Furthermore, VMM registered each test image pair in less than 100ms. Finally, we call for more research and
experimentation to be done to provide quality assurance in using deep learning approaches for mammographic image
registration.

Keywords: deformable image registration, mammography, deep learning

1. Introduction

Breast cancer is the most common form of tumor that
affects women worldwide (Bray et al., 2018). In 2015,
the world age-standardized rate of breast cancer inci-
dence in Spain was 65.2 per 100,000 women (Galceran
et al., 2017). It is also the leading cause of cancer-
related death among women (Fitzmaurice et al., 2017).
However, with increased awareness about the impor-
tance of early diagnosis, breast cancer can be effectively
treated before turning into a life-ending disease if de-
tected in an early stage. For this reason, breast cancer
screening programs are performed in most developed
countries (Schopper and de Wolf, 2009).

Different imaging modalities can be used for the
screening. Yet, due to its affordability, accessibility and
high sensitivity, mammography is the most undertaken
technique for breast imaging (Sree et al., 2011). Particu-
larly, screening mammography, as a preventive measure
for early detection of cancerous lesions and carcinoma
in situ, enables the identification of non-palpable lesions
which will be otherwise undetected during a physical
breast examination (Ekeh et al., 2000).

Mammography utilizes low-energy X-rays to build
an image of the breast called a mammogram. The
mammogram can be obtained from different angles. In
a routine screening exam, two standard views of the
breast are taken: one from above called the cranial-
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caudal (CC) view and one from an oblique projec-
tion called the mediolateral-oblique (MLO) view (Wei
et al., 2016). During these acquisitions, the breast re-
mains compressed to minimize subject’s motion, dose
and scattered radiation. Breast tumors have attenuation
properties similar to dense tissue, thus making their de-
tection a challenge.

Overtime, the screening population has a record of
two or more mammograms either as part of a regu-
lar and preventive screening plan or through a peri-
odic mammography surveillance for probably benign
lesions. The availability of a pair of breast images ac-
quired at different times helps the radiologist to look for
any abnormal changes in breast tissues. This is a highly
productive strategy as it has been found to yield to im-
proved cancer detection (Bassett et al., 1994). Addi-
tionally, being able to switch between a pair of mam-
mograms on the same monitor optimizes the radiolo-
gist’s perception of lesion growth (van Engeland et al.,
2003). However, the deformable characteristic of the
breast makes the comparison of temporal mammograms
a challenging task and often exhausting when the ra-
diologist has to analyze multiple images. The mam-
mography acquisition parameters, the positioning and
compression of the breast, and anatomical changes are
among the main factors that affect how the breast ap-
pears in a mammogram (Richard et al., 2006). As a con-
sequence, many research works have investigated strate-
gies to find a reliable non-rigid transformation tech-
nique to align time-sequenced mammograms (Abdel-
Nasser et al., 2016; Marias et al., 2005, 1999; Timp
et al., 2005). This alignment problem is known as image
registration.

Image registration is the process of aligning one im-
age to another image. This is achieved by finding a
transformation function that establishes the pixel cor-
respondences between two images. In common termi-
nology, the image to be registered is called the moving
(or source) image, while the image to be aligned to is
called the fixed (or target) image. A warped image is
the image obtained by warping the source image using
the transformation function.

Two broad categories of image registration can be de-
fined based on the transformation model applied: rigid
registration and non-rigid, or deformable, registration.
Rigid registration employs global linear transformations
such the Euclidean and affine transforms and therefore
cannot model local geometrical distortions between the
images. On the other hand, non-rigid registration en-
ables a more complex and non-uniform mapping of pix-
els when warping the moving image to the fixed im-
age. The B-Spline transform is an example of a popular
model that caters for local image deformations. Often, a
deformable registration will be preceded by a relatively
fast affine registration for global alignment and better
initialization.

Image registration requires a metric to measure sim-

ilarity that guides the registration process. Commonly
used metrics include Mean Squares Difference (MSD),
Normalized Cross Correlation (NCC) and Mutual Infor-
mation (MI). The choice of one metric depends on the
characteristics of images. For example, MSD can be
used when images have the same range of intensity val-
ues while MI is used to measure the amount of informa-
tion that the registered image contains about the target
image.

In the medical practice, several diagnostic and ther-
apeutic applications, including mammography, require
deformable registration as organ structures change
shape or position between different scans. Conse-
quently, the last decade has seen a surge of publications
in this domain. While many of the traditional and com-
mon methods achieve high registration accuracy, they
tend to suffer from time complexity requiring from sev-
eral minutes to hours for a single registration (Klein
et al., 2009). This is a result of these methods solv-
ing an optimization problem for every pair of images
computing the non-linear correspondences. Algorithms
adapted for graphics processing unit (GPU) can consid-
erably reduce the registration time but eventually every
registration depends on GPU (Modat et al., 2010).

With the revolution of deep learning in the field of
computer vision and image processing in recent years,
the research community started to leverage the power
of neural networks for the medical image registration
task. Several papers presented a supervised learning ap-
proach, hence requiring ground truth data (Cao et al.,
2017; Krebs et al., 2017; Sokooti et al., 2017; Yang
et al., 2017). In these methods, the ground truths cor-
respond to warp fields obtained either by registering
images using traditional methods or by deforming im-
ages using devised transformations. The former clearly
presents inconveniences and limits the diversity of de-
formations that can be learned whereas the latter can-
not simulate certain deformations that happen in reality.
Only few work has been done to promote a self-learning
framework but come with experimental limitations (Li
and Fan, 2017; de Vos et al., 2017). A very recent paper
proposed VoxelMorph, a fast and unsupervised learn-
ing framework for deformable medical image registra-
tion (Balakrishnan et al., 2018). The authors claimed
that their algorithm, applied to 3D magnetic resonance
(MR) brain images, results in registration accuracy sim-
ilar to the state-of-the-art methods while execution tak-
ing orders-of-magnitude less time: less than a minute
on a central processing unit (CPU) and under a second
on a GPU.

From our survey of available literature, we found
multiple papers dealing with the alignment problem
of mammograms; yet, none of them is applying ma-
chine learning techniques. Deep learning is increasingly
used to detect and classify breast masses or calcifica-
tions in mammographic images but not to register them.
This present work, therefore, aims at filling this gap by
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studying VoxelMorph and assessing the possibility of
this framework in replacing known non-learning-based
methods.

We named our adaptation of VoxelMorph for mam-
mogram images as VoxelMorphMammography (VMM)
to give credit to the original work by Balakrishnan et al.
(2018).

2. State of the art

Breast image registration is a an ongoing challeng-
ing task that has been researched for years. The need
for registration is not limited to temporal mammogra-
phy, but extends to bilateral mammography, breast MR
imaging (MRI), and even mutli-modal such as the fu-
sion of breast MRI and mammography.

The literature abounds with several papers propos-
ing different methods for tackling the challenge of
breast image registration and harvest its clinical bene-
fits (Boehler et al., 2012; Hipwell et al., 2016).

Of the simplest yet effective ways to reduce mis-
alignment between images is to apply an affine trans-
formation. While it cannot correct for local deforma-
tions, it can provide significant initial alignment. In
their study, Pinto Pereira et al. (2010) found that affine
registration was almost as accurate as trained experts in
matching landmarks on mammograms. On the other
hand, Mertzanidou et al. (2012) advanced a volume-
preserving multi-modal registration algorithm based on
the affine transform to help radiologists in breast cancer
diagnosis. Nevertheless, the affine transformation is of-
ten a precursor for more advanced image registration al-
gorithms. For instance, Rueckert et al. (1999) proposed
their method to register contrast-enhanced breast MR
images consisting of a combination of an affine trans-
formation and a free-form deformation (FFD) based on
B-splines. The first finds the global motion of the breast
while the latter models local shifts. The results were
superior when compared to using rigid transformations
only. Rohlfing et al. (2003) extended on Rueckert et al.
(1999)’s work by adding a regularization term which
helped in volume preservation of breast tissues.

Other methods seek to extract features from mammo-
grams to model the deformations. For instance, Marias
et al. (1999)’s method consists of identifying specific
landmarks along the breast boundary which will be the
basis of matching mammograms using an interpolation
function based on thin-plate splines. On the other hand,
Wai and Brady (2005) achieved breast alignment in
mammograms by constructing and matching anatomy-
mimicking curvilinear coordinates.

More techniques can be found in the literature revolv-
ing around similar concepts. However, we could not
find any paper presenting a machine learning approach
for aligning breast images. Neural networks have the
potential to considerably reduce the image registration

(a) Original mammo-
gram

(b) Pectoral muscle
removed

(c) Peripheral
enhancement

Figure 1: Pre-processing steps.

time which tends to be long with traditional methods
(Klein et al., 2009).

3. Material and methods

3.1. Dataset
The dataset used is a subset of a larger database of

full-field digital mammograms made accessible to the
members of the Computer Vision and Robotics Lab at
the University of Girona, Spain. The acquisition was
done using a Hologic Selenia system at the resolution
of 70 micron per pixel. The images are 12-bit depth
and their spatial resolution is either 4096x3328 pixels
or 2560x3328 pixels. For our experiments, we have ar-
ranged 160 pairs of mammograms of which 133 pairs
are of the CC view while the rest (i.e. 27) are of the
MLO view. The CC-view mammograms will be used
for training and testing to understand the effect of the
framework parameters on the registration results. On
the other hand, the MLO-view mammograms will be
used for testing networks trained solely on CC-view im-
ages to evaluate the applicability of such scenario. In
every pair, the images are of the same breast with 1 or 2
years difference between the acquisitions.

3.1.1. Pre-processing
The pre-processing of the images follows the pipeline

done by Tortajada et al. (2014). The goal is to reduce the
variability between the sequence of mammograms for
easing the registration step. Practically, the breast was
segmented using simple thresholding while the pectoral
muscle was suppressed using an automatic algorithm
(Kwok et al., 2004). Additionally, a peripheral enhance-
ment technique was employed to compensate for thick-
ness inconsistencies at the breast periphery as devised
by Tortajada et al. (2012). Figure 1 shows the result of
each pre-processing step applied to a sample mammo-
gram.

The images were downsampled to 512x448 pixels
to reduce their memory size and speed up the training
phase.

Finally, we performed an affine registration for each
mammogram pair using elastix to obtain a global align-
ment (see Figure 2). The main configuration of this
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(a) Fixed image (b) Moving image (c) Warped image

Figure 2: Affine registration: (c) is the result of warping (b) using our
affine transformation model.

(a) Warped image (b) Breast region re-
moved from (a)

Figure 3: Unwanted white pixels along breast boundary generated
when selecting a B-spline of order greater than 1 for the final resam-
pling interpolation.

registration was a 6-level multiresolution scheme, mu-
tual information for the cost function, adaptive stochas-
tic gradient descent for the optimizer, and first order B-
spline for the interpolator. At the final step of the reg-
istration when the pixel correspondences between two
images are found, the moving image is transformed via
resampling and this requires interpolation. We used a
B-spline of order 1 as the resampling interpolator since
higher orders generated unwanted white pixels along the
breast boundary as can be seen in Figure 3.

3.2. Environmental Setup

The data processing, code development and elastix-
driven registrations were carried on a personal computer
powered with an Intel Core i5-3230M processor cloaked
at 2.60 GHz and equipped with 12 GB of RAM.

For training the neural network we have used Co-
laboratory, a free cloud service for machine learning
(Google, 2019). It is a setup-free Jupyter notebook en-
vironment that can be accessed from the browser. The
computations are performed on a virtual machine oper-
ated by Ubuntu version 18.04.2 LTS and powered with
a NVIDIA Tesla K80 and 12 GB of RAM. Colabora-
tory has been promoted as an effective platform for deep
learning acceleration by Carneiro et al. (2018) and was

featured in several research projects (Bodhwani et al.,
2019; Roy et al., 2019; Satılmış et al., 2018).

For affine and B-spline registrations, we used a pop-
ular toolbox for intensity-based medical image registra-
tion called elastix (Klein et al., 2010). Launching an
image registration task with elastix is quick and simple
as it allows the user to define and tune the registration
strategy (multiresolution scheme, transformation func-
tion, loss function, optimizer, etc.) in a parameter text
file.

3.3. Baseline Method

Diez et al. (2011) quantitatively measured the ac-
curacy of different state-of-the-art image registration
methods in registering temporal mammograms. The re-
sults of the experiments were in favor for the method
based on B-splines and adopting a multiresolution reg-
istration paradigm. Therefore, we chose this method to
be our baseline for comparing with VMM.

Practically, we performed the registration using
elastix. The main parameters were: 4-level multiresolu-
tion scheme, mutual information for the cost function,
adaptive stochastic gradient descent for the optimizer,
20mm for the B-spline’s grid spacing, and first order B-
spline for the interpolator and resampling interpolator.

3.4. VoxelMorph (VM)

3.4.1. Overview
Balakrishnan et al. (2018) devised an unsupervised

learning-based framework for non-rigid medical im-
age registration called VoxelMorph. Their experiments
showed that VoxelMorph is able to achieve perfor-
mances comparable to those from state-of-the-art meth-
ods while requiring much lesser time for performing ac-
tual registration tasks.

At the heart of the VoxelMorph framework is a con-
volutional neural network (CNN) that models a func-
tion gθ( f ,m) = φ, where θ represents the learnable net-
work parameters (specifically, the kernels of the convo-
lutional layers), f and m are respectively the fixed and
moving image defined over a spatial domain Ω, and φ is
the registration or deformation field.

The deformation field φ is defined in the fixed image
space. In the case of registering 2D images, it is stored
as a 2-channel image where the first and second channel
respectively specify the pixel displacements along the
rows (i.e., negative y-direction) and along the columns
(i.e., x-direction).

The framework is summarized in Figure 4. Input im-
ages f and m are fed to the θ-parameterized convolu-
tional network to compute φ. Using a spatial transform
function, m is warped with φ. The warped image m′ and
f are evaluated for similarity by a loss function L. The
goal of the training phase is to minimize L by finding the
optimal parameters θ. This is done using the stochastic
gradient descent method.
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Figure 4: VoxelMorph framework (Balakrishnan et al., 2018)

Figure 5: Original U-Net architecture (Ronneberger et al., 2015)

3.4.2. Network Architecture

VoxelMorph implements a U-Net inspired CNN. U-
Net was developed by Ronneberger et al. (2015) for
medical image segmentation tasks and has gained a
wide popularity within the research community and is
often employed for segmentation challenges. The U-
Net architecture, as shown in Figure 5, has three main
characteristics: a contracting path, an expanding path
and skip connections. The contracting path consists of a
number of convolutional layers sequentially downsam-
pled by a max pooling layer of stride 2. Through this
path, the network learns the important features (context)
but not their locations. The resolution is also low at
this stage. The expanding path has a reversed effect as
it works to progressively propagate context information
to higher resolutions until achieving the original reso-
lution. For this, it replaces max pooling operations by
transposed convolutions for upsampling. The precise
localization of context at each stage of the expanding
path is ensured by the skip connections that concatenate
the upsampled layers with their corresponding feature
maps from the contracting path. All convolutions are
activated by a rectified linear unit (ReLU) function.

Figure 6: VoxelMorph’s CNN proposed at CVPR 2018 (Balakrishnan
et al., 2018)

Figure 7: VoxelMorph’s CNN proposed at MICCAI 2018 (Balakrish-
nan et al., 2019)

The VoxelMorph network has certain variations from
the original U-Net. First, the input to the network is
a single layer made by concatenating m and f. The
downsampling, where the resolution is reduced by half
at each layer, is the result of using stride 2 convolu-
tions instead of max pooling. The convolutions are fol-
lowed with a Leaky ReLU layer which mitigates the
infamous ”Dying ReLU” problem (Maas et al., 2013).
Also, the upsampling operations along the expanding
path are simply a duplication of rows and columns.

Figure 6 shows the network presented at the 2018 In-
ternational Conference on Computer Vision and Pattern
Recognition (CVPR) while Figure 7 depicts the model
used for the 2018 International Conference on Medi-
cal Image Computing & Computer Assisted Interven-
tion (MICCAI). The second model is part of the authors’
extended work in Balakrishnan et al. (2019) where a dif-
feomorphic formulation was integrated. The purpose is
to generate deformation fields that are smooth and in-
vertible to cater for many scientific applications where
it is important to analyze these fields.
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3.4.3. Loss Functions
VoxelMorph does not make use of ground truth reg-

istration fields during the network training. The unsu-
pervised learning is achieved by evaluating the model
through the loss function L (Equation 1). It consists of
two components: Lsim which estimates dissimilarity be-
tween f and m′, and Lsmooth which introduces diffusion
regularization to φ. The second term helps in producing
smooth warp fields which may otherwise reveal unre-
alistic physical deformations since Lsim will push m′ to
verge on f . The penalization of irregular local spatial
variations in φ is controlled by a weighing parameter λ.

L( f ,m, φ) = Lsim( f ,m′) + λLsmooth(φ) (1)

Two intensity-based similarity methods for Lsim are
available in VoxelMorph:

1. Mutual Squared Error (MSE): This metric quan-
tifies dissimilarity since it computes the intensity
difference between corresponding pixels from two
images. Therefore, it can be used when f and m
have similar intensity distributions, otherwise the
registration performance will be suboptimal (Bağcı
et al., 2010). Nevertheless, intensity variations can
be minimized by normalizing the images. The for-
mula is defined in Equation 2.

2. Local Cross-Correlation (LCC): Cross-correlation
computes a coefficient that reveals the degree of
similarity between f and m′: the higher the cross-
correlation value is, the higher the similarity is.
Consequently, when using this metric, the additive
inverse is taken since the algorithm tries to mini-
mize the error (i.e. the dissimilarity between im-
ages); therefore, Lsim is formulated as:
Lsim = −LCC( f ,m′). Contrary to MSE, cross-
correlation is not affected by variations in intensity
scale between images (Roshni and Revathy, 2008).
In the standard intensity-based cross-correlation
formula, the mean intensity of the whole images
are subtracted. Instead, VoxelMorph employs a
local cross-correlation formulation where the lo-
cal mean from a pixel’s neighborhood is computed
(Equation 3).

MS E( f ,m′) =
1
|Ω|

∑

pεΩ

( f (p) − m′(p))2 (2)

LCC( f ,m′) =
∑

pεΩ

(
∑

pi ( f (pi) − f̂ (p))(m′(pi) − [m̂ ◦ φ](p)))2

(
∑

pi ( f (pi) − f̂ (p))2)(
∑

pi (m
′(pi) − [m̂ ◦ φ](p))2)

(3)
where:

• pi iterates around p in a window size of 9,

• f̂ (p) = f (p) − 1
n2

∑
pi

f (pi),

• m̂(p) = m(p) − 1
n2

∑
pi

m(pi), and

• m̂ ◦ φ denotes m̂ warped by φ.

For Lsmooth, VoxelMorph employs a diffusion regular-
izer based on the heat diffusion equation and therefore
computes gradients of φ (Equation 4). While the gradi-
ent of an image reflects the magnitude and direction of
changes in intensity, the gradient of φ reflects the mag-
nitude and direction of changes in displacement. Abrupt
changes therefore indicate irregularities in φ whereas
gradual changes imply smoothness.

Lsmooth (φ) =
∑

pεΩ

||∆φ(p)||2 (4)

3.4.4. Spatial Transformer
The Loss function evaluates in part the similarity be-

tween f and m′. This metric helps the optimization of
the network parameters θ. However, the network com-
putes φ rather than directly estimating m′. Therefore,
after finding φ and before computing the loss, m′ is ob-
tained by warping m with φ. This is achieved by using
a transformation function that is inspired by the idea
of the spatial transformer networks (Jaderberg et al.,
2015). The transformer is a differentiable operation;
this allows the loss to be backpropagated during the op-
timization of the parameterized φ.

3.5. VoxelMorphMammography (VMM)

Though experimented on 3D brain MR images, Vox-
elMorph was designed for generic pairwise medical im-
age registration. In this study, we sought to build upon
the original work and provide a framework adapted to
registering temporal mammograms and named it Voxel-
MorphMammography. The changes we brought to the
original framework are described in the following sub-
sections.

3.5.1. Network Architecture
We present the VMM neural network in Figure 8. The

input to the network is a 2-channel concatenation layer
made of f and m. When the convolution operation is
to preserve the spatial resolution, a stride of 1 is used,
otherwise a stride 2 is used resulting in outputs with
half-sized dimensions. Each convolution uses a kernel
(or filter) of size 3 and is activated by a Leaky ReLU
with a negative slope coefficient of 0.2. The contracting
path extracts and learns the input’s hierarchical features
which are then diffused in the expanding path that tries
to optimize alignment at successively finer resolutions
by estimating φ.

Compared to VoxelMorph’s proposed CNNs, We
have used more layers and feature maps to cater for
larger images and capture more features. Also, our over-
all network structure looks closer to the MICCAI’s ver-
sion of VM and similar at the bottom part — between
the contracting and expanding blocks — to the original
U-Net model. Furthermore, our network automatically
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builds its structure given the number of layers defined
by the user whereas the VM model is restricted to a fixed
number of layers.

In our experiments, we have used images of size
512x448 but other dimensions (including depth) are
possible. In the case of 3D images, the output of the
CNN is of depth 3 where each channel is a volume stor-
ing the displacements in the different directions.

3.6. Training Strategy
We have organized the data into folders. Each folder

contains a pair of mammogram images to be regis-
tered. The training was based on CC-view mammo-
grams which make only 133 cases. Instead of splitting
this small dataset into train and test sets, we did a 7-
fold cross-validation (Figure 9). Specifically, the data
was partitioned into 7 parts. One part served as the test
set while the rest formed the training set. This step was
repeated 7 times and at each cycle a different fold was
fixed as the test set. At the end, all the 133 cases were
registered and used for evaluation.

3.7. Evaluation
Assessing a registration result is not as straightfor-

ward as for other medical imaging tasks such as detec-
tion and classification. The ideal mean to measure our
method’s accuracy is to compare the obtained deforma-
tion fields with ground truth warp fields. However, in
the lack of such data, we resolved on using alternative
methods, both quantitative and qualitative, for evaluat-
ing the registration performance.

3.7.1. Mutual Information (MI)
While the MSE and LCC metrics can be reused to

quantitatively estimate the degree to which the fixed im-
age and registered image are similar, we decided to uti-
lize a more flexible metric known as Mutual Informa-
tion (Wells III et al., 1996). MI relies on image entropy
to measure statistical dependence between images. A
higher value indicates better alignment. MI has the ad-
vantage of not being affected when the same anatomical
structure in two images has different intensities such as
the case in multi-modal scans. The formula is shown is
Equation 5.

MI (X,Y) =
∑

i

∑

j

pxy(i, j)log
pxy(i, j))

px(i)py( j))
(5)

where:

• X and Y are random variables associated with the
images to be compared,

• pxy is the joint probability mass function of X and
Y ,

• px and py are respectively the marginal probability
mass function of X and Y .

3.7.2. Temporal Subtraction Image
One way to visually assess the registration result is

to look at the deformed image and compare it with the
fixed image. However, this direct comparison can some-
times be delicate and is intrinsically subjective. One
way to mitigate this complication is by building a sub-
traction image that shows only the differences between
two images such that when the two images are identi-
cal, the subtraction image is a black image. The useful-
ness of this method goes further in that it allows radi-
ologists to better detect subtle information by eliminat-
ing normal background breast tissue. For instance, the
study conducted by Katsuragawa et al. (2002) showed
that temporal subtraction images substantially improved
radiologists’ detection of lung nodules. This tech-
nique is also very useful to obtain vascular information
of breast lesions in contrast-enhanced mammography
(Carton et al., 2008; Dromain and Balleyguier, 2010).

3.7.3. Deformation Field
While similarity metrics and subtraction images give

a quick clue on the alignment success of a registration,
they cannot be solely relied upon for quality assurance.
In fact, a perfect registration may result from unrealis-
tic deformations that do not model physically possible
elastic movements. Therefore, it is important to check
the deformation field for irregularities which also helps
in tuning the regularization parameter λ.

3.8. Implementation
All the coding was done in Python programming lan-

guage to keep in line with the original VoxelMorph im-
plementation. The network was developed using Keras,
a popular open-source deep learning library (Chollet
et al., 2015), and runs on top of TensorFlow (Abadi
et al., 2016). VoxelMorph uses the Adam optimizer
(Kingma and Ba, 2014); in our framework, we adopted
RMSprop (Tieleman and Hinton, 2012) since our tri-
als showed faster convergence and more stability dur-
ing long epochs when using the latter algorithm. The
learning rate was fixed to 10-4.

3.9. Experiments
3.9.1. Registering CC-View Mammograms

In the following set of experiments, we registered all
the CC-view images using the strategy described in 3.6.
We sought to understand how different similarity met-
rics, regularization parameters, and CNN architecture
affect the registration performance.

1. Similarity Metrics and Regularization Parameters:
We have made four models of VoxelMorphMam-
mography by training the network in turn with a
high and low regularization parameter λ and for
each of the similarity metrics. With LCC, we tested
with λ = 1 and λ = .01 whereas with MSE we used
λ = .3 and λ = .03.
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Figure 8: VoxelMorphMammography’s CNN architecture

Figure 9: 7-Fold cross-validation

2. Non-diffeomorphic VM:
In this experiment we wanted to test the effect of
the network architecture and size to the alignment
results. For this end, we carried the same previous
four model trainings replacing the network with
the original VoxelMorph CNN (Figure 6).

3. Diffeomorphic VM: Diffeomorphism preserves
topological properties and produces invertible de-
formation fields. To compare the registration qual-
ity between diffeomorphic and non-diffeormophic
formulations, we experimented with the more re-
cent implementation of VoxelMorph that uses the
CNN in Figure 7. This version uses a different
and more complex loss function; its details are de-
scribed in Dalca et al. (2019).

3.9.2. Registering MLO-View Mammograms

To test the performance of VoxelMorphMammogra-
phy in registering mammograms taken at a view differ-
ent from the view used to train it, we fixed the CC-view
images as the training set and trained two models for
1000 epochs, one using the MSE metric and the other
using the LCC metric. Each model was then used to
register the MLO-view images.
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(a) Fixed image (b) Moving image

Figure 10: Sample temporal mammogram pair. The moving image
was affinely aligned to the fixed image during the data pre-processing
step.

4. Results

4.1. VoxelMorphMammography Experiments

The initial experiments revolved around training our
designed network with different parameter settings. We
used both the MSE and LCC metrics for the loss func-
tion and in combination with each, we set with different
values for the regularization parameter λ. The qualita-
tive results (warped images, subtraction images and de-
formation fields) will be based on the fixed and moving
image shown in Figure 10. We remind that the non-rigid
transformations are applied on affinely aligned images.
The training and testing of the neural networks involved
the 133 pairs of CC-view mammograms.

4.1.1. Mutual Information Results
Figure 14 shows the boxplots of the computed mu-

tual information for all the CC-view image pairs using
the separately trained models. The plot also includes
the MI values computed before any registration, after
the initial global alignment using the affine transform,
and after using the baseline method based on B-splines.
We can see that the simplest form of transformation, i.e.
affine, provides a good initial alignment of the temporal
mammograms. The baseline method pushes the regis-
tration performance even higher but has longer whiskers
indicating some pairs of images benefited from signif-
icant improvement in alignment than others. Its lower
whisker, however, shows that some pairs experienced a
drop in MI with the baseline method. The VMM mod-
els using a small regularization weight (0.01 for LCC
and 0.03 for MSE) achieve higher MI values compared
to the baseline. When using LCC, a higher regulariza-
tion weight (λ = 1) yields a boxplot almost similar to
the B-spline method. The model trained with MSE and
λ = 0.3 gave the lowest MI scores among the non-
rigid methods; yet, it has the same median as VMM
trained with LCC and λ = 1. The figure includes the
results of models trained with only two λ values, but in

Change of MI compared to affine
Methods Decrease Increase No change

Baseline (B-spline) 4 125 4
VMM (s=CC,l=1) 0 133 0
VMM (s=LCC,l=.01) 0 133 0
VMM (s=MSE,l=.3) 0 133 0
VMM (s=MSE,l=.03) 0 133 0

Table 1: Number of pairs that have seen a decrease, increase or no
change in MI value using different deformable registration methods
compared to the affine alignment.

practice we have experimented with different values and
obtained the same pattern: the lower the regularization
penalty, the higher the MI, and vice-versa.

Table 1 helps to see how the MI value changed by
using the different registration methods on affinely reg-
istered data. The baseline method resulted in a drop
of MI for 4 pairs of mammograms and no significant
difference for another 4 pairs. In contrast, all the deep
learning-based methods improved the MI score over the
whole dataset.

4.1.2. Temporal Subtraction Images
Figure 18 shows, for each method, the subtraction im-

age obtained by taking the absolute difference of the
fixed image and the warped image. Visually, these
images can provide beneficial details as stated previ-
ously; nevertheless, we can provide a numerical value
to quantify the amount of non-suppressed pixels as an
error computed using the MSE equation. This value has
been added under each subtraction image for facilitating
comparison between the methods. VMM models using
low regularization penalties produced the smallest er-
rors. Only in combination with the MSE metric that a
higher λ value gave an error lower than the baseline’s.
The model trained with a LCC-driven loss function and
λ = 1 has a larger error; visually, the top-left corner in
Figure 18b has a relatively larger white area, i.e. more
differences between the subtracted images.

4.1.3. Deformation Fields
Warp fields can be displayed in a variety of ways. As

an image, shades of primary colors (e.g. RGB) char-
acterize the direction and intensity of displacements.
Quiver plots are also commonly used for displaying
these fields. Another method yet, is to warp an image of
repeated vertical and horizontal lines, i.e. a grid, using
the found deformation field. The deformed grid shows
how points have moved position while its overall ap-
pearance gives an insight about the smoothness of the
warp field. Figure 19 shows the warped grids we have
obtained. We can notice high irregularities with lower
λ’s while the baseline method and the VMM model
trained with MSE and a higher λ generates a clear and
smooth deformed structure.
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(a) λ = 100 (b) λ = 10

Figure 11: Deformed images obtained using the diffeomorphic for-
mulation of VoxelMorph. The difference error (MSE) with the fixed
image is 0.014 for (a) and 0.0074 for (b).

4.2. VoxelMorph Experiments

Using the same dataset and set of parameters, we
have trained new models using the original VoxelMorph
network. The MI results are displayed in Figure 15.
Overall, our architecture yielded better scores especially
at lower values of the regularization parameter. The
only case when VM improved on the VMM is with the
MSE metric and with λ = 0.3, but the improvement is
slight while the median MI is similar for both. Quali-
tative measures are not presented for these experiments
as both frameworks generates very similar results with
a small degree of perceived better visualization quality
from using VMM.

4.3. Diffeomorphism Experiments

The VoxelMorph framework incorporating a diffeo-
morphic formulation has more complexity in parame-
ters setting. It would require better understanding of the
inner mechanism and more trials to achieve a fairer eval-
uation and comparison with the other models. Never-
theless, we show in Figure 16 the results of two trained
models from using a high and low regularization weight
along with the results previously obtained with VMM
models. The diffeomorphic model achieved similar
MI results to the VMM model with MSE metric when
higher regularization weights were applied. Lowering
the weight slightly improved the MI values but there
are still behind the values obtained with VMM models.
However, the diffeomorphic model at low λ produced
the lowest difference error (0.0074). Figure 11 and Fig-
ure 12 contain, respectively, the warped images and de-
formation fields from these experiments. We can notice
how the warp field maintains regularity to some degree
even at reduced regularization penalty (Figure 12b).

(a) λ = 100 (b) λ = 10

Figure 12: Deformation fields obtained using the diffeomorphic for-
mulation of VoxelMorph.

Figure 13: Boxplots of MI values for 27 pairs of temporal MLO-view
mammograms registered using B-spline transform and a VoxelMor-
phMammography model trained on 130 pairs of CC-view images.

4.4. Registering MLO Mammograms

In this experiment, we focused on using a high regu-
larization weight since antecedent tests always yielded
optimized metrics with low λ values. For both LCC and
MSE trials, we fixed this parameter to 0.1 and the ob-
tained MI results are presented in Figure 13. The plot
of VMM with LCC has higher MI median than the plot
of the baseline method; yet, the latter has comparatively
shorter lower whisker and longer upper whisper.

4.5. Execution Time

Post-training, VoxelMorphMammography takes on
average 0.05s on the GPU to perform a single pair-
wise image registration. Using elastix running on a
CPU, affine and B-spline registrations take, respec-
tively, about 30s and 45s per case.
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Figure 14: Boxplots of MI values for 130 pairs of temporal CC-view mammograms before registration and after registration using different methods.
s denotes the metric adopted for the loss function while λ is the regularization weight.

Figure 15: Boxplots of MI values for 130 pairs of temporal CC-view mammograms registered using VoxelMorphMammography and non-
diffeomorphic VoxelMorph. The aim is to compare the performance of the 2 frameworks given the same combinations of parameters.

Figure 16: Boxplots of MI values for 130 pairs of temporal CC-view mammograms registered using VoxelMorphMammography and diffeomorphic
VoxelMorph. The aim is to see the effect of diffeomorphism on the registration result.
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(a) Baseline (B-spline)
MI=0.74

(b) VMM, s=LCC, λ = 1
MI=0.75

(c) VMM, s=LCC, λ = .01
MI=0.82

(d) VMM, s=MSE, λ = .3
MI=0.72

(e) VMM, s=MSE, λ = .03
MI=0.79

Figure 17: Results of registering the moving image (Figure 10b) using different methods. As a reference, the MI before registration is 0.62.

(a) Baseline (B-spline)
error=0.0108

(b) VMM, s=LCC, λ = 1
error=0.0111

(c) VMM, s=LCC, λ = .01
error=0.0082

(d) VMM, s=MSE, λ = .3
error=0.0105

(e) VMM, s=MSE, λ = .03
error=0.0075

Figure 18: Subtraction images: difference between fixed image (Figure 10a) and warped images (Figure 17). The error quantifies the difference
numerically and was computed using the MSE formula. As a reference, the error before registration is 0.0169.

(a) Baseline (B-spline) (b) VMM, s=LCC, λ = 1 (c) VMM, s=LCC, λ = .01 (d) VMM, s=MSE, λ = .3 (e) VMM, s=MSE, λ = .03

Figure 19: Deformation fields displayed as warped grids.
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5. Discussion

We can notice that the hints given by the MI val-
ues about the degree of alignment are reflected to some
extent in the subtracted images in the sense that more
structures are suppressed in theses images when the MI
between fixed and warped image is higher. However,
this may not always be the case. For example, con-
sider the case of registering the image pair in Figure
(10), the VMM model with MSE as metric for the loss
function and lower λ value gave the second highest MI
(Figure 17e), but when considering the MSE value (Fig-
ure 18e) this model gave the lowest error. Conversely,
the model using the LCC metric and lower regulariza-
tion weight generates the highest MI (Figure 17c) but
gives the second lowest error (Figure 18c). Deciding on
which of these two models is more successful at regis-
tering the sample image pair needs other indicators to
be considered. If we analyze their corresponding reg-
istration fields (Figure 19), we see that the first model
produces much less warp irregularities than the second;
therefore, the model with the MSE metric would be a
relatively better model to adopt.

Overall, using the MSE metric in the loss function in-
stead of LCC produced better qualitative results for the
type of images used. During the training phase, we saw
that the training loss converges quickly with MSE while
the LCC continuously minimizes the error which ex-
plains the tendency of the LCC models to overfit to the
fixed image. Maintaining a higher regularization weight
when using LCC is therefore necessary.

Furthermore, we notice that using a larger CNN ar-
chitecture provides better registration results. As for the
diffeomorphic models, they effectively ensured reason-
ably smooth warp fields even though the MI values were
relatively low. More experiments on these models and
their parameters will be a good idea for future work.

Finally, we can confidently train VoxelMorphMam-
mography with CC and MLO mammograms at the same
time. Eventually, training with multiple databases could
also be possible and may yield a more generic model for
mammogram image registration.

6. Conclusions

In this paper, we have presented VoxelMorphMam-
mography (VMM), an extension of the VoxelMorph
framework tailored for the registration task of temporal
mammograms. VMM is based on convolutional neural
networks and spatial transformers and can be deployed
for registering 3D volumes even though in our work we
restricted the experiments to registering 2D mammo-
grams. VMM is also a self-learning neural network and
therefore ground truth data is not required. Compared
with a state-of-the-art toolbox for medical image regis-
tration — elastix, VMM trained with only 133 mammo-
gram pairs can achieve comparable results while requir-

ing a fraction of second to perform pairwise image reg-
istration. This is made possible by optimizing a CNN-
modeled global function during training instead of solv-
ing for each image pair. The optimization of the regis-
tration performance relies on a loss function that cou-
ples a similarity metric, such as cross-correlation and
mutual square error, with a diffusion regularizer that pe-
nalizes for irregular spatial variations in the deformation
field. Additionally, VMM has demonstrated its capabil-
ity to register mammograms taken at a projection differ-
ent from the one used during training of the network.
This study comes at the conclusion that deep learn-
ing approaches have the potential to replace traditional
methods for mammograms registration. However, there
is a need for conducting more research and experimen-
tation to provide quality assurance through establishing
a robust validation method.
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Diez, Y., Oliver, A., Lladó, X., Freixenet, J., Marti, J., Vilanova, J.C.,
Marti, R., 2011. Revisiting intensity-based image registration ap-
plied to mammography. IEEE Transactions on Information Tech-
nology in Biomedicine 15, 716–725.

Dromain, C., Balleyguier, C., 2010. Contrast-enhanced digital mam-
mography, in: Digital mammography. Springer, pp. 187–198.

Ekeh, A.P., Alleyne, R.S., Duncan, A.O., 2000. Role of mammogra-
phy in diagnosis of breast cancer in an inner-city hospital. Journal
of the National Medical Association 92, 372.

van Engeland, S., Snoeren, P.R., Karssemeijer, N., Hendriks, J.H.,
2003. Optimized perception of lesion growth in mammograms us-
ing digital display, in: Medical Imaging 2003: Image Perception,
Observer Performance, and Technology Assessment, International
Society for Optics and Photonics. pp. 25–32.

Fitzmaurice, C., Allen, C., Barber, R.M., Barregard, L., Bhutta, Z.A.,
Brenner, H., Dicker, D.J., Chimed-Orchir, O., Dandona, R., Dan-
dona, L., et al., 2017. Global, regional, and national cancer inci-
dence, mortality, years of life lost, years lived with disability, and
disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a
systematic analysis for the global burden of disease study. JAMA
oncology 3, 524–548.

Galceran, J., Ameijide, A., Carulla, M., Mateos, A., Quirós, J., Ro-
jas, D., Alemán, A., Torrella, A., Chico, M., Vicente, M., et al.,
2017. Cancer incidence in spain, 2015. Clinical and Translational
Oncology 19, 799–825.

Google, 2019. Welcome to colaboratory. URL:
https://colab.research.google.com. accessed: 2019-
06-06.

Hipwell, J.H., Vavourakis, V., Han, L., Mertzanidou, T., Eiben, B.,
Hawkes, D.J., 2016. A review of biomechanically informed breast
image registration. Physics in Medicine & Biology 61, R1.

Jaderberg, M., Simonyan, K., Zisserman, A., et al., 2015. Spatial
transformer networks, in: Advances in neural information process-
ing systems, pp. 2017–2025.

Katsuragawa, S., Uozumi, T., Kakeda, S., Watanabe, H., Nakata,
H., Doi, K., 2002. Clinical usefulness of temporal subtraction
technique for detection of interval changes on digital chest ra-
diographs, in: CARS 2002 Computer Assisted Radiology and
Surgery. Springer, pp. 689–694.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 .

Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B.,
Chiang, M.C., Christensen, G.E., Collins, D.L., Gee, J., Hellier,
P., et al., 2009. Evaluation of 14 nonlinear deformation algorithms
applied to human brain mri registration. Neuroimage 46, 786–802.

Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P., 2010.
Elastix: a toolbox for intensity-based medical image registration.
IEEE transactions on medical imaging 29, 196–205.

Krebs, J., Mansi, T., Delingette, H., Zhang, L., Ghesu, F.C., Miao, S.,
Maier, A.K., Ayache, N., Liao, R., Kamen, A., 2017. Robust non-
rigid registration through agent-based action learning, in: Interna-

tional Conference on Medical Image Computing and Computer-
Assisted Intervention, Springer. pp. 344–352.

Kwok, S.M., Chandrasekhar, R., Attikiouzel, Y., Rickard, M.T., 2004.
Automatic pectoral muscle segmentation on mediolateral oblique
view mammograms. IEEE transactions on medical imaging 23,
1129–1140.

Li, H., Fan, Y., 2017. Non-rigid image registration using fully con-
volutional networks with deep self-supervision. arXiv preprint
arXiv:1709.00799 .

Maas, A.L., Hannun, A.Y., Ng, A.Y., 2013. Rectifier nonlinearities
improve neural network acoustic models, in: Proc. icml, p. 3.

Marias, K., Behrenbruch, C., Parbhoo, S., Seifalian, A., Brady, M.,
2005. A registration framework for the comparison of mammo-
gram sequences. IEEE Transactions on Medical Imaging 24, 782–
790.

Marias, K., Brady, J., Highnam, R., Parbhoo, S., Seifalian, A., Wirth,
M., 1999. Registration and matching of temporal mammograms
for detecting abnormalities. Medical Imaging Understanding and
Analysis .

Mertzanidou, T., Hipwell, J., Cardoso, M.J., Zhang, X., Tanner, C.,
Ourselin, S., Bick, U., Huisman, H., Karssemeijer, N., Hawkes,
D., 2012. Mri to x-ray mammography registration using a volume-
preserving affine transformation. Medical image analysis 16, 966–
975.

Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J.,
Hawkes, D.J., Fox, N.C., Ourselin, S., 2010. Fast free-form de-
formation using graphics processing units. Computer methods and
programs in biomedicine 98, 278–284.

Pinto Pereira, S.M., Hipwell, J.H., McCormack, V.A., Tanner, C.,
Moss, S.M., Wilkinson, L.S., Khoo, L.A., Pagliari, C., Skippage,
P.L., Kliger, C.J., et al., 2010. Automated registration of diagnostic
to prediagnostic x-ray mammograms: Evaluation and comparison
to radiologists accuracy. Medical physics 37, 4530–4539.

Richard, F.J., Bakic, P.R., Maidment, A.D., 2006. Mammogram reg-
istration: a phantom-based evaluation of compressed breast thick-
ness variation effects. IEEE transactions on medical imaging 25,
188–197.

Rohlfing, T., Maurer, C.R., Bluemke, D.A., Jacobs, M.A., 2003.
Volume-preserving nonrigid registration of mr breast images using
free-form deformation with an incompressibility constraint. IEEE
transactions on medical imaging 22, 730–741.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional
networks for biomedical image segmentation, in: International
Conference on Medical image computing and computer-assisted
intervention, Springer. pp. 234–241.

Roshni, V., Revathy, K., 2008. Using mutual information and cross
correlation as metrics for registration of images. Journal of Theo-
retical & Applied Information Technology 4.

Roy, S., Panda, A., Naskar, R., 2019. Unsupervised ground truth
generation for automated brain em image segmentation, in: 2019
6th International Conference on Signal Processing and Integrated
Networks (SPIN), IEEE. pp. 66–71.

Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O.,
Hawkes, D.J., 1999. Nonrigid registration using free-form defor-
mations: application to breast mr images. IEEE transactions on
medical imaging 18, 712–721.
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Abstract

Acute ischemic stroke is a highly prevalent condition that can lead to a significant impairment in patient’s life. The
development of techniques that can anticipate clinical outcome has the potential to aid physicians in properly address-
ing patient management. This project developed strategies to predict clinical outcome from magnetic resonance (MR)
images and from clinical data. Different strategies were implemented in terms of 1) preprocessing steps, 2) feature
extraction approach (traditional machine learning versus feature extraction using convolutional neural networks), 3)
input to the model (regions of interest based on lesion segmentation versus whole brain volume) and 4) classification
parameters (types of classifiers, dimensionality reduction techniques and clinical information usage). The goal was to
predict the modified Rankin Scale score, which measures the degree of disability after a stroke event by assigning a
score that varies from zero to six. The dataset was provided by the ISLES 2016 Challenge, including 30 cases. The
metric used to evaluate the performance of the models was the mean absolute error (MAE) between the computed
and the actual scores. The best result from the traditional machine learning strategy was obtained by extracting whole
volume features from a 3D image generated from the subtraction of two perfusion MR sequences, namely cerebral
blood volume (CBV) and cerebral blood flow (CBF), which achieved a MAE of 0.43 ± 0.76. For the convolutional
neural network approach, feature extraction was performed using the encoder part of a 3D U-net, which was pre-
trained to perform the lesion segmentation of images from the same dataset. The best result was obtained using the
whole CBF/CBV difference volume as network input, leading to MAE of 0.50±0.95. Approaches that did not require
lesion segmentation achieved similar or even better results than strategies that used it, demonstrating how radiological
knowledge can be incorporated into project design to guide extraction of the most meaningful information from the
available resources. Future work with larger datasets is necessary to allow a more robust evaluation of the generated
models.

Keywords: stroke, clinical outcome, clinical prediction, MRI, perfusion, ISLES, medical challenges, machine
learning, convolutional neural networks

1. Introduction

Stroke is defined as an acute episode of focal dysfunc-
tion of the brain, retina, or spinal cord lasting longer
than 24h, or of any duration if imaging such as com-
puted tomography (CT) or magnetic resonance (MR)
or if autopsy show focal infarction or hemorrhage rel-
evant to the symptoms (Hankey, 2017). The most typi-
cal symptoms of stroke include sudden unilateral weak-
ness, numbness, visual loss, diplopia, altered speech,
ataxia and non-orthostatic vertigo (Hankey and Blacker,
2015).

According to the American Heart Association
(AHA), stroke prevalence in adults is 2.7o% in the
United States (Benjamin et al., 2018). Each year, around
795,000 people experience a new or recurrent stroke.
In Spain, 116,017 cases were reported in 2013 (Brea
et al., 2013). Regarding the type, 87% were ischemic
and 13% were hemorraghic (being 10% intracerebral
hemorraghic and 3% subarachnoid hemorrhagic). This
condition represents also a tremendous social burden,
not only by the mortality but also by the associated mor-
bidity (Vilela and Rowley, 2017). As a consequence of
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population ageing, it is expected that the health costs
will continue to rise exponentially over the next decades
(Favate and Younger, 2016).

1.1. Management of Ischemic Acute Stroke

For many years, treatment of acute ischemic stroke
was based only on supportive therapy, rehabilitation and
risk management. Nowadays, guidelines recommend
that patients within 4.5 hours of symptom onset should
be treated with intravenous tissue plasminogen activa-
tor (tPA), if there are no contraindications (Meschia and
Brott, 2018). The goal of using tPA is to dissolve the
clot that caused the stroke, allowing the restoration of
cerebral blood perfusion.

Stroke imaging already plays a key role in the deci-
sion making process regarding the choice of the correct
treatment, being incorporated in guidelines for patient
management. Several machine and deep learning ap-
proaches were already developed and implemented to
forecast the outcome of the stroke lesion itself, but few
of them dealt with clinical prediction. The develop-
ment of strategies to predict final clinical patient out-
come from imaging and non-imaging data have poten-
tial to provide new valuable information to guide stroke
management, improving patient care even further.

1.2. Project Description and Goal

This master thesis focused on using MR images and
clinical data provided by the Ischemic Stroke Lesion
Segmentation (ISLES) Challenge 2016 to predict pa-
tient’s clinical outcome in acute ischemic stroke.

Two main approaches were considered for feature
extraction: traditional machine learning (ML) using
hand-crafted features and convolutional neural net-
works (CNN). For both cases, effect of using features
from regions of interest (ROIs), determined by lesion
segmentation, or features from the whole brain volume
(without lesion segmentation) were analyzed. Addition-
ally, the effect of implementing different strategies in
terms of preprocessing steps, classifiers, usage of clini-
cal information and dimensionality reduction were also
assessed.

The clinical outcome was measured through the mod-
ified Rankin Scale, which measures the degree of dis-
ability after a stroke event by giving a score that varies
from zero to six. The experiment results were quantita-
tively evaluated on the training set of the challenge ac-
cording to the mean absolute error (MAE) between the
predicted labels and the true labels.

2. Medical Background

2.1. Imaging in Acute Stroke

Imaging plays a fundamental role in the diagnosis and
in the management of stroke patients. The 2018 AHA

Guidelines recommend that all patients admitted to hos-
pital with suspected acute stroke should receive brain
imaging evaluation upon hospital admission (Powers
et al., 2018). In most cases, noncontrast CT (NCCT)
provides the necessary information to make decisions
about acute management. The guidelines also deter-
mine that selected patients may benefit from obtain-
ing computed tomography perfusion (CTP), diffusion-
weighted imaging (DWI), or perfusion-weighted imag-
ing (PWI) to aid in patient selection for mechanical
thrombectomy.

NCCT has limited sensitivity for the diagnosis of is-
chemic stroke during the initial hours, and it is neces-
sary to improve the diagnostic accuracy to recommend
optimal thrombolytic and other stroke therapies (Patel
et al., 2001). Other MRI techniques such as DWI and
PWI play a fundamental role in this matter, having the
potential to improve the diagnosis while being practical
and feasible.

DWI measures the net movement of water in tis-
sue caused by random (Brownian) molecular motion of
water and shows hyperintense ischemic tissue changes
within minutes to a few hours after arterial occlusion
due to a reduction of the apparent diffusion coefficient
(ADC). The ADC reduction occurs primarily in the in-
tracellular space associated with disruption in mem-
brane ionic homeostasis and cytotoxic edema. Decrease
signal in the ADC and increased signal on DWI studies
represent irreversible ischemia (known as stroke core re-
gion). To differentiate acute from subacute or older le-
sions (effect known as T2 shine-through), DWI is used
combined with T2-weighted images and ADC maps.

2.2. Perfusion MRI

Perfusion-weighted imaging (PWI) allows the mea-
surement of capillary perfusion. The method most com-
monly used in clinical practice and in research is the
dynamic susceptibility contrast-enhanced technique, in
which paramagnetic contrast agent is injected as an in-
travenous (IV) bolus and the signal change is tracked
by MR sequences (Edlow Jonathan et al., 2011). From
the acquired data, we can derive several measurements
(Allmendinger et al., 2012).

• Cerebral blood volume (CBV): measurement of
the total volume of blood within an imaging voxel.
Measured in units of mililiters of blood per 100g
of brain.

• Cerebral blood flow (CBF): total volume of blood
moving through a voxel in a given unit of time.
Measured in units of mililiters of blood per 100g
of brain tissue per minute.

• Mean transit time (MTT): average transit time of
all the molecules of contrast medium with the bo-
lus through a given volume of brain, measured in
seconds. Can be approximated through the equa-
tion MTT = CBV/CBF.
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• Time to peak enhancement (TTP): time from the
start of the contrast injection to maximal enhance-
ment, measured in seconds.

• Time to maximum (Tmax): time to maximum of
the residue function obtained by deconvolution.
The tissue contrast agent concentration C(t) can
be expressed as a convolution of the arterial in-
put function (AIF) and the residue function R(t):
C(t) = CBF × (AIF(t) ~ R(t)). The residue func-
tion is obtained by deconvolution and its maximum
value occurs, by definition, at Tmax (Calamante
et al., 2010).

2.3. Perfusion MRI in Acute Ischemic Stroke

In acute ischemic stroke setting, perfusion MRI can
be used to make the distinction between two main af-
fected areas: core and penumbra. The core represents
a area in the brain that has tissue with irreversible le-
sion, even if recanalization of the occluded artery is
achieved early. The penumbra surrounds the core and is
composed of salvageable brain tissue that might be re-
covered if recanalization of the occluded artery occurs
promptly (Muir et al., 2006).

In terms of PWI parameters, the core is character-
ized by CBV and CBF decrease and MTT increase. It
is still unsure which is the best parameter to define the
infarct core, but there are evidences that CBF reduction
(greater than 30% of the normal CBF) may have better
correlation with DWI findings (Levi et al., 2011). In the
penumbra region, we can expect increase in MTT and
Tmax and decrease in CBF, with a relative preservation
of the CBV. Therefore, mismatched areas of abnormal
perfusion (prolonged MTT and diminished CBF where
CBV is relatively preserved) are those that most likely
correspond to penumbra.

2.4. Modified Rankin Scale

The Modified Rankin Scale (mRS) is commonly used
for measuring the degree of disability or dependence in
the daily activities of stroke patients. It was originally
published by Rankin (1957), with scores ranging from
one to six, with increasing degrees of disability. It was
later modified by van Swieten et al. (1988) to add cat-
egory zero, which represents the patients with no new
disabilities after the event. Detailed description of each
category can be seen in Table 1.

This scale is easy to use and has good inter-rater
reliability, especially when using structured interviews
(Bone et al., 2002) and is used to guide patient treat-
ment. The 2018 Guidelines for Management of Acute
Ischemic Stroke from the AHA (Powers et al., 2018)
state that patients should receive mechanical thrombec-
tomy with a stent retriever if they meet several crite-
ria, which include having a prestroke modified Ranking
Score (mRS) score of zero to one. This score is also
widely utilized as a patient outcome criteria for several

Table 1: Description of the Modified Rankin Scale (mRS) categories.

clinical trials (Barow et al., 2019; Uchida et al., 2019),
being commonly assessed 90 days after the event.

2.5. ISLES Challenges
The ISLES is a medical image segmentation chal-

lenge that was held annually between 2015 and 2018 at
the International Conference on Medical Image Com-
puting and Computer Assisted Intervention (MICCAI).

The ISLES Challenge 2016 (Egger et al., 2016) is
currently the only one to deal not just with stroke lesion
segmentation but also with clinical outcome prediction,
and it was therefore chosen to be the focus of this work.
For that year’s challenge, the organizers provided MRI
scans of acute stroke cases and their associated clini-
cal parameters. The participants had to perform two
tasks: lesion outcome (segmentation) and clinical out-
come predictions. The associated ground truth was the
final lesion volume (Task I) as manually segmented in
3 to 9 month follow-up scans, and the clinical mRS
score (Task II) denoting the degree of disability was the
final parameter to evaluate the clinical outcome. The
overview of the challenge is shown in Figure 1.

3. State of the art

Most of the existing methods for clinical outcome
prediction use clinical data to achieve the goal. Kabir
et al. (2017) used a M5 tree model to predict the same
mRS score used in this project. The selection of relevant
characteristics from the electronic health record (EHR)
was done by a neurologist specialized in stroke, result-
ing in 23 variables, among categorical and quantitative
ones. Data was obtained from 439 patients, and they
achieved a MAE of 0.54 in a 10-fold cross validation
method.

Vrtkova (2017) also evaluated the mRS score from
data obtained from the EHR, using 12 categorical and 5
quantitative variables from 449 patients. They modified

3.3



Clinical Outcome Prediction in Acute Ischemic Stroke 4

Figure 1. Ischemic Stroke Lesion Segmentation (ISLES) Challenge 2016 (Egger et al., 2016).

the task into a binary classification problem, by consid-
ering mRS categories zero, one, two and three in one
group and scores four, five and six in another. A ran-
dom forest approach reached 86% accuracy.

Bacchi et al. (2019) developed a pilot study to predict
positive outcomes in stroke patients that underwent in-
travenous thrombolysis treatment using a deep learning
approach. They used clinical data in combination with
NCCT of 204 patients. Their goal was to predict which
patients would have a mRS score of zero or one (which
they considered as positive outcomes). They achieved
an accuracy of 74%.

Clinical outcome prediction from MRI images is
more scarce, and the current available approaches orig-
inated mostly from the ISLES Challenge 2016. Mah-
mood and Basit (2016) and Choi et al. (2016) used le-
sion segmentation in order to perform the prediction
task. The current state-of-the-art method for this spe-
cific problem is described in Maier and Handels (2016),
which achieved the best overall result for the second
task (clinical prediction outcome) in this challenge.
They achieved a MAE of 1.05 ± 0.62. The authors ini-
tially perform the lesion segmentation (Task I) using a
random forest (RF) classifier. From the resulting seg-
mentation, they implement a random regression forest
that analyzes the obtained features to predict the final
mRS score. In the next subsections, detailed descrip-
tion of this work is given.

3.1. Features for the Lesion Segmentation Task

To perform the lesion segmentation, the authors
(Maier and Handels, 2016) created a RF classifier that
was fed with different features extracted from the ADC
and from the five perfusion maps (CBV, CBF, MTT,
TTP, Tmax):

• Intensity features: voxel’s unprocessed intensity
value; voxel’s intensity values after applying Gaus-
sian smoothing in areas of 3, 5 and 7 mm around
each voxel; intensity difference between corre-
sponding voxels of the two brain hemispheres

• Distance features: 2D centerdistance (Euclidean
distance to the central pixel of the slice) of each
voxel (computed once for each of the three dimen-
sions)

• Local histogram features: provides information
about local intensity distribution in a small area
around each voxel

The classifier was trained with 200 trees, producing a
posteriori class probability map, which was thresholded
at a value of 0.3 to create a binary image. The final post-
processing step was the closing of structural 3D holes
that resulted in the final binary segmentation mask.

3.2. Features for the Clinical Prediction Task

To perform the clinical prediction, the authors de-
cided to extract features from three areas: (1) the lesion
itself; (2) a band around the lesion whose fate was un-
clear; (3) the remainder of the brain. These three regions
of interest (ROIs) were defined according to the binary
mask returned by the lesion outcome prediction method.
For this task, the probability map resulting from the first
task was thresholded at a value of 0.1 instead of 0.3. To
create the band around the lesion, the inner region mask
was extended with a binary dilation of 5 mm. Finally,
the remaining brain constituted the third region. This
process is shown in Figure 2.

The next step was feature extraction. For this pur-
pose, only images from the ADC sequence were used.
The authors used a modified version of the same set of
features implemented for the first lesion outcome, since
those are voxel-wise image characteristics and not re-
gion based. To overcome this issue, they considered
statistics of the feature values in each of the three re-
gions: ten percentile values, standard deviation, vari-
ance and a histogram of ten bins. Geometric features of
the three ROIs were also included: region area, perime-
ter, roundness, and equivdiameter (which corresponds
to the diameter of a circle with the same area as the re-
gion).
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Figure 2. Segmentation of brain volume in three regions: stroke lesion (green), band around lesion (red) and rest of the brain (blue).
From left to right, we have: ADC image, lesion ground truth/segmentation mask, dilation of the ground truth/segmentation mask,
subtraction of the lesion from the dilation to create the band mask, rest of the brain mask and final regions of interest.

During the training phase, the authors made exper-
iments incorporating the clinical information into the
classifier, but it did not improve the results. For that rea-
son, they decided not to use the provided clinical data in
the final model. Finally, a RF classifier with 200 trees
was trained using the mRS score as label. In the test
set of the Challenge, the authors achieved a MAE of
1.05 ± 0.62, obtaining the first position.

4. Material and methods

4.1. Dataset
4.1.1. MRI Images

The challenge provided 30 MRI sequences for train-
ing and 19 for testing. All the available images were
skull-stripped, anonymized and co-registered. The se-
quences included for each patient were ADC, PWI raw
data and PWI perfusion maps (MTT, TTP, CBV, CBF
and Tmax). The training set also contained binary vol-
umes with the ground truth related to the lesion segmen-
tation task. An example of the sequences provided for
each patient is shown in Figure 3.

The images were obtained from different scanners
and using different protocols. Some volumes cover the
entire brain and the cerebellum, while some others con-
tain less slices, mainly from the stroke region. By an-
alyzing the dataset, it is possible to infer that the cases
were acquired using four machines, resulting in images
with the following characteristics:

• Scanner 1: 10 samples from training and 11 sam-
ples from testing; dimensions: 192 x 192 x 19 pix-
els; voxel spacing: 1.198 x 1.198 x 6.5 mm

• Scanner 2: 9 samples from training and 4 from test-
ing; dimensions: 256 x 256 x 24 pixels; voxel spac-
ing: 0.8984 x 0.8984 x 6 mm

• Scanner 3: 5 samples from training and 3 from test-
ing; dimensions: 128 x 128 x 25 pixels; voxel spac-
ing: 1.797 x 1.797 x 5.2 mm

• Scanner 4: 6 samples from training and 1 from test-
ing; dimensions: 192 x 192 x 30 pixels; voxel spac-
ing: 1.25 x 1.25 x 5 mm

Out of the 30 stroke lesions from the training set, 12
were located in the right hemisphere and 18 in the left

Figure 3. Example of MR sequences of a patient in the train-
ing set. Upper part: ADC, CBF and CBV. Lower part: MTT,
Tmax and TTP. Ground truth for the lesion segmentation is
shown overlayed in red. This particular case shows a large
stroke in left hemisphere, affecting frontal and insular lobes
and extending to the basal ganglia. The images demonstrate
decreased signal in ADC, CBV and CBF with increased signal
in MTT, Tmax and TTP in the stroke region.

hemisphere. The size of the stroke varies from small ar-
eas affecting only part of a cerebral lobe to larger areas
affecting two or even more lobes. They were mainly re-
lated to strokes of the anterior circulation, especially in
the area supplied by the middle cerebral artery. For that
reason, most of the lesions occurred either in the basal
ganglia or in the frontal, parietal and temporal lobes.

4.1.2. Clinical Data
The provided clinical data included the following:

• Thrombolysis in Cerebral Infarction (TICI) scale:
provides a standardized method to evaluate in-
tracranial perfusion assessed in cerebral angiogra-
phy (Higashida et al., 2003). It is used to assess the
re-perfusion achieved after a flow-restoration inter-
vention such as thrombectomy. Varies from 0 (no
restoration of blood flow) to 3 (complete restora-
tion of blood flow). The complete description is
shown in Table 2.
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Table 2: Description of the TICI scale categories.

• Time-since-stroke (TSS): it is expected that the
less time passed since stroke onset, the more likely
a re-perfusion procedure can salvage brain tissue.
In the training set, this feature ranged from 61 to
308 minutes.

• Time-to-treatment (TTT): denotes the time passed
between obtaining images and conducting the re-
perfusion treatment. Similar to the TSS, it is ex-
pected that lower TTTs yield in a higher chance of
treatment success. In the training set, this feature
ranged from 69 to 221 minutes.

• mRS score: disability score after stroke assessed
by the modified Rankin Scale.

The TICI, TSS and TTT scores were provided for
both training and test sets. The mRS score was pro-
vided only for the training set, since it was considered
as the final outcome for the clinical prediction task. For
the training set, there were two patients with score zero
(6,67% of the total), thirteen patients with score one
(43,3%), eight patients with score two (26,7%), five pa-
tients with score three (16,7%) and two patients with
score four (6,67%). There were no cases of patients with
scores five or six. Distribution of the clinical parameters
of the training set and their corresponding mRS scores
are summarized in Figure 4.

4.2. General Pipeline

The overall pipeline for mRS classification was
composed of three main components: pre-processing,
feature extraction and classification. Several pre-
processing techniques were used, and not necessarily
the same ones were applied in every experiment. Then,
features were extracted either using traditional ML ap-
proach or a CNN, using either ROIs (segmentation) or
the whole brain volume (no segmentation) as input. Fi-
nally, three classifiers were trained in different scenar-
ios. The overall framework is depicted in Figure 5.
Since it was not possible to assess the mRS scores of
the testing set, as the organizers of the Challenge do not
accept new submissions anymore, all the experiments
were performed using only the training set.

(a) Variation of time since stroke values according to their associ-
ated mRS scores.

(b) Variation of time to treatment values according to their associ-
ated mRS scores.

(c) Distribution of TICI scale values according to their respective
mRS score.

Figure 4. Clinical Data of the ISLES 2016 Challenge training
dataset.

4.3. Pre-processing

Different preprocessing strategies were used to ad-
dress particularities of the dataset, including:

• Voxel spacing standardization: as described be-
fore, voxel spacing varied between 0.8984 x
0.8984 x 5.0 mm (higher resolution) and 1.797 x
1.797 x 6.5 mm (lower resolution). To make vol-
umes comparable in terms of geometrical features,
pixel dimensions were standardized to 1.0 x 1.0 x
6.0 mm through reescaling.

• Removal of empty slices: all cases contained a
variable number of slices filled with zeros, which
increased memory and computational power needs
without adding useful information. Elimination of
completely blank slices was performed.

• CBF/CBV difference image creation: for each pa-
tient, a 3D difference image was created by sub-
tracting the CBV from the CBF sequences. Those
two regions were chosen among all the available
ones because they are two of the most significant
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Figure 5. Diagram showing steps implemented in this project.

Figure 6. CBF/CBV difference image in two different color
maps. Large hypointense area in left hemisphere, correspond-
ing to the stroke region.

to distinguish the core and the penumbra regions
of the stroke (Levi et al., 2011), and therefore they
carry significant information about the brain’s po-
tential to recover from injury. An example of this
generated image is shown in Figure 6.

• ROIs extraction: this refers to two types of ROI.
For the ML approach, three regions of interest were
defined for each patient, following the method de-
scribed by Maier and Handels (2016), as previ-
ously shown in Figure 2: the stroke lesion, the
band around the lesion and the rest of the brain.
The band around the lesion and the rest of the
brain were defined according to a binary mask.
For the CNN approach, ROI extraction refers to
the creation of a new volume for each patient con-
taining only the images in the binary mask area.
The binary mask used to extract the lesion was
either the provided ground truth (to have a base-
line of the optimal results achievable by a per-
fect segmentation) or a segmentation mask pro-
vided by Clérigues et al. (2018), who implemented
deep learning strategies for automated stroke le-
sion outcome segmentation. The authors used a
patch based strategy to create probability maps of
voxels belonging to either lesion or healthy tissue
using a 3D U-net. For each case, two segmentation
masks (referred to as Segmentation 01 and Seg-
mentation 02 in this project) were generated, by

varying the threshold in the probability map to de-
fine if a voxel corresponds to lesion or to normal
brain tissue. Segmentation 01 was generated us-
ing a higher threshold and achieved a higher DICE
similarity score (38.8%), but sometimes created
small stroke areas. Segmentation 02, on the other
hand, used a lower threshold, resulting in larger
stroke areas, although with poorer performance in
terms of DICE score (36.5%).

• Registration: although the patients were co-
registered (all sequences for one patient were in
the same space), the provided dataset had no inter-
patient registration. Two cases were used as refer-
ence space for the registration of the other patients:
cases 15 and 19. Those two cases were chosen be-
cause they cover most of the brain area, extending
from the posterior fossa to the high convexity, and
also because they were better aligned to the mid-
line. This was useful to extract features related to
the symmetry between hemispheres.

• Intensity scaling: since the exams were acquired in
different scanners, there were differences in terms
of intensities for each sequence. Intensity scaling
from 0 to 1 for each sequence was performed to
tackle this issue.

• Feature standardization: as a final preprocessing
step, feature standardization was performed by re-
moving the mean and scaling to unit variance. The
statistics used to guide this process were obtained
only from the training samples.

4.4. Traditional Machine Learning Approach
The traditional ML approach is based on extract-

ing meaningful hand crafted imaging features that are
used to perform classification in target groups. For this
project, different sets of features were extracted, as de-
scribed below. The ML strategies are summarized in
Figure 7.

4.4.1. Feature Extraction from ROIs
The initial approach of this project was to extract fea-

tures from ROIs in a similar way as described by Maier
and Handels (2016), that represents the current state of
the art in this challenge. From the ADC images of those
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Figure 7. Overview of different strategies used for the traditional machine learning approach (left) and the convolutional neural
network approach (right).

regions, the same features described by Maier and Han-
dels (2016) were extracted. Additionally, considering
that the CBV and the CBF are two of the most signif-
icant sequences in MR perfusion, another set of exper-
iments was performed by extracting the same set fea-
tures, not only from the ADC, but also extracting in-
tensity features from those two sequences (referred as
Extended Maier Features in this master thesis).

4.4.2. Feature Extraction from the Whole Brain Volume
A different approach was developed without re-

quiring lesion segmentation. From each slice of the
CBF/CBV difference image generated during the pre-
processing stage, the absolute subtraction between left
and right hemisphere was obtained. This highlights
the difference in perfusion between left and right hemi-
spheres. It is expected that a healthy brain shows sim-
ilar blood circulation in both hemispheres, whereas a
patient with a large stroke should show one hemisphere
with lower perfusion in comparison to the opposite one.

Also, in the affected brain area, the difference between
those two sequences may carry information about the
potential recovery of the tissue in that voxel, since the
core usually shows a decrease in CBV and CBF and the
penumbra shows a decrease in CBF with relative preser-
vation of the CBV.

Intensity features similar to the ones implemented by
Maier and Handels (2016) were then extracted from this
newly obtained image and used for classification. Ad-
ditionally, the same process was applied to a Gaussian
smoothed version of the difference image, with two dif-
ferent values for sigma (one or three), to reduce the ef-
fect of misalignment between voxels when performing
subtraction between left and right hemispheres. This
process is shown in Figure 8.

4.5. Convolutional Neural Networks
4.5.1. U-Net and 3D Unet

The U-Net architecture was first proposed and im-
plemented by Ronneberger et al. (2015) for the seg-

Figure 8. Whole Image Features: absolute difference of brain hemispheres from the CBF/CBV difference image and from the
Gaussian smoothed version of the same image.
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Figure 9. 3D U-net architecture (Çiçek et al., 2016).

mentation of neuronal structures. Using that architec-
ture, the authors won the cell tracking Challenge pro-
posed during the International Symposium on Biomed-
ical Imaging (ISBI) 2015. It consists of three parts:
(1) encoder/downsampling; (2) bottleneck; (3) de-
coder/upsampling. It has a symmetrical shape, resem-
bling the letter ’U’, which explains its name. The encod-
ing part is composed of four blocks, where each block
is formed by two 3 x 3 convolutional layers (each fol-
lowed by a ReLU activation function) and by a 2 x 2
max pooling layer with stride 2. The bottleneck hap-
pens between the contracting and expanding paths, and
it is built with two convolutional layers and a dropout
layer. Finally, the decoding part is also composed of
four blocks, each of them including a deconvolution
layer with a stride 2, a concatenation step with the cor-
responding cropped feature map of the contracting path
and two 3 x 3 convolutional layers (with ReLU). This
architecture has proven to achieve great performance in
the segmentation task of different types of biomedical
images, such as intervertebral disks segmentation (Liu,
2018) and brain segmentation (Luna and Park, 2018) for
2018 MICCAI Challenges.

The 3D U-net is a modification of the original U-net
architecture that was proposed by Çiçek et al. (2016) to
be used for volumetric segmentation that learns from
sparsely annotated volumetric images. The network
proposed by this author follows the same structure as
the one described above, with the difference that it takes
3D volumes as input and processes them with 3D op-
erations (3D convolutions, 3D max pooling and 3D
up-convolutional layers). Other differences include re-
moval of one resolution step and the addition of a batch
normalization layer at each step. A visual representation
of the 3D U-net is shown in Figure 9.

4.5.2. Feature Extraction using a 3D U-net
Since this project tackles a classification problem

rather than a segmentation one, it was hypothesised that
the 3D U-net could still extract meaningful image char-
acteristics to achieve the final objective. The goal of this
approach was to use the encoder part of the architecture
to extract high level features. The ouput of the blocks
of convolutional layers was flattened to be used as a fea-
ture vector for later classification. The network was pre-
trained for the segmentation task of the images of this
same dataset (Clérigues et al., 2018), and the weights
were used to perform the feature extraction. The ana-
lyzed strategies are summarized in Figure 7.

For the experiments using ROIs, a bounding box was
defined around the segmentation mask, and a new vol-
ume for each patient was created, where each chan-
nel included information about a sequence (ADC, CBV,
CBF, MTT, Tmax, TTP) only inside the limits defined
by that box. This new volume was then used as the net-
work input.

For the other experiments, the whole brain volume
was used a the network input. This was either a volume
containing six channels (one for each sequence: ADC,
CBV, CBF, MTT, Tmax, TTP) or a volume containing
only one channel (experiments using CBF/CBV differ-
ence image).

4.6. Classification

Three different classifiers were analyzed for every ex-
periment: K-nearest neighbor (KNN), support vector
machines (SVM) and random forests (RF). An ensem-
ble strategy was also implemented. The effect of intro-
ducing dimensionality reduction and clinical informa-
tion was also analyzed.

Principal component analysis (PCA) was used to
perform linear dimensionality reduction using singular
value decomposition of the data in the feature vector to
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project it to a lower dimensional space, therefore reduc-
ing the length of the feature vector.

Clinical information provided for the training cases
was incorporated as additional entries for the corre-
sponding feature vector of each patient.

4.6.1. Classifiers
The KNN algorithm is based on the assumption that

similar examples exist in close proximity in the feature
space. That way, when a new sample is introduced to the
system, the classifier checks what are the labels of the
nearest data points and assigns the label that occurs the
most to this new sample. Significant hyperparameters
include number of neighbors and class weights. It is
one of the most simple classifiers in machine learning,
and can be considered a naive classifier.

SVM consist of a learning model for classification
and regression problems. Given a set of features and
their corresponding classes, this classifier builds a hy-
perplane to separate features related to different classes.
The best result is given by the maximum margin hyper-
plane, named the optimal separating hyperplane (OSH).
The linear discriminant function of this OSH is called
support vector machine. Important hyperparameters in
this model include kernels types (linear, rbf, sigmoid,
polynomial), penalty for errors (values of C) and class
weights.

RF classifier creates an ensemble of independent de-
cision trees, where every tree is built by random selec-
tion of features (Breiman, 2001), each tree being a weak
classifier. The final decision is obtained as a result of
majority voting. The hyperparameters to be tuned in-
clude max depth of the forest, number of trees and class
weights.

Ensemble strategies combine the output of different
classifiers to improve generalization when compared to
a single estimator. In this project, the outcomes of
the best obtained models were combined using major-
ity voting.

4.7. Validation and Statistical Analysis

The hyperparameters of the classifiers were tuned
through grid searches to minimize the MAE between
the predicted and the actual mRS scores for each case,
which was the main goal of this project. Additionally,
the models were also evaluated through their confusion
matrices.

The cross-validation strategy used was leave-one-out
(Cawley and Talbot, 2003). In cross-validation, the
available data is divided into k disjoint sets, where k
models are then trained, each on a different combination
of k − 1 partitions and tested on the remaining partition.
Leave-one-out is the extreme case where k is equal to
the number of samples in dataset.

Statistical analysis in groups with unequal sample
size was performed using Mann–Whitney U test. Paired

groups were compared using Wilcoxon signed-rank test.
A p value lower than 0.05 was considered significant.

4.8. Implementation Details
This project was implemented using Python pro-

gramming language. Supportive libraries used include
numpy and matplotlib. Extraction of hand crafted fea-
tures was done using scikit-image package (Van der
Walt et al., 2014). Completion of missing clinical
information entries was performed using fancyimpute
package (Rubinsteyn and Feldman). The 3D U-net
was implemented using PyTorch (Pfeiffer, 2007). The
Scikit-learn library (Klikauer, 2016) was used to per-
form the classification task and to obtain evaluation met-
rics. Data analysis was done using pandas (McKinney,
2011) and SciPy (Jones et al., 2001) libraries. ITK-
SNAP (Yushkevich et al., 2006) was used for image
visualiztion. Image registration was performed with
elastix (Klein et al., 2010). The project is available at
https://github.com/marcioabcr/ClinicalPredict.

4.9. Specific Objectives
The quantitative performance of the different models

was evaluated using the training set of the Challenge
through assessment of the mean and standard deviation
of the absolute error of the mRS score. The main objec-
tives of the initial experiments were:

• Evaluate the performance of models using different
classifiers.

• Evaluate the performance of models regarding us-
age of dimensionality reduction through PCA and
usage of clinical information.

According to these initial results, further analysis of
the implemented strategies was performed, this time
keeping only the experiments with the two classifiers
with the best performance and only keeping the experi-
ments with the parameters that obtained the best scores
in terms of dimensionality reduction and clinical infor-
mation usage (with or without PCA and with or without
clinical information incorporated).

By keeping only the classifiers and the parameters
with the best results, this second round of analysis fo-
cused on comparing the performance between main ap-
proaches (traditional ML vs. CNN and ROI-based vs.
whole brain volume) to deal with the project objective.
More specifically, the objectives were to:

• Evaluate the performance of ROI-based strategies
regarding usage of the ground truth and usage of
a mask provided by an automated segmentation
method.

• Evaluate the best results obtained for each of the
categories previously described (traditional ML
and CNN approaches, either using ROIs or whole
brain volume as input) in terms of mean and stan-
dard deviation of the absolute error.
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Table 3: Means and standard deviations (Std) of absolute errors obtained for different strategies using segmentation (ML - traditional machine
learning; CNN - convolutional neural network; RF - random forests; SVM - support vector machines; ROI - region of interest).

• Evaluate the confusion matrix and the accuracy of
the models that achieved best performance for tra-
ditional ML and CNN approaches.

• Evaluate the performance of the ensemble ap-
proach

5. Results

5.1. Overview

The experiments were divided in five groups, accord-
ing to the strategy employed. First three groups were
related to traditional ML approaches: (1) feature extrac-
tion from ROIs - Maier features; (2) feature extraction
from ROIs - Extended Maier Features (Maier features
applied to ADC, CBV and CBF); (3) feature extraction
from the whole brain volume (CBF/CBV difference im-
age features). The last two groups were related to CNN-
based approaches: (4) feature extraction from ROI; (5)
feature extraction from whole brain volume.

5.2. Comparison between model configurations

5.2.1. Naive Classifier vs. SVM/RF
Experiments using KNN as the classifier had a mean

absolute error of 0.92 ± 0.88, while RF and SVM ob-
tained a value of 0.72 ± 0.82 and 0.57 ± 0.96, respec-
tively. This difference in performance is statistically sig-
nificant both comparing KNN with RF and KNN with
SVM (p < 0.05).

If we analyze separately traditional ML and CNN
strategies, this statistically significant difference also
holds. For ML experiments, the MAE was 0.9 ± 0.88
for KNN, 0.65 ± 0.78 for RF and 0.55 ± 0.93 for SVM.
For CNN experiments, the MAE was 0.93 ± 0.88 for
KNN, 0.76 ± 0.85 for RF and 0.58 ± 0.99 for SVM.

5.2.2. Dimensionality Reduction and Usage of Clinical
Information

Experiments using dimensionality reduction of the
feature vector through PCA showed a MAE of 0.66 ±
0.90, while experiments without it had a MAE of 0.63±
0.90. If we consider only CNN experiments, the MAE
was respectively 0.68 ± 0.92 with PCA and 0.67 ± 0.93
without it. None of these differences was statistically
significant. For ML experiments, the MAE was 0.63 ±
0.87 with dimensionality reduction and 0.57±0.84 with-
out (p < 0.05).

Experiments adding clinical information to the fea-
ture vector had a MAE of 0.64 ± 0.90, while experi-
ments without it had a MAE of 0.65 ± 0.90. In ML
cases, the MAE was 0.60 ± 0.86 using clinical informa-
tion and 0.61 ± 0.86 not using it. In CNN experiments,
the MAE was 0.67±0.93 using clinical information and
0.67 ± 0.92 without it. None of those differences were
statistically significant.

5.3. Comparison between approaches
For further analysis, experiments that used KNN clas-

sifier were discarded. Similarly, only experiments with-
out dimensionality reduction and with clinical informa-
tion were kept, since experiments without dimension-
ality reduction had a better or equivalent performance
in comparison with the cases using it and the experi-
ments with or without clinical information had compa-
rable performance.

5.3.1. Ground truth vs. Automated Segmentation
The results of segmentation strategies are summa-

rized in Table 3. In the cases where the original
Maier features were extracted, the usage of ground truth
masks resulted in a MAE of 0.40 ± 0.66 using RF
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Table 4: Mean and standard deviations (Std) of absolute errors obtained for different strategies that achieved the best results (ML - traditional
machine learning; CNN - convolutional neural network; RF - random forests; SVM - support vector machines; ROI - region of interest).

and 0.43 ± 0.72 using SVM, whereas Segmentation 01
achieved 0.53 ± 0.72 using RF and 0.60 ± 0.99 using
SVM and Segmentation 02 reached 0.63±0.71 with RF
and 0.60 ± 0.99 with SVM. The cases that employed
Extended Maier features achieved similar or worse per-
formance in comparison with the original Maier charac-
teristics.

For approaches using feature extraction with CNNs,
the scores were similar for both types of segmenta-
tion and for the ground truth, with experiments using
SVM obtaining a lower MAE. The only comparison
that showed a statistically significant difference was be-
tween ground truth and Segmentation 02 using original
Maier features and RF as a classifier, where the ground
truth had a superior performance (p < 0.05).

5.3.2. Best Individual Results
The best results obtained for each approach and

for each feature extraction method are shown in Ta-
ble 4. The best results for the traditional ML strat-
egy were obtained extracting hand crafted features from
the CBF/CBV difference image, with registration to the
case 15 as a preprocessing step, applying a Gaussian
smoothing with sigma equals to three and using SVM as
a classifier. This method achieved a MAE of 0.43±0.76
and an accuracy of 70%. The corresponding confusion
matrix is shown in Figure 10a, displaying the distribu-
tion of the predicted scores and the actual labels.

For the CNN strategy, the best results were ob-
tained extracting whole volume features also from the
CBV/CBF difference image, but this time registered to
the case number 19. The classifier was also SVM. This
strategy resulted in a MAE of 0.50 ± 0.96 and in an ac-
curacy of 76.67%. The associated confusion matrix is
shown in Figure 10b.

5.3.3. Classifier Ensemble
From the strategies displayed in Table 4, an ensemble

method was built, combining the outcome of two ML
models (the one using Maier features and the one using

CBF/CBV difference image features) and the two CNN
methods. Using majority voting, the ensemble method
achieved a mean absolute error of 0.60 ± 0.99 and 70%
accuracy. The associated confusion matrix is shown in
Figure 10c.

6. Discussion

Throughout this work, it was possible to fulfil the ini-
tial goal of implementing strategies to predict clinical
outcome from MR images and from clinical data. Also,
given the large number of performed experiments and
the different pipelines used, it is possible to make some
assumptions about the achieved results.

For the types of classifiers that were trained, KNN
had the worst performance, with a mean absolute error
close to one and a large standard deviation. This was
expected, since it is one the most simple classifiers in
machine learning, unsuitable for such a complex task.

In terms of performance between random forests
and support vector machines, it is noticeable that they
achieved similar results regarding traditional ML ap-
proach, with RF obtaining better results using Maier
features and SVM using features from the CBF/CBV
difference image. For the CNN approach, the perfor-
mance of SVM was superior to RF. This difference can
be explained by the nature of each classifier. Random
forests use a random selection of features to build the
decision trees. The approaches using CNNs present
a significantly larger feature vector, making it much
harder to select significant features to build the classi-
fier.

Experiments using dimensionality reduction showed
either comparable or worst performance compared to
experiments without it. This might be due to the fact
that, in scikit-learn, the number of components chosen
to keep when applying PCA is limited by the number of
samples. Since the dataset contained only 30 samples,
the size of the feature vector after using PCA was lim-
ited to 29 (since one case was kept for testing in leave-
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(a) Confusion matrix of the best result using traditional ML
strategy.

(b) Confusion matrix of the best result using CNN strategy.

(c) Confusion matrix of ensemble strategy.

Figure 10. Confusion matrices of different approaches

one-out strategy). This feature vector size is probably
insufficient to encode the complexity of this task.

Regarding usage of clinical information, it did not
provide any significant change in the model’s perfor-
mance. By analyzing Figure 4, it is evident that the
initial assumptions about how the provided clinical pa-
rameters might affect stroke outcome do not seem to
be true. For example, in Figure 4a it is possible to ob-
serve that patients with mRS score zero had time since
stroke values much higher than cases with mRS score
of four. The same mismatch occurs for time to treat-
ment parameter. This is another evidence that shows
how it is not so straight forward to predict clinical out-
come based only in a handful of data. Probably the addi-
tion of more relevant clinical parameters such as gender,
age, body mass index (BMI) and other risk factors for
cardiovascular diseases would be benefitial. As previ-
ously shown by Kabir et al. (2017) and Vrtkova (2017),
the use of clinical information alone gathered from the
EHR already showed promising results to predict clini-
cal outcome. Merging more meaningful clinical param-
eters with imaging data could improve the results even
further.

There are several limitations regarding the CNN ap-
proach for this task. First of all, the network was not
trained with the purpose of clinical outcome prediction.
There was no available network that was pretrained for
this purpose and with the specific sequences provided
in the dataset, preventing us to directly apply transfer
learning. Since clinical outcome depends on the interac-
tion of several factors, we hypothesized that we would
not be able to use a patch based approach to train the
network, since it is important to obtain information from
the entire volume to be able to achieve this complex
goal. This issue could be minimized if a large dataset
was available, but since only 30 cases were provided,
training a network from scratch was not possible. To try
to overcome this problem, it was decided to use weights
that come from a network trained with the same im-
ages, but with a different task (patch based segmenta-
tion). Extracted features using this method may not be
able to depict the most meaningful information for the
task at hand.

Traditional ML strategies achieved a lower mean
absolute error when compared to the CNN approach.
While it is expected that deep learning has the ability
to surpass the vast majority of machine learning ap-
proaches when dealing with a large number of samples,
in this scenario, with only 30 samples, the use of hand
crafted features is still very useful and achieves a sig-
nificantly good performance. While the ideal size of
the feature vector depends on the type of the data and
the classifier used (Hua et al., 2005), generally a feature
vector that outnumbers the sample size leads to a poor
performance. In this project, all strategies had a feature
vector larger than the sample size, since the number of
cases was only 30. However, the CNN approaches re-
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sulted in a much larger feature vector than the machine
learning ones, which might also depreciate the perfor-
mance.

Strategies that used lesion segmentation and strate-
gies without it achieved similar performance. In fact,
the overall best results were obtained without use of
segmentation, with an error of 0.43 ± 0.76 in the ma-
chine learning approach and 0.50±0.96 for the CNN ap-
proach. It is interesting to develop such strategies, since
this makes sure that eventual errors in segmentation are
not propagated to the clinical outcome algorithm. Fur-
thermore, it is possible to eliminate an intermediate step,
which adds robustness to the process, while also mak-
ing it faster. This also eliminates concerns such as how
to proceed if the segmentation algorithm fails or if it
does not provide a valid mask. When using a strategy
based on segmentation, Table 3 shows how the quality
of the segmentation is essential for the model perfor-
mance. When using ground truth as a mask, some of
the best overall results were obtained, specially in the
traditional machine learning strategy. When using Seg-
mentation 01, the performance already drops. Finally,
Segmentation 02 has a significantly lower performance
when compared to the ideal scenario (ground truth).

The strategy without lesion segmentation uses a
newly generated image from the difference between
CBF and CBV. This derives from prior knowledge about
the research topic (stroke imaging), which highlights
how the use of radiological information can be impor-
tant to guide what is the most relevant information that
can be taken from the dataset in order to achieve the
predefined goal. If the dataset was large enough, deep
neural networks could overcome this issue, and be able
to independently select the appropriate features from the
provided images.

Looking at the best obtained results, it is possible
to observe that the confusion matrices shown in Fig-
ures 10a and 10b show similar performance in terms of
mean absolute error, but differences on the error pattern.
While the CNN approach missed all category four cases
(0% accuracy for this class) and correctly assigned one
out of the five cases for category three (20% accuracy),
the machine learning correctly classified both category
four cases (100% accuracy). The overall error was sim-
ilar because the machine learning strategy made small
mistakes in terms of assigning label two to class one
(84.6% accuracy) and because it did not get any of the
category three cases correct (0% accuracy). It is im-
portant to discuss which of those errors should be more
strongly avoided in a real clinical scenario. Probably it
would be more adequate to allow small mistakes in cat-
egories that represent a better clinical outcome than to
misclassify cases with a more negative result. This also
demonstrates why in such tasks the accuracy is not the
only metric to be observed, since the class imbalance
would bias the classification to the more prevalent cate-
gories, which could lead to a disaster in terms of patient

management.
The results of the classifier ensemble strategy is a

good example of this issue. While achieving a small
mean absolute error of 0.60±0.99 and achieving perfect
prediction for patients in categories one and two (the
most prevalent ones), it failed to classify all the other
categories (zero, three and four). In fact, it predicted la-
bel one for all the other cases, as we can see in Figure
10c. This is an undesirable case, where, due to the small
dataset and the large data imbalance, the classifier just
decides to label every new case to the most prevalent
class.

One possible strategy to tackle this issue is the use
of a different evaluation metric to guide the tuning of
the classifier’s hyperparameters and to assess the over-
all performance. This project was based on the ISLES
Challenge 2016, and therefore it kept the metric that
was established by it. Instead of the mean absolute er-
ror, using root mean squared error, for example, could
minimize the problem mentioned above. By taking into
account also the magnitude of the error, this could help
prevent the classifier to just assign the label of the most
prevalent class. Another significant improvement could
be achieved if the dataset included more cases from the
less prevalent scores, diminishing the class imbalance.

In terms of comparison to the state of the art, it is
difficult to make an assertion, since Maier and Handels
(2016) described only the results they obtained in the
19 images of the testing set, not in the training set. In
the end of this project, an attempt was made to send
the results obtained by applying our best model to the
testing set, but the organizers of the Challenge do not
provide support to new submissions anymore.

It is important to note the significant limitations of the
provided ISLES dataset. The task of predicting clinical
outcome is one of the hardest in the medical domain,
and depends on a combination of several factors. That
means that it is necessary to gather a large amount of
good quality data in order to build a robust model that
can be actually used in clinical practice.

In terms of quantity, the dataset contains only 30 pa-
tients in a classification problem with five classes. Also,
the distribution of patients is imbalanced. The major-
ity of samples (21 cases, or 70%) belong to two la-
bels (mRS scores one and two), while for two labels
(mRS scores zero and four), there are only two sam-
ples (or 6,7%) each. For labels five and six, cases were
not provided. As previously stated, this class imbalance
introduces a bias when building classifiers, making it
harder for them to learn what are the characteristics of
the classes with a lower number of samples. Also, due
to the nature of the task, it is difficult to think in terms of
data augmentation, since the clinical outcome does not
depend only on image characteristics of a single modal-
ity or only on clinical information, but it depends on the
combination of all those types of information.

In terms of quality, there are some aspects that can be
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discussed. The dataset does not include DWI sequences,
which is one of the most important ones for stroke eval-
uation. This sequence has extremely high sensitivity for
the diagnosis of stroke, showing changes in an earlier
stage compared to other modalities and other sequences.
In clinical practice, DWI and ADC are always obtained
when a stroke is suspected, because both images are
necessary for the correct diagnosis. Also, additional im-
ages such as NCCT and angiotomography of brain ves-
sels could potentially increase the performance of the
model.

The fact that the images were acquired from different
scanners adds another challenge to the task. Since each
machine leads to differences in intensity, dimension and
voxel spacing, it is necessary to tackle this issue. This
inevitably leads to interpolations, change in resolution
and loss of possibly relevant information.

On top of all the previously discussed dataset char-
acteristics, another limitation that should be addressed
is that all cases are related to ischemic strokes of the
anterior circulation. Even though this type is the most
prevalent, the addition of cases from posterior circula-
tion would be fundamental to make the model more ro-
bust, with a higher generalization capability and more
suitable for a future use in clinical practice.

7. Conclusions

In this project, we proposed different strategies to pre-
dict clinical outcome of patients with acute ischemic
stroke. This work was motivated by the ISLES Chal-
lenge 2016, which provided the dataset containing MR
images and clinical information. The approaches varied
in terms of preprocessing steps, feature extraction meth-
ods (traditional ML versus CNN-based), inputs to the
model (ROIs versus whole brain volume) and classifica-
tion parameters (types of classifiers, dimensionality re-
duction techniques and clinical information usage). The
final goal was to minimize the mean absolute error when
evaluating the modified Rankin Scale score, which as-
sesses patient’s degree of disability after a stroke event
by assigning a score from zero to six.

In terms of classifiers, KNN had a significantly worse
performance than SVM and RF. Strategies using di-
mensionality reduction with PCA achieved similar or
worse results than strategies that did not use it, and
there was no statistically significant difference between
adding clinical information or not to the feature vector.

For the traditional ML approach, the set of hand
crafted features that was used in experiments with ROIs
was inspired by Maier and Handels (2016), which rep-
resents the current state of the art for this task, while
the features used in whole brain volume approaches was
obtained from a 3D volume generated from the subtrac-
tion of the CBV from the CBF perfusion sequences.
The best result obtained from the first strategy was a

mean absolute error of 0.53 ± 0.72 (when using a bi-
nary mask provided by an automated lesion segmenta-
tion method (Clérigues et al., 2018)), while the second
strategy achieved 0.43 ± 0.76.

For the CNN approach, feature extraction was per-
formed using the encoder part of a 3D U-net, which was
pretrained to perform patch-based lesion segmentation
of stroke on the same images (Clérigues et al., 2018).
When using ROIs as network input, the best obtained
result was a mean absolute error of 0.57 ± 0.99, and the
best score for the whole volume strategy was 0.50±0.96
when using the CBF/CBV difference volume as input.

An ensemble strategy combining the best models
through majority voting was also implemented, achiev-
ing a mean absolute error of 0.60±0.99. This approach,
however, correctly classified only the samples belong-
ing to the most prevalent groups (scores one and two),
while it failed to assign the correct label to the least
prevalent groups.

The small number of samples included in the dataset
(only 30 patients) constitutes a significant limitation
to the proper evaluation of the implemented strategies.
However, it is possible to highlight how traditional ma-
chine learning strategies still achieve good performance
when dealing with a limited dataset, which is usually the
case in the biomedical setting. Also, it is important to
notice that strategies that did not require lesion segmen-
tation achieved similar or even better results than strate-
gies that used it. This shows how radiological knowl-
edge can be incorporated into project design, in order to
guide the extraction of the most meaningful information
from the available resources.

This work is a first step in dealing with clinical out-
come prediction, which is one of the next frontiers to be
reached by new machine learning and deep learning al-
gorithms in the medical scenario. The initial results are
promising, and future work with larger datasets is im-
perative to make this type of algorithm usable in a real
clinical setting, ultimately providing useful information
to better guide patient management.
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ing architectures for stroke lesion segmentation and outcome pre-
diction, in: Master Thesis Proceedings - International Programme
in Vision and Robotics (VIBOT) Day 2018. URL: http://vibotudg.
weebly.com/vibot-day-2018.html.

Edlow Jonathan, A., Warach, S., Jaigobin, C., Wardlaw, J., Sander-
cock, P., Schellinger, P., Brazzelli, M.G., 2011. Evidence-
based guideline: The role of diffusion and perfusion MRI for
the diagnosis of acute ischemic stroke: Report of the Therapeu-
tics and Technology Subcommittee of the American Academy
of Neurology. Neurology 76, 2036–2038. doi:10.1212/wnl.
0b013e318219a0b4.

Egger, K., Maier, O., Reyes, M., Wiest, R., 2016. Ischemic Stroke
Lesion Segmentation (ISLES) Challenge 2016. URL: http://www.
isles-challenge.org/ISLES2016/.

Favate, A.S., Younger, D.S., 2016. Epidemiology of Ischemic Stroke.
Neurologic Clinics 34, 967–980. URL: http://dx.doi.org/10.1016/

j.ncl.2016.06.013.
Hankey, G.J., 2017. Stroke. The Lancet 389, 641–654.
Hankey, G.J., Blacker, D.J., 2015. Is it a stroke? The BMJ (Online)

350, 1–6.
Higashida, R.T., Furlan, A.J., Roberts, H., Tomsick, T., Connors, B.,

Barr, J., Dillon, W., Warach, S., Broderick, J., Tilley, B., Sacks, D.,
2003. Trial Design and Reporting Standards for Intraarterial Cere-
bral Thrombolysis for Acute Ischemic Stroke. Stroke 34, e109–
e137.

Hua, J., Xiong, Z., Lowey, J., Suh, E., Dougherty, E.R., 2005. Op-
timal number of features as a function of sample size for various
classification rules. Bioinformatics 21, 1509–1515.

Jones, E., Oliphant, T., Peterson, P., 2001. SciPy: Open source scien-
tific tools for Python.

Kabir, A., Ruiz, C., Alvarez, S.A., Moonis, M., 2017. Predicting
Outcome of Ischemic Stroke Patients using Bootstrap Aggregating
with M5 Model Trees. Proceedings of the 10th International Joint
Conference on Biomedical Engineering Systems and Technologies
(BIOSTEC 2017) , 178–187.

Klein, S., Staring, M., Murphy, K., Viergever, M., Pluim, J., 2010.
elastix: A Toolbox for Intensity-Based Medical Image Registra-
tion. Institute of Electrical and Electronics Engineers (IEEE)
Transactions on Medical Imaging 29, 196–205.

Klikauer, T., 2016. Scikit-learn: Machine Learning in Python. TripleC
14, 260–264. URL: http://dl.acm.org/citation.cfm?id=2078195{%}
5Cnhttp://arxiv.org/abs/1201.0490, doi:10.1007/s13398-014-
0173-7.2, arXiv:arXiv:1011.1669v3.

Levi, C.R., Parsons, M.W., Christensen, S., Davis, S.M., Donnan,
G.A., Desmond, P.M., Campbell, B.C., 2011. Cerebral Blood Flow
Is the Optimal CT Perfusion Parameter for Assessing Infarct Core.
Stroke 42, 3435–3440.

Liu, C., 2018. IVDM3Seg Challenge, in: International Conference
on Medical Image Computing and Computer Assisted Intervention
(MICCAI) 2018 Challenge on Automatic IVD Localization and
Segmentation from 3D Multi-modality MR (M3) Images.

Luna, M., Park, S.H., 2018. 3D Patchwise U-Net with Transition
Layersfor MR Brain Segmentation, in: Grand Challenge on MR
Brain Segmentation at International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI) 2018.

Mahmood, Q., Basit, A., 2016. Segmentation of Ischemic
Stroke Lesion using Random Forests in Multi-modal MRI Im-
ages, in: Ischemic Stroke Lesion Segmentation (ISLES) 2016.
URL: http://www.isles-challenge.org/ISLES2016/pdf/20160927
ISLES2016 Proceedings.pdf.

Maier, O., Handels, H., 2016. Predicting Stroke Lesion and Clinical
Outcome with Random Forests, in: Brainlesion: Glioma, Multi-
ple Sclerosis, Stroke and Traumatic Brain Injuries. Second Inter-
national Workshop BrainLes 2016, Springer International Publish-
ing. pp. 218–230.

McKinney, W., 2011. pandas: a Foundational Python Library for Data
Analysis and Statistics, in: Python for High Performance and Sci-
entific Computing (PyHPC) 2011, pp. 1–9.

Meschia, J.F., Brott, T., 2018. Ischaemic stroke. European Journal of
Neurology 25, 35–40.

Muir, K.W., Buchan, A., von Kummer, R., Rother, J., Baron, J.C.,
2006. Imaging of acute stroke. The Lancet Neurology 5, 755–768.

Patel, S.C., Levine, S.R., Tilley, B.C., Grotta, J.C., Lu, M., Frankel,
M., E. Clarke Haley, J., Brott, T.G., Broderick, J.P., Horowitz, S.,
Lyden, P.D., Lewandowski, C.A., Marler, J.R., Welch, K.M.A.,
rt PA Group, f.t.N.I.o.N.D., Stroke, Study, S., 2001. Lack of Clini-
cal Significance of Early Ischemic Changes on Computed Tomog-
raphy in Acute Stroke. JAMA 286, 2830.

Pfeiffer, F.W., 2007. Automatic differentiation in PyTorch, in: 31st
Conference on Neural Information Processing Systems (NIPS
2017), pp. 2–8.

Powers, W.J., Rabinstein, A.A., Ackerson, T., Adeoye, O.M., Bam-
bakidis, N.C., Becker, K., Biller, J., Brown, M., Demaer-
schalk, B.M., Hoh, B., Jauch, E.C., Kidwell, C.S., Leslie-
Mazwi, T.M., Ovbiagele, B., Scott, P.A., Sheth, K.N., Souther-

3.16



Clinical Outcome Prediction in Acute Ischemic Stroke 17

land, A.M., Summers, D.V., Tirschwell, D.L., 2018. 2018 Guide-
lines for the Early Management of Patients With Acute Ischemic
Stroke: A Guideline for Healthcare Professionals From the Amer-
ican Heart Association/American Stroke Association. volume 49.
arXiv:1608.04207.

Rankin, J., 1957. Cerebral Vascular Accidents in Patients over the
Age of 60: II. Prognosis. Scottish Medical Journal 2, 200–215.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional
networks for biomedical image segmentation. Lecture Notes in
Computer Science 9351, 234–241. arXiv:1505.04597.

Rubinsteyn, A., Feldman, S., . fancyimpute 0.4.3. URL: https://pypi.
org/project/fancyimpute/.

van Swieten, J.C., Koudstaal, P.J., Visser, M.C., Schouten, H.J., van
Gijn, J., 1988. Interobserver agreement for the assessment of hand-
icap in stroke patients. Stroke 19, 604–607.

Uchida, K., Yoshimura, S., Sakai, N., Yamagami, H., Morimoto,
T., 2019. Sex Differences in Management and Outcomes of
Acute Ischemic Stroke With Large Vessel Occlusion. Stroke ,
STROKEAHA119025344.

Vilela, P., Rowley, H.A., 2017. Brain ischemia: CT and MRI tech-
niques in acute ischemic stroke. European Journal of Radiology
96, 162–172.

Vrtkova, A., 2017. Predicting clinical status of patients after an acute
ischemic stroke using random forests. Proceedings of the Interna-
tional Conference on Information and Digital Technologies, IDT
2017 , 417–422.

Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F.,
Warner, J.D., Yager, N., Gouillart, E., Yu, T., 2014. scikit-image:
image processing in python. PeerJ 2, e453.

Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee,
J.C., Gerig, G., 2006. User-guided 3D active contour segmentation
of anatomical structures: Significantly improved efficiency and re-
liability. NeuroImage 31, 1116–1128.

3.17



3.18



Medical Imaging and Applications

Master Thesis, June 2019

Soft tissue lesion detection in digital breast tomosynthesis using domain
adaptation from mammograms

Mahlet Alie Birhanua, Mehmet Ufuk Dalmisb, Michiel Kallenbergb, Jaap Kroesb
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Abstract

Digital mammography (DM) has been a standard two-dimensional (2D) imaging modality for breast cancer screening
for many decades. Although large clinical trials have shown that screening mammography improves early detection
of cancer, mammographic sensitivity is shown to be lower due to the summation of overlapping breast tissue during
image acquisition. For such reasons, digital breast tomosynthesis (DBT) is becoming a preferred technology used
in diagnostic breast imaging as it guarantees improved visualization of breast detail. Deep learning based Computer-
aided detection (CAD) has been used in screening digital mammography and is currently in use for DBT as it improves
screening sensitivity and specificity. But given the fact that DBT is a relatively new technology and is not as widely
used as mammography, it is difficult to collect a sufficient amount of malignant abnormalities to train a deep learning
based CAD system. Therefore, in this work, we propose to use the recently developed domain adaptation methods
to convert DBT images to synthetic DMs so that available CAD systems can be used to perform detection of soft
tissue lesions (STL) on the synthesized DM images. A modified version of a framework called CycleGAN was used
for unpaired-image-to-image translation. The dataset used for training, validation, and testing includes over 30,000
extracted patches from exams of 2 different vendors. A CNN model previously trained on real DM images was used to
evaluate how well the synthetic images can be classified. Classification results of synthetic DM images on validation
set showed a 8% improvement in AUC (AUC = 0.90) compared to a baseline performance of real DBT classification
with an AUC = 0.82. An AUC of 0.88 was achieved on a separately held testing set with a baseline DBT classification
of AUC = 0.80. The results indicate the ability of the modified framework on generating realistic synthetic images.

Keywords: Digital breast tomosynthesis (DBT), CycleGAN, Soft tissue lesion (STL), GAN, Digital
mamography(DM)

1. Introduction

Breast cancer is the second most common cause of
cancer death in women (Siegel et al., 2018). Mortal-
ity can be reduced by 30% using digital mammography
screening (Bazzocchi et al., 2007).

Digital mammography (DM) has been a standard
two-dimensional (2D) imaging modality for breast can-
cer screening for many decades. Mammograms are rel-
atively low-dose soft tissue X-ray images of the breast.
Conventionally, both left and right breasts are imaged
using two standard views, the cranial-caudal (CC) and
the mediolateral-oblique (MLO). The resultant 2D im-
age maps the integral x-ray attenuation of tissues in
a single plane. Large clinical trials have shown that

screening mammography improves early detection of
cancer and increases survival (Broeders et al., 2012),
(Lauby-Secretan et al., 2015). Screening mammogra-
phy has a sensitivity of ∼ 70% in women 49-69 years
old, which means that 30% of tumours are missed on
mammography (Warren Burhenne et al., 2000a). Mam-
mogram sensitivity is even lower in young women and
women with dense breasts. Therefore, an improvement
in sensitivity can help to significantly reduce mortality.

Digital breast tomosynthesis (DBT) is an emerging
technology used in diagnostic breast imaging to eval-
uate potential abnormalities and is being more prefer-
able than digital mammography as the standard x-
ray technique for breast cancer screening. In DBT,
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Hologic DBT Hologic DM

Figure 1: MLO view of a breast slice in tomosynthesis(a) and mam-
mogram(b)

the compressed breast tissue is imaged in a quasi-
three-dimensional manner by performing a series of
low-dose radiographic exposures and using the re-
sultant projection image dataset to reconstruct cross-
sectional in-plane images in standard mammography
views (M Hakim et al., 2010). Generally, a series of
projection view images is acquired as the x-ray source is
rotated about the fulcrum over a limited range of angles.
Because of the wide dynamic range and high detection
ability of digital detectors, each of the projection images
can be acquired with a fraction of the x-ray exposure
used for a regular mammogram. The total dose required
for DBT may therefore be kept at nearly the same or
slightly higher than that of a regular mammogram. To-
mographic slices focused at any depths of the imaged
volume can be generated with reconstruction techniques
from the series of projection images (Chan et al., 2008).

Improved visualization of breast detail in DBT allows
improved characterization of findings, including normal
structures and breast cancer. This technology reduces
the summation of overlapping breast tissue, which can
cover up/hide breast cancer, and provides improved de-
tail of non-calcified findings seen in breast cancer. It
also assists in lesion localization and determining the
extent of lesions in women with known or suspected
breast cancer (M Hakim et al., 2010). Much of the im-
provement in screening outcomes achieved with DBT
is the result of better differentiation between overlap-
ping glandular tissue and subtle asymmetries, distor-
tions, and margin characterization of masses (P. Zuck-
erman et al., 2017). By scrolling through the DBT
slices, readers are able to more confidently differenti-
ate between a discrete lesion and overlapping normal
glandular tissues. For such reasons, studies of DBT
in the screening setting have reported decreased recall
rates (improved specificity) or increased cancer detec-
tion rates (improved sensitivity) or both compared with
standard 2D full-field digital mammography (FFDM)

(Giess et al., 2017).
To further improve sensitivity and specificity of

breast cancer detection, Computer-aided detection
(CAD) (Warren Burhenne et al., 2000b) has been used
in screening digital mammography for many years and
is currently being developed to be utilized for DBT. Cur-
rent CAD systems heavily rely on deep learning algo-
rithms that aim to generalize a solution for unseen data
based on the given training data. For the development of
such systems, a large database containing training sam-
ples is of paramount importance. Yet, given the fact that
DBT is a relatively new technology and is not as widely
used as mammography, it is difficult to collect a suffi-
cient amount of malignant abnormalities.

Since there is a significantly large database of digi-
tal mammography images, it could be of great value to
use the available database to train DBT CAD systems.
Using information from one domain (e.g. 2D DM) that
is closely related to another the domain of interest (e.g.
DBT) is generally known as transfer learning. A com-
mon approach in transfer learning is to utilize samples
from the related domain for pretraining of a classifier.
The work of Samala et al. (2016), for instance, demon-
strates this approach by pretraining the first layers of a
convolutional neural network (CNN) with DM images,
and then using DBT data to finetune the last layers.
A different approach would be to transfer the samples
from a source domain to the target domain. Recently,
in deep learning, generative models have been proposed
to go from one domain to the other. Generative adver-
sarial networks (GAN) have been used in many differ-
ent settings for a wide range of applications, including
collection style and domain transfer, object transfigura-
tion, season transfer and photo enhancement (Goodfel-
low et al., 2014).

Due to the impressive results GANs produced, they
are now also being used in paired image-to-image trans-
lation for synthesizing medical images. Although the
goal of image-to-image translation is to learn the map-
ping between a source image and a target image using a
training set of aligned image pairs, paired training data
will not be available for many tasks. For this reason,
Zhu et al. (2017) presented an approach for learning to
translate an image from a source domain to a target do-
main in the absence of paired examples. This approach,
referred to as CycleGAN is more practical in medical
images, as a big dataset of paired images from different
modalities is usually not available.

The purpose of this study is to use the same concept
of domain adaptation from DBT images to DM so that
existing CAD systems can be used to perform detec-
tion of soft tissue lesions (STL) from synthetic mam-
mograms. The DBT images look visually different from
FFDM images as can be seen in Figure 1. By the use
of GANs, DBT image slices can be used to synthesize
”mammography looking” images that can serve as a di-
rect input to the available CAD systems trained on real

4.2



Soft tissue lesion detection in digital breast tomosynthesis using domain adaptation from mammograms 3

DM. In principle, the resulting synthetic images should
have the same appearance and discriminating features as
real DMs when seen by a classifier to detect soft tissue
lesions from normal ones. Feeding the synthetic images
to a STL classifier trained on real DM images can serve
as a good way of evaluating how similar the generated
images are to the real ones.

2. State of the art

2.1. GAN

The framework for training generative models in an
adversarial manner for synthetic image generation was
first introduced in the seminal work of Goodfellow et al.
(2014). This framework is based on a simple but pow-
erful idea: images are sampled from a simple distribu-
tion (e.g. a normalized Gaussian) in a low-dimensional
space known as latent space. Each latent vector in
this latent space is transformed into an image using a
generator neural network. This generator neural net-
work aims to produce realistic examples able to deceive
the discriminator which aims to discern between orig-
inal and generated ones. The two networks form an
adversarial relationship and gradually improve one an-
other through competition, much like two opponents in
a zero-sum game.

Various flavors of GANs have been recently pro-
posed, both purely unsupervised as shown in the works
of Arjovsky et al. (2017) and Berthelot et al. (2017) as
well as conditional. Many different flavors of GAN op-
timization problems differ by the constraint on the dis-
criminators output and corresponding loss, and the pres-
ence and application of gradient norm penalty. While
these models achieve compelling results in specific do-
mains and were aimed at improving the overall per-
formance of GANs, there is still no clear consensus
on which GAN algorithm(s) perform objectively better
than others (Lucic et al., 2018). This is partially due to
the lack of robust and consistent metrics. According to
the research conducted by Lucic et al. (2018), there was
no clear evidence that any of the tested modified GAN
algorithms consistently outperforms the original GAN
introduced in the work of Goodfellow et al. (2014).

The work of research by Lucic et al. (2018) pro-
vided a comprehensive comparison of the state-of-the-
art GANs used for image generation, and empirically
demonstrate that nearly all of them can reach simi-
lar values of Fréchet Inception Distance (FID) (Heusel
et al., 2017). But all these evaluations were based on
GANs performing image generation tasks rather than
domain transfers.

2.2. CycleGAN

Since paired images in different domains are not
usually available for training in many problems, Zhu

et al. (2017) presented their work on unpaired image-
to-image translation based on the working principles of
GANs for image generation. According to their work, in
the presence of unpaired images from different domains,
the same concept of ”back translation and reconcilia-
tion” used in human translators can be applied to im-
ages as well. To this end, they used two GANs in a cy-
cle, by objectively trying to minimize cycle consistency
loss. The GANs are used to generate target image from
source (or vice versa) and cycle consistency makes sure
that each generated image can be reconstructed back to
the original image with a minimal loss of information.
This technique reduces the probability of generating an
image that can not be distinguished from a real image in
the target domain but entirely deviating from the struc-
ture of the source image. CycleGAN has been used in a
Cityscapes dataset to convert semantic label to a photo
(and vice verca) as well as map to a real photo conver-
sion.

Although cycle consistency loss is the main reason
why CycleGAN works in translating unpaired imaging
data, it is also found to give the model an intriguing
property of ”hiding” information about a source image
into the images it generates in a nearly imperceptible,
high frequency signal as shown by the work of Chu et al.
(2017). This unpredicted property ensures that the gen-
erator can recover the original sample and thus satisfy
the cyclic consistency requirement, while the generated
image remains realistic.

2.2.1. CycleGAN with Better Cycles

In order to alleviate the previously mentioned prob-
lematic nature of cycle consistency, Wang and Lin
(2017) propose simple modifications to CycleGAN, and
showed that such an approach achieves better results.
Some of the proposed changes are, decaying the weight
of cycle consistency loss as training progresses and ad-
ditionally weighting cycle consistency loss by the qual-
ity of generated images. The modification was justified
by only visual inspection and comparison with the orig-
inal CycleGAN implementation.

2.2.2. Conditional CycleGAN

In the work of Mirza and Osindero (2014) and Odena
et al. (2017), GANs were extended to a conditional
model by conditioning both the generator and the dis-
criminator on some extra information such as class la-
bels or data from other modalities. This method pro-
vided an alternative to have more control of the genera-
tion of images according to a flexible external informa-
tion. Promising results were obtained in face generation
and swapping. However, this method is not applicable
for unlabeled data (for example in a classification prob-
lem in deployment).
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Table 1: Summary of published applications of GANs in medical imaging used for unpaired image to image translation tasks

Reference
Medical image
type Resolution # of samples Algorithm Assessment

Quantitive
metric

Wolterink et al. (2017) MRI/CT 183× 288× 288 24 CycleGAN Visual MAE

Becker et al. (2018) DM
256×256
512×408 680 CycleGAN

Radiologist
readout AUC

Seeböck et al. (2019) OCT
496×512×49
1024×512×128
1024×200×200

1407 CycleGAN Segmentation F1-score

Armanious et al. (2019) PET/CT 256×256 2355
Cycle-
MedGAN Visual

PSNR
SSIM
LPIPS
VIF

Korkinof et al. (2018) DM 1280×1024 1000K GAN Visual -

Note: Mean Absolute Error (MAE), Area Under Curve (AUC), Peak Signal to Noise Ratio (PSNR), Structural
Similarity Index (SSIM), Learned Perceptual Image Patch Similarity (LPIPS), Visual Information Fidelity (VIF)

Table 2: Dataset A: Distribution of dataset used for training and vali-
dation

Patch type Abnormal Normal
Training Val Training Val

Hologic DM 6446 350 9000 1000
Siemens DBT 500 79 9000 1000

2.3. UNIT

UNsupervised Image-to-image Translation method
(UNIT) aims at learning a joint distribution of images
in different domains by using images from the marginal
distributions in individual domains. As shown by re-
search conducted by (Liu et al., 2017), this method is
based on GANs and takes a shared-latent space assump-
tion to alleviate the existence of an infinite set of joint
distributions arriving at the given marginal distributions.

2.4. GANs in medical images

Although we have not come across a research pa-
per directly dealing with domain adaptation from DBT
to 2D DM data, there are plenty of reported results of
GANs used in medical images. Table 1 summarizes the
use of GANs in multiple imaging modalities.

3. Material and methods

3.1. Dataset

Exams in the training and testing sets were collected
at multiple clinical centers across Europe, including
sites in the Netherlands, Germany, and the UK. Data

Table 3: Dataset A sub-sampled: Distribution of balanced dataset used
for training and validation

Patch type Abnormal Normal
Training Val Training Val

Hologic DM 6446 350 6448 1000
Siemens DBT 500 79 500 1000

Table 4: Clinical dataset distribution: independent dataset used for
testing

Patch type Abnormal Normal
Hologic DM 226 1253
Siemens DBT 228 1262

collection sites are representative for regular breast can-
cer screening and asymptomatic patients in hospitals
who have mammograms for a variety of reasons, such as
increased risk for breast cancers or not being invited for
population-based screening program, e.g. because of
age under 50. For the inclusion of the normal exams in
the test set, a follow-up of at least one year was required.
Most of the exams in the test set have MLO and CC
views of both the left and right breast. Patch extraction
from a normal exam results in approximately 60 candi-
date patches (15 per image), while an abnormal exam
containing a soft tissue lesion typically gives about 2
abnormal patches. For DBT exams, patches were ex-
tracted from a volume. In total, more than 180,000 ex-
ams were used for patch extraction. Once all patches
were extracted, randomly chosen patches were used for
training and validation whose distribution is shown in
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Figure 2: An overview of the CycleGAN framework for unpaired image translation. x and y are unpaired images randomly sampled from their
respective domains. X’ and Y’ are synthetic images created by generators and Xr and Yr are reconstructed images.

Table 2 and 3. Truthing was based on the clinical re-
ports from both radiology and pathology. A region was
considered a true positive if the center of the patch falls
within the annotated contour of the lesion. Training
and validation split was done on patch level. All DBT
patches are extracted from Siemens DBT slices and DM
patches from Hologic images as shown in Table 2, 3 and
4.

A subset of Dataset A described in Table 2 was taken
with balanced number of normals and abnormals to train
modified CycleGAN with a weight of 1. Details are
shown in Table 3. Additionally, a separately held testing
set was used, details of which are shown in Table 4.

3.2. Preprossessing

All images were preprocessed by applying window-
level followed by energy band normalization and cen-
ter cropping prior to patch extraction in the same man-
ner as in the work of Kooi et al. (2017) . Patches were
given in a 16-bit format. Additionally, CycleGAN out-
put patches needed to be center cropped to a size of
224 × 224 pixels to be fed to the CNN classifier.

3.3. The CycleGAN framework

A Generative Adversarial Network (Goodfellow
et al., 2014) consists of two neural networks, a gener-
ator GX→Y and a discriminator DY , which are iteratively
trained in a two-player minimax game manner. The ad-
versarial loss L adv (GX→Y , DY ) is defined as,

Ladv(GX→Y ,DY ) = min
θg

max
θd
{E[DY (y)]

+E[(1 − DY (GX→Y (x))]}
(1)

where θg and θd are respectively the parameters of the
generator GX→Y and discriminator DY , and x ∈ X and
y ∈ Y denotes the unpaired training data in source and
target domain respectively. E represents the loss func-
tion used to evaluate generator and discriminator out-
puts. L(GY→X , DX ) is analogously defined. In Cycle-
GAN, X and Y are two different image representations,
DBT and DM this case and the CycleGAN learns the
translation X → Y and Y → X simultaneously. Training
data in CycleGAN is unpaired. Training the framework
merely with the adversarial losses is not sufficient since
it may lead to mode collapse, where a set of different
input images are mapped into a single image in the tar-
get domain (Zhu et al., 2017). Therefore, an additional
constraint regularizing the mapping functions is essen-
tial. This was achieved by introducing Cycle Consis-
tency to enforce forward-backward consistency which
can be considered as pseudo pairs of training data. Cy-
cle consistency loss used in CycleGAN is defined as,

Lcyc(GX→Y ,GY→X) = ||GY→X(GX→Y (x)) − x||
+||GX→Y (GY→X(y)) − y|| (2)

The total loss function of CycleGAN will consequently
be:
L(GX→Y ,GY→X ,DX ,DY ) = Ladv(GX→Y ,DY )

+Ladv(GY→X ,DX) + λLcyc(GX→Y ,GY→X)
(3)

The cycle consistency loss is weighted by some λ to
have more control of its effect on the reconstructed im-
ages. A flowchart that depicts an overview of the Cycle-
GAN framework is shown in Figure 2. The generator
network used contains two stride-2 convolutions, sev-
eral residual blocks, and two fractionally strided convo-
lutions with stride 1/2. 9 blocks were used input image
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Figure 3: An overview of the proposed CycleGAN framework: CNNstl is introduced to guide generator to output correctly classifiable results.

resolutions higher than 256 256 pixels as shown by Zhu
et al. (2017). For the discriminators, a PatchGAN based
network ((Isola et al., 2016)) was used as in the original
implementation. Such a patch-level discriminator archi-
tecture has fewer parameters than a full-image discrimi-
nator and can work on arbitrarily-sized images in a fully
convolutional fashion aim to classify whether overlap-
ping image patches are real or fake as implemented by
Zhu et al. (2017) and Isola et al. (2016).

3.4. Proposed framework

Although CycleGAN relies on the cycle-consistency
loss to avoid mismatches which could occur due to un-
supervised training using unpaired images, it has been
discussed in the work of Chu et al. (2017) that it can
cause the model to hide information about a source im-
age into the images it generates. In this way, although
the translated DBT images resemble real DM images
visually, they could still maintain information from the
source images. Additionally, since our data comprise of
patches from two classes, the same architecture can not
benefit from such information. To circumvent this, we
propose to introduce an additional loss function, LCNN ,
that can condition CycleGAN on how well the gener-
ated DM images can be correctly classified with a pre-
trained classification network (CNNstl). Much like the
implementation of conditional CycleGANs (Mirza and
Osindero, 2014), the loss is conditioned on an external
information, which is a class label in this case. This
classifier network is pretrained on real DM images to
classify between images containing soft tissue lesions
and normal ones. As the training set consists of lesions
patches and normal ones, this loss function can guaran-
tee that a lesion containing DBT image patch gets trans-

formed into a lesion containing DM and the same holds
true for normal candidates. LCNN is defined as,

LCNN(GX→Y,CNNstl ) = λc min
θg
{E(CNNstl(GX→Y (x)))}

(4)
In this new implementation of CycleGAN, the same
concept is used for the other losses, i.e. Ladv and Lcyc.
In principle, LCNN is expected to guide the generator
to output correctly classifiable synthetic DM images.
Hence,LCNN is only used to evaluate the generated syn-
thetic images and the CNN model does not get altered
in the process. The overall CycleGAN loss becomes,

L(GX→Y ,GY→X ,DX ,DY ) = Ladv(GX→Y ,DY )
+Ladv(GY→X ,DX) + λLcyc(GX→Y ,GY→X)+

λcLCNN(GX→Y )
(5)

A summary of the proposed framework is shown in
Figure 3.

3.4.1. CNN architecture
The CNNstl network has a VGG-11 architecture as

shown in Figure 4. It consists of 11 convolutional and
two fully connected layers with ReLu activation. Batch
normalization was also used. The network was trained
with real DM images. Input patches were downsampled
from the original resolution to a pixel-spacing of 200
microns cropped to 224 × 224 pixels. The final output
was determined with a softmax layer.

3.5. UNIT
Since the working principle of UNIT is entirely dif-

ferent from CycleGAN, our dataset was trained using
the original open source implementation of UNIT and
results were used for comparison purposes.
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Figure 4: Illustration of CNNstl model architecture: Input patches of 224 × 224 are given to a VGG-11 architecture model with 2 fully connected
(FC) layers

3.6. Evaluation metric

Besides visual inspection, ROC analysis of the
CNNstl classifier was used to quantitatively evaluate
how well the generated synthetic DM images resem-
ble real DM images. Classifier performance on a test-
ing set of real DM images was used as an upper bound
and AUC from classification of real DBT images with
the same classifier was used as a lower bound. The
DBT and DM images in the testing set are unpaired.
In principle, the generated images should look like a
real DM and have classification result that is higher than
the lower bound and somewhat approaching the upper
bound limit.

4. Results

4.1. Training details

Several experiments were run to evaluate the plain
and modified CycleGAN in the task of unpaired DBT-
to-DM translation. For all experiments, the Adam op-
timizer was used with the parameters β1 = 0.5 and β2
= 0.9 as recommended by the original CycleGAN im-
plementation of Zhu et al. (2017). The learning rate
was kept constant for the first 100 epochs, and for the
rest of the epochs, it is linearly decayed to 0. The de-
fault value was used for the weight of the cycle con-
sistency loss (λ = 10). When training the discrimina-
tor, the loss was divided by 2 before back-propagating.
The weights were initialized with a Gaussian distribu-
tion with a mean 0 and a standard deviation of 0.02. The
learning rate ( η), batch size and the weight of CNN loss
(λc) were tuned differently for different experiments as
shown in Table 5. Training progress of both generators

and discriminators was tracked in all experiments to en-
sure that the model is actually learning. Experiments
were terminated when the generator and discriminator
loss seem to show no further improvement.

4.2. Baseline and upper bound

The baseline of all experiments was taken to be the
performance of CNNstl classifier on real DBT patches
both in the validation and testing set. The baseline AUC
was evaluated to be 0.82 on the validation set and 0.80
on the testing set as shown in Table 5. The same patches
used for the baseline were transformed by models from
the experiments and their classification result is com-
pared to the baseline. As an additional measure of com-
parison, the performance of the same classifier was eval-
uated on real DM patches in the testing set. AUC on real
DM patches is taken to be an upper-bound estimate. Al-
though these patches are a different set of patches, it
helps to give an idea of how real DM images can be
classified. Upper-bound AUC is calculated to be 0.90 in
the testing set.

4.3. Plain CycleGAN

To have a preliminary understanding of how well
the original CycleGAN implementation performs on the
task of unpaired DBT-to-DM image translation, multi-
ple experiments were carried out. For both domains, the
number of normal samples was a lot higher than the ab-
normals. In order to avoid random pairing of an abnor-
mal sample with a normal one during training, samples
from only one class (normal or abnormal) were exclu-
sively used for training in the first phase of experiments.
The resulting model was then used for translation on the
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No. Algorithm Patches η λc BS Norm. Best epoch Total epoch AUC
Val. Test

Baseline - - - - - - - - 0.82 0.80

1 CycleGAN normals 0.0002 - 1 instance 30 50 0.78 0.76

2 CycleGAN normals 0.0001 - 4 batch 50 60 0.80 0.79

3 CycleGAN abnormals 0.0001 - 4 instance 50 200 0.78 0.76

4 CycleGAN abnormals 0.0002 - 1 instance 80 100 0.84 0.81

5 CycleGAN
abnormals
+ normals 0.0002 - 1 instance 90 95 0.81 0.78

6 CycleGAN
abnormals
+ normals
(balanced)

0.0002 - 1 instance 90 100 0.81 0.78

7
CycleGAN
+ CNN

abnormals
+ normals 0.0002 18 1 instance 110 130 0.90 0.88

8
CycleGAN
+ CNN

abnormals
+ normals
(balanced)

0.0002 1 1 instance 70 150 0.90 0.85

Table 5: Summary of results on selected experiments; η refers to the learning rate of CycleGAN, λc refers to the weight of CNN loss for abnormal
samples. BS refers to the batch size used.

Source DBT Synthetic DM

Figure 5: An illustrative example of CycleGAN trained with only nor-
mal patches: translation result of lesion patches

validation and testing sets containing patches from both
classes. Experiments were repeated by adjusting hyper-
parameters (batch size and learning rate) to improve re-
sults. Additionally, another phase of experiments was
carried out by using samples from both classes in the
training set to see the effect of random pairing.

Source DBT Synthetic DM

Figure 6: An illustrative example of CycleGAN trained with only ab-
normal patches: translation result of normal patches

4.3.1. CycleGAN on normal patches

The original implementation of CycleGAN was
trained with only normal patches in the training set.
The resulting synthetic DM patches were evaluated with
CNNstl giving an AUC score of 0.80 in the best per-
forming epoch model on the validation set and 0.79
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Figure 7: Illustrated example translation results of modified CycleGAN on abnormal samples: Patches on the top row are source DBT patches and
on the bottom row are the translated DM results.

Figure 8: Illustrative example of translation results of modified CycleGAN on normal samples: patches on the top row are source DBT patches and
on the bottom row are the translated DM results.

on the testing set. As compared to the baseline AUC,
training CycleGAN with normal samples did not seem
to improve the results. Some of the top misclassified
abnormal images at a false positive rate (FPR) of 0.1
are shown in Figure 5. The qualitative results show
that translated lesion patches seem to have a lower con-
trast although they pertain a visual characteristic differ-
ent from a real DBT. The experiment was repeated with
slightly adjusted hyperparameters (decreasing the learn-
ing rate and increasing the batch size). As shown in Ta-
ble 5, none of the modifications seem to have helped
boost the result.

4.3.2. CycleGAN on abnormal patches
Training CycleGAN with only abnormal patches was

found to have an AUC score of 0.84 evaluated with the
CNNstl classifier. The best performing epoch model
also showed a slight improvement (∼ 1%) in the test-

ing set giving an AUC of 0.81 as shown in Table 5. Al-
though the result showd improvements, some of the top
misclassified normal patches in this training at a FPR
rate of 0.1 as shown in Figure 6 are found to have a very
high contrast in most parts of the patch. Non-lesion ar-
eas look highlighted and the patches resemble abnormal
patches in some parts.

4.3.3. CyceGAN on combined patches
The original implementation of CycleGAN was

trained on patches from both classes. For this exper-
iment, a CycleGAN model trained with only normal
samples until the 50th epoch was used as the starting
pretrained model. The translated images in the val-
idation set resulted in an AUC of 0.80 on the best
epoch model showing lower performance compared to
the baseline. As shown in Figure 10, all the training
epoch models fall below the curve of the baseline in the
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Source DBT CycleGAN CycleGAN + CNNstl UNIT

Figure 9: Comparison of unpaired DBT-to-DM translation results using different algorithms, i.e. CycleGAN, CycleGAN + CNNstl (modified
CycleGAN) and UNIT. Left column shows images from the source DBT patches.

validation set.

4.4. Modified CycleGAN

Once the preliminary results were obtained from
training CycleGAN with different subsets of the train-
ing set, the last set of experiments were staged to prove
if the modified CycleGAN implementation can give a
better result on the same task.

The proposed modified CycleGAN was also trained
in the same setting on a dataset containing both nor-
mal and abnormal patches and starting from a pretrained

model. During training, tracks of generator, discrim-
inator and CNN losses were recorded. As shown in
Figure 14, the CNN loss kept decreasing as the clas-
sification accuracy of generated samples decreased as
the training progressed. Additionally, the differences in
the losses between the plain and modified CycleGAN
training were also recorded as shown in Figure 15. Ex-
periments with modified CycleGAN resulted in the best
improvement in AUC as shown in Figure 11. Visually,
the translated images look very much like a real DM
in both abnormal and normal lesions. For abnormal
patches shown in Figure 7, lesion areas have a much
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Figure 10: AUC results on validation set in different epochs of training
CycleGAN with combined dataset

higher pixel intensity than surrounding areas much like
a standard DM. The contrast of normal patches also re-
sembles a real DM normal patch as seen in Figure 8.
The modified CycleGAN weighted with λ = 18 to ac-
count for class imbalance on the training set, resulted
in an AUC of 0.90 (8% improvement) on the valida-
tion set as shown in Figure 12 and 0.88 on the test-
ing set showing a 8% improvement from the baseline
and closely approaching the upper-bound performance
as shown in Figure 13. The 95% confidence interval
was calculated to be [0.850 - 0.937] on the validation
set. Bootstrapped AUC result on the testing set along
with the confidence interval area is shown in Figure 13.
It can be seen that, the upper-bound AUC is within the
confidence interval of the model and the baseline AUC
falls below indicating an improved performance. Re-
sults of the proposed CycleGAN are presented in Fig-
ure 9 in comparison with UNIT and the original Cy-
cleGAN. In contrast, the resultant images produced by
the original and modified CycleGAN framework have
a global structure which closely resembles a real DM
image. However, finer details are not highlighted when
translated by CycleGAN such as speculations around a
lesion. Moreover, the overall translated image in the
modified CycleGAN seems to have better contrast be-
tween the background and tissues.

4.5. CycleGAN Vs UNIT

When training UNIT, default parameters were used
as used in the work of Liu et al. (2017). The exper-
iment was run for 700,000 iterations and was stopped
after monitoring the results using the chosen metric.
Qualitatively, the worse performance is exhibited by the

UNIT framework. This is also reflected quantitatively,
with UNIT resulting in the worst scores and the highest
gap in confidence interval as shown in the bar graph 11
across the chosen metrics.

Overall, Figure 11 shows the performance of chosen
experiments from each training scheme along with their
confidence intervals evaluated in the validation set.

5. Discussion

In this work, we presented a modified unpaired
image-to-image translation of DBT to DM images
based on the concept of conditional CycleGANs as ex-
plained in Section 2 and 3. As a preliminary setup,
the performance of original CycleGAN was evaluated
on different subsets of the training set. As CycleGAN
is a specific implementation of GANs to perform un-
paired image-to-image translation, it learns how image
from the source domain can be translated to an image
in the target domain by randomly pairing images. Nor-
mally, this implementation is found to work quite well
when the images in the target/source domains are essen-
tially from one class. The intuition behind training Cy-
cleGAN with only normal/abnormal samples from the
training set is to avoid the random pairing of an abnor-
mal sample in the source domain to a normal one in the
target domain (or vice versa.) However, translation re-
sults from CycleGAN trained with only normal samples
showed to have a lower contrast and quality. Hence, ab-
normal samples in the validation set are translated to
patches that are easily mistaken for a normal patch. Le-
sion areas and the surrounding speculations also look
faded or non-existing. The underlying reason for such
an effect might be because most of the normal patches in
the training set comprise of samples that do not look like
lesions and possibly because the average pixel intensity
values of most areas in the patch are never as high as an
area with a lesion. Most of the translated images look
dark and many abnormal samples are missclassified.

Training CycleGAN with only abnormal patches had
slightly better results. The generated synthetic patches
look well contrasted. The reason for this could be be-
cause abnormal patches contain regions that can rep-
resent both normal and lesion containing samples. In
such a way, the model learns to translate both abnormal
and normal samples in a better way than the previous
setup. Although the improvement is not much, it per-
forms slightly better than the baseline as seen from Ta-
ble 5 . From Figure 6, it can be seen that some normal
patches are translated with more contrast in some re-
gions than needed. This may have confused the classi-
fier to recognize normal samples as abnormals, thereby
not increasing its performance as needed. Training Cy-
cleGAN with both samples combined also did not seem
to improve the results in any way. One good reason why
this did not work as well could be because of the prop-
erty of cycle-consistency loss. As mentioned in section
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Figure 11: Comparison of AUC performance and 95% confidence interval of training models on validation set

Figure 12: AUC results on validation set in different epochs of training
CycleGAN + CNNstl( modified CycleGAN) with combined dataset

2, although cycle-consistency loss is the reason why Cy-
cleGAN works, it also has the disadvantage of hiding
information from the source domain in order to do a
good job during reconstructing back to the source do-
main. This is a logical thing to do for the network to
keep decreasing the cycle-consistency and the overall
loss. However, this could also hinder the CNNstl clas-
sifier from detecting the important features to look for
lesions. Hence, it is logical to explain that it performs
just as good as the baseline (CNNstl performance on
real DBT) since hidden properties of the source images
(DBT) could still be present in the translated results.
But this hypothesis has not been tested and future work

Figure 13: Best AUC results of CycleGAN + CNNstl on testing set

will focus on it.
The hypothesis behind using the modified CycleGAN

implementation is to give the generators some condi-
tional information about the class of the patches. In
principle, the network should start producing patches
that can be correctly classified by the CNNstl. The
training losses shown in Figure 14 demonstrate that the
framework managed to decrease the CNN loss as well
as the overall loss as the training progressed. Addition-
ally, it can be seen from Figure 15a and 15b that the
discriminator loss decreases at first and becomes stable
indicating that the model learns to discriminate between
real and synthetic DM images, and the generator loss
seems to increase at first and stabilizes later on when it
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(a) Accuracy (b) CNN loss (c) Total loss

Figure 14: Training Losses when training CycleGAN + CNNstl

(a) DA (b) GA
(c) CycA

(d) DB (e) GB
(f) CycB

Figure 15: Training Losses when training CycleGAN + CNNstl (denoted in orange) and plain CycleGAN (denoted in blue): Smoothing of 0.99
was used in generating curves for losses

starts fooling the discriminator. Experiments on train-
ing the modified CycleGAN resulted in an improve-
ment compared to all other approaches.As mentioned
in Section 3, a pretrained CycleGAN model (trained
with normal patches) was used as a starting point for
both the experiments. The reason for such scheme is
because we found out that CycleGAN learns the low
frequency features that generally describe the two do-
mains early on in the training. Since the number of
normal samples was much higher in the training data,
a model trained on normal samples was chosen as a
starting point. The first experiment was training on the
whole training data that contains imbalanced number
of abnormal and normal patches. The imbalance was
accounted for by assigning a higher weight (λc) to the
CNN loss for the under-sampled class(LCNN). The sec-
ond experiment was made on a subset of the data with a
balanced number of classes (see Table 3). In both exper-
iments, an improvement of 8% was obtained in the val-
idation set. This shows that the network is successfully
using the additional information given by theLCNN . Be-

sides giving an external information, adding this loss
may have helped the results because the network is less
constrained by the cycle-consistency loss. A summary
of performance comparison with all the algorithms ex-
perimented shown in Figure 11 demonstrates that the
modified CycleGAN implementation not only improves
the baseline approach, but is somewhat approaching the
upper bound performance. This claim is more visible in
the testing set results in Figure 13.

Additionally, the performance of UNIT is seen to be
the worst both qualitatively and quantitatively. The de-
fault training parameters used for this implementation
have not helped it to learn to translate regardless of the
number of iterations it took. A different set of train-
ing parameters could potentially improve the results but
more investigation of the working principles might be
needed as well. Although the results of modified Cy-
cleGAN look promising, one thing to note is that real
DM images have overlapping tissues caused as a result
of image acquisition techniques as discussed in Section
1. Due to this, the model could learn to introduce syn-
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thetic overlaps in the generated DM patches to ensure
that they look like the real ones. This could be a dis-
advantage and more studies might be needed to find an
alternative way.

6. Conclusions

This work of research has demonstrated that un-
paired image-to-image translation methods can be used
in medical imaging, specifically in translating DBT to
DM with an acceptable performance. The major find-
ings of this study can be summarized in the following
manner. Translation methods based on GANs, such as
CycleGAN can be successfully modified to serve a spe-
cific task on a given imaging data. To our knowledge,
this is the first time image translation models have been
applied for domain transferring task between DBT and
DM images. Moreover, the suggested modifications on
conditioning CycleGAN on data classes have been ap-
plied and resulted in acceptable results on the given task.
Application of such methods can serve as a means of
generating realistic looking synthetic DM images from
DBT sources. In such way, existing deep learning based
CAD systems trained on DM images can be used to
evaluate translated DBT patches. This approach may
also serve as an alternative to finetuning with DBT data
that has limited availability. Future work should focus
on crafting sophisticated evaluation metrics specified on
DM/DBT imaging modalities to further assess the char-
acteristics of generated synthetic images and how they
could directly compare to unpaired images in the real
domain.
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Abstract

Digital subtraction angiography (DSA) is a technique for the visualization of blood vessels in the human body
using a contrast agent. X-ray images, obtained before and after the injection of a contrast agent into the vessels, are
subtracted to remove anatomical structures in the images. The resultant images show only the contrast filled blood
vessels without any background structures. However, this technique is very sensitive to patient motion. Any movement
will become visible as artifacts in the final subtraction images, reducing their diagnostic value. To improve the quality
of subtracted images, various registration methods have been proposed. In this thesis, several approaches to image
registration for digital angiographic images are investigated. A new fast registration algorithm based on a discrete
Fourier transform is proposed to accurately generate artifact free subtraction images. The resultant subtraction images
are then used to train a neural network to compare the applicability of deep learning for virtual subtraction with the
proposed registration method. Experimental results with a clinical dataset show the improvement in image quality
with image registration as well the potential of virtual subtraction.

Keywords: x-ray angiography, image registration, deep learning, cross correlation

1. Introduction

In interventional radiology, angiography is an x-ray
technique employed for the visualization of blood ves-
sels in a bony or dense soft tissue environment. Con-
trasting with traditional x-ray projection images, which
provide little to no contrast between the surrounding tis-
sue and vessels, angiography enhances visibility using a
radiopaque contrast agent that is injected into the target
vessels, and the image obtained includes the blood ves-
sels and all of the the under and overlying structures. It
is utilized to identify vascular abnormalities, detect in-
jury in vessels after trauma, or evaluate the vasculature
of a tumor before surgery and is essential to a physi-
cian’s diagnosis (Lee et al., 2019). However, angio-
graphic images still suffer from low contrast between
the vessels and the surrounding tissue.

To remove the distracting structures, digital subtrac-
tion angiography (DSA) can be used. An iodine based
contrast agent is injected into the patient’s blood vessels.
This agent appears highly opaque in x-ray images due to
its high x-ray absorption rate. Concurrently, a sequence
of images is taken to show the inflow of contrast into

the vessels of interest. The sequence begins by obtain-
ing a mask image, absent of contrast, and subsequent
live images, as the contrast is injected. The mask and
live images only differ by the opacified blood vessels.
Therefore, the mask image can be subtracted pixel by
pixel from each live image, removing anatomical struc-
tures and leaving behind only the blood vessels filled
with contrast, as shown in Fig. 1.

Since its commercialization in 1980, DSA has im-
proved diagnosis and treatment for various arterial and
venous occlusions (Crummy et al., 2018). Open vascu-
lar procedures have been substituted by minimally in-
vasive endovascular procedures, with acquisitions that
can be viewed immediately. Such applications include
endovascular anuresym repair, arterial balloon angio-
plasty, arterial stenting, endovasuclar embolization, and
thrombectomy. DSA has high temporal and spatial reso-
lution, which is unmatched in other imaging modalities
(Crummy et al., 2018).

Despite the increase in popularity of 3D imaging
techniques with virtual angiography, DSA remains the
gold standard for diagnosis of aneurysms because of its
ability to detect the micro aneurysms missed by other
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Figure 1: Example of images in a DSA pipeline: (a) is the mask im-
age, (b) the live image, and (c) the subtraction of the two, where the
vessels are clearly visible.

modalities (Wang et al., 2015). It is also preferred in
some cases to computed tomography (CT) or magnetic
resonance (MR) images, as it can better diminish the
effects of the skull and hematoma in images. A re-
cent study comparing DSA to MR and CT angiography
found that DSA resulted in an overall better outcome
for the patient and were more cost-effective over time
(Sailer et al., 2013). DSA can also be used in the op-
erating theater, while a patient is undergoing surgery,
unlike 3D techniques.

Although commonly used clinically, the subtraction
technique in DSA assumes that there is no change in
the background anatomical structures during acquisi-
tion. Any patient movement, including instances like
respiration, swallowing, cardiac motion, or intestinal
gases, will become visible as misalignment artifacts in
the subtracted images. Clinical evaluations have proved
that patient motion always occurs (Meijering et al.,
1999). Distortions due to movement limit the quality
and amount of diagnostic information that can be ex-
tracted from the images. Since the 1980s, techniques
such as dual energy subtraction, and automatic masking
have been developed to attempt to improve diagnostic
value by removing artifacts, but require special devices
and have never been introduced on a large scale (Meijer-
ing et al., 1999). Various image processing techniques
have also attempted to retroactively correct for these ar-
tifacts before subtraction (Meijering et al., 1999). How-
ever, to date, proposed algorithms do not efficiently
compensate for complex patient motion, limiting their
clinical applications.

Despite various literature on image registration for
DSA, sufficiently fast and accurate methods for integra-
tion into clinical applications have not been proposed.
In this thesis, several methods to register angiographic
images are explored, and a new registration method is
proposed for fast clinical applications. Then, motion
corrected images are used to train a convolutional neu-
ral network and virtually subtracted images are gener-
ated, eliminating the need for image registration. In
Section 2, the state of the art for patient motion correc-
tion in DSA is described. Section 3 describes the pro-
posed method. Results of experiments on angiographic
image sequences, with the proposed and convolutional
neural network approach are presented in Section 4 and

discussed in Section 5. Conclusions are presented in
Section 6.

2. State of the art

2.1. Analysis of Patient Motion

Patient motion that manifests as artifacts in DSA im-
ages is rarely uniform: for example, in an image includ-
ing the heart and lungs, different parts of the image may
be influenced more by the movement of one or the other.
Typically, artifacts only appear in regions where strong
object edges are present, due to misalignment between
the mask and live images (Meijering et al., 1999). To
compensate for this motion, a pixel shift, or shift of the
entire image in the x and/or y directions may be able to
remove distortions in one part of an image, but not com-
pletely eradicate them throughout. Instead, pixel shift-
ing can be applied in a region of interest (ROI), where
the movement is smaller, and the background structures
may be removed.

To approximate patient motion in an entire image, it
is thought that non-rigid local transformations can bet-
ter approximate local motion. However, due to the na-
ture of x-ray images, which are two dimensional pro-
jection images of a three dimensional scene, it has been
believed that registration techniques that try to recover a
correspondence between two projection images are un-
likely to succeed. In a proof by Fitzpatrick (1988) and
explained by Meijering et al. (1999), it was shown that
because projection images are created by the intensity
of x-rays incident on the detector, there exists a two di-
mensional transformation that completely describes the
changes in the images caused by three dimensional mo-
tion. Therefore, a 2D vector field can represent motion
caused by the patient in a 3D scene. There are several
limitations to this theorem, though: discrete image data,
the aperture problem (inability to find the tangential ve-
locity), and the fact that new particles (the contrast) are
introduced to the scene (Meijering et al., 1999). There-
fore, although a transformation exists, these issues limit
any kind of registration algorithm for DSA images.

2.2. Clinical Settings

Patient motion in subtracted images is a common is-
sue today in clinical scenarios. Therefore, in current x-
ray diagnostic imaging systems, there is often a feature
for improving image quality. Most systems have func-
tionality for a simple pixel shift, which addresses rigid
motion by shifting the entire image manually or auto-
matically in the x and y directions, or a function that
can register small regions of interest non-rigidly (Lee
et al., 2019). Clinical methods also must be performed
in real-time. In most clinical systems, it required that a
user choose a rectangular zone to serve as an ROI, and
the registration is limited to that region, accounting for
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only a small region’s motion. Some examples of algo-
rithms in clinical systems will be described below.

Philips’ patent US4870692 includes a method that
corrects motion in subregions in an image through
cross-correlation. A shift vector is found from the mask
sub-image to the live sub-image by means of cross-
correlation and the mask sub-image is shifted accord-
ingly. In this method, it has been found that shift vec-
tors are not always reliable and therefore, they can be
replaced by neighboring, more reliable shift vectors.

GE holds patent US10985803 for a patient motion
correction algorithm using landmarks defined with reg-
ular geometrical patterns in the mask image. A registra-
tion is performed, and depending on the robustness of
the landmarks, the geometric region may be subdivided
and registered again.

Additionally, Siemens’ patent US8299413B2 de-
scribes an automatic calculation of pixel shift vectors,
where potential shift vectors are ranked based upon the
sum of squared differences metric between the origi-
nal subtracted image and subtracted images at different
shifts, and the best one is applied to the image.

Pixel shifting solutions have been widely adopted in
x-ray imaging systems, however they only address rigid
motion through pixel shifts. In the literature, though,
many solutions to handle non-rigid motion have been
described.

2.3. Classical Motion Correction Techniques

Motion correction techniques can be classified into
two major categories: extrinsic (relying upon artifi-
cial objects or markers added to the scene) or intrin-
sic (relying upon anatomical structures) (Markelj et al.,
2012). Since the motion in DSA imaging results from
anatomical structure movement, intrinsic registration is
required. Intrinsic registration can be divided into three
main types: feature, intensity, and gradient based meth-
ods, and applications of these registration methods to
DSA will be described below.

2.3.1. Feature Based Registration
Feature based registration methods minimize the

distance between features (point sets) in two images
(Markelj et al., 2012). These methods rely heavily upon
the quality of anatomical landmarks which make up
point sets. In DSA imaging, point sets are unknown
and groundtruth data is not available, making this sort
of registration unsuitable.

2.3.2. Intensity Based Registration
Intensity based registration techniques rely on only

the voxel intensity information in images. In contrast
to feature based methods, the similarity measures used
are calculated using pixel-wise comparisons (Markelj
et al., 2012). For example, Meijering et al. (1999) in-
troduced an intensity based method to compensate for

the non-rigid motion, which has since become the basis
for many registration algorithms. The correction is per-
formed with two operations: first correspondences are
calculated between pixels in the mask and live images,
and secondly, a correction is performed by warping one
image with respect to the other. Correspondences are
defined as a set of control points in the mask image
and their matches in the live images. Control points
are found in the mask image to avoid issues related to
vessels present in the live images. Since DSA image
artifacts often appear around strong edges, image edge
information (gradient magnitude maxima) is used to de-
termine the locations of control points in the mask im-
age. Additionally, criteria is set for a minimum distance
between control points.

Next, the correspondences must be found in the live
images. For each live image in the exam, correspon-
dences are calculated independently. To match cor-
respondences, a template matching approach is used.
As opposed to other popular methods such as optical
flow, template matching is not impacted significantly by
the inflow of contrast into the image (Meijering et al.,
1999). Template matching is based on the assump-
tion that for a pixel in one image, its correspondence
in the second image can be approximated by searching
in a neighborhood and optimizing a similarity measure.
Here, the similarity criteria chosen was the histogram of
differences, which is robust against the influx of contrast
and the window size chosen was 51 × 51. Once all the
correspondence have been found, linear interpolation is
used to use the correspondences to warp the final image
through a Delaunay triangulation.

Nejati et al. (2013) have also built upon this technique
with multi-level b-spline interpolation. Instead of us-
ing a gradient magnitude maxima image to find corre-
spondences, a Gaussian derivative image in combina-
tion with a Harris corner dector is used. Optimized tem-
plate matching via a hill climbing algorithm is used to
find match points. A multi-level b-spline interpolation
is used to warp the mask image to the live image.

All of the previously mentioned methods incorporate
template matching, which even when optimized, is still
an extremely time consuming operation, when consider-
ing that checking just 10% of matches in a 50× 50 win-
dow still involves 250 calculations, and it is still possi-
ble that the best match was missed, unless an exhaustive
search was performed.

Liu et al. (2018) performed coarse registration with
SURF features for correspondences, and RANSAC to
eliminate wrong matches.

However, most of these methods assume unique cor-
respondences, and they may fail to find correspondences
when newly visible vessels appear. Other methods try
to select features independent of the vessels. Several
methods based on 3D space time detection were im-
plemented to avoid features being placed on vessels
(Bentoutou and Taleb, 2005; Zhang et al., 2010). Con-
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Table 1: Reported computation times for the reviewed methods for
images sized 512 × 512

Method Time (s) Notes
Meijering et al. 1999 8.4
Nejati et al. 2013 14.2
Nejati and Pourghassem 2014 314
Liu et al. 2018 0.25 Coarse registration
Lee et al. 2019 1.3 3.30Ghz Core i5 CPU

trol points are selected using image edges, and their in-
tensity values are recorded over time to determine if a
feature point’s intensity changes due to patient motion
or contrast flow. With a 3D space time method, though,
the method of rejection for control points depends on
the entire exam sequence, and all of the data must be
gathered before registration occurs. It also cannot be
performed on a subset of images from a sequence.

Multiresolution techniques have also been applied for
intensity based registration. For example, Nejati and
Pourghassem (2014) performed registration with inten-
sity variation modeling in 4 levels with various sub-
blocks. Multiresolution methods, however, suffer due
to their long computation time.

2.3.3. Gradient Based Registration
Gradient based methods are based upon the assump-

tion that important image information is contained in
the gradients. Since in DSA images the artifacts are of-
ten found where edges are present, registration based on
gradient images is thought to be suitable. In a paper by
Hiroshima et al. (2001), the Laplacian filter is applied to
both the mask and live images. Then, a distortion vector
is found detecting the peak position of cross-correlation.
Many distortion vectors are found on a regular grid, and
then b-spline interpolation is used to warp the final im-
age.

2.3.4. Other Registration Methods
Similar to the previously mentioned gradient based

method, Lee et al. (2019) registered images by finding
the phase difference in the frequency domain without
using the gradient. It is assumed that regions in com-
mon in two images where motion has occurred will have
similar magnitudes but shifted phase. Regions where
newly visible vessels appear will have different magni-
tudes. Therefore, both the mask and live images are
transformed into the frequency domain, the magnitudes
are matched, and the phase differences are adjusted.

As computational time is of great importance for clin-
ical DSA systems, a comparison of the above described
approaches in terms of time is given in Tab. 1.

2.4. Deep Learning Techniques

Since in DSA, the desired result is not a registered
image itself, but the subtraction image, it is thought that
avoiding registration is possible. For example, virtual

DSA can be performed by estimating the subtracted im-
age from the live image. For these methods to succeed,
the vessels must be segmented and then the background
estimated in those regions (inpainting). Unberath et al.
(2017) describe a method using a convolutional neu-
ral network (CNN) and U-net architecture to perform
image inpainting for background estimation. First, the
vessels are segmented using Hessian based segmenta-
tion. Then, the neural network is used to perform in-
painting in the small region defined by the segmentation
mask. In this paper, only simulated images were used to
train a network for inpainting. Additionally, the images
themselves had smooth backgrounds with little intensity
variation and structures. As our dataset included many
cases in extremities with bones as prominent features, it
can be inferred that the proposed method image inpaint-
ing would not perform well on our data.

Another method employed U-net for generating
DSA-like images in real time directly from the contrast
enhanced live images (Eulig et al., 2019). The CNN was
trained with patches of the live and subtracted images.
This method obtained conventional DSA level results,
but relies on the assumption that the subtracted images
used for training are artifact free. Correspondence with
the author confirmed that the data itself was not of per-
fect quality, but images with patient motion were ex-
cluded in the study. Given a large number of subtracted
images of minimal patient movement, it may be possi-
ble to train a neural network to generate its own DSA
images.

3. Material and Methods

There are two main goals of the proposed thesis work:
the first is to determine the most applicable classical
motion correction technique for fast registration of full
size DSA images. The second is to use motion cor-
rected images to train a CNN for virtual subtraction. Fi-
nally, the results of the two main goals can be compared.
The entire framework for the work was implemented in
Python. All methods excluding the deep learning frame-
work were executed on a 2.6 GHz Core i5 CPU.

3.1. Data Acquisition

High resolution imaging data was acquired for use
in this study from a hospital [name withheld] between
2012 and 2019. Images were acquired from a multi-
modal x-ray machine similar to the DR800 (Agfa, Bel-
gium). A contrast agent with iodine concentration in
the range of 150-300 g/mL was administered to the pa-
tient as the sequence was acquired. A total of 9 patients
were included in this study. Each patient had between
1 and 24 exams, each exam consisting of between 10-
50 images. In total for the 9 patients, there were 79
total exams with 3,312 images. The exams were per-
formed on various body parts including interventions in
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the abdomen as well as peripheral exams of the the head,
legs, and knees, creating a diverse data set, with assorted
amounts of patient motion.

The images were stored in RAW format to preserve
patient anonymity and data integrity. The images were
16 bit and ranged in size from 512 × 512 to 1512 ×
1512 with voxel resolution 0.25 mm. All but one image
were in the linear intensity domain, and this image was
examined separately. Because some of the data was ac-
quired during the thesis work, 13 exams from 3 patients
were used for the first goal of motion correction. The
rest of the data was later included in the final algorithm
validation and deep learning approach.

As this dataset of DSA images had not been previ-
ously curated, it required full analysis. Since the first
and last few frames of a DSA sequence can be noisy
or have a skewed intensity range, it was necessary to
remove those images from the full set. Additionally, a
few patients also had fluroscopy exams, which needed
to be separated from the angiography data. Lastly, since
the data was in a RAW format, the collimation windows
also had to be manually segmented. These images were
cropped on an exam basis - all images in an exam have
been cropped to the same dimensions.

3.2. Pixel Shift

Since conventional x-ray imaging systems are
equipped with a global pixel shifting mode, it was cho-
sen to recreate this system to observe whether motion
could be corrected by translation only. The developed
system is interactive and by using the arrow keys, the
mask image can be shifted in the x and y directions pixel
by pixel.

3.3. Elastix

As with many registration problems, it is often useful
to explore currently available tools. Elastix is a versa-
tile open source software tool for medical image regis-
tration and was chosen to visualize the type of patient
motion in DSA sequences. The goal was to perform
the best registration possible, regardless of computa-
tion time. It was chosen to perform registration with an
affine, then b-splines registration. The affine registra-
tion provides a rough first alignment. As b-splines is a
non-rigid registration technique, it is possible to recover
some of the non-rigid movements in the images. Pa-
rameter files for registration were implemented from the
Elastix database (http://elastix.bigr.nl), with mutual in-
formation and advanced normalized correlation as sim-
ilarity metrics.

3.4. SIFT

SIFT is another popular algorithm for image registra-
tion as the features it generates are scale and rotation in-
variant, and Liu et al. (2018) showed that registration for
DSA images is possible with a similar algorithm, SURF.

Figure 2: SIFT keypoints and matches in the mask and live images.

Therefore, it was chosen to implement SIFT-based reg-
istration with OpenCV. Since SIFT and SURF features
are both patented, it was chosen to also test open source
ORB features as well. The images were first normal-
ized to zero mean and unit variance. More preprocess-
ing was required to obtain any keypoints with SIFT or
ORB. The preprocessing step consisted of anisotropic
diffusion, histogram equalization, and image sharpen-
ing. The threshold for ORB features was increased to
100000 to obtain as many features as possible. Example
SIFT features and their matches can be seen in Fig. 2.

3.5. Smart Control Points
As a significant portion of the literature published

about DSA registration incorporates feature-based con-
trol point selection along with template matching, it
was essential to implement this type of method. Of
the reviewed literature, the method defined by Nejati
et al. (2013) is the most recent and complete explana-
tion of this task and was implemented by the author. An
overview of the algorithm will be provided below.

The mask image is used for control point detection
as it contains no contrast and the same mask is used
for each live image. First, the gradient magnitude of
the mask image was detected using the derivative of the
Gaussian at scale σ = 1 and normalized in the range
[0,1]. Then, the strongest edges were found by thresh-
olding the image at the mean, obtaining a final image,
which will be referred to as G. Then, the Harris corner
response is calculated as:

R = Î2
ẋ̂ I2

y − ˆI2
xy − k(Î2

x + Î2
y )2 (1)

where
Îx = Ix ∗ g
Îy = Iy ∗ g
ˆIxy = (Ix İy) ∗ g

(2)

where Ix and Iy are partial derivatives of an image I in x
and y, g is a Gaussian window, and ∗ is a convolution.
The sensitivity parameter k is set to 0.12. All negative
values of R are set to 0 and then normalized in the inter-
val [0,1]. A weighted average of R and G is calculated
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Figure 3: Smart control point selection in two mask images. (a) shows
smart control points that cluster in a bright region and (b) shows smart
control points that appear only on one edge of a bone.

as
R̂ = αG + βR (3)

where α = 0.3 and β = 0.7. The local maxima greater
than t1 = 0.1 of R̂ are found in neighborhoods of ra-
dius 5. Then, the list is sorted from largest to smallest.
The list is filtered by removing all points in a radius of
45 pixels around the highest control point and moving
through the list, so only the largest points with a mini-
mum distance 45 remain. These points are the control
points. An example of control point selection can be
seen in Fig. 3

To find match points in the live image, template
matching is used. For each control point, a 50 × 50 win-
dow is centered on the control point in the mask image
and a metric is used to compare to a 50 × 50 window in
the live image. A 50× 50 window is optimal as it leads
to smooth match surfaces (Nejati et al., 2013). The win-
dow is shifted with a maximum distance 20 pixels in
each the x and y directions, as patient motion is sub-
tle. The center pixel over which the optimized metric
is found represents the match point in the live image.
Mutual information and the entropy of the normalized
histogram of differences were both tested for the tem-
plate matching algorithm. Therefore, each control point
has a corresponding matching point in the live image.

3.6. Discrete Fourier Transform
Phase correlation is another popular technique to cor-

rect gross translations in image registration. Hiroshima
et al. (2001) showed that an extension of this method

based on local distortion vectors works well for head,
neck, abdominal, and leg images. Distortion vectors are
calculated through phase correlation in many ROIs in an
image. Therefore, this method can account for local de-
formities, like rotation, contraction, and relaxation. As
the deformation model is not as sophisticated as smart
control point methods, it can be calculated more effi-
ciently. This method has been adapted by the author,
and an explanation of the implemented method will be
described below.

The mask and live images are preprocessed to en-
hance image edges, further details are given in Section
3.6.1. An ROI of size n × n is centered at position [i, j]
in the mask and live images. The discrete 2D Fourier
transform of each ROI is found. The normalized cross
power spectrum of these Fourier transforms is calcu-
lated as

R =
Gl ◦G∗m
|Gl ◦G∗m|

(4)

where Gl and Gm are the Fourier transforms of the live
and mask images respectively, ∗ is a complex conjugate,
and ◦ is entry wise multiplication (Foroosh et al., 2002).
Normalized cross-correlation is found by finding the in-
verse Fourier transform of R, obtaining r. The peak of
r in x and y is one distortion vector from the mask to
the live image. Subpixel registration can be obtained by
performing interpolation to non-integer values for the
peak location.

Once a distortion vector is found, the ROI is shifted
by M in both the x and y directions, and the process is
repeated, until m × n (image size dependent) distortion
vectors are found. The center points of all ROIs can be
considered the control points and by adding each distor-
tion vector to its control point, match points are found
in the live image.

A window size of 151× 151 was implemented by Hi-
roshima et al. (2001), and the author has chosen sizes
25, 50, 100, 150, 200, and 300 for comparison. The
window spacing, M, selected must be smaller that the
corresponding window size. Window spacings of 75,
100, 150, and 200 were compared.

3.6.1. Preprocessing
As x-ray images are noisy and image edges are

known to be the location of many artifacts in DSA,
preprocessing to enhance edges is essential. As a first
step, all images in an exam were normalized by sub-
tracting the mean intensity and dividing by the standard
deviation of the mask image. Gaussian smoothing and
anisotropic diffusion were compared. Sharpening and
histogram equalization were also added. Several edge
detection methods were tested including Laplacian, So-
bel, Gaussian derivative (σ = 1), and Canny edge filters.
Both signed and unsigned versions of Canny edges were
compared. Signed canny edges were found in the hor-
izontal direction (artifacts are mostly found along long

5.6



Patient Motion Correction in Digital Subtraction Angiography 7

vertical edges), depending on an increase or decrease in
intensity along that edge. Temporal averaging of pairs
of images was also used to reduce noise, which limits
the amount of images in a DSA series by half.

From preliminary testing, it was found that Gaus-
sian smoothing, anisotropic diffusion, and sharpening
did not affect DFT registration, and the edge detec-
tion methods with the most potential were the Gaussian
derivative and Canny edge detection (with high thresh-
old). Fig. 4 shows the preprocessed images before regis-
tration. A typical preprocessing pipeline would contain
normalization and edge detection. The final edge image
underwent the discrete Fourier transform.

3.6.2. Smart Control Points
In addition to template matching, smart control points

as found in the mask image were also matched to the
live image using DFT. The method to find distortion
vectors is the same as described in Section 3.6, but in-
stead of windows centered on a regular interval, the win-
dow of 200 × 200 are centered upon the smart control
points and they are matched to the live image using a
DFT.

3.7. Image Warping

For DSA registration, it is essential to warp the mask
image to each live image, and not the reverse, as there is
a flow of contrast into the scene and the contrast should
remain unchanged. In the case of smart control points
and the discrete Fourier transform, there are two point
sets: one in the mask image and one in the live im-
age. It is necessary to have a dense correspondence be-
tween the mask and live images which can be estimated
through the interpolation of the control points to warp
the mask image to the live image. Here, a thin plate
splines (TPS) interpolation function was used because
TPS is optimal for interpolating an image when given a
set of points at irregular intervals. A complete descrip-
tion of TPS warping is given by Nejati and Pourghassem
(2014).

3.8. Evaluation Metrics

In many medical imaging problems, quantitative
evaluation is essential. To calculate quantitative sim-
ilarity when registering images, correspondences can
be calculated between two images, when the true cor-
respondences are known. Standard quantitative mea-
sures to assess the quality of DSA images do not ex-
ist (Lee et al., 2019). As with DSA images there is
no groundtruth data, alternative quantification methods
must be used. In a study by Nejati et al. (2013), sim-
ulated mask images were generated from live images
with little movement through vessel segmentation, and
a known geometric transformation was applied to the
live image. Coordinates in the mask image were se-
lected, random shifts of +/−10 pixels were added, and

the live image was warped according to these shifts us-
ing b-spline interpolation. The shifts were recovered
using template matching and a similarity metric. The
similarity measures entropy of the histogram of differ-
ences (EHD), cross-correlation (CC), mutual informa-
tion (MI), mean structural similarity (SSIM), and en-
tropy of the normalized histogram of differences (ENT)
were compared. The root mean squared (RMS) error
was compared between the known original coordinate
positions and those found by template matching. It was
found that ENT resulted in the lowest RMS error, in-
dicating that it is a good similarity measure for DSA
images.

Much of the quality of registration is evaluated visu-
ally (whether there are artifacts or not). When compar-
ing a registration methods, is possible to evaluate the
difference between two by comparing the difference in
a metric before and after registration.

3.9. Virtual Subtraction
Virtual subtraction was performed using a U-net ar-

chitecture and Keras functional API with Tensorflow as
a backend. The architecture combines downsampling
and a high resolution output via skip-ahead connections,
ideal for the small vessels in DSA images (Unberath
et al., 2017). The U-net consists of an encoder portion,
where downsampling layers decrease the feature size as
the depth increases. Each layer has 2 convolutional lay-
ers (kernel size 3× 3, stride 1× 1, padding 1× 1) with a
rectified linear unit (ReLU) as nonlinearity followed by
a maxpooling layer ( 2 × 2). In the maxpooling layer,
the size of the features is decreased by a factor of 2,
but in the convolutional layer, the number of features is
doubled. Therefore, as the depth increases, the features
lose spatial and gain contextual information. The U-net
also has a decoder that transmits contextual informa-
tion through upsampling layers. Each upsampling layer
halves the number of features while the number of di-
mensions doubles, and skip-ahead connections combine
the output of upsampling with features from the down-
sampling layer to gain contextual information. There-
fore, the decoder mirrors the encoder in structure. A
total of 6 layers were used for all experiments and the
architecture is shown in Fig. 5. Finally, a convolution is
performed for each individual pixel to output the final
mask in greyscale.

3.9.1. Data Preparation
Images were divided into 224 × 224 non-overlapping

patches. The mask image was registered and subtracted
from the live image using cross-correlation and pixel
shifting, and some training patch examples are found
in Fig. 6. The optimal preprocessing was selected and
applied before calculating the shift. Subtracted images
were normalized to the range [0,1] with the background
set to 0.7 to ensure consistency. The training data con-
sisted of 22,136 image patches.
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Figure 4: Preprocessing using (a) canny unsigned edge detection, (b) canny signed edge detection, and (c) Gaussian derivative.

3.9.2. Training
The data was divided in training, validation, and test

sets by patient to avoid any overlap in data between the
sets. The U-net was trained using the Adam optimizer
with both L1 and L2 loss being compared. All weights
were initialized using He initialization, and the data
was augmented using flips, rotations, shears, and scal-
ing. The network was optimized by changing the learn-
ing rate, adding dropout, and modifying the amount of
training. The training pipeline was implemented on an
NVIDIA Tesla V100 DGXS.

4. Results

4.1. Elastix
Elastix registration provided an insight to the type of

patient movement common in DSA images. In only
one case, the registration was successful and resulted in
nearly complete artifact removal as seen in Fig. 7. This
figure also illustrates the non-rigid registration required
to compensate for the movement. For most other cases,
however, the results were not consistent. Elastix regis-
tration enhanced artifacts in images that were previously
not visible in the subtracted image. Additionally, regis-
tration of one image took approximately 30s.

4.2. SIFT and ORB
In SIFT and ORB feature detection, it was deter-

mined that preprocessing images with sharpening was
most important to find keypoints. When comparing the
SIFT and ORB feature detectors on the same images,
SIFT found significantly more keypoints than ORB.
However, neither feature detector was able to detect a
large amount of keypoints in images with long bones.
Instead, keypoints were often detected along other in-
significant points of the image (where there was no ini-
tial movement). The most common locations of key-
point detection were along the contours of the body. As

the movement usually manifests along bony structures,
it was determined that this method cannot be applied to
DSA images.

4.3. Smart Control Points
Unlike SIFT or ORB features, smart control points

were detected where significant movements were found
in an image (along the long, bony structures). However,
when template matching was performed to find match
points with both MI and ENT, the matches found were
often incorrect, and the images were not able to be reg-
istered. This was confirmed on every tested case.

4.4. Discrete Fourier Transform
The metrics of various DFT experiments can be found

in Tab. 2. Comparisons of the methods as shown in one
image can be found in Fig. 8. By comparing the met-
rics as well as the images, it was concluded that the best
performance was obtained using Canny signed prepro-
cessing, window size of 200×200, and window spacing
of 150. For 512 × 512 images, the average computation
time was 0.6927s, and over the full dataset, the compu-
tation time ranged from 0.5468s to 8.5156s depending
on image size. Examples of this registration applied to
images of various types can be seen in Fig. 9.

4.5. Virtual Subtraction
Fig. 10 shows the application of virtual subtraction to

various image patches, compared with the groundtruth
(registered image), and subtracted image before regis-
tration.

5. Discussion

5.1. Classical Motion Correction Techniques
Overall, it can be stated that patient motion correction

in a variety of DSA images has been achieved. From
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Figure 5: U-net architecture employed here.

Figure 6: Example image patches used to train U-net. (a) shows the live image patch and (b) shows the corresponding subtracted image patch.

the first experiments with Elastix data, as seen in Fig. 7,
it can be seen from the deformation field that typical
patient motion is not global, and a non-rigid registra-
tion method would be best for correcting this motion.
The deformation field also shows that the movements
are extremely small. Elastix had trouble distinguishing
which regions in an image should be registered, perhaps
due to the metric of mutual information. Since contrast
is introduced between the mask and live images, it is
possible that MI is not an appropriate metric, since it
looks for correlation between pixels, which would not
be present for the contrast areas. When another metric,
AdvancedMeanSquares, was tested, it did not encounter
the same issues. Elastix software was not practical due
to the long (30s) registration time.

When considering registration using SIFT or ORB
features, it is seen that very few keypoints were found.
Therefore, this method suffered during registration,

since there were no control points in regions that re-
quired registration. This may be because SIFT keypoint
detection focuses on corners, and specifically discards
keypoints along edges, whereas with DSA images, of-
ten the motion is found only along those long edges.
This method was unable to compensate for any types of
motion.

From Fig. 8, it is easy to see that testing various pro-
posed methods for the preprocessing and control point
selection was essential. For preprocessing, it can be
seen that with Canny preprocessing, which produces a
binary image, the addition of a sign based on the edge
direction has helped prevent mis-registration. This is
likely due to the extra edge information, giving sig-
nificantly more data for registration to occur. When
comparing Canny signed and Gaussian derivative pre-
processing, from Tab. 2, it can be seen that the ENT
metric is much less for the Canny signed preprocess-
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Table 2: Comparing different methods for DFT based registration

Preprocessing Window
Size (px)

Window
Spacing (px)

ENT
Difference

MI
Difference

Average
Time (s)

Changing Preprocessing Methods
AD Canny 200 200 -0.1287 0.0140
AD Canny Signed 200 200 -0.1296 0.0121
AD Gaussian Derivative 200 200 -0.0821 0.0077
No AD Canny 200 200 -0.1197 0.0120
No AD Canny Signed 200 200 -0.1286 0.0110
No AD Gaussian Derivative 200 200 -0.0908 0.0001

Changing Window Size and Spacing
Canny Signed 100 100 -0.1514 -0.0141
Canny Signed 150 150 -0.1188 0.0027
Canny Signed 200 200 -0.1286 0.0110
Canny Signed 300 300 -0.0986 0.0050
Canny Signed 150 75 -0.1400 0.0067
Canny Signed 150 100 -0.1400 0.0076
Canny Signed 200 75 -0.1339 0.0086
Canny Signed 200 100 -0.1300 0.0143
Canny Signed 200 150 -0.1076 0.0098

Adding Temporal Averaging
No TA Canny Signed 200 150 -0.0966 0.0115
TA Canny Signed 200 150 -0.1234 0.0200

Comparing with Smart CPs
Smart CPs Canny Signed 200 200 -0.0336 -0.1261 6.6716
Grid Based Canny Signed 200 200 -0.1286 0.0110 2.7307
AD - Anisotropic diffusion, TA - Temporal averaging

ing method. Combined with visual results from the full
dataset, Canny signed preprocessing was chosen as the
best preprocessing technique.

In comparing the window size, from Fig. 8 it is seen
that larger window sizes have more consistent registra-
tion, and less artifacts are created during registration.
However, there is a limit to this, as in Fig. 8.h (win-
dow size 300 × 300, where the long bone cannot be re-
moved due to the large window size. Additionally, al-
though Tab. 2 indicates the best performance is with a
100 × 100, Fig. 8.g shows that this size can create ar-
tifacts. As a consistent metric has not been established
for DFT registration, the metrics presented in the table
cannot be taken as absolute indications without also re-
ferring to the visual results. From the experiments in
window spacing and size, it can be determined that win-
dow size 200 × 200 and window spacing 150 indicate
the most consistent performance. When comparing the
proposed method to a method presented by Lee et al.
(2019), the computation time for the same size image
is nearly twice as fast for our method, while achieving
similar visual results using comparable architecture.

The addition of temporal averaging did indicate an
increase in performance, but significantly reduced the
amount of data, and as DSA images are high resolution
with small vessels, it is thought that temporal averaging
may cause some small vessels to become less contrasted

with the surrounding tissue when averaged. Therefore,
this method could not be used in clinical settings.

Fig. 8.f shows the application of DFT using the smart
control points, rather than a regular grid. According
to Tab. 2, the ENT metric has a larger decrease using
the grid based method rather than smart control points.
When one looks at the smart control points in Fig. 8.e,
it is seen that one edge of the bone was not selected,
and a smart control point is even found on the catheter,
which has no movement (since it is not seen in the orig-
inal subtracted image). Although there are so many on
one side of the bone, they do not produce any registra-
tion there, thus the points do not accurately represent
the image. This may be due to the weighting of the Har-
ris corner response in Equ.3, as more weight is given to
the Harris corner response. Since artifacts are observed
on image edges (bones), the Harris corner response may
not be as effective at finding control points on straight
edges, since it is a corner detector. By considering both
the metrics and visual results, smart control points are
not as consistent as a grid based method.

From the above, it can be seen that the grid based
method had advantages over the smart control points
method. Since larger window sizes indicate more con-
sistent registration, a window size of 200×200 was cho-
sen, with a window spacing of 150, to be applied to all
images. Fig. 9 shows that these settings could register
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Figure 7: An image (a) before and (b) after registration with Elastix.
(c) shows the corresponding deformation field of the mask image.

images of the spine and long bone images, allowing the
vessels to be easily discerned.

Some drawbacks exist to the chosen method. Here
accurate registration could not be achieved. Mainly
these cases were abdominal images, like the image on
the left. This is because simply too much movement
occurs, and there is a large amount of contrast that is
present in the image. In the image on the right, it ap-
pears that the registration has been unable to estimate
shifts along the lower part of the image. This may be
because window edges have fallen directly on the edge
of the bone in that area. Although a sliding window has
tried to limit this issue, unless the sliding window is ex-
tremely small, it is still possible to miss shifts in parts
of an image where the edge of the bone and window for
shift estimation are aligned. In the future, this method
might be improved by avoiding placing window edges
along the edge of the bone. Additionally, most of the
time these artifacts appear near the image boundaries as
there is not enough information to accurately estimate
the shift in the area closer to the image boundary.

5.2. Virtual Subtraction

From Fig 10, it can be seen that the virtual subtraction
has been quite successful in small patches. In many of
the selected patches, very small vessels are found. This
indicates that the U-net has had the desired high resolu-
tion output. Additionally, as shown in Fig 10.h, it can be
seen that in cases where the groundtruth image contains
no vessels, the virtual subtraction can recognize this. In
many of the patches, though, some artifacts are found
that were likely very bright patches in the live images,
as in Fig 10.b, e, and g. In Fig 10.d, the vessel alongside
the right part of the image is not found. This may be be-
cause the entire structure of the vessel was not able to
be seen, and the network could not discern it from bone.

Virtual subtraction produces images of similar quality
to the best DFT registration method. Very thin vessels
are discerned, and motion artifacts are reduced. How-
ever, in some instances, the DFT registration gives a
more accurate result. Because the intensity and shape of
the contrast vary greatly between exams and frames, is
thought that virtual subtraction struggles to discern the
contrast from the background structures in these cases.

Virtual subtraction is an attractive alternative to full
image DFT registration. Early on in this project, it was
determined that pixel shifting was sufficient for remov-
ing artifacts in small areas, but could not be applied
in larger regions. When computing many pixel shifts
across an entire image and combining them, the regis-
tration improved. However, it was seen that some in-
stances of DFT registration did not completely remove
the artifacts. As images for training with virtual subtrac-
tion were generated in 224 × 224 sized windows, pixel
shifting could be used, which created a nearly artifact-
free training dataset.
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Figure 8: Comparing different methods for DFT registration. (a) is the unregistered subtracted image, (b)-(d) show Canny unsigned, Canny signed,
and Gaussian derivative preprocessing, with window size 200×200. (e)-(f) compare the smart control point method: (e) shows smart control points
superimposed on the mask image and (f) shows the result of DFT registration with those points. (g)-(k) compare various window size and spacings.
(g) has window size 100 × 100 and (h) 300 × 300 with no overlap. (i-k) have window size 200 × 200 with window spacings 75, 100, and 150
respectively.

Figure 9: Successful DFT registration with Canny signed preprocessing, window size 200×200 and window spacing 150. (a) shows the unregistered
subtracted images and (b) shows the registered.
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Figure 10: Virtual subtraction patches where column (i) corresponds to the image registered with DFT and (ii) to the image registered by virtual
subtraction.

5.13



Patient Motion Correction in Digital Subtraction Angiography 14

With many deep learning problems, issues often arise
from the lack of data, and this problem is no excep-
tion. Perhaps during the initial data generation, a slid-
ing window could be used to generate images with some
overlap. Additionally, this dataset should be increased
and carry a larger variety of images. For example, it
is unknown how the model would perform on neuro-
or cardio-angiography, which commonly require regis-
tration. With the proposed DFT technique, it can be
assumed that the method could be applied successfully.
Despite this, it has been shown that virtual subtraction
has the potential in patient motion correction, especially
in cases where a mask image is not available or the pa-
tient/detector motion is significant.

6. Conclusions

The findings of this project can be summarized in two
main ideas. First, a pipeline for fast motion correction
in full size DSA images based on the DFT has been pro-
posed. This method can register 512 × 512 images ac-
curately in less than one second. DFT registration has
been shown to reduce patient motion in the subtraction
image, making vessels appear more clearly in the ar-
eas of artifacts. In comparison to algorithms recently
presented in the literature, faster performance has been
achieved. DFT registration can be applied to a variety of
images, such as exams of the head, legs, or knees. Sec-
ondly, the potential for virtual subtraction using a con-
volutional neural network has been explored. Virtual
subtraction has the capability to widen the application
of DSA in cases where conventional DSA is not avail-
able. Currently, virtual subtraction struggles to recog-
nize certain structures satisfactorily, which may be due
to the lack of training data of these structures. A future
study could be conducted extending this method with a
larger dataset, as well as testing the application of both
DFT-DSA and virtual subtraction in neuro- and cardio-
angiography cases.
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Abstract

High Resolution (HR) Magnetic Resonance Imaging (MRI) provides detailed anatomical information and is widely
used in brain imaging diagnosis. However, HR imaging come at the cost of prolonged scans, high system cost
and is subject to motion artifacts. Recently Single Image Super Resolution (SISR) techniques have gained a lot of
attention due to their success with deep learning methods. Super Resolution MRI via deep learning has great potential
clinical application as it will reduce scan time and improve patients comfort. It will also save costs as the same
hardware that are already installed can be used to acquire images that are enhanced to have higher resolution by this
method. In this paper, we propose two different Convolutional Neural Network (CNN) architectures for brain MRI
super resolution, 3D-Light Super Resolution Network (3D-LSRN) and SR-UResNet. We validate 3D-LSRN for MRI
images deblurring in the dataset of healthy subjects from a Catalonia hospital. We also show that our SR-UResNet
architecture outperforms bicubic interpolation, and other CNN method for different downsampling methods, upto 4x
less in all image planes in terms of visual quality and objective quality criteria such as Peak Signal to Noise Ratio
(PSNR) and Structural Similarity Index (SSIM). Further, we validate results by segmenting tissues and sub-cortical
structures in the brain obtaining close overlap between HR and our predicted images.

Keywords: Super Resolution, Magnetic Resonance Imaging (MRI), Deep Learning, Convolutional Neural Networks
(CNN)

1. Introduction

Magnetic Resonance Imaging is widely used for
brain imaging since it is a non-invasive technique
without any ionizing radiation, has superior soft tissues
contrast and provides detailed anatomical information
(Frahm et al., 1999). The image quality in MRI depends
on different factors such as matrix size, field of view
(FOV), slice thickness, signal to noise ratio (SNR) and
magnetic field strength.

The spatial resolution in MRI is defined by the
size of imaging voxels which could be different in
the directions of imaging planes. The matrix size,
FOV and slice thickness define the size of voxel and
hence, the resolution. The matrix size is the number of
frequency encoding steps and phase encoding steps in
two different directions of the image plane. The phase
and frequency encoding covers certain area that defines
the FOV. The in-plane voxel size is computed by

dividing FOV by the matrix size and increasing FOV in
either direction increases the size of voxels and hence,
decreases the resolution. The slice thickness defines
the depth of the voxel. Moreover, the MRI scanners
can have different voxel spacing for different planes.
The voxel spacing can be isotropic with 1x1x1 mm or
even anisotropic like 1x1x3 mm where through-plane
voxel spacing is more than in-plane voxel spacing. The
anisotropic setting of this type will require less samples
and as a result, reduced scan times, but can miss details.

The MRI scanners also come with different magnetic
field strength, ranging from 1.5T to 10T and beyond
with higher magnetic field strength producing superior
image quality (Anna Nowogrodzki, Nature, 2018). Fig.
1 shows the brain MRI of a human for 3T and 9.4T
MRI scanner. The higher magnetic field scanners can
capture minute details. However, they come at the cost
of prolonged scans, causing patients discomfort, also,
the scanners used to acquire high resolution images in
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Figure 1: 3T (left) and 9.4T (right) brain MRI of human. Credit: Rolf
Pohmann/Max-Planck-Institute for Biological Cybernetics

this way are more expensive. Thus, there is a trade-off

to avoid prolonged scans which can induce the risk of
patient motion and also patient discomfort, and so the
scanners with magnetic field strength of 1.5T or 3T are
generally used by hospitals today.

Recently super-resolution (SR) techniques have been
proved to be effective method to enhance the resolution
of the images. The goal of super-resolution methods is
to use the lower resolution (LR) images to construct the
corresponding high resolution (HR) images. The LR
images are considered to be low pass filtered (blurred)
and down sampled version of HR images. Thus, there is
a loss of high frequency information due to down sam-
pling process with low pass filtering. Henceforth, it is
an ill-posed problem as multiple solutions exists when
mapping from LR to HR space (Shi et al., 2016).
To generate HR images from LR images, certain image
priors are exploited and based on image priors, SR al-
gorithms can be categorized into four types, prediction
models, edge based methods, image statistical methods,
and patch based methods. The prediction models are
interpolation based methods such as bilinear or bicubic
which generate HR pixel intensities by weighted aver-
age of neighbourhood LR pixel values (Irani, 2009). In
edge based methods, various edge features are used such
as depth and width of an edge or parameters of gradi-
ent profile. These methods generate HR images with
superior edges, however, are poor in modelling other
high frequency structures like textures (Tai et al., 2010).
Image statistical methods use heavy-tailed gradient dis-
tribution, sparsity property of large gradients, and total
variation as regularization term to generate HR images
(Sun and Shum, 2015). In patch based methods, the
patches are cropped from HR and LR images, to learn
the mapping functions. Different mapping functions are
proposed in literature such as weighted average, kernel
regression, support vector regression, gaussian process
regression, sparse dictionary representation and recently
convolutional neural networks (CNN). Moroever, differ-
ent methods are proposed to blend the overlapping pix-

els such as markov random fields and conditional ran-
dom fields (Yang et al., 2014).

In this work, super-resolution network using deep
learning was successfully designed for natural 2D im-
ages and brain MRI images. The main contribution is
on super resolution for brain MRI images. In summary,
the work has the following achievements:

• We design a novel CNN architecture, we name it
3D-LSRN inspired from ResNet as first proposed
by He et al. (2016) and DenseNets as first proposed
by Huang et al. (2017). We make heavy use of
short skip connections between the layer and the
preceeding one like ResNet, however concatenate
the feature maps for two successive layers. We val-
idate the model successfully training for brain MRI
super resolution.

• We also design another 3D-CNN model, we name
it SR-UResNet, which shares U-Net like architec-
ture as in the work of Ronneberger et al. (2015),
however, is modified to have learnable parameters
also at down sampling path and includes residual
blocks at both encoder and decoder space of the
network. The model is trained for super resolution
of brain MRI images for different degradation type
of HR images and upto 4x less resolution, we ob-
tain superior value of PSNR and SSIM than tradi-
tional bicubic and spline interpolation methods and
other CNN method. We also validate our results by
the segmentation of brain tissues and sub-cortical
structures and always get closer overlap for HR im-
age and our prediction.

The remainder of the paper is organized as follows:
Section 2 details current state of the art for both 2d nat-
ural images and 3d brain imaging MRI data. The ma-
terial and methods are described in Section 3. Results
are presented in Section 4, followed by discussions in
Section 5. Finally, we conclude in Section 6.

2. State of the art

In this section, we describe the current state of art
for super-resolution of images. For 2D natural images,
only the recent algorithms are summarized which are
all based on neural network architectures, as their per-
formance has surpassed all previous traditional state of
art results. However, for brain MRI images several ap-
proaches that are not based on deep learning are also in-
cluded which we found relevant for this work. We detail
the super-resolution of 2D natural images and 3D med-
ical images in the following and subsequent paragraph
respectively.

Super-Resolution Convolutional Neural Network
(SRCNN) as in the work of Dong et al. (2016a) and
faster SRCNN (FSRCNN) by Dong et al. (2016b)
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showed promising results using simple CNN architec-
ture for Single Image Super-Resolution (SISR) of 2D
natural images. The first CNN architecture, SRCNN
for super-resolution used only three layers. Since then,
various CNN architectures have been proposed with in-
creased network depth, with noteworthy improvements
over SRCNN. For example, Kim et al. (2016) proposed
VDSR network having 20 weight layers with residual
learning approach for SISR problem. Lim et al. (2017)
proposed EDSR network and showed superior results
by removing the batch normalization module from con-
ventional residual networks. Recently, Generative Ad-
versial Networks (GAN) have gained lot of attention in
super-resolution problem. Ledig et al. (2017) proposed
GAN for SISR and showed almost indistinguishable re-
sults as the original HR image. Though PSNR, which is
commonly used metric to assess the performance, was
lower for the results, than state of the art, however, they
demonstrated the results to be perceptually better, justi-
fying that highest PSNR does not necessary reflect per-
ceptually better SR result. Zhang et al. (2018) proposed
RCAN to adaptively learn more useful channel wise fea-
tures simultaneously with a network of over 400 layers
for SISR. Though several works have been published for
Single Image Super-Resolution using CNN approaches
lately, there has been limited work on super-resolution
for medical images domain.

Jog et al. (2014) used random forest (RF) approach to
enhance the resolution for brain MRI images. Bahrami
et al. (2016b) used Canonical Correlation Analysis
(CCA) to enhance the quality of 3T image to look like
7T MRI using paired datasets scanned from same sub-
jects and showed better segmentation results for brain
tissues compared to tissue segmentation from 3T MRI.
Bahrami et al. (2016a) subsequently used 4 layer CNN
to generate 7T like images from 3T images utilizing
priori of brain tissues with same dataset as aforemen-
tioned. Pham et al. (2017) used generative adversarial
network for simultaneous high-resolution reconstruc-
tion and segmentation of brain MRI data. Chen et al.
(2018b) used a 3D DCSRN for super-resolution of brain
MR images, and subsequently mDCSRN by Chen et al.
(2018a) with generative adversial network guided train-
ing producing significantly better quality SR images.
Sánchez and Vilaplana (2018) used a 3D generative ad-
versial network for super-resolution of brain MRI im-
ages with image gradients and mean square error as
content term and least squares for adversial loss for the
generator. Nie et al. (2018) used Fully Convolutional
Network (FCN) with adversarial learning to generate 7T
MRI images from 3T.

In most of the algorithms used for the SR task, the
LR images are obtained by simulating the HR images.
The HR images are gaussian blurred with different ker-
nel width as requirement for downsampling. In case of
MRI images, some methods also use Fast Fourier Trans-
form (FFT) to convert the image data to Fourier do-

main, and remove the high frequency components. Af-
ter removing the high frequency components, the data
in Fourier space is mapped back to image space with
inverse Fourier transform.

There has been limited work to generate 7T like MRI
from 3T MRI, however, there has not been any work
which generate 3T like MRI images from 1.5T MRI
scanner to the best of our knowledge and the majority of
the scanners used worldwide today are either 1.5T or 3T.
Laurentius Huber (2018) initiative to map the locations
of 7T MRI shows there are less than 100 such scanners
in the world today . Moreover, when single scanner data
sets are used, the simulation pattern to generate LR im-
ages from HR images are not uniform in the literature,
and there is difficulty to compare the results.

3. Material and methods

In this work, different datasets were used for super
resolution application. The 91-image dataset as in the
work of Yang et al. (2010) was used for the training and
Set5 by Bevilacqua et al. (2012) and Set14 by Zeyde
et al. (2010) were used for testing and validation re-
spectively for super-resolution of 2D Natural Images.
The DIV2K dataset from NTIRE 2017 challenge by
Agustsson and Timofte (2017) was also used for super-
resolution of natural images. And for medical imag-
ing data, two different datasets of brain MRI images
were used. One of the dataset pairs came from two
different Catalonian hospitals with different magnetic
field strength of 1.5T and 3T of same subjects. We
call it Dataset-I further in this work. Dataset-I consists
of brain MRI volumes of 15 healthy subjects with no
known history of brain realted disorders. And the other
dataset, which we call Dataset-II, has 51 brain volumes
with all subjects having Multiple Sclerosis(MS) disease.
Only T1 weighted MRI scans were used for this work.

Our method for the 2D natural images is briefly dis-
cussed, followed by our methodology for 3D medical
imaging data in this section. The first CNN method
for super-resolution presented by Dong et al. (2016a)
and subsequently the improved faster super-resolution
network by Dong et al. (2016b) for 2D natural images
was re-implemented and acquired similar results. As in
the original implementation, the simulated lower reso-
lution images were obtained by blurring with a Gaus-
sian kernel, and sub-sample it by the upscaling fac-
tor. The first CNN method as in the work Dong et al.
(2016a) upscaled the image by bicubic interpolation be-
fore feeding the image to CNN network, however, the
subsequent faster model included upsampling in the net-
work as Transpose Convolution Layer and we made the
same choice. The original implementation was in Caffe
framework and our implementation is in Keras frame-
work with Tensorflow backend. EDSR network by Lim
et al. (2017) which was NTIRE 2017 challenge winner
was also trained and tested and obtained reported results
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as by the author using the same source code that was
made public (Sanghyun Son, 2017). The NTIRE chal-
lenge used DIV2K dataset by Agustsson and Timofte
(2017), where the higher resolution images and corre-
sponding lower resolution images were provided for 2,
3 and 4 downscaling factors.

For the medical dataset, we designed two differ-
ent CNN networks, for two different datasets as de-
scribed in section 3.2 and different types and levels
of degradation performed on the original image to ob-
tain LR simulated image. We also treated 1.5T to 3T
MRI as super-resolution problem and trained CNN net-
work. The organization of this section is as follows.
We present the problem formulation in subsection, 3.1,
data-preparation and downgrading methods in 3.2, CNN
architecture in 3.3, training and experiments in 3.4 and
evaluation criteria in 3.5.

3.1. Problem Formulation

The LR and its corresponding HR image can be rep-
resented vectorially and symbolically denoted by y and
x respectively. The relation between x and y is through
some degradation model and can be presented as:

y = f (x) (1)

where f is the degradation model. The aim of super res-
olution problem is to estimate x from y. It is an ill-posed
problem as multiple solution exists to x for a given y.
The reconstructed image x̂ is obtained by minimizing
the loss function:

x̂ = arg minx f −1(y) + λR(x) (2)

where, f −1(y) is the data fidelity term, R(x) is regular-
ization term that provides certain image priors such as
local spatial correlations, low rank or total variation and
λ is regularization parameter. A common data fidelity
term for super resolution application is mean square er-
ror or mean absolute error. In traditional super resolu-
tion methods, the regularization term R(x) is determined
manually by extensive experimentation which is time
consuming and can be inaccurate. However, with deep
learning approach, feature extractions, non-linear map-
ping and image reconstruction, the three essential steps
for image super-resolution is guided to learn from the
network. The network during training learns to optimize
the differences between the ground truth images and re-
constructed images, and in the process extracts relevant
features automatically. This gives neural network archi-
tecture state of the art performance in super-resolution
tasks (Dong et al., 2016a).

3.2. Data Preparation and Downgrading Methods

In this work, we analyze brain MRI super-resolution
in terms of magnetic field strength (1.5T LR to 3T
HR), image quality and also spatial resolution. For

Figure 2: Original axial slice (bottom) of T1-weighted MRI of
Dataset-I and simulated (top) obtained with Gaussian Blurring for dif-
ferent values of sigma

super-resolution in terms of magnetic field strength,
unique pair of dataset of same subjects scanned in
1.5T and 3T strength MRI scanner is used. The 1.5T
MRI scans are co-registered to 3T magnetic scans
using affine registration. The 1.5T MRI images are
considered as LR and corresponding 3T scans are HR
images.

For super-resolution in terms of image quality, the
LR simulated images were obtained as Gaussian filtered
version of HR with increasing value of Gaussian filter
width - sigma. The sigma value used in increasing order
of magnitude were 0.5, 1 and 1.5 for three different
degradation levels. The Fig. 2 shows different levels
of degradation on original HR slice for different sigma
values.

For super resolution in terms of spatial resolution,
we obtained the simulated LR images using two dif-
ferent techniques. The spline interpolation of order 3
and Fast Fourier Transform (FFT) is used to downsam-
ple to 2, 3 and 4 times lower resolution than the orig-
inal ones. We downsampled to lower resolution in all
three imaging planes or in slice selection, phase encod-
ing and frequency encoding gradient direction in case
of MRI image. For spline interpolation, the image is
pre-filtered with third order spline filter before interpo-
lation. The method for FFT transform is represented by
Fig. 3. The image is transformed in FFT domain and
the higher frequency components are removed from the
original HR images based on downsampling factor and
the low frequency k-space data is obtained. From the
low frequency k-space data, the image is reconstructed
simply by inverse Fourier transform which is LR simu-
lated image. In Fig. 4, HR images and the correspond-
ing lower resolution obtained using third order spline
interpolation and truncating outer 3D k-space method
are shown.
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Figure 3: Block diagram for downsampling method using FFT

3.3. Convolutional Neural Network Architecture

We design two different CNN architecture for dif-
ferent downgrading methods. Our first model is light
weight with only 152k trainable parameters and we call
it 3D-LSRN (3D-Light Super Resolution Network). It
has short skip connections like ResNet, however, we
concatenate the feature maps instead of adding them.
Thus, the following layer gets the feature maps of the
last layer and, in addition, it also learns new feature
maps. The second model is UNET like architecture
with residual blocks and long skip connections. There
is short skip connection in residual blocks and long skip
connection between the input and the output and we call
it SR-UResNet. We describe the light weight CNN ar-
chitecture 3D-LSRN followed by SR-UResNet in this
subsection.

3.3.1. Proposed 3D-LSRN (3D-Light Super Resolution
Network)

We propose a new SR architecture for brain MRI im-
age deblurring. The model is extremely light weight
with only 152k trainable parameters making heavy use
of (1x1x1) convolutions as first suggested in Lin et al.
(2013) and we use it to reduce the dimension of fea-
ture space. We increase the feature maps dimension
by concatenation and reduce it by (1x1x1) convolutions.
Though (1x1x1) convolution is strictly linear, however,
it is generally followed by non-linear activation func-
tion, exponential linear unit (ELU) in our case. This
network architecture allowed us to go deeper and still
have less trainable parameters. As we had only 15 brain
volumes available in Dataset-I, and only 10 training vol-
umes, bigger model would overfit. The network archi-
tecture 3D-LSRN is shown in Fig. 5 where, we have
short skip connections after each convolution layer ex-
cept for last two convolutional layers. The representa-
tion in latent space after each convolution is concate-
nated with the following layer. We have several advan-
tages with this architecture design: light weight model
and passing of feature maps at subsequent layer, less
over-fitting as the number of training parameters are re-
duced.

The training is patch based, so the input to the net-
work is the 3D patch of brain MRI images. The kernel
size for convolution is (3x3x3) except for the reduction
layer where the kernel size is (1x1x1). The exponen-
tial linear unit (ELU) is used as the activation unit ex-
cept for the last convolution layer that maps the output.
The last convolution layer has rectified linear unit (Relu)

as activation function. The hyper-parameters and opti-
mizer selection, training procedure and implementation
framework are discussed in Section 3.4.

3.3.2. Proposed SR-UResNet Architecture
We propose another architecture for super resolution

in terms of spatial resolution. We designed U-Net like
architecture but also included residual blocks. There are
no max pooling layers, instead convolution of stride 2
to perform downsampling in the network path. This
method extracts more relevant features as the model
has learnable weights for downsampling unlike non-
learning layer like max pooling. The residual block is
usual as in He et al. (2016) with batch normalization
layers. The kernel size is (3x3x3) for all layers except
for the last layer and the deconvolution layers. The ker-
nel size for deconvolution layer is (2x2x2) as we no-
ticed checkerboard artifacts in our reconstructed images
when there was uneven overlap as suggested in (Odena
et al., 2016). Deconvolution layer has uneven overlap
when the kernel size is not divisible by the stride. As
the stride for deconvolution layer is 2, we used kernel
size of 2 in all deconvolution layers that is in the de-
coder path of the network, to not have uneven overlap,
and consequently, our predicted image volumes are free
of checkerboard artifacts.

The network architecture is shown in Fig. 6. The
training is patch based, for this architecture as well,
and the input to the network is (32x32x32) brain MRI
patches. The network consists of convolution blocks,
residual blocks and convolution of stride 2 in the en-
coder path of the network. Each convolution block has
2 convolution layers. One of the convolution layer has
linear activation and the other one has non-linear acti-
vation as ELU. The residual block is similar to convo-
lution block but in addition have short skip connections
like ResNet. The batch normalization is performed in
both convolution and residual block.

Let us represent the number of filters in convolution
layers by nf. From the fig. 6, it can be observed, we have
four levels in the network as we used three convolution
layers of stride 2 after every residual block in the en-
coder path. We began with (32x32x32x1) and our latent
representation is (4x4x4xnf) as we reached the bottom
of the encoder path.

In the decoder path of the network, there is a decon-
volution layer at each level followed by residual blocks.
There are also skip connections between encoder and
decoder which are at same levels except on the last level
and a long skip connection between the input and the
last convolution layer. As with the super-resolution ap-
plication, having a long skip connection proved to be
effective as the network has direct path between input
and the last convolution layer. The addition of the input
with the output of last convolution layer is the output or
the prediction.
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Figure 4: Downsampling with cubic spline interpolation and FFT. x2, x3 and x4 represents 2, 3 & 4 times lower resolution images than the original
HR image respectively

Table 1: List of experiments with Dataset-I and model 3D-LSRN

Exp No. Input Output
1.1 Gauss Filtered - Sigma 0.5 3T MRI
1.2 Gauss Filtered - Sigma 1.0 3T MRI
1.3 Gauss Filtered - Sigma 1.5 3T MRI
1.4 1.5 T MRI Co-registered 3T MRI

3.4. Training and Experiments

We describe the training strategy and experiments
for 3D-LSRN followed by SR-UResNet model. The
15 brain volumes from Dataset-I were randomly dis-
tributed into 10 training, 3 validation and 2 testing vol-
umes. We performed four experiments with this model.
The three experiments were with 3T MRI images and
different simulated images were obtained. And the last
experiment with this model was with dataset pair of 3T
and 1.5T MRI where 1.5T MRI is LR and 3T is HR.
As both 3T and 1.5T MRI images were from same sub-
jects, they were co-registered affine to bring it in the
same space. The table 1 lists different experiments with
this model.

We used Gauss blurring for sigma values - 0.5, 1 and
1.5 and obtained three different sets of LR simulated
images. The degraded images were the input and orig-
inal 3T MRI images were the ground truth. In experi-
ment 1.4, we treated 3T brain MRI image as HR and co-
registered 1.5T MRI image as input. Isotropic patches
of 32 voxels were extracted both from the input and the
ground truth and fed to the network. We did not perform
any kind of pre-processing other than re-scaling the im-
age between -1 to 1 for this 4 experiments with Dataset-

I. The brain images were with skull without any noise
correction.

The model was trained with adam optimizer and
mean absolute error loss function was used. A very low
learning rate of 10e-5 was used. The model was trained
for around 200 epochs. The non-activation function
used was ELU. The learning rate was reduced by half
when the loss plateaued. ELU was found to have given
better results than ReLu activation function in terms of
convergence speed as expected. This behaviour of dif-
ferent activation functions are described with our train-
ing strategy for SR-UResNet. For validation, additional
metrics such as PSNR and SSIM were observed. The
best performing model in validation set was selected as
trade-off among PSNR, SSIM and mean square error as
metrics. The model was implemented in Keras frame-
work with tensorflow backend.

We use Dataset-II for SR-UResNet model for our ex-
periment with super-resolution in terms of spatial res-
olution for brain MRI images. As this dataset, had 3
times more brain volumes than Dataset-I, and also con-
sisted of subjects with Multiple Sclerosis, we chose this
dataset for different experiments as it reflected poten-
tial real case application. The dataset was randomly
distributed in the ratio 75% in training set and 12.5%
each in test and validation set. The original image or
HR is degraded either using FFT or cubic spline inter-
polation for 2, 3 and 4 times lower resolution in all 3
image planes for obtaining the simulated LR image. As
we observed checkerboard patterns when increasing the
resolution through CNN model, we increase the reso-
lution by spline interpolation of order 3 for both FFT
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Figure 5: Architecture for 3D-LSRN. The purple and green colour denotes the 3D Convolution with kernel size (3x3x3) and (1x1x1) respectively.
The number on the top of the cube indicates the number of filters in that layer.
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Figure 6: Architecture for SR-UResNet. The input to the network is 32x32x32 size patch. The green, brown and orange colour cube denote the
convolution block, residual block and upsampling block respectively. The residual block is simply convolution block with skip connections. For
upsampling, we use Deconvolution of stride 2, and upsampling block has Batch Normalization layer and residual block as well. The purple colour
cube denotes the Convolution 3D which has stride 2 that is used to downsample the network path.
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Table 2: List of experiments with Dataset-II and model SR-UResNet

Degradation Up-scalingExp
No. Method Level Method Level
2.1 cubic spline x2 cubic spline x2
2.2 cubic spline x3 cubic spline x3
2.3 cubic spline x4 cubic spline x4
2.4 FFT x2 cubic spline x2
2.5 FFT x3 cubic spline x3
2.6 FFT x4 cubic spline x4

and spline degraded image so the input has same spa-
tial resolution as ground truth or output. The table 2
lists the experiments for different degradation levels and
types. We used the simulated images generated by cu-
bic spline interpolation of two times lower resolution
as input and HR images as ground truth and tuned the
hyper-parameters for the model. The hyper-parameters
giving the best results for this dataset pair in terms of
PSNR, SSIM metric and mean square error are used
for all the other experiments using model SR-UResNet.
Skull stripping was done as we also wanted to evalu-
late the segmentation results for both tissues and sub-
cortical structures of brain as one of our evaluation cri-
teria for this model. We expected the Dice similarity
Coefficient for segmentation results of HR with our pre-
diction image to be better than HR with LR images. We
show in the results that we always get better Dice for our
prediction images with HR than LR with HR, justifying
the model has learnt to enhance the resolution without
artifacts and also preserving minute structural details.

We used ELU as activation function as we had dying
ReLU issue when using ReLU activation function. A
dying ReLU problem can be caused by a large gradi-
ent flowing through a ReLU neuron and always outputs
same value - 0. As when ReLu ends at this state, it is
unlikely to recover as the gradients of 0 is 0, and the
weights are not optimized further. We use ELU as ac-
tivation function Clevert et al. (2015) to fix this issue.
The ELU unit can be represented as:

ELU(x) = max(0, x) + min(0, α ∗ (exp(x) − 1)) (3)

where the Elu hyperparameter α controls the value to
which an ELU saturates for negative net inputs. The
Fig. 7 shows the Elu activation function for α =1, where
it can be observed that Elu unit allows small gradients
to flow in negative direction as well and saturates based
on given α. For this reason, Elu diminish the vanishing
gradient effect seen with ReLu unit. For these experi-
ments, the value of α used is 1.

For the loss function, we use Huber loss as suggested
in (Girshick, 2015) which is given by:

loss(x, y) = 1/n
∑

i

zi (4)

ELU Activation Function(α = 1)

Figure 7: Graph for ELU activation function. Unlike to ReLu, ELU
can produce negative outputs.

where zi is given by:

zi =

{
0.5(xi − yi)2, i f | xi − yi |< 1
| xi − yi | −0.5, otherwise (5)

where xi and yi are the vectorial representations of the
input and prediction respectively. This loss is less sen-
sitive to outliers than MSE loss (Girshick, 2015) and
we had better performance with this loss function. This
model was implemented in Pytorch framework. Both
the models were trained in NVIDIA GTX-1080 GPU
with 12GB memory and 128GB RAM.

3.5. Evaluation Criteria
For evaluation of our results, we used subjective and

objective evaluation. The subjective evaluation is based
on visual perception of human eyes to evaluate im-
age quality. However, this evaluation can be different
for individuals. For objective evaluation, we computed
PSNR, SSIM and also segmented the brain tissues and
sub-cortical structures to compute Dice Similarity Co-
efficient (DSC).

We used PSNR, SSIM, mean square error as evalua-
tion metrics during training and validation. PSNR and
SSIM are commonly used metrics to evaluate the super
resolution performance. PSNR is given by:

PS NR = 10log10

(
R2

MS E

)
(6)

where R, is the maximum fluctuation of input data type.
For example, if the input data type has an 8-bit unsigned
integer data type, R is 255.
SSIM index is based on the computation of three terms,
luminance term, contrast term and structural term. The
overall index is multiplicative combination of the three
terms. Let l(x,y), c(x,y) and s(x,y) denote the lumi-
nance term, contrast term and structural term respec-
tively. Then, SSIM as first suggested in Wang et al.
(2004) is given by:

S S IM(x, y) = [l(x, y)]α.[c(x, y)]β.[s(x, y)]γ (7)
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Figure 8: Comparison of SSIM and MSE as a metric. The image
with noise and image plus constant has same MSE, however different
SSIM. As SSIM also takes into account texture information, it per-
forms better than MSE.

where,

l(x, y) =
2µxµy + C1
µ2

x + µ2
y + C1

(8)

c(x, y) =
2σxσy + C2
σ2

x + σ2
y + C2

(9)

s(x, y) =
σxy + C3
σxσy + C3

(10)

where µx, µy, σx, σy, and σxy are the local means, stan-
dard deviations and cross-variances for images x and y
and C1, C2 and C3 are constants for luminance term,
contrast term and structural term respectively. SSIM is
better indicative than just mean square error as metric
as it also accounts for texture as in the work of Wang
et al. (2004) We explain it with the fig. 8 as an example.
The input image is modified by adding random noise in
first case and by adding a constant in the second case. In
both the cases, mean square error is the same, however,
SSIM values are different.

We also evaluated our performance using the segmen-
tation of brain tissues and sub-cortical structures. Both
tissues and sub-cortical structures are segmented using
two independent software packages, volbrain (Manjón
and Coupé, 2016) and FSL. FAST (Zhang et al., 2001)
package from FSL was used for tissue segmentation
and FIRST (Patenaude et al., 2011) was used for sub-
cortical structures segmentation. Dice Similarity was
used as metric to evaluate the segmentation perfor-
mance. The results for segmentation are shown in sec-
tion 4 both quantitatively and qualitatively.

4. Results

In this section, results for super-resolution using both
of the proposed architecture are presented in the follow-
ing order:

• The results for experiments 1.1 - 1.3 where LR im-
ages were simulated as Gaussian blurred image of
HR for different magnitude of kernel width trained
with 3D-LSRN model and Dataset-I. PSNR and
SSIM are presented as quantitative metrics and ac-
tual predictions along with the original and blurred
images are shown for qualitative evaluation.

σ: 0.5

LR
 S

im
u
al

te
d

Gaussian
Filter

HR

σ: 1.0 σ: 1.5

Pr
ed

. 

Figure 9: Qualitative Results for Dataset-I with trained with 3D-
LSRN model. The HR image axial slice and a particular zoomed in
region of HR and corresponding region for LR simulated images ob-
tained by applying a Gaussian Filter for different values of sigma and
the predictions are shown.

• The results for experiment 1.4 where HR images
were 3T MRI and LR images were 1.5T of same
subjects co-registered in affine space trained with
3D-LSRN model and Dataset-I. The evaluation
metrics presented are same as above.

• The results for experiments 2.1 - 2.6 where LR
images were simulated by downgrading up to 4x
lower resolution in all image planes by two dif-
ferent downsampling operators trained with SR-
UResNet model and Dataset-II. In addition to all
evaluation criteria used for 3D-LSRN model, the
segmentation for brain tissues and sub-cortical
structures are presented qualitatively and DSC is
reported.

In Fig. 9, we visually show that our model 3D-LSRN
consistently yields higher quality image for different
levels of image blurring and in Table 3 we present quan-
titative results. From Table 3, it can be noted that PSNR
for our prediction and HR is atleast 10dB more than
PSNR for LR and HR for all degradation levels. In Fig.
10, we present our results when 3D-LSRN model was
trained with 3T MRI as HR and 1.5T as LR. The av-
erage PSNR and SSIM for test set between prediction
and ground truth for this configuration were computed
as 21.80 and 0.56 respectively.

In Fig. 11, results for Dataset-II trained with SR-
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Table 3: Quantitative Results for Dataset-I with 3D-LSRN Model

Sigma Image PSNR SSIM
Input 29.41 0.9720.5 Pred. 45.23 0.997
Input 20.83 0.8431.0 Pred. 32.16 0.943
Input 19.11 0.7691.5 Pred. 29.35 0.912

PredictionInput - 1.5T Ground Truth - 3T

Figure 10: Qualitative Results for 3D-LSRN trained with 3T images
as ground-truth and 1.5T as input. From left to right (input that is is the
image from 1.5T scanner co-registered to the image from 3T scanner
of same subject, prediction from 3D-LSRN, ground truth which is
from 3T scanner.)

UResNet model is presented qualitatively where LR im-
ages were obtained by down sampling to 2,3 and 4 times
in all image planes by two different downsampling op-
erators - cubic spline interpolation and truncating outer
3d k-space. The axial slice of HR image and zoomed in
small region of that slice are shown qualitatively for all
degradation levels along with prediction. The complete
downsampled axial slice and corresponding prediction
along with original HR are shown in Fig. 13.

In Fig. 12, quantitative results in form of boxplots
for evaluation metrics PSNR and SSIM are presented.
Both PSNR and SSIM have a low variance. Even for
4x downsampling in all imaging planes, 0.93 for SSIM
and 31.64 for PSNR when downsampled using spline
interpolation and 0.94 for SSIM and 34.63 for PSNR
when down sampled truncating k-space are obtained.
The objective metrics obtained by our method is com-
pared with bicubic interpolation, cubic spline interpola-
tion and FSRCNN as in the work of Dong et al. (2016b)
in Fig. 12. As FSRCNN model was implemented for
2D natural images, it was re-implemented in 3D with
same hyper-parameters proposed by the authors. Our
method obtained superior SSIM and PSNR values for
all downgrading levels and approaches.

In Fig. 14 quantitative results in form of box plots for
DSC between segmentation of HR and prediction of our
method - SR-UResNet and also between segmentation
of HR and cubic spline interpolated result are shown.
The DSC for prediction of our method and HR is al-
ways superior than cubic spline interpolated results for
all tissue types and sub-cortical structures for all down-

sampling levels and operators.
In Fig. 15, qualitative results of segmentation of HR

images and predictions from our method are presented.
The segmentation is presented as overlay on the coro-
nal slice of the HR image volume, cubic spline interpo-
lated result, and the prediction from our method (SR-
UResNet).

It can be observed in Fig. 15 that segmentation
for our prediction images are much smoother than
corresponding LR simulated images and for the sim-
ulated images obtained by cubic spline interpolation
downsampling operator for 4 times lower resolution,
Left thalamus is not segmented at all, and almost
negligible right thalamus is segmented. However, for
the prediction image from model SR-UResNet, even for
4x less lower resolution, both left and right thalamus
have been segmented with superior overlap. Even for
downsampling by truncating outer 3D k-space, there
is greater overlap between our prediction and HR
than cubic spline interpolated image and HR. There is
over segmentation for LR simulated images obtained
with downsampling operator - truncating outer 3D
k-space for 3 and 4 times lower resolution possibly
due to loss of sharp contrast edges by removal of high
frequency components. The segmentation is obtained
from volbrain (Manjón and Coupé, 2016).

In Fig. 16, the tissue segmentation for brain tissues is
shown for HR axial slice and simulated LR and predic-
tion. The image that is downsampled to the lowest reso-
lution that is 4 times in all image plane is shown. In Fig.
16, it can be observed segmentation of CSF is superior
in our prediction image than LR image obtained by both
downsampling operator. Also, the segmentation for LR
image obtained by cubic spline interpolation for CSF
is coarse, however the CSF segmentation for our pre-
diction image is smooth and has superior overlap with
ground truth.

5. Discussion

In this study, two different CNN architectures for su-
per resolution of brain MRI images have been proposed
and implemented. The LR images were obtained by
different downgrading methods like Gaussian blurring,
cubic spline interpolation, and truncating outer 3D k-
space. The first proposed CNN architecture 3D-LSRN
was validated for MRI image deblurring with LR im-
ages obtained by degrading HR images by Gaussian fil-
tering of different kernel width. The prediction images
obtained for LR images obtained by Gaussian blurring
with sigma 0.5 were visually indistinguishable com-
pared to HR. The increment for PSNR was more than
16dB between the degraded image and HR and network
prediction and HR and SSIM was computed as 0.997
in the test set for this downgrading configuration. The
model successfully learnt to deblur the images. Even for
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Figure 11: Qualitative Results for SR-UResNet model trained in Dataset-II. The original images are degraded by two methods: cubic spline and
truncating k-space, for 2, 3 and 4 times lower resolution. The simulated LR and prediction for a region of interest marked by a yellow color square
in original image for all down-sampling methods and all levels are shown. x2, x3 and x4 represents 2, 3 & 4 times lower resolution images than the
original HR image respectively.

Figure 12: Comparison of PSNR and SSIM with other methods for both downsampling strategies - cubic spline and truncating outer 3D k-space .
The boxplots for PSNR and SSIM are shown in first and second row respectively. x2, x3 and x4 represents 2, 3 & 4 times lower resolution images
than the original HR image respectively.

degraded image with higher magnitude of kernel width,
PSNR and SSIM were reported much higher for pre-
diction of the network and HR than corresponding LR
images and HR as shown in table 3. The 3D-LSRN net-

work was trained for other experiment where HR im-
ages were 3T and LR images were 1.5T that were co-
registered as they were of same subjects in both scan-
ners. However, the results were underwhelming possi-
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Figure 13: Qualitative Results for SR-UResNet Model. The original axial slice which is downsampled by two different methods - cubic spline and
truncating outer 3d k-space and the corresponding predictions are shown. x2, x3 and x4 represents 2, 3 & 4 times lower resolution images than the
original HR image respectively.

bly due to small dataset size of only 10 training vol-
umes.

In another experiment, 1.5T MRI images were tested
with the model that was trained with 3T MRI as

groundtruth and simulated LR images (obtained by
downsampling operator - Gaussian Blurring with sigma
0.5 and 1.0) as input. From Fig. 17, it can be observed
that when tested with model which was trained with
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Figure 14: Boxplots for Dice Similarity Coefficient (DSC) for brain tissues - CSF, Grey Matter (GM) and White Matter (WM) and subcortical
structures. The first and second column in every row represents the DSC boxplot for the tissue or sub-cortical structures as observed in the title
of the boxplot for LR images obtained with downsampling operator truncating outer 3D k-space and cubic spline respectively. x2, x3 and x4
represents 2, 3 & 4 times lower resolution images than the original HR image respectively.

simulated image obtained with sigma 0.5, the predic-
tion looked much similar to the ground truth than when
tested with simulated image obtained with sigma 1.0

possibly due to simulated image obtained with sigma
0.5 was more similar to 1.5T MRI than simulated image
obtained with sigma 1.0. This was interesting insight as
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Figure 15: Segmentation of sub-cortical structures for HR, LR simulated images and prediction from SR-UResNet model. The segmentation is
shown as overlay in the corresponding coronal slice. x2, x3 and x4 represents 2, 3 & 4 times lower resolution images than the original HR image
respectively

the model learnt to transfer style.

In other set of experiments with SR-UResNet model,
LR images were obtained by downsampling with two
different downsampling operators, cubic spline interpo-
lation and truncating outer 3D k-space. Even for 4x
lower resolution simulated images, the predictions from
SR-UResNet were very similar to ground truth visually.
PSNR and SSIM were always superior than traditional
methods like bicubic and other CNN method as shown
in boxplots in Fig. 12. The prediction of our network

were further validated by segmenting the tissues and
sub-cortical structures. DSC between ground truth and
our prediction for all downsampling strategies and lev-
els were always higher than cubic spline interpolated
result and ground truth. The prediction images obtained
were without any artifacts and minute structural details
were preserved which is validated visually and also sup-
ported by high DSC computed for segmentation of dif-
ferent sub-cortical structures. The mean DSC for sub-
cortical structures segmentation increased by more than
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Figure 16: Segmentation of Brain Tissues for HR and simulated
LR (downsampled to 4x lower resolution) and prediction from SR-
UResNet. From left to right and top to bottom: HR slice, ground
truth, segmentation for LR simulated slice (downsampling operator -
truncating outer 3D k-space and 4x lower resolution), corresponding
segmentation for prediction from SR-UResNet, segmentation for LR
simulated slice (downsampling operator - cubic spline interpolation
and 4x lower resolution), corresponding segmentation for prediction
from SR-UResNet.

20% for prediction images than LR images obtained by
truncating outer 3D k-space for 3 and 4 times lower res-
olution. And as simulating LR by truncating outer 3D
k-space more closely resembles actual LR MRI acqui-
sition, our method looks promising.

In Fig. 18, we have visualized the feature maps of one
of the layers after training completed, specifically the
last layer before (1x1x1) convolution (Refer: Section
3.3.2 for architecture of SR-UResNet). As there were
32 feature maps in this layer, we show the axial image
slices for 6 random feature maps. The (1x1x1) convo-
lution effectively learns to reduce the dimension from
this state and reconstructs the image. It is shown in Fig.
18, the features that the model extracted for one of the

Figure 17: left to right and top to bottom (Input - 1.5T MRI image
axial slice, corresponding 3T MRI axial slice, prediction when tested
with model trained on 3T MRI as HR and Gaussian Filtered LR with
sigma value 0.5, prediction when tested with model trained on 3T
MRI as HR and Gaussian Filtered LR with sigma value 1.)

test volume. These extracted feature are mapped non-
linearly and reconstructed. And thus, the three steps
for super resolution - feature extraction, non-linear map-
ping and reconstruction, all solved automatically by the
network.

Though we obtained superior results for brain MRI
super resolution, however, these results are for the sim-
ulated LR. The major challenge is the lack of dataset
for actual HR and LR as acquired by scanners. Most
of the published works simulate LR from HR by some
downsampling operator. In this work, we downsampled
with different strategies to validate that super resolution
using deep learning approach is better than traditional
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Figure 18: Visualization of the Latent Space. 6 random feature maps
for layer before (1x1x1) convolution of SR-UResNet are shown.

methods for diverse degradation problem. The next step
forward would be validating the model with actual LR
and HR images as acquired by scanners.

6. Conclusions

In this study, two deep learning architecture called
3D-LSRN and SR-UResNet were proposed for super-
resolution of brain MRI images. The simulated LR were
obtained by gaussian blurring, cubic spline interpola-
tion, and truncating outer 3d k-space. The 3D-LSRN
was successfully validated for deblurring the MRI im-
ages. The other proposed architecture SR-UResNet was
successfully validated for super-resolution by training
with downsampled images obtained by cubic spline in-
terpolation and truncating outer 3D k-space. PSNR,
SSIM and DSC for segmentation of tissues and sub-
cortical structures were used as objective evaluation cri-
teria and actual predictions were visualized for subjec-
tive evaluation. SR-UResNet outperformed traditional
bicubic and other CNN method for all downsampling

levels and strategies. Thus, our proposed frameworks
can be a step towards obtaining super-resolution images
from actual LR images which would allow reduction in
scan time with same image quality.
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Abstract

Effective object recognition is one of the most fascinating human brain functions. Neuroimaging studies have
discovered separate areas in the visual ventral stream that are responsible for recognizing natural scenes (PPA), faces
(FFA) and objects (LOC). It is underexplored why this split is necessary for the function of the visual system, and
how it occurs. Recent research has found similarities in convolutional feed-forward network representations and
hierarchical representations in the brain. Our objective in this study is to analyse hypothesized brain representations
extracted from three convolutional feed-forward neural networks with identical architecture that were trained for
face classification (VGG-Face), object classification (Imagenet VGG-16) or scene classification (Places365-VGG16).
We used voxel-wise encoding models to map where across the cortex the different convolutional neural network
representations match with brain activity when exposed to naturalistic stimuli. The neuroimaging data used in the
study is a massive single-subject functional MRI data set where the participant has been exposed to 23 hours of
naturalistic video data (a TV series). Using the described methodology we show that models built on different feature
sets showed different performance in the ROIs, but the differences were small.

Keywords: functional MRI, brain imaging, convolutional neural networks

1. Introduction

The functioning of the human brain is a mystery that
people have been trying to solve for a long time. How
is the information from different types of sensors pro-
cessed in our brain? What are the internal representa-
tions that different categories have in the brain? Tech-
nological advancement in medical imaging gives us an
opportunity to get insights into the human brain and fi-
nally answer some of the questions.

The human brain’s visual system has been a subject
of great interest. The visual system in primates is capa-
ble of object recognition under changing circumstances
such as: lighting conditions, angle of view and dis-
tance. These changing circumstances remain to be a
challenge for computer vision systems. Previous stud-
ies have shown that the human visual cortex consists of
early visual areas V1, V2, V3, V4/V8. The information
from these areas is propagated to the inferior temporal
cortex (IT) and posterior parietal cortex. Two pathways
are present in visual cortex: dorsal stream, also known

as the where/how stream and the ventral or what stream
(Grill-Spector and Malach, 2004).

There is evidence from neuroimaging studies that
there are regions in the ventral visual stream that
are selective to specific categories (Kanwisher, 2010).
Some areas in the visual ventral stream were found to
be responsible for different categories, namely FFA -
fusiform face area, PPA - parahippocampal place area
and EBA - extrastriate body area. Having these special-
ized regions may be evolutionarily advantageous and
further research is encouraged to discover new special-
ized regions and to explore how they interact with each
other.

There is ongoing research for discovering categorical
specialization of the human brain. One of the most re-
markable studies was performed by Huth et al. (2012)
where the researchers argue that rather than having dis-
tinct areas in the brain for each category the human
brain has an internal semantic space. Using principal
component analysis (PCA) they have identified the first
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few semantic dimensions and projected them onto the
cortical surface. They have also shown that these di-
mensions and their cortical organisation are shared be-
tween individuals.

As in many other domains deep learning is appear-
ing as a new analysis method in neuroscience. Largely
inspired by neuroscience itself, it brings us insight into
many complex problems. The operations that take place
in deep learning (sum of weighted signals, max pool-
ing, etc.) are mainly influenced by the way neurons
work. The convolutional layers in more recent networks
were inspired by the organisation of the visual system
(Fukushima, 1980).

There is a large body of research in the field of com-
paring representations learned by convolutional neural
networks to the functioning of the brain. Some stud-
ies concluded that visual perception is similar in both
human brains and in deep neural networks. The stud-
ies also concluded that the hierarchical structure holds,
so that the learned early layer representations that are
more responsive to simple geometric features (like bor-
ders, corners, gradients in color) are the most predictive
about early visual areas while later layers are more cor-
related with higher cortex areas.

Our hypothesis is based on the assumption that dif-
ferent input statistics make the networks learn differ-
ent features of the images. Similarly, different areas in
the visual ventral stream are more specialized in getting
features related to its role in category recognition. So
the internal representations of pre-trained networks and
visual stream areas should be similar and the models
made from the features derived from different networks
trained on a specific category should correlate most with
the corresponding functional areas in the visual ventral
stream responsible for that category.

2. State of the art

There has been a lot of new research in comparing
representations learned by convolutional feed-forward
neural networks to sensory systems (mostly the visual
system) (van Gerven, 2017; Hassabis et al., 2017; Kiet-
zmann et al., 2018; Kriegeskorte, 2015). Several stud-
ies were conducted revealing the connection between
the features learnt by convolutional neural networks and
brain internal representations (Güçlü and van Gerven,
2015; Khaligh-Razavi and Kriegeskorte, 2014; Yamins
et al., 2014). The findings of the study by Cichy et al.
(2016) is expanding these correlations to the temporal
space by analyzing both fMRI and MEG data.

Despite the increasing popularity of the usage of con-
volutional feed-forward neural networks in the compu-
tational neuroscience field, researchers remain sceptical
about their explanatory power (Kay, 2018). The down-
side of models built using deep neural networks is that
the networks appear as a ”black box” to scientists due

to having a large number of parameters. A better under-
standing of convolutional neural networks is necessary
for the computational neuroscience to benefit more from
them.

As an attempt to find the most brain-like network,
the Brain-Score platform was created (Schrimpf et al.,
2018). This scoring system consists of neural and
behavioural benchmarks that represent visual ventral
stream neural activity and object recognition. The
Brain-Score platform allows any neural network to be
evaluated on how similar to the brain it is. Currently,
the best performing architectures at the competition are
DenseNet-169, CORnet-S, and ResNet-101.

DenseNet-169 is achieving the highest overall per-
formance and has the best results in predicting IT neu-
rons activity. DenseNet-169 is a network architecture
in which each layer is connected to the other in a feed-
forward manner (Huang et al., 2017). These connec-
tions allow the model to re-use learnt features and avoid
the problem of vanishing gradient. DenseNet-201 and
DenseNet-121 also yield high results on the Brain-Score
benchmarks.

CORnet-S is the second best performing model (Ku-
bilius et al., 2018). The CORnet models were biologi-
cally inspired to be closer to the brain, e.g. all models
have four stages that are associated with visual areas V1,
V2, V4 and IT. CORnet-S is a shallow recurrent model
that takes advantage of skip connections and mostly in-
spired by ResNets.

ResNet-101 is the third place network in the Brain-
Score benchmark. This network has the best results in
predicting behavioural data. ResNets are residual net-
works that allow for the training of very deep models
due to shortcut connections (He et al., 2016). ResNet-
152 and ResNet-50 also perform well on the benchmark
having the sixth and seventh positions respectively.

We are aiming towards a different form of compari-
son however. To the best of our knowledge, it is unclear
whether models trained for different goals also map onto
some known functional specializations for object recog-
nition like places, houses or faces (Kanwisher, 2010).
We are using a huge data set of video stimuli with rich
semantic content and we are aiming to analyze how net-
works of identical architectures are able to explain the
brain activity in the areas of the visual ventral stream.

Most common tools for comparisons of internal rep-
resentations in convolutional neural networks and the
human brain are encoding models and representational
similarity analysis. Here we are using the same voxel-
wise encoding model methodology as in the Nishimoto
et al. (2011) since it has been proven to work well with
the continuous stimuli.
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Figure 1: Examples of stimuli frames

3. Material and methods

3.1. Data set

To test the hypothesis we used the Doctor Who data
set. This data set consists of 23 hours of data of a sin-
gle participant exposed to video stimuli. A detailed de-
scription of the data set can be found in (Seeliger et al.,
2018).

3.1.1. fMRI
The data was acquired using Siemens 3T MAG-

NETOM Prisma with a Siemens32-channel head coil
(Siemens, Erlangen, Germany). Functional scans were
acquired with a T2* weighted multi-band echo planar
imaging pulse sequence (TR=700ms). The volumes
have dimensions of 88 × 88 × 64 with a voxel size of
2.4 mm3. At the end of most of the sessions, a struc-
tural scan was acquired with a T1 MP RAGE weighted
sequence. Its dimensions are 256 × 256 × 192 with a
voxel size of 1 mm3.

Alignment of the functional scans was made with
FSL 5.0 software (Jenkinson et al., 2012). First, all the
volumes were aligned with the middle volume in their
run. Then the transformations required to align the mid-
dle volumes of the different runs to the middle volume
of the very first run were calculated and applied to all
the volumes in the runs. No other pre-processing was
applied.

3.1.2. Stimuli
The training set stimuli that were presented to the

subject are 30 episodes of the Dr.Who TV-series from
Season 2, 3 and 4 (after re-launch of 2005). Episodes
were divided in runs of approximately 12 minutes long.
Images of video frames were cropped and resized to
have near-equal length and height. A cyan fixation cross
was added to the center of the frames. Examples of
frames can be found in figure 1.

For test videos Pond Life and Space / Time were
used. Pond Life is a mini-series of 5 narrative 1-minute-
episodes. Space / Time consists of two mini-episodes of
3 minutes each. These episodes were repeated 22 times.

Figure 2: Glasser atlas. The pointer is at the VMV2 area

3.1.3. Localizers
Functional localizers of the visual ventral stream

were collected for the subject and estimated as contrasts
using FSL. Images of faces, animals, daily objects and
human bodies without faces were used. These localizers
were verified using Neurosynth, Yarkoni et al. (2011) by
comparing to other studies.

The localizers include:

• LOC - lateral occipital complex, the area that is
activated when images of animals, human bodies
without faces and daily objects are shown to the
subject.

• FFA - fusiform face area, the cortical region that
activates when images of faces are shown.

• OFA - occipital face area, the cortical region that is
activated when images of parts of faces are shown.

3.1.4. Glasser atlas ROIs
Another set of ROIs was generated using the Glasser

atlas (Glasser et al., 2016). This atlas was built us-
ing multi-modal precisely-aligned MR images of 210
adults. It consists of 180 cortical areas. The areas
were obtained based on changes in structure, function-
ality, connectivity, and topography. This atlas is one of
the most detailed cortical atlas parcellations available
nowadays. It can be found as a surface parcellation for
Freesurfer, Mills (2016) and as a volumetric parcella-
tion (Horn, 2016). The volumetric parcellation is in
MNI152 2009a non-linear asymmetrical space (Fonov
et al., 2009).

To explore ventral visual stream specialization the
following cortical areas were chosen:

• FFC (fusiform face complex) is more activated in
FACES-AVG (face images vs average of the other
three categories: bodies, tools, and places) and
FACES-SHAPES (face images vs neutral objects)
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contrasts. It is called complex due to internal het-
erogeneity that could imply that there may be sub-
divisions.

• PIT complex is also activated in FACES-AVG and
FACES-SHAPES contrasts. The border between
FFC and PIT complexes is not significant. PIT
complex may overlap with OFA.

• VVC (ventral visual complex) and V8 form a heav-
ily myelinated core of the ventral visual stream.
They are strongly activated in the PLACE-AVG
(place images vs average of the other three cate-
gories: bodies, tools, and faces) and the TOOL-
AVG (tool images vs average of the other three
categories: bodies, faces, and places) contrasts and
strongly deactivated in the FACE-AVG contrast.

• VMV1, VMV2, VMV3 are the ventro-medial vi-
sual areas that lie between V2, V3 and V4 and
parahippocampal areas. They are more deactivated
in BODY-AVG (images of bodies vs average of
the other three categories: faces, tools, and places)
contrast and VMV3 is more activated in TOOL-
AVG contrast.

A more detailed description of the areas can be found
in Glasser article’s supplementary material (Glasser
et al., 2016).

The elastix toolbox, Klein et al. (2010) was used to
register the volumetric version of the atlas into the func-
tional space. First, MNI152 2009a nonlinear asymmet-
rical volume was registered to the structural scan us-
ing non-rigid transformation: affine and b-spline. After
that, the rigid transformation was estimated from struc-
tural scan to the functional one. The transform parame-
ters files were then used to register the atlas to the func-
tional space.

3.1.5. Neural networks
Three pre-trained convolutional neural networks of

VGG16 architecture were chosen for extracting the fea-
tures from the stimuli images: VGG16 trained on Im-
ageNet, Simonyan and Zisserman (2014), VGG-Face,
Parkhi et al. (2015) and VGG-Places365 (Zhou et al.,
2017). Three networks with the same architecture were
chosen since our goal was to exclude the influence of a
specific architecture.

VGG16 is a convolutional neural network with small
size filters (3x3) and a depth of 16 layers. It accepts
RGB images of the size 224 × 224. The images are
fed to the convolutional layers first. Three fully con-
nected layers are stacked on top of 13 convolutional lay-
ers resulting in 138 million parameters to learn. The
configuration also includes five max pooling layers that
follow some of the convolutional layers. The architec-
ture is shown in the figure 3. It was one of the top
performing networks on ILSVRC2014 in localisation

Figure 3: VGG16 architecture (Munneb, 2018)

and classification tasks. It is one of the most widely
used neural networks in the computer vision field but
it has been outperformed on the ImageNet competition
by more complex networks. Object recognition models
from the VGG family have been used to study the simi-
larities of convolutional neural network representations
to biological ones (Güçlü and van Gerven, 2015).

VGG16 trained on ImageNet is suitable for recogni-
tion of daily life objects. ImageNet is the biggest hand-
labeled data set available nowadays of about 10 million
images with 500-1000 images per category and 1000
categories. It consists of photographs of various objects
collected from Flickr and other search engines. Starting
from 2010 Large Scale Visual Recognition Challenges
on classification, localisation and detection tasks were
held (Russakovsky et al., 2015). We expect the features
extracted from this network to be mapped to LOC and
VMV1-3 areas since those areas were found to be acti-
vated when images of tools and objects were presented.

The Places365-VGG16 network is suitable for the
recognition of images of places. Places365-VGG16 was
trained on the Places365-Standard data set that contains
about 1.8 million images in 365 categories with 5000
images per category at most. This network was trained
for scene recognition and achieved the highest Top-1 ac-
curacy (about 55.2 %) and the second best result in Top-
5 accuracy (about 85 %). The encoding model built on
the features extracted with this network is expected to
have better performance in VVC and V8.

VGG-Face is the network that classifies images of
faces. VGG-Face was trained on the Face data set that
consists of 2.6 million images of about 2.6 thousand
celebrities (mostly actors). For testing Labeled Faces
in the Wild and YouTube Faces data sets were used. It
was achieving 100%-EER (Equal Error Rate) of 96.9 on
the Labeled Faces in the Wild data set. We expect that
the features obtained from the VGG-Face network are
going to be highly correlated with the brain activity in
FFA, OFA, FFC and PIT ROIs.

VGG-Face, however, has some particularities in pre-
processing. The first step is finding a face in the picture.
The cropped face image with some offset is then fed into
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Table 1: An overview of pre-trained networks that were used for further analysis

Name of the pre-trained
network Tasks

Number of
classes Data set size

Number of images
per category Accuracy

ImageNet VGG-16
object classification
and localisation 1000 10 million 500-1000

classification error 0.07405 in
classification task in ILSRVC2014

Places365-VGG16 scene recognition 365 1.8 million up to 5000
Top-5 accuracy of 85.08% on the
validation set of Places365 data set

VGG-Face face recognition 2622 2.6 million about 1000
100%-EER of 96.9 on the Labeled
Faces in the Wild data set

the network. With this pre-processing step, we would
not be able to get feature sets from three consecutive
frames. Since the model based on features from only
one frame had poor performance we have decided to
omit the cropping step.

The summarized information about the networks is
given in the table 1.

Due to the difference of the input data statistics the
networks described above should have different weights
on different layers.

All the stimuli frames were inferenced through these
networks and activation maps were extracted for max-
pooling layers and fully connected layers. For building
the encoding models we used only features from fc1 and
fc2 layers, because they are the most semantic. For ex-
tracting the features, the Matconvnet module and Keras
package with a back-end in Tensorflow were used. The
computation was done on a single server’s GPU.

3.1.6. Encoding model
For analyzing the blood-oxygen-level-dependent

(BOLD) signal a linear encoding model was built. En-
coding models are a popular tool in the neuroscience
field. They attempt to predict the changes in BOLD
signal depending on changing stimuli (Naselaris et al.,
2011). Encoding models consist of several components.
The first is the set of stimuli, which in our case are the
frames of the TV-series that were presented to the sub-
ject. For every volume of functional MRI data, we con-
sider only the first frame as the stimuli image. The sec-
ond is the set of features that are the result of the non-
linear mapping of the stimuli with the pre-trained neu-
ral networks. Here we were using activation maps (fea-
tures) from different networks that we obtained by infer-
encing the frames. The third is the ROIs in the brain (we
use the collected functional localizers and the Glasser
ROIs) and the BOLD signal in these voxels. The last
part is the algorithm that connects all three components
described above. The encoding model for every individ-
ual voxel is:

Y = X ∗W (1)

where Y is the BOLD signal, W is a weight matrix
and X is the feature data set.

A problem arises with the delay of the hemodynamic
response. The stimuli X that produces a BOLD response

will occur a few seconds before we see it in Y. When
using single images as stimuli there are different tech-
niques that can be applied to solve this issue. One of
them would be to show an image for a few seconds and
then register the BOLD signal a few seconds later. Then
for single images, the encoding model would look like:

Y(10sec) = X(5sec) ∗W (2)

But having video stimuli we cannot use this strategy.
Therefore we have to use a modified version of this like
in the work of Nishimoto et al. (2011). With videos,
every BOLD signal in Y will be influenced by multiple
X beforehand. To solve that, we just allow the model
to take information from multiple signals beforehand.
So we stack some amount of X points that precede the
actual moment:



.
Yi−1
Yi

Yi+1
.


=



. . .
Xi−d−1 Xi−d Xi−d+1
Xi−d Xi−d+1 Xi−d+2

Xi−d+1 Xi−d+2 Xi−d+3
. . .


*


W0
W1
W2

 (3)

where d is the delay and each W is a weight matrix
of dimensions number of features by 1 for different de-
lay steps. Empirically the delays of 7s, 6.3s, and 5.6 s
were chosen (our TR is 0.7 s). With that relatively easy
modification, we can build a simple model. To solve
the equation 3, the ridge regression (also known as L2-
regularised regression or Tikhonov regression) was used
in order to avoid overfitting. Usually, such models are
solved by finding the pseudoinverse matrix of features
and multiplying them with BOLD signal vector.

W = X+ ∗ Y (4)

To obtain this matrix, SVD is performed on X matrix
and then the pseudoinverse of X is:

X+ = V ∗ Σ−1 ∗ UT (5)

The Σ−1 matrix is obtained by taking every entry in
Σ matrix and inverting it (taking 1/S). Very small sin-
gular values can interfere with it, resulting in very large
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values. For that reason L2-regularised regression intro-
duces a parameter. For every entry S in Σ matrix, there
would be the Σ−1 matrix entry D and it would be ob-
tained with the formula:

Di =
S i

S 2
i + a2

(6)

And then the weight matrix would be found as:

W = V ∗ D ∗ UT ∗ Y (7)

Choosing the best value for a is not a simple task. In
real life data, the best strategy to choose a value is to
try several ones and choose the best one out of cross-
validated results.

For our study 15 a values were tested in a five fold
cross-validation. For cross-validation 1% of the training
data set was held as a validation set (1158 time points).
The best mean result among all folds was then individ-
ually chosen for each voxel.

We use this method to get from the features to a pre-
diction of the BOLD signal for every individual voxel
on the test set.

The correlation between the predictions and the real
signal in the test set is obtained per voxel for each fea-
ture set. It is calculated as Pearson correlation.

3.1.7. Cortical maps
In order to visualize the correlations on the cortical

surface the pycortex tool was chosen (Gao et al., 2015).
This tool allows us to build surface visualisations of
fMRI data. It can project anatomical and functional data
onto the cortical surface and interactively inflate and
flatten it. In order to do so a Freesurfer run is needed
to create white and gray surfaces.

For an illustration of the ROIs an overlay .svg file was
generated using Inkscape. The contours were drawn
manually for each ROI.

3.1.8. ROI analysis
To get more information about the values of the

correlations for the voxels inside the chosen ROIs we
have decided to build histograms. They would demon-
strate the distribution of the values for different net-
works inside of the ROIs. For building histograms
numpy.histogram function was used, with the specified
range (-1,1) since those are the only values that correla-
tions may take and with the number of bins equal to 50.
The histogram for each ROI with the correlations from
the chosen three networks were built for the neural net-
works fully convolutional layers fc1 and fc2.

In order to quantify the similarity between those his-
tograms and decide which network has better perfor-
mance, the following strategy was proposed. We look
at the correlation of the histograms using the OpenCV
compareHist function. It calculates the correlation be-
tween them on the following formula:

d(H1,H2) =

∑
I(H1(I) − H̄1)(H2(I) − H̄2)√∑

I(H1(I) − H̄1)2 ∑
I(H2(I) − H̄2)2

(8)

Also, the mean correlation value of the distribution of
correlations was extracted for each ROI for each model.
In order to find the mean value we had to apply Fisher
Z-transformation (due to non-linearity of Pearson cor-
relations).

The last thing that we tried was to threshold correla-
tion values and to compute the mean only for significant
voxels (p < 0.01, Bonferroni corrected over the total
number of gray matter voxels).

4. Results

After extracting features from fc1 and fc2 layers
(which are related with the most semantic features) for
every frame and building voxel-wise encoding models
the cortical surface maps were built. They are presented
in the figures 4, 5, 6, 7.

Two maps for each of the sets of features extracted
from the fully connected layers are available with two
sets of ROIs: localizers generated for the subject as
contrasts and the ROIs registered from the Glasser at-
las. The correlations projected onto the cortical surface
are shown in three colors - ImageNet VGG16 is shown
in green colors, VGG-Face is shown in red colors and
Places365-VGG16 is shown in blue colors. It is impor-
tant to mention that the colors do not reflect the neural
activity but they show in which voxels the correlation
between the encoding model predictions and the actual
neural activity is high.

The correlations have mostly mapped across the vi-
sual areas and some high correlations can be found in
the other areas of the cortex (even in the auditory cor-
tex). The auditory cortex can be predicted since there
are correlations between specific audio and specific se-
mantics in natural data. The results of the study by Huth
et al. (2012) demonstrate that stimuli of natural movies
cause brain activity across the cortex based on seman-
tic space mapping of different categories of objects and
actions.

The correlations are lower in the earlier visual areas
and are mostly of blue color which may indicate that
the features related to place categorization highly cor-
relate with basic image features (color, contrast, simple
shapes).

Within visual ventral stream areas, the green color is
dominant, which means that ImageNet-VGG16 has the
best predictions on the brain activity in this area. Yet
the ROIs are not characterized by only one color. The
mapping is showing an internal inconsistency of colors.

After that the histograms of the correlation values
were built for each ROI for each set of features. Those
histograms are shown in the figures 8, 10 and 9. The
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Figure 4: Voxel-wise correlations in RGB channels between measured BOLD responses and BOLD responses predicted based on the 3 feature
sets extracted from fc1 layer. The distribution shows where certain feature sets are overrepresented. ImageNet VGG16 in green, VGG-Face in red,
Places365-VGG16 in blue channel. Localizers are used as the overlay ROIs

Figure 5: Voxel-wise correlations in RGB channels between measured BOLD responses and BOLD responses predicted based on the 3 feature
sets extracted from fc2 layer. The distribution shows where certain feature sets are overrepresented. ImageNet VGG16 in green, VGG-Face in red,
Places365-VGG16 in blue channel. Localizers are used as the overlay ROIs

Figure 6: Voxel-wise correlations in RGB channels between measured BOLD responses and BOLD responses predicted based on the 3 feature
sets extracted from fc1 layer. The distribution shows where certain feature sets are overrepresented. ImageNet VGG16 in green, VGG-Face in red,
Places365-VGG16 in blue channel. Glasser atlas ROIs are used
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Figure 7: Voxel-wise correlations in RGB channels between measured BOLD responses and BOLD responses predicted based on the 3 feature
sets extracted from fc2 layer. The distribution shows where certain feature sets are overrepresented. ImageNet VGG16 in green, VGG-Face in red,
Places365-VGG16 in blue channel. Glasser atlas ROIs are used

mean values for each model performance for each ROI
were computed and the results are shown in the table
2. They have also been thresholded with 0.19 for ana-
lyzing only the voxels where the correlation was found
significant. Again the mean value for each model for
each ROI was computed and the results are shown in
the table 3.

The mean values of the correlations are in accordance
with our hypothesis. Face related ROIs (OFA, FFA,
FFC, PIT) have higher mean values of correlation with
the model built on the features derived from VGG-Face.
Object related ROIs (VMV1-3 and LOC) have higher
mean values of correlation with the model built on the
features derived from ImageNet VGG16. Place related
ROIs (VVC and V8) have higher mean values of corre-
lation with the model built on the features derived from
Places365-VGG16.

In general, the performance of the models built on
features derived from fc2 was worse than the perfor-
mance of the models built on fc1 features. The highest
layer (the one closest to the final category layer) was of-
ten not found to be predictive when comparing DNNs
and visual system responses. A possible reason is that
the artificial set of categories used for model training is
not biologically plausible.

The difference between the values is very small how-
ever. The histograms of values show close to normal
distribution behaviour. This means that many voxels
could not be predicted. The correlation of the his-
tograms was calculated for each pair of histograms and
those values are presented in the table 4. The calculated
values of correlations of the histograms are very high
and that means that all models have very similar perfor-
mance on the ROI level.
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Table 2: Mean value of correlations of encoding models within ROIs

Expected highest correlation
set of features Name of the ROI ImageNet-VGG16 VGG-Face Places365-VGG16

fc1 fc2 fc1 fc2 fc1 fc2

ImageNet-VGG16

LOC 0.217 0.175 0.209 0.171 0.181 0.15

VMV1 0.079 0.049 0.086 0.061 0.082 0.058

VMV2 0.123 0.078 0.061 0.031 0.121 0.092

VMV3 0.154 0.117 0.093 0.064 0.153 0.125

VGG-Face

OFA 0.252 0.205 0.266 0.221 0.229 0.19

FFA 0.157 0.118 0.174 0.138 0.125 0.09

FFC 0.061 0.037 0.089 0.062 0.073 0.054

PIT 0.061 0.043 0.081 0.056 0.061 0.065

Places365-VGG16 VVC 0.06 0.039 0.066 0.046 0.066 0.047

V8 0.08 0.06 0.068 0.047 0.096 0.079

Table 3: Mean value of correlations of encoding models of significant voxels within ROIs. No significant values were found for the model built on
VGG-Face features in VMV2

Expected highest correlation
set of features Name of the ROI ImageNet-VGG16 VGG-Face Places365-VGG16

fc1 fc2 fc1 fc2 fc1 fc2

ImageNet-VGG16

LOC 0.339 0.313 0.323 0.295 0.31 0.285

VMV1 0.238 0.223 0.219 0.23 0.237 0.221

VMV2 0.236 0.229 - - 0.225 0.225

VMV3 0.25 0.25 0.25 0.237 0.253 0.255

VGG-Face

OFA 0.379 0.335 0.359 0.326 0.345 0.319

FFA 0.319 0.285 0.322 0.296 0.292 0.293

FFC 0.279 0.264 0.278 0.262 0.261 0.256

PIT 0.241 0.244 0.246 0.236 0.241 0.238

Places365-VGG16 VVC 0.243 0.244 0.228 0.22 0.245 0.247

V8 0.221 0.214 0.214 0.209 0.227 0.228
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Table 4: Correlations of histograms of correlation values of the networks inside ROIs for two layers

Name of the ROI
Correlation of ImageNet VGG16
with Places365-VGG16

Correlation of ImageNet VGG16
with VGG-Face

Correlation of Places365-VGG16
with VGG-Face

fc1 fc2 fc1 fc2 fc1 fc2

LOC 0.953 0.969 0.967 0.986 0.969 0.958

VMV1 0.968 0.976 0.941 0.959 0.975 0.984

VMV2 0.976 0.931 0.806 0.879 0.751 0.7

VMV3 0.944 0.947 0.763 0.83 0.767 0.773

OFA 0.86 0.947 0.861 0.947 0.936 0.94

FFA 0.913 0.913 0.962 0.94 0.913 0.941

FFC 0.98 0.96 0.955 0.957 0.966 0.989

PIT 0.937 0.93 0.935 0.939 0.97 0.913

VVC 0.99 0.99 0.988 0.971 0.979 0.967

V8 0.917 0.913 0.983 0.976 0.891 0.914

Correlations from fc1 layer in VVC Correlations from fc2 layer in VVC

Correlations from fc1 layer in V8 Correlations from fc2 layer in V8

Figure 8: Histograms for places-related ROIs
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Correlations from fc1 layer in FFA Correlations from fc2 layer in FFA

Correlations from fc1 layer in OFA Correlations from fc2 layer in OFA

Correlations from fc1 layer in FFC Correlations from fc2 layer in FFC

Correlations from fc1 layer in PIT Correlations from fc2 layer in PIT

Figure 9: Histograms for face-related ROIs
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Correlations from fc1 layer in LOC Correlations from fc2 layer in LOC

Correlations from fc1 layer in VMV1 Correlations from fc2 layer in VMV1

Correlations from fc1 layer in VMV2 Correlations from fc2 layer in VMV2

Correlations from fc1 layer in VMV3 Correlations from fc2 layer in VMV3

Figure 10: Histograms for object-related ROIs
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5. Discussion

This work hypothesized that different training of the
artificial neural network should result in a split of map-
ping of features into different areas of the visual ventral
stream. Even though means are matching the hypothe-
sis; a closer look at the the differences between the cor-
relation distributions revealed that most of these differ-
ences were not significant (Wilcoxon test, p¡0.05).

One of the possible reasons might be low SNR ra-
tio. Since the stimuli was a video signal with a fre-
quency of about 24Hz the BOLD signal may not change
much (Poldrack et al., 2011). The encoding model was
built using just three time points. Possibly that was not
enough to model the BOLD signal change. The value
for the delay and a parameters in L2-regularized regres-
sion were chosen empirically and that also may have
contributed.

Another limitation of the encoding model is that it
asummes that BOLD response in voxels has a linear
time-invariant system behaviour. This is true if the stim-
uli are static, but it is not guaranteed with dynamic stim-
uli. I suppose that including motion related features like
in the work of Nishimoto et al. (2011) would help to
overcome this issue and model the dynamics of brain
activity better.

Another issue that may have caused the poor perfor-
mance of the voxel-wise encoding models is the choice
of the architecture. While VGG16 is a popular choice
for computer vision problems, more interesting network
architectures with plausible biological brain-like prop-
erties exist. For example recurrent neural networks and
LSTM could produce better results.

Another issue that we have encountered is that the
networks assume the presence of an object, place or
face. While objects and places were present in al-
most every frame, this was not true for faces. Also,
an ambiguous situation arose when multiple faces were
present.

At first, our decision was to zero out the response
where there was no face found. In the frames where
there were multiple faces found, the closest face to the
fixation cross was chosen to be fed into the network.
However, this did not work well with our encoding
model since it requires three consecutive frames. In
the end, it was decided to extract features from frames
without pre-processing steps (namely face detection and
cropping).

Another detail is that while the networks have very
similar architecture, the number of classes they were
trained to differentiate is very different for all of them.
That may have resulted in different neural capacities of
neurons. Also the input statistics were definitely dif-
ferent. It was discussed for ImageNet in Mehrer et al.
(2017) but the same goes for VGG-Face which was
trained on the images of celebrities and therefore could
have some biases that are different from the ones the

participant has.
Summarizing the arguments discussed above there is

a need for further exploration of how the architecture
and input statistics may have changed the performance
of models.

Apart from that, the results show that the mean value
of the correlations in the recorded functional localizers
are higher comparing to the ROIs obtained from Glasser
atlas. That may be caused by misregistration of the
Glasser atlas. In the article of Glasser et al. (2016) they
mention that volumetric registration was not possible
due to distortion of the areas and fine parcellation was
only possible after multimodal surface-based analysis.
It is possible that using their classifier would be a better
option for registration. However, this instrument is not
yet available and most likely would need multi-modal
scans like in HCP project.

We have not explored if the split between network-
derived features is more evident for convolutional layers
due to the time constraints yet it is an interesting topic
to study. Also, the split may be more evident on the last
layer as it is shown in the work by (Cichy et al., 2016).
However, due to a different number of labels, it is not
clear whether that would be a fair comparison.

6. Conclusions

To sum up, further investigation of the ventral stream
specialization with the encoding models is necessary.
Although the results of our study are not plausible (pos-
sibly due to model limitations), we see a potential in the
studies that explore how different deep neural networks
can explain brain activity. We believe this would be ben-
eficial both for the computational neuroscience field and
for artificial intelligence development.
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Abstract

Surgical instrument detection, segmentation, and pose estimation are crucial computer vision components in
Computer-Assisted Intervention (CAI). We propose a new Deep Convolutional Neural Network (DCNN)-based au-
tomatic tool segmentation and 3D pose estimation method put at the service of augmented reality (AR) for gesture
guidance in laparosurgery. Tool segmentation can be used to increase the depth perception by making the surgical
tools visible which were previously occluded by the virtual elements displayed on an augmented laparoscopic video.
The 3D pose estimation can be used as constraints to the registration problem between a pre-operative 3D model of an
organ and the laparoscopic image, whose solution is at the core of AR in laparosurgery. Although significant research
has been done in the recent years, concurrent detection, segmentation, and geometric feature extraction dedicated to
3D pose estimation of the surgical instruments are still very challenging and form an open problem. In this thesis, we
present a Single Input Multiple Output (SIMO) DCNN network named ART-Net (Augmented Reality Tool Network)
consisting of an encoder-decoder architecture designed to obtain the surgical tool detection, segmentation, and geo-
metric features concurrently in an end-to-end fashion. One of the key ideas to obtain a more accurate segmentation
and instrument boundary results than the state-of-the-art is the use of a Full resolution Feature Map Generator (FrG)
at the very end of the decoder. We evaluate the proposed segmentation sub-network and compare it against the Fully
Convolutional Network (FCN) and U-Net using the publicly available EndoVis (robotic) dataset. The whole proposed
network has been further evaluated using the combined EndoVis (non-robotic) and our annotated dataset. The 3D
pose of a detected surgical tool is computed using a geometric solver. Tool boundaries along with a point located at
the boundary between the tool body and tool head are used as the features for the solver. The obtained mean Intersec-
tion over Union (mIoU) and mean Balanced Accuracy (mBA) for the segmentation on EndoVis (robotic) are 81.0%
and 93.4% respectively. The proposed ART-Net outperforms both FCN and U-Net respectively by 4.5% and 2.9%
in mIoU. The mIoU and mBA of the segmented mask from our network are 88.2% and 97.1% respectively on the
combined EndoVis (non-robotic) and our annotated datasets. The mean Arc Length (mAL) error for edge-line (tool
boundary) and mid-line are 2.45◦ and 2.23◦ respectively whereas the mean euclidean distance error for the tip-point
is 9.3 pixels. The average precision, average accuracy, and AUC for the instrument detection are 100.0%, 100.0%,
and 1.0 respectively. Our approach outperforms other methods for detection, segmentation, and 3D pose estimation of
surgical instruments and is able to solve the ambiguity in registration for AR in laparosurgery. Additionally, the seg-
mented instrument mask is robust and accurate for occlusive surgical instrument visualization in AR. Our annotated
dataset and trained model along with the source codes will be made publicly available1.

Keywords: Computer-Assisted Intervention (CAI), Augmented Reality (AR), Laparosurgery, Deep Learning,
Segmentation, 3D pose, Algebraic Geometry.

1. Introduction

Minimally Invasive Surgery (MIS) is a preferable
approach for many surgical procedures which reduces

operative trauma, blood loss, infection rates, hospital-
ization and increases speeds of recovery (Bodenstedt
et al., 2018; Jaffray, 2005). Although MIS confers
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considerable advantages for the patient over open
surgery it imposes arduous challenges on surgeon’s
performance due to issues associated with the Field of
View (FoV), hand-eye dis-alignment, and disorientation
(Chen et al., 2017).

Augmented Reality (AR) is the fusion of real-world
information with computer-generated information.
It overcomes the above limitations on the surgeon’s
performance by overlaying additional information
with the real scene through augmentation of the target
surgical locations, annotations, labels, 3D reconstruc-
tion of organ’s inner anatomic structures (Bourdel
et al., 2017; Kim et al., 2012). AR can provide better
depth perception, interactive visualization and increase
surgeon’s visual awareness of high-risk surgical targets
by accurately overlaying a pre-operative 3D model
onto the intra-operative laparoscopic video (Puerto-
Souza and Mariottini, 2013). It can be implemented
without additional hardware where registration of the
pre-operative volume onto the laparoscope’s image and
occluded object visualization is the arduous difficulties
(Ozgur et al., 2017). It is also very difficult to maintain
a stable and prolonged overlay of the pre-operative
3D model onto intra-operative video due to having
sudden, frequent, and extended occlusions or organ
deformations (Puerto-Souza and Mariottini, 2013).

In AR, the extraction of 2D information from
2D laparoscopic image frames to estimate the 3D pose
of the surgical instrument has the ability to solve current
ambiguities in registration (Cano et al., 2008). The
resulting 3D pose information can be used to augment
the surgeon’s view by projecting artificial 3D cues onto
the 2D display which provides additional support by
improving depth perception for the surgeon (Wengert
et al., 2008). Overlaying a pre-operative 3D model onto
the intra-operative laparoscopic image is a strenuous
task and requires understanding the spatial relationships
between the surgical camera, instruments along with
patient anatomy (Pakhomov et al., 2017). A critical
component of this overlaying process is segmentation
of the surgical instrument which is used to prevent
rendered overlays from occluding the instruments
(Pezzementi et al., 2009). So, in MIS, robust and
automatic surgical instrument segmentation, and 3D
pose estimation are essential parts to solve the current
limitations of AR applications and for interactive
visualizations.

The segmentation of the surgical tool is the most
strenuous task due to the presence of smoke, blood,
partial occlusions, shadows, specular reflections, mo-
tion blur, lighting conditions, scale effect, cauterization,

1https://github.com/kamruleee51/

3D-Pose-Estimation-and-Segmentation-for-AR-in-MIS

clip, gauze, and complex background textures (Attia
et al., 2017; Garcia-Peraza-Herrera et al., 2017b; Pakho-
mov et al., 2017) as shown in Fig. 1. Agustinos and
Voros (2015) used color and shape information along
with post-processing and contour detection. Allan et al.
(2013) has proposed four colors based Random Forest
(RF) (Breiman, 2001) for the classification of the sur-
gical instrument pixels from background tissue pixels.
There is a higher possibility of getting coarse segmen-
tation (Pakhomov et al., 2017) of the surgical instru-
ments from those methods. Doignon et al. (2005) de-
veloped a segmentation technique based on a discrimi-
nant color feature and also designed an adaptive region
growing with automatic region seed detection. But, a
region growing algorithm depends on the initial seed
(Shan et al., 2008) and robust seed selection is often im-
possible due to the presence of diverse noises in laparo-
scopic images. Nowadays, semantic segmentation us-
ing Convolution Neural Network (CNN) can be a good
choice that can provide robust solutions for the surgi-
cal instruments segmentation by pixel-wise classifying
and assigning their corresponding labels (Ronneberger
et al., 2015; Shelhamer et al., 2017). Recently, Garcia-
Peraza-Herrera et al. (2017b) applied Fully Convolu-
tional Networks (FCN8s) for binary instrument segmen-
tation. Shvets et al. (2018) used four different encoder-
decoder networks which are U-Net (Ronneberger et al.,
2015), two modified TernausNet (Iglovikov and Shvets,
2018), and one modified LinkNet (Chaurasia and Culur-
ciello, 2017). Attia et al. (2017); Garcia-Peraza-Herrera
et al. (2017a); Pakhomov et al. (2017) used ResNet-101,
ToolNetMS/ ToolNetH and hybrid CNN-RNN networks
respectively. However, automatic, robust, and accurate
segmentation of surgical instruments are highly desir-
able requirements for interactive AR in MIS even in
the presence of the above mentioned different types of
noise.

For the overlaying to achieve registration, the po-
sition of both the computer generated and real-world
information need to be in a common coordinate system.
From a practical point of view, the direct use of laparo-
scopic images for tracking instrument in MIS is better
than using extra tracking devices (Feuerstein et al.,
2007). In recent years, computer vision algorithms are
able to compute the position from the video frame of
the camera directly (Davison et al., 2007). To get the
3D position, those algorithms have to select features
(landmarks, shades, silhouettes, etc.) directly out of
the images and analyze them (Salah et al., 2011; Wang
et al., 2012). Feature detection is a computationally
expensive and sometimes noisy process. Bourdel et al.
(2017); Du et al. (2015); Kim et al. (2012) used the
traditional 2D feature-based tracking algorithms which
provide poor quality visual guidance due to fall out of
the FoV. Recently, Simultaneous Location and Mapping
(SLAM) has the potentiality to overcome the previous

8.2



Detection, Segmentation, and 3D Pose Estimation of Surgical Tools Using Deep Convolutional Neural Networks and
Algebraic Geometry 3

Figure 1: Types of different artifacts present in laparoscopic image. The detection, segmentation, and feature extraction results from ART-Net on
those images are shown in Appendix A.

limitations by building an entire 3D map of the internal
cavity but is often not robust enough when dealing
with tissue deformations and scene illuminations (Artal
et al., 2015). Jayarathne et al. (2013); Pratt et al. (2015)
have extracted 2D locations where pose estimation is
considered as Perspective-n-Point (PnP) (Wu and Hu,
2006) problem. However, pose estimation of a planar
marker may provide two ambiguous solutions where
the incorrect one should be eliminated (Collins and
Bartoli, 2014).

In this thesis, we propose ART-Net for segmenting
the laparoscopic images to get surgical instrument’s
mask and extracting the geometric features simulta-
neously. The 3D pose of the surgical instrument is
a function of instrument physical properties, namely
diameter and head length, which are very diverse for
clinical applications. To make a generic network which
should be irrespective of tool’s physical properties, we
divide the 3D pose estimation of the surgical instrument
into two parts: geometric features extraction from
responsible sub-networks of ART-Net and algebraic
geometric solution. Finally, the accurate 3D instru-
ment pose is estimated by a geometric solver using
the features from the proposed ART-Net and known
instrument’s physical properties. The 3D pose from
our approach is then used for solving the current am-
biguities of AR applications in MIS. Additionally, we
add detection sub-network to our proposed ART-Net to
detect the tool present in the input laparoscopic image
frame which helps to decide for estimating pose or
not. The proposed network with different responsible
sub-networks has been trained in an end-to-end fashion
and each sub-network of the ART-Net has different loss
functions to get responsible output. We validate our
proposed approach on both ex-vivo and in-vivo laparo-
scopic images where we are able to reach improved
results over existing state-of-the-art approaches on the
same dataset.

The remaining sections of the literature are organized
as follows: Section 2 is dedicated to the previous state-
of-the-art related works. Section 3 is for the descrip-
tion of the methodologies and datasets. In section 4,
the different experiments and results are reported. All
the results are interpreted in section 5. Finally, thesis is
concluded in section 6.

2. State of the art

The previous state-of-the-art works related to this the-
sis work have been described in three sub-sections as
follows:

Surgical Instrument Detection: The pioneer vision-
based methods used color-marker segmentation via
low-level image processing to detect the shaft or the tip
of the instrument (Krupa et al., 2003; Wei et al., 1997).
Those methods are accurate in tracking and efficient
in computation but suffer from unresolved issues of
color and lighting variations. Some other vision-based
methods exploit the geometric constraints and the
gradient-like features, in order to identify the shaft
of instrument, but fail to provide more accurate 3D
positions of the instrument tip (Agustinos and Voros,
2015). As well as, in some images where the edge of
the instrument almost blended with the background
tissue, the gradient-like features often fail to detect the
instruments. For detecting any kind of object, CNN
already achieved the benchmark over other computer
vision algorithms (Arel et al., 2010). Jin et al. (2018)
developed an approach by leveraging region-based
convolutional neural networks (R-CNNs) to perform
spatial detection of surgical instruments. But, they
were able to obtain 5 fps as a processing speed which
is very less for real-time AR based MIS applications.
Choi et al. (2017) applied unified architecture YOLO
to detect the surgical instrument and their reported
precision was only 72.26%.
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Surgical Instrument Segmentation: Allan et al.
(2013) proposed probabilistic supervised classification
method to detect pixels belonging to surgical instru-
ments using RF and used variable importance to pick
four color features such as hue, saturation from HSV
color space and opponent 1 and opponent 2. Finally,
RF was trained on those features to classify the pixels
in the test set with no post-processing stages. Agusti-
nos and Voros (2015) used color and shape information
of the surgical instrument for the segmentation which
was based on the CIELab color space, a grayscale image
composed of the a and b channels, corresponding to the
chromaticity, Cab. After that, post-processing consist-
ing in automatic Otsu thresholding and a skeletonization
was used and followed by an morphological erosion.
Finally, a contour detection algorithm (Suzuki and Be,
1985) was used to extract the extreme outer surgical in-
strument’s contour of each region as an oriented bound-
ing box. Garcia-Peraza-Herrera et al. (2017b) proposed
a real-time automatic method based on Fully Convo-
lutional Networks (FCN) with the improved learning
process. To improve the learning process, they used
Cyclical Learning Rate (CLR) (Smith, 2015) where the
LR boundaries, momentum, and weight decay were
[1e − 13, 1e − 10], 0.99 and 0.0005 respectively. For
better optimization of the cost function, they employed
the pre-trained model which was trained on PASCAL-
context 59-class (60 including background) (Mottaghi
et al., 2014) dataset. Attia et al. (2017) applied a hy-
brid CNN method utilizing both recurrent and convolu-
tional networks simultaneously. To prevent the coarse
segmentation (Pakhomov et al., 2017), Recurrent Neu-
ral Network (RNN) was trained to model contextual re-
lationships between pixels. In their network, four lay-
ers of the recurrent neural network are employed to find
local/global dependencies between pixels in coupled di-
rections. Garcia-Peraza-Herrera et al. (2017a) proposed
two novel deep learning architectures for automatic
segmentation of non-rigid surgical instruments namely
ToolNetMS and ToolNetH. In ToolNetMS, all scales in
FCN8s were summed in a cascaded fashion to ensure
that the responses around the edges are better than tradi-
tional FCN8s. On the other hand, in ToolNetH, instead
of element-wise sum, aggregation of all sigmoid cross-
entropy losses from multiple scales has been performed
after inspiration from holistically-nested edge detection
(Xie and Tu, 2015). Pakhomov et al. (2017) employed
deep residual learning and dilated convolutions for the
instrument segmentation. To mitigate the coarse output
from the segmentation network, they used strides equal
to one in the last two convolutional layers which are re-
sponsible for downsampling in ResNet-101 (He et al.,
2016) and by employing dilated convolutions for sub-
sequent convolutional layers. Their proposed architec-
ture was originally designed for edge detection prob-
lems which are almost similar to FCN8s (Shelhamer
et al., 2017).

Pose Estimation of Surgical Instrument: Most of
the image-based methods for the surgical pose estima-
tion extracted low-level visual features from key-points
or Regions of Interest (ROI) to learn offline or online
part appearance templates by using machine learning
algorithms (Rieke et al., 2016). Such a low-level feature
of the surgical instrument usually suffers from a lack of
semantic interpretation of the pixel and cannot capture
the high-level category appearance (Du et al., 2018).
Laina et al. (2017) reformulated the 2D instrument pose
estimation as heatmap regression and was able to get
concurrent, robust, and near real-time regression of
localization and segmentation of the surgical instrument
via deep learning. Li et al. (2014) proposed Instrument
Tracker via Online Learning (ITOL) for the instrument
track where ITOL used a robust gradient-based tracker
which was capable of failure detection as the basic
tracker. But, it was not detecting forceps tips and
gradient-based approaches often fail to track due to
having very less edge information in some images.
Reiter et al. (2012) proposed tracking approach of the
surgical instrument using the landmarks on its body
surface where color, location, and gradient-based fea-
tures have been associated with the landmarks. In their
method, localization had been done by matching the
features tracks in the stereo camera using normalized
cross-correlation with a high degree of localization
accuracy. But, the computational cost of extracting all
of those features is huge and the occlusions of some
landmarks due to the instrument rotation might result in
a high degree of localization error (Alsheakhali et al.,
2016). Allan et al. (2015) proposed articulated instru-
ment tracking in 3D laparoscopic images where color
information was used for the multi-class segmentation.
The 3D pose of the instrument estimated from different
statistical models as well as the optical flow was used
for pose tracking from image to another. Expensive
feature extraction and high sensitivity to the light
changes (Alsheakhali et al., 2016) are the drawbacks of
their method. Rieke et al. (2015) proposed a regression
forests model to localize the forceps tips within a
bounding box but that bounding box was provided
using intensity-based tracker which was not robust and
there is the possibility of losing the tracker.

In this thesis, we propose ART-Net which has five
sub-network branches for instruments detection, seg-
mentation, and three geometric features i.e. edge-line
(tool boundary), mid-line, and tool-tip (see Table 1)
extraction for the 3D pose estimation using algebraic
geometry. All the sub-networks share the same con-
volution network which has five blocks and thirteen
layers that mimic the VGG-16 (Simonyan and Zisser-
man, 2014). To make robust and lightweight SIMO
network for real-time AR applications in MIS, we use
depth-wise separable convolution in the decoder of seg-
mentation and regression sub-networks which is in-

8.4



Detection, Segmentation, and 3D Pose Estimation of Surgical Tools Using Deep Convolutional Neural Networks and
Algebraic Geometry 5

spired by Xception network (Chollet, 2017) and work
of Kaiser et al. (2017). To retrieve the lost spacial
and edge information due to sub-sampling, to reduce
checkerboard noise and to minimize over-segmentation,
we have added one special skip connection with tradi-
tional skip connection in U-Net. The new skip con-
nection concatenates at the very last layer of decoder
through a bunch of depth-wise separable convolutions
without sub-sampling of the original image to pro-
duce the full resolution feature map and termed as Full
resolution Feature map Generator (FrG). For the seg-
mentation sub-network, we have proposed to combine
cross entropy and IoU as a cost function to obtain max-
imum overlapping between predicted and true surgical
instrument mask.

3. Material and methods

In this section, the proposed pipeline, the architec-
tural design of ART-Net, steps for 3D pose estima-
tion using algebraic geometry, and used datasets are
presented. The pictorial presentation of the overall
pipeline is shown in Fig. 2. Firstly, input images are
fed to CRB (Conv+ReLU+Batch Normalization (BN))
block which is a bunch of convolutions, relu activa-
tion, and batch normalization with sub-sampling and
is shared by all other sub-networks for detection, seg-
mentation, and regression simultaneously. FCS (Fully
Connected+Softmax) is the fully connected layer and
followed by the so f tmax classifier that provides the in-
formation about the tool present in the image frame and
termed as detection sub-network. If the detected tool
flag is yes from the detection sub-network, the pose
of the surgical tool will be estimated and vice-versa.
DRBS (Deconv+ReLU+BN+Sigmoid) named as seg-
mentation sub-network and DRB (Deconv+ReLU+BN)
named as regression sub-network is the bunch deconvo-
lution for semantically tissue or instrument pixel label-
ing and the regression to get three geometric features
for pose estimation respectively. The methodologies of
designing the proposed network, 3D pose estimation,
and annotation are elaborately described in the follow-
ing sub-sections.

3.1. Detection, Segmentation, and Geometric Feature
Extraction sub-network

In general, CNN for the semantic segmentation
consists of two essential parts for the pixel-wise clas-
sification (Badrinarayanan et al., 2017). The first part
is encoder which is composed of convolution layers
and sub-sampling layers where convolution layers are
responsible for the automatic features extraction (Lin
et al., 2013). The purpose of the sub-sampling layers is
to achieve spatial in-variance by reducing the resolution
of the feature maps and also to improve the robustness
of the classifier due to the elimination of the redundant

features. Sub-sampling also increases the field of view
of the feature maps to extract more abstract class salient
features and minimizes computation time (Shelhamer
et al., 2017). On the other hand, the second part is a
decoder which semantically projects the discriminating
features of lower resolution learned by the encoder
onto the pixel space of higher resolution to get a dense
pixel-wise classification (Garcia-Garcia et al., 2018). In
semantic segmentation, the encoder part is quite similar
to all the CNN models but they mainly differ in the
decoder mechanism. Semantic segmentation not only
requires discrimination at pixel level but also a decoder
mechanism to project the discriminating features
learned at different stages of the encoder onto the pixel
space. However, the significantly reduced feature map
due to sub-sampling suffers from spatial resolution loss
which introduces coarseness, less edge information,
checkerboard noise, and over-segmentation in semanti-
cally segmented mask (Odena et al., 2016; Ronneberger
et al., 2015; Shelhamer et al., 2017). When the kernel
size of the deconvolution is not divisible by the up-
scaling factor, the number of low-resolution features
that contribute to a single high-resolution feature is not
constant across the high-resolution feature maps which
is called deconvolution overlap and is one of the causes
of checkerboard artifact in the segmented mask.

To overcome those limitations, Ronneberger et al.
(2015) introduced skip connection in their popular
U-Net which allows the decoder at each stage to learn
back relevant features that are lost when pooled in
the encoder. Shelhamer et al. (2017) fused features
from different coarseness to refine the segmentation
using spatial information from different resolutions
at different stages from the encoder. But, in that
model, there is a dependency between kernel size and
up-sampling factor to avoid deconvolution overlap.
Al-masni et al. (2018) proposed Full resolution Con-
volution Network (FrCN) which does not have any
sub-sampling in the encoder to preserve the spatial in-
formation of the feature map for precise segmentation.
But, sub-sampling of feature map has several positive
aspects in CNN as mentioned at the beginning of this
sub-section. Pakhomov et al. (2017) employed dilated
(atrous) convolutions to enable initialization with
the parameters of the original classification network.
However, to overcome the sub-sampling limitations
and deconvolution overlap, we have employed two
types of skip connections. The first one is between the
corresponding same dimensional feature map in both
encoder and decoder which has ladder-like structure
(Rasmus et al., 2015) and is inspired from U-Net.
The second one so-called FrG that connects the very
end layer of the decoder with the original image via
a stack of depth-wise separable convolution without
sub-sampling to provide the full resolution feature map
which is a compensatory to the lost spacial information
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Figure 2: The pipeline of the proposed framework for concurrent detection, segmentation, and geometric feature extraction for 3D pose estimation
of the surgical instrument. The features from three regression blocks (DRB) and the tool flag (yes or no) from FCS block are used for the pose
estimation and the segmented mask is used for occlusive visualization of the surgical tool during the occlusion by other organs.

due to sub-sampling.

In traditional CNN based image classification net-
works, flatten layer is used to vectorize the 2D arrays
into a single long continuous linear vector where pooled
feature map flattened into a sequential column of num-
bers and followed by several densely connected layers.
So, most of the parameters of such classifiers belong
to the fully connected layers and can cause the over-
fitting of the classifier. To overcome that limitation, a
Dropout (Srivastava et al., 2014) layer is used as a reg-
ularizer which randomly set half of the activation to the
fully connected layers to zero during training. Thus,
it improves the generalization ability and largely pre-
vents overfitting of the CNN based classifiers. Lin et al.
(2013) proposed a global average pooling (GAP) lay-
ers where only one feature map is generated for each
corresponding category. GAP sums out the spatial in-
formation of the incoming pooling layer, thus it pro-
vides more robustness to spatial translations of the in-
put. GAP layers also perform a more extreme type of
dimensionality reduction to avoid overfitting. In GAP,
height × weight × depth dimensional tensor reduced to
1 × 1 × depth where each height × width feature map
transfer to a single number by simply taking the av-
erage of all height.width values. In our detection sub-
network, we used GAP instead of the traditional f latten
layer due to having the state-of-the-art performance for
image classification. We also used dropout followed by
so f tmax classifier to detect the surgical tool in the in-
coming laparoscopic frames. The use of GAP also pro-
vides lightweight detection sub-network which is ben-
eficiary for the SIMO ART-Net. For the simplicity of
presentation, we have divided the whole ART-Net struc-
ture into two parts as shown in Fig. 3 but the complete
structure of ART-Net is available in GitHub1.

The lightweight ART-Net is achieved by using depth-

wise separable convolution (Chollet, 2017) instead of
using traditional standard convolution. Depth-wise sep-
arable convolution is a spatial convolution performed
independently over each channel of input and followed
by a point-wise convolution i.e. a 1 × 1 convolution
where projecting the output of the channel by the depth-
wise convolution onto a new channel space. For any
convolution layer, if we have F numbers of filter, M
depths, and DK kernel size, the total numbers of param-
eters will be F × M × D2

K and M × (F + D2
K) for stan-

dard and depth-wise separable convolution respectively.
Thus, we are able to reduce the number of parameters
by (1/F + 1/D2

K) times of any convolution layer of pro-
posed ART-Net.

3.2. 3D Pose Estimation

The rotation R ∈ S O(3) which denotes the direction
and translation t ∈ R3 which relates the camera position
of the instrument pose, [R | t] is estimated by geometric
solver using sets of geometric features obtained from
ART-Net. The rotation, r3 of R = [r1 r2 r3] is di-
rected to the cylindrical axis as shown in Fig. 4 and r1
is the normal to the plane APB. r2 is perpendicular to
both r1 and r3 and is directed to the camera optical axis
(OA). The proposed pipeline for 3D pose estimation is
presented below step-by-steps.

Step 1: The constrain functions for the homogeneous mea-
surement matrix are L1

T V = 0, L2
T V = 0, and

L3
T V = 0 where L1 and L2 are two lines of edge

line, L3 is the mid-line, and V is the vanishing point
and the homogeneous measurement matrix can be
expressed as below.


L1
L2
L3



T

V = 0 =⇒ AT V = 0 (1)
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(a) Part-1: Encoder, Full resolution Feature map Generator (FrG) and Detection sub-network of ART-Net

(b) Part-2: Decoder for segmentation or regression sub-networks of ART-Net

Figure 3: Different parts of the proposed ART-Net. Part-2 is replicated four times for segmentation, and three regression (three geometric features)
sub-networks to construct complete ART-Net.

Figure 4: Pictorial presentation of perspective projection of the surgical instrument and illustration of 3D pose estimation of the surgical tool where
tool is considered as the cylindrical object with radius r. P is the optical camera center which forms planes APB and CPD with the edge line L1
and L2 respectively. To show the direction of the rotation R, RGB color convention has been used.
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The vanishing point, V can be calculated using the
singular value decomposition (SVD) from the ho-
mogeneous measurement matrix, A.

Step 2: The rotation around the z−axis (instrument axis) is
calculated from the vanishing point, V and camera
intrinsic parameter matrix, K as follows.

r3 =
K−1VT

∥∥∥K−1VT
∥∥∥

where, K =


f 0 cx

0 f cy

0 0 1

 (2)

where f is the focal length and (cx, cy) is the optical
center of the endoscopic camera.

The rotation around the x− axis, r1 is the solutions
of outer product, r3rT

3 of r3 and the rotation around
the y − axis, r2 is the cross product of r1 and r3,
r2 = r3 × r1.

Step 3: The translation along the cylinder axis where the
translation is the locus of points belonging to both
planes P1 and P2. P1 is the normalized median
plane between the planes through the L1 and L2
with optical center and P2 is normalized plane
through the cylinder axis whose normal is directed
towards the optical center.

Step 4: Finally, we refine the pose by nonlinear optimiza-
tion of the residual between initial tool boundary,
mid-line, and tip-point with predicted geometric
features from ART-Net.

3.3. Datasets

To demonstrate the performance of the proposed net-
work, two different datasets have been used. The
first one is MICCAI 2015 Endoscopic Vision Chal-
lenge - Instrument Segmentation and Tracking Sub-
challenge (MICCAI, 2015) which contains two sub-
datasets namely: robotic (non-rigid) and non-robotic
(rigid). The robotic and non-robotic data has the res-
olution of 720 × 576 and 640 × 480 respectively. The
second one is our annotated data (see GitHub1) where
for each image, we annotated a binary mask, three geo-
metric features namely edge-line (tool boundary), mid-
line, and tip-point as shown in Table 1. The summary
and distribution of the two different datasets used in this
thesis are provided in Table 2.

3.4. Training and Run-time Analysis

The kernels in encoder of the proposed ART-Net
were initialized with the pre-trained weights of VGG-16
(Simonyan and Zisserman, 2014) trained on ImageNet
(Deng et al., 2009) whereas the kernels in decoder part
were initialized with the glorot uni f orm distribution.
We have performed two stages of training and testing
where in the stage-1, we trained and tested only the
segmentation sub-network on EndoVis (robotic) data

and in stage-2, we trained and tested whole ART-Net on
EndoVis (non-robotic) + our annotated data. Stage-1 is
dedicated for the evaluation of proposed segmentation
sub-network of ART-Net for the surgical instrument
segmentation and compare against recent state-of-the-
art tool segmentation networks on the same dataset
(EndoVis-robotic). In stage-1, we also trained and
tested standard U-Net and FCN8s on the same dataset
(EndoVis-robotic) to compare against our proposed
segmentation sub-network. Stage-2 is employed for
getting the concurrent output from the ART-Net where
the EndoVis (non-robotic) dataset was further annotated
as like as Table 1 and merged with our annotated data
since both are non-robotic (rigid) data.

The segmented mask from segmentation sub-network
has been evaluated using mean Dice-similarity co-
efficient (mDSC), mean Sensitivity (mSn.), mean Speci-
ficity (mSp.), mean Balanced Accuracy (mBA), and
mean Intersection over Union (mIoU). mDSC and
mIoU are the indicator for the amount of overlapping
between the predicted and true mask whereas mSn.,
mSp., mBA are the metrics for evaluating the true pos-
itive rate and false positive rate of the predicted mask.
The predicted edge and mid-line features are quantita-
tively evaluated using the mean Arc Length (mAL) error
of the unit circle between true point xGT and predicted
point x̂P as shown in Fig. 5 and can be expressed as Eq.
3. The predicted instrument tip-point is evaluated us-
ing euclidean distance between true point and predicted
point.

Figure 5: Arc Length (AL) error measurements for the evaluation of
predicted edge and mid line features from regression sub-network of
ART-Net. x1

GT and x2
GT are two cross points of the true line whereas

x̂1
GT and x̂2

GT are two cross points of the predicted line.

mAL =
1
N
×

N∑

i=1

di
1(x1

GT , x̂
1
P) + di

2(x2
GT , x̂

2
P)

2

where, d is arc length o f unit circle

(3)

where N is the total number of images. For both
classification and semantic segmentation, widely used
and stable loss function is binary or categorical cross-
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Table 1: Example of our annotated image along with the corresponding binary mask, edge-line, mid-line, and tip-point. Annotation has been
achieved using the ImageJ software and basic image processing methods (see GitHub1).

Original Image Mask Mid-line Edge-line Tip-point

Table 2: Summary and distribution of the EndoVis-2015 (both robotic/non-rigid and non-robotic/rigid) and our annotated data (see GitHub1). To
get the frames from EndoVis (robotic) video, FFmpeg cross-platform was used.

Train Data
Robotic Dataset-1 Dataset-2 Dataset-3 Dataset-4 - -

25 f ps × 45s 25 f ps × 45s 25 f ps × 45s 25 f ps × 45s - -

Non-robotic OP1 OP2 OP3 OP4 - -
40 40 40 40 - -

Test Data
Robotic Dataset-1 Dataset-2 Dataset-3 Dataset-4 Dataset-5 Dataset-6

25 f ps × 15s 5 f ps × 15s 25 f ps × 16s 25 f ps × 15s 25 f ps × 61s 25 f ps × 60s

Non-robotic OP1 OP2 OP3 OP4 OP5 OP6
10 10 10 10 50 50

Our Data
Train Data Images Masks Edge-lines Mid-lines Tip-points -

508 508 508 508 508 -

Test data Images Masks Edge-lines Mid-lines Tip-points -
127 127 127 127 127 -

entropy. But, for the surgical tool segmentation, the
background tissue differs from the surgical tool which
may have a biased effect on one particular class (Garcia-
Peraza-Herrera et al., 2017a). The proposed cost func-
tion, Lseg for the segmentation is the sum of binary
cross-entropy and intersection over union (Yuan and Lo,
2019) which can be expressed as Eqn. 4.

Lseg(y, ŷ) =
1
N

N∑

i=1

[yi log ŷi + (1 − yi) log(1 − ŷi)]

+1 −
∑N

i=1 yi × ŷi∑N
i=1 yi +

∑N
i=1 ŷi −∑N

i=1 yi × ŷi

(4)

where y and ŷ are the true label map and predicted
probability map respectively. The cost function for the
detection and regression sub-network is cross entropy
and mean squared error respectively. The total cost
function, LS IMO of ART-Net is the weighted sum of the
individual cost function of each sub-network and is cal-
culated using Eqn. 5.

LS IMO(y, ŷ) = Wseg × Lseg(y, ŷ) + Wdet × Ldet(y, ŷ)
+Wmid × Lmid(y, ŷ) + Wedge × Ledge(y, ŷ) + Wtip × Ltip(y, ŷ)

(5)

where W is the scalar weight of the cost function cor-
responding to individual sub-network and is the portion
of LS IMO. The cost function, LS IMO is optimized using

adadelta (Zeiler, 2012) with initial learning rate = 1.0
and decay factor = 0.95.

4. Experiments and Results

The experimental results for detection, segmentation,
geometric feature extraction, 3D pose estimation, and
applications to augmented reality are reported in several
sub-sections as follows:

4.1. Instrument Detection
The instrument detection sub-network of ART-Net

provides information about the instrument presence in
the laparoscopic image frame and generates instru-
ment’s FLAG. No instrument presence in the image
frame provides FLAG=0 which is named as negative
case whereas instrument presence in the image frame
provides FLAG=1 which is named as positive case.
The performance of the detection sub-network of ART-
Net has been evaluated using average precision, average
accuracy, and area under the ROC (receiver operating
characteristic) curve (AUC). The obtained average pre-
cision, average accuracy, and AUC are 100.0%, 100.0%,
and 1.0 respectively for the detection. The reported
quantitative metrics for the surgical instrument detec-
tion demonstrates an impressive performance of pro-
posed surgical instrument detection sub-network over
the state-of-the-art. A few qualitative results for the de-
tected positive and negative cases of the surgical instru-
ment are shown in Table 3.
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Table 3: The qualitative results for the surgical instrument detection
from ART-Net. Left two columns are for the positive case detec-
tion where instrument’s FLAG=1 (instrument present) whereas the
right two columns are for negative case detection where instrument’s
FLAG=0 (instrument not present). The more qualitative results for
instrument detection are available in GitHub1.

Positive Case Detection Negative Case Detection

From the qualitative results of the instrument de-
tection, it is worth to mention that our detection sub-
network of ART-Net can distinguish the texture infor-
mation of the background tissue pixels and instrument
pixels although there is more complex texture informa-
tion in background tissue than surgical instrument. It
is also seen that the detection sub-network can detect
the surgical instrument even in the presence of different
types of noise and instrument edges are almost blended
with background pixels. The trocar (4th row - 3rd col-
umn) and operation theater (1st row - 4th column) are
also detected as the negative case accurately.

4.2. Instrument Segmentation

The segmentation obtained from the proposed ART-
Net, U-Net, and FCN8s has been evaluated both quanti-
tatively and qualitatively. The quantitative and qualita-
tive results of the instrument segmentation are shown in
Table 4 and Table 5 respectively. The results provided
for both quantitative and qualitative judgment are with-
out any post-processing.

From the qualitative results of the surgical instrument
segmentation as shown in Table 5, it is seen that the seg-
mented mask generated from FCN8s has poor edge in-
formation (instrument boundary), checkerboard noise,
and more false positive rate (FPR). But for 3D pose es-
timation from the vanishing point using geometric fea-
tures, the edge information needs to be as precise as pos-
sible. The U-Net model has better quantitative segmen-
tation results and has better edge response than FCN8s.
But, in the noisy laparoscopic images where spatial in-
formation of the tool is not well visible, our proposed
ART-Net performs better than any other networks by
adding more spatial information at the very end of the
decoder. The state-of-the-art mDSC and mIoU of the
segmented mask from ART-Net have demonstrated a
high degree of overlap between the true and predicted

instrument mask. The quantitative and qualitative re-
sults for instrument segmentation in Stage-1 as shown
in Table 4 and Table 5 respectively have proven that
our proposed segmentation sub-network provides more
better segmented mask even in noisy laparoscopic im-
ages than U-Net, FCN8s, and the state-of-the-art net-
works. So, for the building of complete ART-Net, we
will consider our proposed segmentation sub-network
for concurrent regression and segmentation in stage-2.
The qualitative segmentation results from stage-2 on
combined EndoVis (non-robotic) and our annotated data
are shown in Table 6. The mDSC, mSn., mSp., mBA,
and mIoU of the segmentation in stage-2 are 93.22%,
95.30%, 98.98%, 97.14%, and 88.22% respectively.
Those quantitative metrics have proven that there is very
less true negative (instrument pixels as background tis-
sue pixels) and false positive (background tissue pix-
els as instrument pixels) on the segmented mask of the
surgical instruments in Stage-2. From Table 6, is seen
that the segmentation sub-network provides precise seg-
mentation of the surgical instrument with sharper edge
response although the images are noisier than EndoVis
(robotic). Both the quantitative and qualitative results
for the segmentation using segmentation sub-network
of ART-Net have demonstrated its outstanding perfor-
mances comparing the state-of-the-art.

4.3. Geometric Features Extraction
The predicted geometric features (edge-line, mid-

line, and tip-point) from the regression sub-networks of
ART-Net have been evaluated quantitatively using the
mean and median value of AL (see sub-section 3.4) in
degree and euclidean distance in pixels. The qualitative
results for the predicted geometric features are shown in
Table 7. The probability map of the geometric line fea-
tures (edge and mid-line) are approximated using hough
line detection by exploiting the duality between points
on a curve and parameters of that curve (Ballard, 1981).
The probability map of the tip-point is approximated by
using simple argmax2D.

The mean and median AL for the edge-line and mid-
line are (2.45◦, 1.71◦) and (2.23◦, 1.34◦) respectively
whereas the mean and median euclidean distance for the
tip-point is (9.3, 3.2) pixels. The mean AL for edge-line
and mid-line indicate that the angular displacement of
the predicted line from the true line are very less com-
pared to highest possible angular displacement. The
median AL has denoted that 50% AL lies less than 1.71◦

and 1.34◦ for edge-line and mid-line respectively which
has proved better robustness of the line feature detec-
tion by ART-Net. The mean, 9.3 and median, 3.2 value
of euclidean distance in pixels between true and pre-
dicted tip-point shows the success of tip-point regres-
sion sub-network of proposed ART-Net. From Table 7,
it is seen that the predicted (Green color) edge-line and
mid-line are almost overlapping the true lines (Yellow
color). Both the qualitative and quantitative results of

8.10



Detection, Segmentation, and 3D Pose Estimation of Surgical Tools Using Deep Convolutional Neural Networks and
Algebraic Geometry 11

Table 4: Segmentation performance metrics from ART-Net, U-Net, FCN8s, and recent state-of-the-art networks on EndoVis-2015 (robotic) for
quantitative assessment and comparison. Metrics for our proposed and implemented networks were calculated using the true labels and semantic
labels obtained from network.

Performance MetricsNetworks Pre-train Datasets mDSC mSn. mSp. mBA mIoU
FCN (Garcia-Peraza-Herrera et al., 2017b) PASCAL-context EndoVis (Robotic) - 72.2% 95.2% 83.7% -

ToolNet (Garcia-Peraza-Herrera et al., 2017a) NA EndoVis (Robotic) 82.2% - - 81.0% 74.4%
FCN (Pakhomov et al., 2017) PASCAL VOC EndoVis (Robotic) - 85.7% 98.8% 92.3% 77.6%

U-Net ImageNet EndoVis (Robotic) 87.5% 93.5% 97.5% 93.3% 78.1%
FCN8s ImageNet EndoVis (Robotic) 86.4% 85.9% 98.3% 92.1% 76.5%

ART-Net ImageNet EndoVis (Robotic) 89.3% 88.1% 98.6% 93.4% 81.0%

Table 5: Qualitative segmentation results of ART-Net, U-Net, and FCN8s on EndoVis-2015 (robotic). Same test images were shown for all networks
to compare qualitative performance. The DSC has been also added with the overlaid image to verify the segmentation accuracy quantitatively. The
more qualitative results of the segmented mask in Stage-1 are available in GitHub1.

Original Frame Ground Truth ART-Net mask Overlay U-Net mask Overlay FCN8s mask Overlay

Table 6: Qualitative segmentation results from Stage-2 training and testing on EndoVis (non-robotic) + our annotated data. The DSC has been also
added with the overlaid image to verify the segmentation accuracy quantitatively. The more qualitative results of the segmented mask in Stage-2
are available in GitHub1.

Original Frame Ground Truth Prediction Overlay Original Frame Ground Truth Prediction Overlay

the geometric feature extraction have validated the ex- cellent performance of regression sub-networks of the
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Table 7: Approximated geometric features from the ART-Net prediction (Green color) and true features (Yellow color) are overlaid with the original
image frame. The arc length measured in degree and euclidean distance measured in pixels are also added with the overlaid images for quantitative
assessment. The more qualitative results for the approximated geometric features are available in GitHub1.

Predicted & true edge-line overlay Predicted & true mid-line overlay Predicted & true tip-point overlay

proposed ART-Net.

4.4. 3D Pose Estimation
The 3D pose of the surgical instrument has been es-

timated according to the steps described in 3.2 from the
sets of geometric features obtained from proposed ART-
Net. The estimated 3D pose of the surgical instruments
from proposed approach are shown in Fig. 6 for qual-
itative assessment, where it is seen that the estimated
instrument pose is irrespective of instrument colors and
the navigation directions of the instrument. From Fig.

(a) Top to bottom directed tool (b) Right to left directed tool

(c) Left to right directed tool (d) Bottom to top directed tool

Figure 6: Representative examples of estimated 3D surgical instru-
ment pose. For better visualization of the pose, selected ROI is
zoomed. Red, green, and blue color denote the direction of r1, r2
and r3 of the instrument’s orientation (rotation) respectively.

6, it is also seen that the estimated 3D pose of the in-

strument is accurate even the instrument diameter and
head length are different. The more qualitative accu-
racy of our approach for 3D pose estimation is shown
in Fig. 7, where it is seen that estimated pose is precise
even there is a motion blur between the surgical instru-
ment body and instrument head (see Fig. 7 (a)). From
the gradient magnitude using 1st derivative (see in Fig.
7 (b)) and 2nd derivative (see in Fig. 7 (c)), it is seen
that there is no gradient information at the boundary of
the instrument body and instrument head. So, using the
traditional local filtering, it is often impossible to ob-
tain gradient information about the tool head whereas
our approach is successfully locating the tip-point using
the features from proposed ART-Net. In Fig. 7 (d) and
Fig. 7 (e), it is demonstrated that there is no gradient
information along the tool edge (tool boundary) using
the local filtering (sobel), but our CNN based method
can locate the instrument boundary and estimate the 3D
pose of the instrument precisely. It is also demonstrated
in Fig. 7 (d) and Fig. 7 (e) that after non-linear refine-
ment, the contour of the surgical tool is exactly at the
maximum gradient location which is often impossible
to achieve using any other local filtering of the tradi-
tional image analysis. From Fig. 7 (g) and Fig. 7 (h),
it is also noticeable that there is no edge or instrument
tip information after applying local filtering due to mo-
tion blur of the instrument. But, our CNN based feature
extraction and geometric solver is able to estimate the
3D pose (see Fig. 7 (f)) accurately. From the above
discussions and figures, it is worth to mention that our
approach for 3D pose estimation of the surgical instru-
ment is robust and accurate even in noisy, blurred, and
motion blurred laparoscopic images.
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(a) Precise tip-point detection even there
is motion blur

(b) Gradient magnitude using 1st order
filtering (sobel)

(c) Gradient magnitude using 2nd order
filtering (laplacian)

(d) Pose refinement for exact tool pose. (Left) before refinement and (right)
after refinement

(e) Gradient magnitude using 1st order filtering
(sobel)

(f) Precise 3D pose in complex case (g) ROI selection using the segmented
mask

(h) Gradient magnitude using 1st order
filtering (sobel)

Figure 7: Representative examples of precise 3D pose estimation of the surgical instrument from our proposed pipeline using CNN based geometric
features and geometric solver.

4.5. Applications to Augmented Reality
In this sub-section, we are presenting the practical

implication of our segmented instrument mask and 3D
pose of the instrument to AR in MIS. For occlussive
visualization of the surgical instruments where the sur-
gical instrument should not be occluded by the anatomy
for better depth perception of the surgeon, we have used
image blending in the region of the instrument mask
(segmented mask). To avoid the aliasing effect dur-
ing the blending, we used Eqn. 6 to blend the images
smoothly.

I f inal = (1 − α) × Iaug + α × Iraw (6)

where, I f inal, Iaug, and Iraw is the instrument occlusion
augmented image, augmented image, and raw image re-
spectively. The fraction coefficient, α is obtained from
the predicted instrument mask from ART-Net after blur-
ring with a 2D median filter. The occluded visualization
of the augmented instrument is shown in Fig. 8 where
the AR has been used with raw uterus image to locate
the tumor inside uterus (see Fig. 8 (a)-(b) and Fig. 8

(d)-(e)). Fig. 8 (c) and Fig. 8 (f) of the occluded in-
strument where instrument occlude the anatomy have
proved excellent performance of the segmentation sub-
network of ART-Net. The proposed network also shows
the worthy performance for both single and multiple in-
strument occlusion in AR on the uterus image. For more
visualization, a supplementary video where the surgical
instrument is not occluded by anatomy in AR on uterus
images is available in YouTube2.

5. Discussion

In this thesis, SIMO ART-Net has been proposed and
implemented for surgical instrument detection, segmen-
tation, and geometric feature extraction concurrently
which was trained in an end-to-end fashion. From the
results of the detection sub-network of ART-Net, it is
observed that use of GAP in lieu of flattening layer
has extreme dimension reduction capability which can

2https://youtu.be/pAVYbapTbSc
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(a) Raw laparoscopic image (b) AR laparoscopic image (c) AR laparoscopic image with instrument
occlusion

(d) Raw laparoscopic image (e) AR laparoscopic image (f) AR laparoscopic image with instrument
occlusion

Figure 8: Application of the instrument segmented mask for instrument occlusion in augmented reality-based MIS on uterus images. Single
instrument occlusion (a-c) and multiple instruments occlusion (d-f). A supplementary video of instrument occlusion in AR is available in the
YouTube link2.

provide more abstract features of the instruments to
the CNN based image classifier. The dropout layer
with GAP increases the generalization ability of the
image classifier which has better robustness and can
avoid the overfitting for surgical instrument detection.
Additionally, the use of GAP also provides lightweight
detection sub-network which can improve the detection
rates and suitably applicable for real-time AR in MIS.

From the results of segmentation sub-network, it
is seen that the use of skip connection has better
potentiality of regaining the spatial information in the
low-resolution image by learning back the relevant
features that are lost when pooled in the encoder than
fusing the features from the different coarseness of
encoder. From the segmentation results of FCN8s (see
Table 5), it is seen that there is a trade-off between
the amount of up-sampling and the kernel size. The
number of features is not constant at the border of the
predicted instrument mask if the up-sampling scale and
the kernel size are not divisible which introduces the
checkerboard noise. As a consequence, the segmented
instrument mask boundary is not smooth and there
are more unwanted squares in the predicted mask (see
Table 5). Compared to the FCN8s, U-Net provides
better instrument mask due to skip connection. But,
U-Net also fails to provide better instrument mask in
noisy laparoscopic images due to having less spatial
information as shown in Table 5. On the other hand, in
our proposed ART-Net by introducing the FrG which
concatenate more spatial information at the very end
of the decoder, the segmented instrument masks are

accurate and robust (see Table 4, Table 5, and Table
6). In the results of segmentation sub-network of
ART-Net, it is also observed that the proposed cost
function which is the summation of cross entropy and
IoU performs better than any other cost functions for
surgical instrument segmentation. Alone Cross entropy
or IoU introduces more false positive and true negative
respectively. Summation of cross entropy and IoU
as a cost function reduces the false positive and true
negative trade-off in segmented instrument mask.

The results of regression sub-networks for edge-
line, mid-line, and tip-point of ART-Net demonstrated
the outstanding performance of our proposed network
both quantitatively and qualitatively. The L2 loss func-
tion (Mean Squared Error) has excellent performance
for regression than other regression loss functions
(L1 loss, quantile loss) due to having more stable and
closed form solution. Furthermore, the use of FrG in
regression sub-networks has great success for finding
the instrument’s features and sharper gradient at the
instrument boundaries. Additionally, the non-linear
sigmoid function at the end of the regression sub-
networks truncates the probability between 0 to 1 and
provides a probability map of the edge-line, mid-line,
and tip-point.

From all the results for detection, segmentation,
feature extraction of the surgical instruments, it is seen
that the initialization of the kernels in the encoder
with VGG16 weights trained on ImageNet is the better
choice to avoid the falling in local minima during the
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optimization of the cost function. From the outstanding
results of ART-Net, it is worth to mention that as an
optimizer adadelta also plays a crucial role which adapt
learning rates based on a moving window of gradient
updates instead of accumulating all past gradients.

The 3D pose of the surgical instrument was esti-
mated using the geometric algebra and the geometric
features from the regression sub-networks of ART-Net.
To make the generic 3D pose estimation pipeline,
only features are extracted from the ART-Net which
are irrespective of instruments physical properties
(instrument’s diameter and head length). The estimated
3D pose from the vanishing point of the instrument
boundary lines is robust as shown in Fig. 6 and Fig.
7. In some laparoscopic image where the instrument
pixels are almost blended with the background tissue
pixels near the instrument’s edge, using the local com-
puter vision filtering often impossible to get gradient
information. But, CNN-based proposed approach
can accurately find the gradient information at the
instrument’s edge which is irrespective of instrument’s
color, shape, size, orientation, etc. and can also estimate
the instrument pose in case of motion blurred due to
movement of instrument during the surgery.

6. Conclusions

In this thesis, the surgical instrument detection, seg-
mentation, and 3D pose estimation using geometric fea-
tures have been presented for an AR application in ges-
ture guidance for laparosurgery. The proposed FrG
has played a crucial role in compensating for the spa-
tial information loss due to sub-sampling in segmenta-
tion and regression sub-networks of ART-Net. It can
also be readily applicable to other kinds of encoder-
decoder networks for semantic segmentation. In the
case of SIMO like structure where the whole network
comprises several sub-networks and trained in an end-
to-end fashion, being lightweight is one of the core re-
quirements for real-time applications. In the proposed
ART-Net using depth-wise separable convolution and
GAP, we were able to reduce the number of param-
eters approximately 3.6 times leading to a more gen-
eralized trained model all the while outperforming the
state-of-the-art. Hence, the use of depth-wise separable
convolution and GAP can be better choices for building
lightweight SIMO type networks. Our approach for the
geometric feature extraction is independent of the in-
struments physical properties and the estimated 3D pose
is precise and robust. Hence, the proposed pipeline can
be applied to any other clinical practice for 3D pose es-
timation of surgical instruments in the operation room
(OR). The estimated 3D pose of the surgical tool is
highly useful to solve the registration ambiguity without
any extra tracking devices in the OR. The scale ambigu-
ity of the structure from motion (SfM) can be solved by

introducing this additional 3D pose information during
the reconstruction of the pre-operative 3D model in AR
based MIS. The occluded surgical instrument visualiza-
tion in AR can overcome the depth perception limitation
of the surgeon.
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Appendix A. Detection, segmentation, and features extraction results of the noisy laparoscopic images as
shown in Fig. 1 from our proposed ART-Net.

Detection results of surgical instrument where tag “1” indicates tool presence

Segmentation results of surgical instrument

Edge-line (tool boundaries) extraction of surgical instrument

Mid-line extraction of surgical instrument

Tip-point extraction of surgical instrument
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Abstract

Over the past years, 3D printing technologies have been used to convert medical images into models of specific or-
gans of the human body. These models allow physicians to get more interaction and an improved visual perception
of the patients anatomy. Typically, these models are printed from an isosurface, previously saved as a STL, VRML,
3MF, VTK u other file formats. However, this traditional approach is centered on printing with homogeneous ma-
terials and colors for the whole model of the organ. To circumvent this limitation, voxel-based printing offers novel
features to print volumes containing material properties at the voxel level, opening the door for the production of bio-
mechanically accurate models in the future. In this work, a voxel-based framework for 3D printing is proposed, based
on both MRI and Magnetic Resonance Elastography (MRE). The combination of these modalities intended to allow
the mapping of the intensities to the corresponding stiffness of the tissues. The framework consists of the follow-
ing five steps. First, the pre-processing of the images, using bias field correction and Principal Component Analysis
(PCA), when required by the images. Then, the segmentation of the images to extract the organ of interest. Among
many segmentation techniques available and multiple approaches to implement them, this project took advantage of
a semi-automatic segmentation based on a global thresholding, morphological operations and region properties. This
segmentation was applied in the case of images having an appropriate level of contrast to differentiate the organ. Oth-
erwise, in the case of images having more challenging characteristics for the segmentation, a manual approach was
taken. Once the segmentation was completed, the stiffness values were assigned to one section of the organ by means
of the elastography images. The finals steps were related to the preparation of the slices in a format compatible with
the settings of the printer.

Keywords: 3D printing, additive manufacturing, voxel printing, bitmap, Magnetic Resonance Elastography, stiffness

1. Introduction

3D printing, known as additive manufacturing or rapid
prototyping (Chang et al., 2019), is a recent strategy
used in hospitals to produce realistic models of an or-
gan. Such printed organs represent a huge innovation
for the medical field in terms of customization, proto-
typing, manufacturing, and research. Besides, this tech-
nology has created the opportunity to directly interact
with a model of a patient-specific anatomy, allowing
surgeons to reach a superior 3D perception and tactile
feedback. In general, 3D printing has the potential to
add more accuracy and effectiveness in the operational
process.

There is a broad range of applications of 3D printing

in the medical domain. Just to mention a few: 3D
phantoms mimicking the breast have been designed to
replicate the tissue attenuation profile given by real 2D
mammograms and evaluate the performance of mam-
mography systems (Clark et al., 2016), cardiac mod-
els have been used to simulate anatomic and functional
properties of aortic valve stenosis (Maragiannis et al.,
2015) and surgical planning of device placement in pa-
tients with congenital cardiac diseases (Farooqi et al.,
2016), kidney models with tumors have been created
to study minimally invasive surgery procedures (Zhang
et al., 2016), while models of the brain are used to repro-
duce the soft nature of this organ and mimic its tactile
properties (Ploch et al., 2016). Going even further, an
extension of traditional 3D printing known as bioprint-
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ing or tissue fabrication studies different approaches that
incorporate biological products from materials such as
living cells (Agarwala, 2016).

The versatility of 3D printing is accelerating and trans-
forming different areas, particularly in the medical do-
main. Its potential guarantees that this technology will
continue growing and shaping the future of the the
health care industry for the years and decades to come.

1.1. 3D Printing

1.1.1. Typical work-flow of 3D printing

Traditional approaches to develop a 3D printed model
could be simplified into 5 major steps (see Figure 1).
The first step is the imaging of the anatomy of interest
by means of multiple modalities that produce volumet-
ric datasets, such as Computer Tomography (CT), 3D
Angiography and Magnetic Resonance Imaging (MRI).
The images obtained through these modalities are pri-
marily stored in a DICOM format. The second step is
the segmentation of the organ or tissue, creating its cor-
responding mask. This step heavily depends on the high
spatial and contrast resolution. Segmentation methods
include thresholding, watershed, region growing, edge
based detection, and so on. The third step is the gen-
eration of a Computer-Aided Design (CAD) 3D model
directly based on that mask. Next, the model is con-
verted to the appropriate printing format and it is finally
printed. Selecting the most suitable combination of al-
gorithms, techniques, and tools at each of the aforemen-
tioned levels could expedite the process, and most im-
portantly, provide more reliable results.

1.1.2. 3D Printing techniques

Concerning 3D printing techniques in the clinical set-
ting, it is possible to distinguish between different pro-
cesses and materials available. Some techniques melt
or soften the materials which are then disposed in a
layer-by-layer fashion, such as selective laser sintering
(SLS) or fused deposition modeling (FDM). Other more
sophisticated and expensive techniques cure materials
by a light source, that is the case of stereolithography
(SLA) and multijet modeling (MJM) (Chae et al., 2015;
Chang et al., 2019). The last two techniques print prod-
ucts of higher resolution, so the models have a smoother
surface finish and internal structures with better accu-
racy. To select the most suitable technique, the main
considerations to ponder include the cost of the printer,
the cost of the materials, speed, resolution, surface fin-
ishing, post-production and handling of multiple colors
and materials.

Currently, FDM printers are the preferred option in
medicine because of their affordability, acceptable ac-
curacy, minimal maintenance and high availability of

printers in the market (Chae et al., 2015). On the other
hand, printers based on this technique have limitations
on the number of colors and materials handled. To help
mitigate this issue, one approach consists of printing
multiple nested 3D model files, however, this process
can be labor intensive and very inefficient.

1.1.3. Software packages for 3D Reconstructions and
Mesh Repairing

To fabricate a 3D model, basically, modeling software is
used to segment the intended organ or tissue. Then, the
segmented region is exported as a 3D model, usually in
STL format. Other formats include VRML, 3MF, VTK
and PLY, for example. Once a model is created, it can
be optimized by many options such as editing, cleaning,
healing, inspecting, rendering, texturing and, in general,
preparation for printing. Nevertheless, it is important
to note that most of the 3D reconstructions solutions
lack post-processing tools (Chang et al., 2019). This
situation is compensated by software specifically used
for mesh repairing, available from multiple companies.
For more information, in Appendix I, a list of software
packages for 3D reconstructions and mesh repairing is
provided.

Additionally, there are 3D slicing software packages
that divide the CAD file into thin data slices suitable
for the printer settings. However, slicing is usually per-
formed by the proprietary software accompanying the
printers.

1.2. Voxel Printing

Traditional approaches are centered on printing with ho-
mogeneous materials and colors for the whole model or
sections of it, but 3D printing has been evolving sig-
nificantly. Nowadays, several printers have novel fea-
tures to print 3D volumes containing material proper-
ties at the voxel level. Voxel printing, also described
as bitmap-based printing (Doubrovski et al., 2015), al-
lows defining a color for each individual voxel and print
models with highly complex material and color distri-
bution. Just to obtain an idea about the potential of this
approach: “With voxel printing that has the capability of
a trillion voxels in the space of the printer and six dif-
ferent materials, the number of possible combinations is
six to the power of a trillion, which is an astronomical
number” (Stratasys, 2017).

In contrast to the traditional 3D model generation (see
Figure 1), which only uses the binary mask to create
the model, voxel printing applies the mask to the organ
of interest to extract and preserve the intensity gradi-
ents of the native image (Hosny et al., 2018; Solomon
et al., 2016). The masked data sets are then re-slice into
the printer’s native X, Y and Z resolutions. Besides,
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Figure 1: Typical work-flow. This breast phantom was created in the Hospital Parc Taulı́, using Materialise software for the creation of the CAD
model, MeshLab for optimizing the STL model and Ultimaker 3 printer.

it is important to highlight that this method avoids the
generation of a 3D model (in most of the cases). In
any case, bitmap slices such as BMP, GIF, JPEG, EXIF,
PNG, and TIFF files, for example, are the direct input
of the printer.

Bitmaps are defined as a regular rectangular mesh of
cells called pixels, each of the pixels containing a color
value. Moreover, bitmaps are characterized by only two
parameters, the information content per pixel and the
number of pixels. There are other parameters that are
applied to them but they are derivations of these two
principal parameters. They are always orientated hor-
izontally and vertically. For bitmap generation, pixels
should be considered square although they may have
other aspect ratios in practice.

The principal idea about the use of bitmaps is that in
volumetric scans each voxel is represented by a range of
shades. Whilst the generated organ bitmaps are binary
and feed the 3D printer with information about whether
the material has to be placed on the location of the voxel
or not.

Bitmap printing is used for printing high resolution 3D
organs and to generate smooth and uniform transitions
between materials of different hardness. Also, it avoids
sharp edges of transition between hard and soft mate-
rials, where files to the printer are written on a local,
voxel-scale level.

1.3. Objective

The main aim of this work is to develop a framework for
voxel-based printing, using both MRI and magnetic res-
onance elastography (MRE) images. The combination
of these modalities intends to allow the mapping of the

intensities to the corresponding stiffness of the tissues
and, in the near future, to facilitate assigning materials
based on desired graded mechanical properties. To ac-
complish the objective of this project, some approaches
concerning segmentation, mapping of elastic properties
and slicing of the models were explored.

This project has been developed in collaboration with
the Digital Medical Imaging Center (CIMD) at Hos-
pital Parc Taulı́ and the company AVINENT, both in
Barcelona. The hospital counts on an Ultimaker 3
printer, built for FDM, and used with Cura Ultimaker to
prepare the printer settings. Since this printer contains
a dual extrusion system, it allows a dual combination of
build and water-soluble support materials. As an exam-
ple of a recent work performed in the hospital, Figure 2
shows the printing of an aneurysm.

In the case of AVINENT, a printer Stratasys J750, which
is based on an MJM technology, allows to print at voxel
level and create models that fully exploit multi-material
and multi-color capabilities. The printer Stratasys J750
allows to load up to six materials at once, and print with
a resolution as fine as 0.014 mm (Stratasys, 2019). The
desired outcome is to create the correct input bitmaps
for the printer. So in the future, it could be possible to
print more realistic organs, using this advanced equip-
ment and new materials.

1.4. Added value of MRE to MRI

MRE is a non-invasive technique for imaging the me-
chanical properties of soft tissues, which has an ac-
quisition time of about one minute and is acquired
as an add-on to the standard MRI exam (Low et al.,
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Figure 2: Printing of an aneurysm in Hospital Parc Taulı́, using Seg3D
software for the creation of the CAD model, MeshLab for optimizing
the STL model and Ultimaker 3 printer. Aneurysm is printed in red
whereas the support material is in white.

2016; Venkatesh et al., 2018). To generate this imag-
ing modality, shear waves are created by applying low-
frequency continuous vibrations in specific parts of the
surface of the body. These waves are tracked as they
pass through various structures, moving more rapidly
in stiff material than in soft one. Since MRE measures
the waves propagation speed, the obtained images show
the wavelength displacement (in µm units), which indi-
rectly reflects the stiffness of such structures (See Figure
3). Then, the wave image is mathematically processed
into quantitative images directly showing the tissue stiff-
ness (in kPa units), known as elastograms (Venkatesh
et al., 2018).

Currently, the main application of MRE is assessing
liver stiffness as an indicator of possible liver fibro-
sis (Hawley et al., 2017). It is used to complement
the anatomical information provided by the MRI be-
cause many illnesses do not cause significant anatom-
ical changes until they reach an advanced state. Instead,
they can affect the stiffness of the tissues in a profound
way. MRE has also been proposed to identify diseases
in other organs: for example in the breast to detect can-
cer, fibroadenoma, fibrocystic; in the uterus to detect
fibroids; in the pancreas to detect pancreatitis or adeno-
carcinoma, in the spleen to detect portal hypertension
or even in the brain to differentiate between hard and
soft meningioma (Hawley et al., 2017; Mariappan et al.,
2010; Murphy et al., 2013).

Figure 3: Wave image of a section of the liver, in which the color cod-
ing represents the displacements caused by the propagating waves, in
µm. This image was provided by Stanford Medicine Imaging Center
(Stanford, 2019).

2. State of the art

In this section, we will review some of the most recent
and relevant voxel-based printing methods published in
research journals. The subdivision of the literature is
also based on the similarity of the approaches imple-
mented by the authors.

In 2015, Doubrovski et al. proposed a printing process
applied to the design of a customized prosthetic socket.
Creating the sockets using a multi-material 3D printing
allows locally varying material stiffness and increases
its functionality. In this model, the geometry of the
object along with its desired material properties is de-
termined. The collection of the data is based on three
sources: MRI scans of the residual limb of a patient, 3D
scan data of the surface of an existing socket and the
pressure distribution along with the socket-limb inter-
face.

Then, bitmaps are used to map the desired properties
into local material composition, matching the resolu-
tion of the printer. Similarly, other approaches cre-
ate high-resolution, geometrically complex and mate-
rially heterogeneous 3D objects (Bader et al., 2016,
2018; Weeger et al., 2016). In the case of Bader et
al, the authors implemented a procedure called Titled
Data-driven Material Modeling (DdMM) to generate
slices having heterogeneous material distributions. The
previous condition is achieved by integrating multi-
ple geometry-based data sources, such as point-clouds,
scalar and vector fields, curves and polygons, and
tetrahedral meshes. Furthermore, this framework uses
polygonal meshes which are later rasterized in layers.
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Something particular about these layers is their capac-
ity of storing material information, vectors for velocity
fields, matrices and other data structures in each voxel.
Finally, dithering is used to create binary bitmaps, used
to provide instructions for the material deposition dur-
ing the printing. In the same line of research, an article
called ”Making data matter: Voxel printing for the digi-
tal

fabrication of data across scales and domains” explores
voxel-based printing to close the gap between digital in-
formation representation and physical material compo-
sition (Bader et al., 2018). As in the previous cases,
multiple datasets are converted to dithered material de-
position descriptions during a layering process. The
previous process is performed such that each pixel de-
fines the material identity of a droplet and its placement
in 3D space. The printer is able to take these descrip-
tions of the voxels to fabricate the 3D model.

Also in 2015, a 3D printing method based on dithering
by an Error Diffusion algorithm was published (Brunton
et al., 2015). In this article, the input of the pipeline is a
shape defined by a surface with color information. First,
the previously mentioned algorithm is used to reproduce
the object’s albedo texture, that is, a map that defines
the color of diffused light. Second, a voxelization pro-
cedure is performed, in which a grid of voxels is created
according to the specifications of the printer. Also, dur-
ing the voxelization process, colors are assigned to the
surface voxels. The final outcome of this paper’s im-
plementation is a realistic reproduction of colors, color
gradients and fine details of the initial input.

A method to develop textured 3D phantoms, based on
a voxel-based input method, was introduced in 2016 by
Solomon et al. In this case, volumes of a liver are seg-
mented from abdominal CT scans. From these scans,
a model of CLB textures is extracted, reflecting the real
liver textures. For this purpose, a fitting technique called
3D Clustered Lumpy Background (CLB) is applied. At
the end, the designed phantoms are voxelized and input
into the printer. It is worth mentioning that the custom
3D printing software selected for this implementation
included principles of digital dithering by itself.

A less complex framework was developed by Hosny et
al., in 2018, for printing high resolution functionally
graded multi-material models. To start, the proposed
work-flow generates the models from cross-sectional
slices of CT and MRI scans. Then, it applies a
thresholding-free approach to delimit the organ and gen-
erates binary bitmap slices for the printer. The binary
bitmaps are the result of the implementation of an algo-
rithm called Floyd–Steinberg dithering. As in some of
the previous works, mentioned in this section, a contri-
bution of voxel printing is the preservation of more fine
details and information about bio-mechanical gradients
(opacity and elasticity gradients). This method bypasses

the 3D Model generation and its corresponding slicing.

The authors also show the application of the method
for printing structural details in a myocardial infarction
model, in order to improve the visualization of scar ge-
ometry and surgical planning.

3. Material and methods

3.1. Description of Image Dataset

Three main datasets, corresponding to three different
patients, were used in this study. For each patient, there
is an anatomical image and its matching elastography
images (with and without mask). The imaging area cor-
responds to the abdomen. MRE is an imaging modal-
ity still not widely available in hospitals and obtaining
these images is a demanding task. For this project, all
the images were provided by Stanford Medicine Imag-
ing Center (Stanford, 2019) and generated with Advan-
tage Workstation 4.6 of GE Medical Systems. Some of
the characteristics of the datasets are shown in the tables
below:

Table 1: Characteristics of the datasets of images of patient 1.

Table 2: Characteristics of the datasets of images of patient 2.

Table 3: Characteristics of the datasets of images of patient 3.
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3.2. Software tools

The implementation of the proposed framework was
mostly performed on MATLAB 2018b environment.
Besides, RadiAnt Dicom Viewer (Medixant, 2019) and
3D Slicer software (HarvardMedicalSchool, 2019) were
also used. The first one contributed to the visualiza-
tion of the images and supported the segmentation tasks,
while 3D Slicer was used to perform pre-processing
tasks.

3.3. Method

In this section, a framework for voxel-based printing,
using both MRI and MRE images, is presented in five
main steps (see Figure 4). Each step is explained in de-
tail in the following sub-sections.

3.3.1. Pre-processing

Prior to the segmentation procedure, it is important
to consider different factors that could negatively af-
fect the organ mask generation, hence should be cor-
rected. Noise, ringing artifacts or even intensity inho-
mogeneities are among those factors that can corrupt the
images.

Since bias field signals commonly corrupt MRI images
(Juntu et al., 2005), a bias field correction was the first
method applied to the anatomical images Water: LAVA-
FLEX. For this purpose, the N4ITK functionality of
3D Slicer software was used. In this case, as the in-
put parameter is given the volume that potentially could
present the in-homogeneity, then a BSpline grid resolu-
tion of 1,1,1 is selected, which results in a 4x4x4 grid
of control points. Finally, the bias field corrected and
bias field volumes are the output of this function (Slicer,
2013).

Second, Principal Component Analysis (PCA) method
was computed to reduce noise content and suppress any
ringing artifact. This algorithm is a mathematical pro-
cedure that uses an orthogonal transformation to convert
a set of possibly correlated variables into a set of lin-
early uncorrelated variables, which are called the prin-
cipal components (Gonzalez et al., 2002). The applied
transformation is done in such a way that the first of the
principal components corresponds to the most dominant
feature, presenting the largest level of variation. On the
other hand, the later components are dominated by un-
desired elements such as noise and could be removed
without any great loss. For this project implementation,
a threshold value of 99% was defined to separate the
significant components from the ones that are not, as
done by Omer et al., 2018. Based on the new variables,
a new volume is reconstructed. Such implementation is
described in Algorithm 1. Also, it should be mentioned

that the algorithm was applied to the whole volume si-
multaneously, not to the individual slices. So, the input
of the algorithm is a grayscale volume, f(m,n,c), of di-
mensions M x N x C voxels (where M represents the
height, N is the width and C is the number of slices).

Algorithm 1 PCA in Matlab

1: Data preparation: standardization of the data
2: Reshape the volume: into a 2D matrix X of

dimensions M x NC
3: Translation: Translate the data X to be

centered at (0,0).
4: Calculate the mean of all the variables:

X̄
5: Translate mean to the origin, by

subtracting mean: X − X̄, from each
variable

6: Calculate the covariance matrix
∑

: for all the
variables in the dataset

7: Calculate the eigenvectors and the eigenvalues of
the covariance matrix

8: From the covariance matrix, compute the
eigenvalues λn and the eigenvectors that go
along with them. Each eigenvalue gives the
variance of the data in the direction of the
correspondent eigenvector.

9: Sort eigenvalues and eigenvectors in
descending order, following these crite-

ria: λ1 > λ2 > λ3 > ...λn

10: From the eigenvalues, compute the total
variance: V =

∑n
j=1 λ j .

11: Choose principal components
12: Choose the k largest eigenvalues

(eigenvectors) to account for the desired
percentage of variation:

∑k
j=1 λk/V >= 99%,

for example.
13: Compute the reconstructed dataset: project the in-

put vectors by multiplying the data set by a matrix
of the reduced eigenvectors A, (where the columns
λn are the eigenvectors corresponding to the largest
k eigenvalues), new data = AX

3.3.2. Organ segmentation

The axial slices of the elastography were imaged in the
widest portion of the liver, for this reason, the next step
was the extraction of the liver mask. This step rep-
resented a big challenge because the level of contrast
between the liver, surrounding organs, and abdominal
fat was different among the anatomical images of the
three patients. In the T2 images, the hepatic tissue is
presented darker than (hypointense to) the spleen and
kidneys but there is not enough contrast of the liver
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Figure 4: Framework for voxel-based printing develop during this thesis project.

with respect to the abdominal fat. In the case of Fat
Fraction, the images display a quantitative map of the
percentage of hepatic fat signal which is not adequate
for the segmentation task. Conversely, Water: LAVA-
FLEX images are generated by using a technique that
provides homogeneous fat suppression over the entire
image (GE, 2018). The Water images presented an ad-
equate level of contrast with respect to surrounding tis-
sues.

Given the previous reasons, a hand segmentation ap-
proach was applied for the T2 and Fat Fraction vol-
umes. Basically, the contour of the hepatic tissue was
drawn manually, for all the slices, using RadiAnt Di-
com Viewer drawing tools. Then, these images were
exported to Matlab, where the contour was detected by
subtracting the red from the green channel of the im-
ages and applying a threshold. Once the contour was de-
tected, the area inside it was filled. Because the contours
were drawn manually, some subjectivity is unavoidable.

For the Water image, a semi-automatic segmentation
was chosen. First, a global threshold binarization was
used to isolate the tissue of the main organs in the ab-
domen and get rid of the structures in the background.
The computed thresholding algorithm is explained in
Algorithm 2. Basically, this algorithm initializes a
threshold as the average value of adding the highest in-
tensity to the lowest intensity of the image. Then, it uses
this threshold to separate the variables in two groups
of intensities. From both groups, the average intensity
is calculated. The threshold is re-calculated, but this
time, as the average of the average intensities of the
two groups. Except for the initialization, the remain-
ing operations are repeating until reaching a satisfactory
threshold.

To improve the result of the global thresholding, the

Figure 5: Water: LAVA-FLEX image. In this image, it is appreciated
how the intensities of the liver and the stomach are fused. This image
was provided by Stanford Medicine Imaging Center (Stanford, 2019).

Matlab function ’imfill’ is used to fill regions inside the
mask. A morphology operation opening, dilation of the
erosion, is also implemented to remove small objects
from the foreground. This last step intended to improve
the contour of the organs, especially in some images in
which the tissue of the liver is fused with the tissue of
other organs, such as kidney and stomach (see Figure 5
).

Also, the separation process of these tissues was sup-
ported by a graphical user interface (GUI), quickly de-
signed using ’App Designer’ of Matlab. ’App Designer’
is particularly useful because automatically generates
object-oriented code that specifies layout and design
(MathWorks, 2019). This GUI relied on the function
’drawfreehand’ to select and delete undesired areas of
the mask. After using the GUI, an opening is applied
again to correct any undesired effect of the manual dele-

9.7



Direct 3D printing from DICOM images 8

Algorithm 2 Global threshold binarization in Matlab
(Karthikeyan and Valliammai, 2012)

1: Set an initial threshold value: as T = (maximum
intensity value of the volume + minimum intensity
value of the volume) /2

2: For i = 1 : number of iterations
3: Get two sets of pixels: using T to segment the

image. In one set include the pixel values less
than T (set1) and include the pixel values

higher than T (set2) in the other group.
4: Calculate the average value of each group of

pixels
5: Re-calculate threshold as T = (average

intensity value of set1 + average intensity
value of set2) /2

6: End
7: Create the binary mask according to the calculated

threshold T

tion. Finally, since the function ’regionprops3’ of Mat-
lab measures a set of given properties, for each con-
nected component of a volumetric binary image, it was
employed to measure the volume of each of these com-
ponents. The biggest count of the number of ’on’ voxels
in each region was selected since it corresponds to the
liver. So, the final output of this process is the mask of
the liver.

3.3.3. Mapping stiffness properties

One of the aims of the proposed framework is to as-
sign stiffness properties to the voxel intensities of the
anatomical image. The stiffness properties are obtained
from the elastography that includes a mask. The mask
or confidence map is important because it crosses out
the areas of the liver of unreliable measurement, such
areas could include large blood vessels, the Glisson’s
capsule or any area with wave interference (Tang et al.,
2015). Before starting this step, it is also important to
considerer that the elastography imaged a wide portion
of the liver, not the whole organ (see Figure 6).

In order to directly map the stiffness to the matching
section of the anatomical volume, first, it was consid-
ered that the two volumes do not have the same pixel
resolution or dimensions. So, it was chosen to use a
function in Matlab to compute an interpolation for 3-D
gridded data in a meshgrid format. The interpolation
considered the elastography as the image to be interpo-
lated, and Xe, Ye and Ze as its coordinates in each axis.
Since the desired resolution is the one of the anatomical
volume, its coordinates Xa, Ya and Za were also pro-
vided for the interpolation function.

Since the elastography images of patients 1 and 2 (see
Tables 1 and 2) have a slice increment bigger than the

slice thickness, new information is being created. In the
case of patient 3, these parameters are the same so the
original slices are just re-sliced. Besides, it was pos-
sible to select the interpolation method, so, a ’linear’
approach was given as a parameter. The linear inter-
polation is based on the values at the neighboring grid
points, in each of the dimensions.

Once the volumes had the same resolution, and dimen-
sions in X, Y and Z are matched, it is possible to directly
know the stiffness values of one section of the liver in
the anatomical image. And now, the question is how
to obtain the stiffness of the remaining part of the liver.
The approach taken to find those values was the gener-
ation of a Multi-class Probabilistic Atlas.

Figure 6: MRI and Elastography slices of patient 3. The four axial
slices of the elastogram are prescribed so that the liver is imaged in
its widest portion. These images were provided by Stanford Medicine
Imaging Center (Stanford, 2019).

A Probabilistic Atlas answers to the problem of how to
estimate a label X, that better explains a given observa-
tion Y , that is the probability of P(X|Y) (Gubern-Mérida
et al., 2011). Based on the theorem of Bayes, such prob-
ability can also be written as P(Y |X)P(X).

In this case, the starting point to implement this method
was the K-means algorithm of Matlab, which clustered
the stiffness values into 4 groups and returned a seg-
mented labeled volume L having the labels 1, 2, 3 and
4. Also, it returns the centroid locations of those clus-
ters. The next task is the computation of the probabilis-
tic atlas, one of them for each of the 4 clusters, showing
the frequency with which each voxel was labeled as be-
longing to such cluster. So, the probability distribution
P(X) of cluster 1, 2, 3 and 4 is given by this probabilistic
atlas.
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On the other hand, since the elastography and the
anatomical image are in the same reference space, it was
possible to directly build a model showing the distribu-
tion of the normalized intensity values, given a particu-
lar segmentation X, that is, P(Y |X). This model P(Y |X)
is based on the part of the liver where the stiffness values
are known. In the other parts of the liver, the estimated
segmentation X is obtained based on the maximization
of the posterior probability P(Y |X)P(X). In general, this
method was considered for this work because it is able
of providing both a reference space and spatial distri-
bution of probabilities of a voxel belonging to a class
(Gubern-Mérida et al., 2011).

The centroid values given by the K-means algorithm,
and associated with each cluster, are assigned to the in-
tensity values in the anatomical image. To conform the
final volume of stiffness values, the interpolated elas-
tography and the anatomical image (having the stiffness
mapped) are combined. Finally, the volume of stiff-
ness is masked using the liver mask generated from the
anatomical images, in the previous subsection of this re-
port.

3.3.4. Re-slicing to printer Z resolution

Every slice in the voxel print must have the same pixel
dimensions (width and height). Also, it is necessary to
slice the desired final object at a height that matches
the printer layer thickness. In the case of the printer
J750 of Stratasys, there are two settings: High Quality
Mode, that prints 0.014 mm between layers and High
Speed/High Mix Modes that uses 0.027 between layers
(Community, 2019). If the slice thickness is less than
the printer setting, the printer will try to compensate for
the difference. For example, if the slices are generated
using a thickness of 0.0135 mm and the printer is using a
High Speed Mode, it will print each slice twice to reach
the desired thickness of 0.027 mm.

The challenges here are the big volume of the liver and
the datasets used for this project, which do not have a
good pixel resolution (see Tables 1, 2 and 3). Given that
Matlab has some limited memory available to allocate
in the creation of matrices, it was not possible to re-
slice the whole volume at once. Instead, a loop was
used to re-slice each original slice, like the one shown
in Figure 7, to 0.027 mm. For the previous purpose, the
function of interpolation of Matlab was used again, but
this time just to re-slice, not creating new information.
The output of this step is a matrix of sub-slices for each
of the original slices of the volume.

3.3.5. Bitmap generation

The last step of the framework is the generation of
bitmaps, in this case as PNG images. For this purpose,
the algorithm suggested by (Community, 2019), for the

Figure 7: Slice of the liver of patient 3.

printer J750 of Stratasys, was computed for each slice.
Basically, instead of saving the images using pixel units,
they are saved as points.

There are more complex approaches that imply saving
the images as dithered bitmaps, by using algorithms as
Floyd–Steinberg (Floyd, 1976) or Error-diffusion (Sul-
livan et al., 1993). However, this algorithms were not
explored during this thesis project.

Algorithm 3 Bitmap generation (Community, 2019)

1: Define number of sub-slices
2: For index= 1: number of sub-slices
3: filenamearray = [”slice e”, index]
4: loopfilename = strjoin(filenamearray, ′ ′)
5: imshow(figure)
6: Grab the current figure handle:

fig=get(groot, ’CurrentFigure’)
7: Set the figure units to points: fig.PaperUnits

= ’points’, as opposed to inches or cm
8: Set the output of the figure to start at

location (0,0). To calculate width and height,
convert from pixels to points (multiplying by
0.48): fig.PaperPosition = [0 0 wide height]

9: axis off

10: print(loopfilename, ”-dpng”)
11: End

4. Results

The implementation was applied in the 3 datasets of im-
ages provided for this project. For all the cases, the
qualitative and quantitatively results are presented in
this section.

In Figure 8 is presented one axial slice, in the widest part
of the liver of patient 3. The volume to which this im-
age belong was pre-processed from its original obtained
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form. By a visual inspection, it can be noticed that the
bias field correction reduced the inhomogeneities in the
tissues, and this is specially perceptible in the hepatic
tissue. In contrast, the change due to PCA (in terms of
reducing noise and artifacts) is not apparent. Neverthe-
less, the usual effect of this algorithm, that is compres-
sion, was obtained; since the amount of components of
the volume were significantly reduced. In the bottom
row of this same figure, the results of the segmentation
are shown. First, global threshold binarization divided
the pixels of the image into two groups, allowing to iso-
late the pixels of the liver and other organs. After ap-
plying morphological operations, just three volumes are
left the liver, the spleen and the stomach. At the end,
based on the size properties of such volumes, it was pos-
sible to extract the liver mask.

Figure 8: Images of patient 3: (a) Original Image, (b) Image after ap-
plying bias field correction, (c) Image after applying PCA, (d) Image
after applying global threshold binarization, (e) Image after applying
morphological operations and (f) Image after extracting the biggest
volume by using region properties.

Figure 9 shows the GUI created using App Designer
Tool to delete parts of the stomach that were attached to
the liver, negatively interfering in the process of generat-
ing the mask of this organ. In this GUI, an ’imfreehand’
object encapsulated an interactive free-hand region over
the area intended to delete. Among the advantages of
this tool is the availability of vertices to adjust the size
and position of the polygon by using a mouse. Also,
it was possible to drag the polygon over the image, ac-
cording of the needs of the user.

Another instance of the segmentation results is shown in
Figure 10. In this case, axial slices of the widest part of
the liver of patients 1 and 2 can be observed. Because
of the particular characteristics of these two volumes,
it was preferred the manual segmentation, so, the pre-
processing steps of bias field correction and PCA were
not required. In the first column are displayed the con-
tours drawn using RadiAnt Dicom Viewer. Since the
contour drawn in the grayscale image was green, the
image was handled in Matlab as an RGB image. The
difference between the red and green channels allowed

Figure 9: App Designer was used to support the segmentation task.

to isolate the contours, giving the results shown in the
middle row of this figure. In those results, it can be
observed some discontinuities in the lines of the con-
tour. To address this issue, morphological operations
were performed before applying the filling function.

Figure 10: First row: Images of patient 1: (a) Original Image in which
the contour was drawn, (b) Isolating the contour of the liver, (c) Filling
the contour of the liver; Second row: Images of patient 2.

Now, the results of assigning stiffness values to the liver
of the anatomical images are going to be described (see
Figure 13); starting by the results of the sections of the
liver in which the stiffness was directly obtained from
the elastography. Note that in all the cases of the Fig-
ure, an anterior view of the liver is displayed. In patient
1, first row, an increased level of stiffness is visualized
in the area of the liver, mostly represented by the purple
areas. Also in this case, peaks of the stiffness are found
in the right posterior and anterior lobes of the liver and
in the spleen. For patient 2, the stiffness level stands out
in the spleen, where it reaches its maximum level, while
in the liver some increment, with respect to the remain-
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ing part of the abdomen, can be appreciated. In the case
of the third patient, it is clear that the the stiffness is
higher in the liver than in any other part of the image.
Also for this patient, the peak of the stiffness is in the
right lobe of the liver, mainly in the anterior section of
it. With regard to the mask of the liver, in patients 1 and
2, it matches the borders of the big mass of increased
stiffness in the image. In general, the downside of these
results is that once the elastography is masked, there
are still pixels in which the stiffness was not assigned.
These situation is caused because the measurement ob-
tained in those specific points is not reliable according
to the confidence map, generated by the imaging soft-
ware of GE. This situation affects the results of the liver
of patient 2, to a greater extend.

Given the framework adopted in this project, a Proba-
bilistic Atlas approach was chosen to estimate the stiff-
ness in the parts of the liver where this property was not
available. The main elements of this atlas are illustrated
in Figure 11. To initialize this implementation, k-means
was used to create four clusters. This algorithm works
by dividing the pixels into clusters, in which each pixel
belongs to the cluster with the nearest mean.

Figure 11: Probabilistic Atlas approach.

The centroids of the clusters (in Pascals) from the lowest
to highest level of stiffness were 80,5570, 2.7540e+03,
5.9554e+03 and 9,3701 (see Figure 11) for patient 3.
For any given pixel, a brighter intensity in the proba-
bilistic atlas indicates a higher probability of belonging
to a cluster. For example, it can be seen in the figure that
class 4 is mostly related to the pixels in the background,

while class 1 has a stronger presence in the right lobe of
the liver. On the other hand, the distribution of intensi-
ties of each class is presented in the lower section of the
same figure by a plot. Basically, the four classes have a
flat distribution, except for a huge peak in the intensity
zero, belonging to the distribution of class 4 (denoted
by color red in the plot). This result means that given a
class, the probability of having one intensity or another
is almost the same.

In Figure 12, it is compared one axial slice of the elas-
tography and its corresponding anatomical slice, slice
44, with respect to the stiffness estimation given by the
atlas approach to the slice 1 of the same anatomical im-
age, for which this property was not available. Basi-
cally, the estimated stiffness values in the slice 1 only
reflect the prior probability estimation of the atlas, re-
sulting in a segmentation almost identical to the one of
slice 44, even though they are completely different im-
ages.

Figure 12: Images of patient 3: (a) Slice 44 of the volume in which the
stiffness values are available and (b) its corresponding elastography
slice, (c) Slice 1 of the volume in which the stiffness values are not
available and (d) stiffness values assigned to it by the Probabilistic
Atlas approach.

To end the sections of results, one slice of the volume
of patient 3, in which the stiffness values are given by
the elastography is exhibit, after the mask of the liver
was used to isolate the hepatic tissue. The image shows
the four clusters of stiffness. One of the clusters was
almost eliminated by the mask, but it is still present in
some of the pixels of the liver. Later on, the Z resolu-
tion of the volume of the liver is changed to match the
high speed Mode of the printer of Stratasys, 0.027 mm
between layers, and saved as a PNG bitmap using the
simple Algorithm 3, making it ready for the printer.
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Figure 13: Images of patient 1: a, b, c; Images of patient 2: d, e, f; Images of patient 3: g, h, i.

Figure 14: Volume of clustered stiffness is masked.

5. Discussion

In this section, the previous results are going to be inter-
preted based on what is already known and understand
about the subject of this work. The pre-processing step
provided the expected results, in terms of bias field cor-
rection and noise removal, facilitating the subsequent
task of segmentation. The process of segmentation was
time consuming because of the heterogeneous datasets
of images, but the biggest difficulty was caused by the
resolution of the volumes. MRI slices of 10 mm of
thickness, for example cause a a non gradual transition
between the slices. So, the different algorithms or even
segmentation tools struggle to identify the tissues and
perform the task of segmentation. Besides, if the inten-
tion is to take advantage of the many benefits of voxel-
based printing, the quality of the images should be a
priority.

Despite being challenging, the outcome of this step was
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satisfactory and allowed to continue with the other steps
of the framework. In general, one constraint of this the-
sis was the access to pairs of MRI and MRE images,
since the second modality is still not widely used by
hospitals.

After segmentation, assigning stiffness values of the
liver was performed by using interpolation to make the
elastography match the dimensions and resolution of the
anatomical image and then masking the result with the
mask of the liver. Stiffness of the liver presented sig-
nificant variability depending on the region of measure-
ment, specially in the case of patient 1 and patient 2.
The mean liver stiffness was 6.39 kPa for patient 1, 3.71
kPa for patient 2 and 6.75 kPa for patient 3. The mean
liver stiffness is used by physicians as an indicator of
liver fibrosis, if the stiffness is superior to 3kPa, usually
that is a sign of this disease in the patients (Venkatesh
et al., 2013).

But the elastographies were prescribed so the liver was
imaged in the widest portion, not the whole organ. For
the remaining part, the atlas approach intended to esti-
mate the stiffness properties. However, the results were
not as desired. The probabilistic atlas and the distribu-
tion of intensities are combined using a Bayesian frame-
work, to estimate the stiffness. The probability atlas
corresponds to the prior probability, that is the proba-
bility of the hypothetical class 1, 2, 3 or 4 (of stiffness
values) to occur, before the intensity is observed. The
distribution represents the likelihood of an intensity (or
the probability of observing an intensity, given a class).
It indicates the compatibility of having an intensity with
the given class. As appreciated in the result in Figure 11,
since there is not a a proven relationship between inten-
sity and stiffness, the likelihood did not provide enough
evidence given the hypothesis of belonging to a any of
the four classes. The final results only reflect the prior
probability of belonging to a class, having an undesired
performance. As a future work it would be interesting
to investigate other approaches to estimate the stiffness.

For the remaining steps, the results of the probabilistic
atlas were not considered. So, only one middle section
of liver was re-slice and prepare for the final printing.

6. Conclusions

3D printing technologies are used to translate medical
images into personalized physical models, revolutioniz-
ing the way in which physicians and scientists interact
with medical data. Despite its great contribution to med-
ical practice, the homogeneity of materials and colors
offered by traditional 3D printing techniques simply fall
short when trying to accurately replicate the enormous
variety and complexity of tissues and organs.

In clear contrasts, the voxel-based framework described
here provides a method for capturing complex proper-
ties of medical images in five stages: (1) Preprocess-
ing: in which bias field correction and PCA are applied
to reduce the noise in DICOM images. (2) Organ seg-
mentation, the organ is segmented using global binary
thresholding, morphological operations and the proper-
ties of the volumes. (3) Mapping of stiffness, the seg-
mented organ is mapped to its equivalent stiffness value
in the stiffness map ’elastography’ using interpolation.
(4) Re-slicing to printer Z resolution, the reconstructed
3D organ is prepared by re-slicing it by parts to match
the printer resolution. (5) Bitmap generation, to print
the organ voxel by voxel with their respective stiffness
value by choosing a bitmap as the input data type.

We hope that this methodological effort contributes to
accelerate the rate of adoption of this new type of tech-
nology by a wide range of medical and scientific profes-
sionals who require more precise anatomical models.
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Abstract

Purpose: The aim of the study is to standardize different MRI acquisitions in order to achieve robust comparisons
between exams done on different subjects as well as between exams performed on different times in the same subject.

Methods: To achieve this task, we propose a robust image processing pipeline to extract a reference structure.
For the present study, we used T1 weighted Dynamic Contrast Enhanced MRI and T2 weighted scans of 44 patients
with breast tumor diagnosis, that were acquired at the Institut Curie, Paris, France. Firstly, we explored the N4ITK
bias field correction method to improve signal homogeneity in T1 and T2 weighted images. Then we implemented a
dedicated method to extract the subcutaneous fat layer from T1 images.

Results: We proposed some new default parameters for bias field correction using N4ITK, that improve the
uniformity inside the whole field of view for both T1 and T2 images. The pipeline for subcutaneous fat extraction
was successfully applied to the 44 T1 weighted scans. An histogram analysis inside the subcutaneous fat layers
revealed two different patterns, which were due to the use of two different coils.

Conclusion: This study led us to conclude that MR bias field correction is an important factor to better quantify
breast MR images. Some further investigation is necessary to recover some more comparable signal between the two
different coils.

Keywords: Breast MR, Radiomics, MR bias field correction, Fat layer extraction

1. Introduction

Radiomics makes use of data characterization algo-
rithms to extract meaningful qualitative features from
medical images. It aims at establishing more developed
and precise patient diagnosis, staging cancers, deter-
mining optimum therapies, predicting patient outcomes
or their risk level, or choosing the radiation therapy dose
level as described in Lambin et al. (2012), Kumar et al.
(2012), Gillies et al. (2015), Parekh and Jacobs (2016).
With the increase of the number of breast cancer cases,

studies suggest that a more precise and characterized ap-
proach would be beneficial for advancement in breast
cancer therapy. Radiomics helps in revealing tumor
characteristics or predicting prognosis through the ex-
traction of a great number of imaging indices inside the
tumor area (Lambin et al. (2012), Gevaert et al. (2014),
Aerts (2016)). Breast cancer is a tumour which devel-
ops from the cells that form the mammary gland. Breast
cancer (BC) was the leading cancer location in women
in all European countries in 2012, and also the main
cause of death from cancer in women in Europe. In
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2017, about 250,000 new cases of invasive breast cancer
were diagnosed, and 60,000 cases of in situ breast carci-
noma. Approximately 40,000 women died from breast
cancer in 2017 (Win). Prevalence of BC is increasing
due to early diagnosis and changes in risk factors, but
also to aging of the population. It is a heterogeneous
disease, with different molecular sub-types. Each type
of breast tumor calls for a specific treatment. Even with
treatment, most patients with locally advanced breast
cancer will develop (Giordano (2003)) in their work
point out, even after treatment most tumors are likely
to develop distant metastases.
Neoadjuvant chemotherapy (NAC) is often a first line
of defense in the treatment of locally advanced breast
cancer. Proposed to patients prior to surgery, NAC is
known to reduce tumor extent, improve patients surgi-
cal outcomes, and shrink metastasis grow (Thompson
and Moulder-Thompson (2012)). The ideal outcome of
NAC is the pathologic complete absence of residual in-
vasive tumor cells within excised breast tissue following
NAC, or pathological complete response (pCR), which
strongly predicts favorable prognosis as compared with
patients who experience partial or no response (non-
pCR) (Luangdilok et al. (2014), Kong et al. (2011)).
Less than 10% to 50% of breast cancer patients under-
going NAC achieve pCR, and thus there is a need for re-
liable noninvasive pre-treatment predictors of pCR that
can enable better and smarter procedures of NAC and
prevent a delay in effective treatment for patients with
non-responding or progressing tumors.
Breast magnetic resonance (MR) imaging is often ac-
quired for patients near diagnosis of breast cancer as it
is an important component in clinical work-up (Knuttel
et al. (2014), Brasic et al. (2013)). Dynamic contrast-
enhanced magnetic resonance imaging (DCE-MRI) of-
fers visual differentiation of lesions from normal tissue
owing to the increased vascularisation and capillary per-
meability of breast lesions (Shin et al. (2011), Belli et al.
(2006)). Therefore dynamic MR imaging is more likely
a modality that is possibly complementary to mammog-
raphy and ultrasonography (US) because of the addi-
tional three-dimensional spatial and temporal informa-
tion about the lesion that it yields. Because of its high
sensitivity to tumor presence and angiogenic changes,
dynamic contrast-enhanced magnetic resonance imag-
ing (DCE-MRI) is the preferred imaging modality in the
NAC setting and has been demonstrated to effectively
predict pCR following an early treatment period. For
instance, changes in volumetric and kinetic parameters
perform well in pCR prediction but afford no intuition
with regard to pCR prior to treatment (Marinovich et al.
(2012), Delille et al. (2003), Padhani et al. (2006), Di-
alani et al. (2015)). There remains a shortage of reliable
clinical pCR indicators based on DCE-MRI that do not
require previous NAC administration (Marinovich et al.
(2012), Dialani et al. (2015)). An increasing advance-
ment in technology has given rise to several MR system

manufacturers, and the various systems have different
acquisition systems, magnetic field strengths, pulse se-
quences, and coils that continue to be modified and im-
proved over time. This brings a large number of chal-
lenges for image analysis algorithms and associated ra-
diomics studies. Many sources of variability can af-
fect the results, especially in a large multi-center clin-
ical study. Indeed, standardization of breast MRI signal
intensity is not widespread, even if the acquisition pro-
tocols are quite normalized. There is no universally ap-
plied quality assurance procedures to ensure robust stan-
dardization of MR scans coming for different scanners.
The present study aims at proposing some new proce-
dures to better standardize images issued from clinical
studies.

2. State of the art

Keeping in mind the challenges posed by MR image
noise and the presence of a slow-varying background
component of MR image non-homogeneity, and non-
standardization of MRI, the present section will review
the currently literature available to address these issues.
Sufficient literature is available documenting successive
completion of brain MR standardization and homogene-
ity algorithms. Breast MR analysis on the other hand
is still in its initial stage and poses interesting chal-
lenges for researchers due to the vast variation in the
breast physiology, including for instance breast tissue
density, hormonal status, and age. Furthermore, the
non-homogeneity inherent to the radio-frequency coils
is usually translated into the reconstructed MR images.
This non-homogeneity is described as the bias field sig-
nal. Image processing algorithms such as segmentation,
texture analysis or classification that use the gray level
values of image pixels will not produce satisfactory re-
sults if the images are not bias field corrected. A pre-
processing step is thus needed to correct for the bias
field signal before submitting corrupted MRI images to
such algorithms. Many works have proposed bias field
correction methods that are integrated into tissue classi-
fication algorithms, typically within the domain of brain
MRI analysis (Wells et al. (1996), Held et al. (1997)
Van Leemput et al. (1999), Zhang et al. (2001)). In
their work, Ahmed et al. (2002) successfully modify the
fuzzy C-means algorithm to achieve bias field correc-
tion. Then came the N3 bias field correction proposed
by Larsen et al. (2014). The N3 method is iterative and
seeks the smooth multiplicative field that maximizes the
high frequency content of the distribution of tissue in-
tensity. The method is fully automatic, requires no a
priori knowledge and can be applied to almost any MR
image. More recently, Tustison et al. (2010) proposed
an improved version of the N3 algorithm known as the
N4ITK. The improvement from N3 to N4 was achieved
by replacing the B-spline smoothing strategy used in the
original N3 framework with an advantageous alternative
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(Lee et al. (1997), Tustison and Gee (2005), Tustison
and Gee (2006)), which addresses major issues explored
by previous N3 evaluation studies. As mentioned pre-
viously in this section the bias correction methods have
been applied to brain MR image data-sets. Not much
documentation is published for experiments exploring
the breast MR data-sets. In our work we explored the
N4 bias field correction for breast data set under study,
in order to improve results when compared to a conven-
tional setting of parameters in the N4ITK algorithm. A
second aim of our work was to achieve segmentation
of a reference tissue of the breast to further standard-
ize image intensities using histogram analysis of gray
levels inside this reference tissue. Hence we review at-
tempts to achieve brain MR intensity standardization by
image histogram analysis. Interesting and extensive re-
views were given in (Madabhushi et al. (2006)), (Jager
and Hornegger (2008)), (Shah et al. (2011)). The ap-
proaches used by (Christensen (2003)), implies using
even-ordered derivatives of the image histogram which
results in a single global scaling factor between the two
images. Weisenfeld and Warfield (2004) used Kullback-
Leibler divergence to match the intensity distribution of
two images. Leung et al. (2010) proposed a semi au-
tomated segmentation technique to delineate the three
main brain tissue components (grey matter, white mat-
ter, cerebrospinal fluid) followed by computing mean
intensities to realign the whole intensities in the im-
ages. The drawback of this method is that it yields a lin-
ear transformation, which does not completely address
the problem, guaranteeing the standardization of spa-
tially corresponding tissue intensities (Robitaille et al.
(2012)). In the study of (Jager and Hornegger (2008)),
the properties of all acquired images (e.g., T1- and T2-
weighted images) are stored in multidimensional joint
histograms. In order to normalize the probability den-
sity function of a newly acquired dataset, a nonrigid im-
age matching is performed between the joint histogram
of a reference and the joint histograms of the newly ac-
quired images, avoiding any prior registration or seg-
mentation of the datasets (Jager and Hornegger (2008)).

Figure 1: Breast MRI acquisition (reprint from
https://www.mayoclinic.org/tests-procedures/breast-mri/about/pac-

20384809)

3. Material and methods

3.1. MR Image Data:
The image data set consists of 44 axial T2 weighted

images and T1 weighted DCE-MRI scans of patients
diagnosed with breast tumor, at Institute Curie (Paris,
France). All breast MR imaging examinations were
performed within one week before initiating NAC. For
T2 imaging, Dixon sequences were acquired and fat-
suppressed images were further analyzed. For T1 imag-
ing, DCE sequences were recorded after an initial fat-
saturated T1-weighted pre-contrast scan. After an intra-
venous injection of 0.2 ml/kg gadolinium contrast agent,
the first post-contrast scan was collected within 2 min-
utes. The acquisition is performed as the patient lies on
her stomach as show in Fig. [1]. All the scans were
acquired using a Siemens 1.5 T MR scanner with two
different coils: a coil dedicated to breast imaging, con-
structor breast coil, and a coil dedicated to breast biopsy
Sentinelle biopsy coil. Most of the scans (77%) were ac-
quired using the biopsy coil, while the remaining scans
(23%) were acquired using the constructor coil. Both
coils are double.

3.2. Normalization: N4 Bias field correction

Breast MR acquisition is quite unique due to its dou-
ble coil nature. A definitive confounding factor in MR
acquisition is the disturbance of the low frequency non
uniformity present in the image data know as bias (see
Fig. [2] for an illustration). The N4 bias field correc-
tion algorithm has proven to be quite effective for brain
MR scans, but the default hyper parameters were not
suited for our data. When testing these default values,
there was a change in intensity values but the bias field
was quasi-uniform in the whole field of view. The im-
age formation model used by N4ITK, N3 and other bias
field correction algorithms is:

v(x) = u(x) f (x) + n(x), (1)

where x is the voxel, v is the input MR volume, u is
the output bias corrected image volume, f is the esti-
mated bias field, and n is the noise (considered as Gaus-
sian and independent).

The logarithmic transformation (notation û = log u)
is frequently used to work with the noise-free volumes:

v̂(x) = û(x) + f̂ (x). (2)

The bias corrected volume is obtained iteratively. At
the nth iteration:

ûn = v̂ − f̂ n
e ,

= v̂ − S
{
v̂ − E[û|ûn−1]

}
, (3)

where û0 = v̂, f̂ 0
e (the initial bias field estimate) is set

to 0 and S is the smooth B-spline approximation, which
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Figure 2: Top left: T1 DCE MR image, showing some bias field. Top
right: T1 DCE MR image after the application of the bias field

correction algorithm, showing more homogeneity, especially in the
regions of the back. Bottom: estimation of the bias field.

was proposed by the N3 algorithm. The N4 algorithm
uses an improved version of the iterative estimator, that
is expressed by equation (4):

ûn = ûn−1 − f̂ n
r

= ûn−1 − S∗
{
ûn−1 − E[û|ûn−1]

}
. (4)

The S∗ is an improved B-spline approximation and
f̂ n
e is an estimation of the residual bias field at the nth

iteration.
We conducted several experiments by varying the hy-

per parameters such as the number of iterations and
number of fitting levels. Their default values (optimized
for brain studies) were equal to 50 and 4. For our breast
database, the best parameters while keeping the compu-
tation time acceptable were found to be:

• Number of iterations = 50

• Number of fitting levels = 5

• Use of a mask to reduce the computation of the
bias field inside this mask.

To ensure the robustness of N4ITK with the hyper pa-
rameters we tested the algorithm on the different scans
available in our data set.

3.3. Mean contrast analysis
To validate the performance of the N4 bias correc-

tion, we performed a statistical analysis on the whole
database. We selected four regions in each MR volume:
two locations in the right breast (r) and two locations in
the left breast (l) were delineated by an expert radiolo-
gist. Two regions in pectoral muscles (Pr and Pl) and
two regions in the normal breast parenchyma (NBr and

NBl) were identified and marked (Fig.[3]). The regions
were delineated using the LIFEx software.

Figure 3: Examples of the regions of interest that are used for the
calculation of contrast: blue color is for the right pectoral muscle,
pink color for the right normal breast, red color for the left normal

breast region, and yellow for the left pectoral muscle

Then the contrast between the left and right pectoral
muscle (CP), and the contrast between the left and right
parenchyma (CNB) were computed for all the MR vol-
umes before and after applying N4ITK bias correction,
as shown in (5):

CP = 2|Pr − Pl|/(Pr + Pl)
CNB = 2|NBr − NBl|/(NBr + NBl)

(5)

3.4. Pipeline for breast subcutaneous fat layer extrac-
tion

T1-weighted fat-saturated MRI images are usually
acquired in clinical breast MRI imaging protocols and
are used for breast segmentation and density estima-
tion. In T1 weighted DCE images, fat appears as the
brightest along with certain vessels and and tumor re-
gion. The tumor and vessels can be identified as very
bright locations. They are rarely in the subcutaneous
fat layer. Fibro-glandular tissue and the chest wall ap-
pear as moderate signals with quite similar signal in-
tensity. Hence, for challenging cases where a part of
the fibro-glandular tissue is connected to the chest wall
and when there is no fat along the anterior side of the
chest wall, breast segmentation is a difficult task. There
are a few studies which suggest automated approaches
for breast segmentation. Ertaş et al. (2008) presented
a breast segmentation method using two different cel-
lular neural networks: the first one is to perform some
threshold operations, and the second one is for remov-
ing small objects and smoothing sharp corners. Ertas
et al. (2017) presents 3D bias-corrected fuzzy c-means
clustering and morphological operation to extract the
breast region. Hayton et al. (1997) proposed iterative
application of morphological opening operator, with an
increasing scale at each iteration until eliminating the
breast region and keeping the initial approximation of
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breast wall. In the development of our pipeline, a spe-
cial attention was given on making sure that the method
is robust and segments the subcutaneous layer only.
The well known image processing libraries skimage and
scipy were used for most of the image analysis oper-
ations along with a few in-house developed functions.
As the MR images were in nifti format, the python li-
brary nibable was used to handle the nifti format.
The subcutaneous fat layer is the most outer layer of the
internal breast, it is located just beyond the skin. Hence
to extract it, we propose to isolate the contour of the
breast as shown in Fig. [4] .

• Non-homogeneity Correction;
The original volumes in our data set showed signif-
icant impact of the bias present in them. As stated
earlier from the literature review we know that in-
troducing homogeneity was an important step. We
achieved this by the optimized hyper parameters.
To work with more comparable intensity values,
each volume was then normalized to set its max-
imal value equal to 1.

• Mask Generation;
We used a threshold (the threshold value was the
mean intensity of the volume) to generate the mask
of the whole breast region. This threshold was de-
fined in order to isolate the chest from the back-
ground. This is a rough step, since the MR images
show low intensity values in the lung for instance,
and the idea of this first step is to have a rough
contour of the chest. Hence due to low values in
lung for instance, the binary mask (i.e. composed
of binary values: 0 and 1, an example of which can
be found in Fig [4]) obtained from the threshold
application contains some holes. To remove some
of them without degrading the breast contour, we
use a morphological operation of hole filling. The
algorithm used in this function consists in invad-
ing the complementary of the shapes in input from
the outer boundary of the image, using binary mor-
phological dilations with a circular structuring ele-
ment size 1. Holes which are not connected to the
boundary are not invaded. The result is the com-
plementary subset of the invaded region.

• Extraction of subcutaneous fat layer ;
Once we have obtained a complete mask, f , of the
breast region the next step is to distinguish between
the values lying at the contour of the breast from
the center of the chest. Morphological Euclidean
distance transformation is then used. The distance
transformation provides a measure of the distance
of each voxel inside the binary mask to the contour
of the mask.
Distance transform algorithm:

– To compute the distance of each voxel (i, j, k)
to the background S :

– At iteration n, compute Fn[i, j, k] :

– F0[i, j, k] = f [i, j, k] (initial values)

– Fn[i, j, k] = F0[i, j, k] + min(Fn−1[u, v,w]),
(u, v,w) being the 6-neighbor vox-
els of (i, j, k) that is voxels such as
D([i, j, k], [u, v,w]) = 1

– Repeat iterations (n = n + 1) until no change
is observed between Fn and Fn−1

Finally a new binary mask, g, was defined from the
previous mask f , by keeping the voxels being at a
distance less than 2 mm from the outer contour of
the mask. The idea is that only these voxels of the
mask g could be considered as possible subcuta-
neous fat voxels.

• Final segmentation;
The binary image g contains the subcutaneous fat
layer but also some unwanted objects such as lung,
heart, and in some cases parts of the arms. We
multiply the mask g with the original volume (after
bias field correction) in order to retrieve the voxel
intensity values. Then we used a hysteresis thresh-
old, the low threshold being equal to 0.2 and the
high threshold being equal to 0.95 ( for a maximum
being equal to 1). From practical experimentation,
the resulting voxels should correspond to subcuta-
neous fat layer and nothing else. Finally a binary
mask h is generated with only the subcutaneous
layer as 1’s and everything else set to 0.

3.5. Histogram Analysis for T1 DCE standardization
Image histograms display a graphical representation

of the gray level or tonal distribution in a digital image.
It plots the number of pixels for each interval of inten-
sity values (bin). For MR breast radiomics, we chose
to study the subcutaneous fat layer on T1 DCE images,
in order to further standardize image intensities, simi-
larly to what has been proposed in the IMIV laboratory
for brain cancer MR images (Goya-Outi et al. (2018)).
The three main reasons for choosing the subcutaneous
fat layer for reference tissue are the following:

1. This region should have high signal intensities.
2. Regions containing tumor should be avoided as ev-

ery tumor is unique and may disrupt the standard-
ization process.

3. The subcutaneous fat layer seems better than the
normal fat inside the breast region, which may be
a mixture of different tissues.

The above factors are taken into consideration so as to
make sure that the reference tissue we chose to extract
and standardize is robust enough and comparable in all
MR breast scans. After the extraction of the subcuta-
neous fat layer, we compute histograms inside it and
consider that the first peak is a good candidate to repre-
sent subcutaneous fat tissue.
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Figure 4: Pipeline for subcutaneous layer extraction

4. Results

4.1. Illustration of N4 Bias field correction

The results are presented in the next figures. Apply-
ing default parameters for N4 algorithm did not produce
satisfactory results. Furthermore the N4ITK uses Otsu’s
method to build the mask image inside which the bias
field is computed. It happens that this mask does not
cover the entire breast area. Fig. [5] displays an exam-
ple of the application of the N4ITK on T1 DCE MRI
with default parameters. When comparing the original
image with the N4 bias field corrected image, it appears
that a very minor bias is estimated, and that better re-
sults could be expected. The estimation of the bias field
shows very low levels of non-homogeneity. Results ob-
tained using optimized hyper parameters for N4ITK are
illustrated for three groups of scans: 1) T1 DCE MR
scans acquired using the Sentinelle coil (see Fig. [6]),
2) T2 MR scans acquired using the Sentinelle coil (see
Fig. [7]), and 3) T1 DCE MR scans acquired using the
constructor coil (see Fig. [8]). The algorithm has proved
to be efficient for all these three cases. There is a sig-
nificant modification in intensity values after the imple-
mentation of the algorithm and a non uniform bias field
was estimated for each case.

4.2. Experimental validation of N4 Bias field correction

Ideally, the contrast between the left and right sides
should be close to zero. A global reduction of the mean
values of contrast was observed after N4 correction in
both T1 and T2 images. To display it, Fig. [9] and
Fig. [10] represent box plots of the contrast values be-
fore and after N4, for T1 and T2 images, in the pectoral
muscle and in the normal breast tissue. All the contrast
values were reduced after N4 correction: indeed, for T1
DCE scans, mean contrast values in the pectoral mus-
cle were equal to 0.122 before N4 and reduced to 0.085
after N4 correction. In the normal breast tissues, con-
trast was equal to 0.228 before N4 and to 0.107 after N4
correction. For T2 scans, mean contrast values in the
pectoral muscle were equal to 0.156 before N4 and to
0.121 after N4 correction. In the normal breast tissues,
contrast was equal to 0.219 before N4 and to 0.127 after
N4 correction.

4.3. Extraction of subcutaneous fat layer

The pipeline described in the previous section has
been tested and evaluated using the 44 T1 DCE volumes
(see Fig. [11] for some illustrations). The segmenta-
tion is quite satisfactory as it shows robustness across
our data set. The extracted subcutaneous fat layer was
then submitted to histogram analysis. From the litera-
ture review of brain MR analysis, we hoped to observe
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Original Image N4 Bias field corrected Extracted Bias Field

Figure 5: T1 DCE MRI after bias correction using default hyper parameters, scan acquired using Sentinelle biopsy coil

Figure 6: T1 DCE MRI after bias correction using optimized hyper parameters, scan acquired using Sentinelle biopsy coil

Figure 7: T2 weigthed MRI after bias correction using optimized hyper parameters, scan acquired using Sentinelle biopsy coil

Figure 8: T1 DCE MRI Bias correction using optimized hyper parameters, scan acquired using the constructor breast coil
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Figure 9: Left-Right contrast in the pectoral muscle and in the normal breast before and after N4ITK correction. Case of T1 weighted images

Figure 10: Left-Right contrast in the pectoral muscle and in the normal breast before and after N4ITK correction. Case of T2 weighted images

10.8



Breast MRI Normalization to Predict Pathological Complete Response to Neoadjuvant Chemotherapy 9

Figure 11: A few examples displaying the robustness of the pipeline

similarities in the shape of the histogram curve for some
specific tissues, such as subcutaneous fat. We notice a
trend in the histograms of the scans that were acquired
using the same coil. Histograms of subcutaneous fat
from scans acquired with the constructor breast coil dis-
play an initial distinct peak (see Fig. [12]), whereas
scans acquired with the Sentinelle biopsy coil display a
histogram with several peaks stretched out in a plateau
form (see Fig. [13]). In most cases the highest peak is
in the center of the plateau.
To visualize the voxels corresponding to the first peak of
the histogram, we reconstruct the voxels corresponding
to the first peak plus and minus 1%. In scans acquired
with the constructor breast coil, we notice that most of
the subcutaneous fat voxels are displayed. In scans ac-
quired using Sentinelle biopsy coil, we noticed fewer
points in the reconstructed image.

5. Discussion

Our study aims at tackling the challenges facing
breast MR standardization. We successfully explored
the hyper parameters of the N4 algorithm to achieve the
best results in the shortest possible time, since homo-
geneity correction is an important post-processing step
for MR breast analysis. Furthermore, we found a self
defined mask of the breast region proved to be quite ef-
ficient in non-homogeneity correction. From the litera-
ture review related to MR brain standardization, meth-
ods based on histogram analysis have shown to be quite
successful. We hoped to check histogram analysis of
the subcutaneous fat layer of the breast. This layer was
a good candidate for being a reference tissue in T1 DCE

breast MRI, as it has high signal intensities and it cor-
responds to a specific region. We successfully managed
to construct a pipeline for the extraction of breast sub-
cutaneous layer. The pipeline proved to achieve its goal
for the 44 MR volumes of our data set.
In light of investigating our hypothesis regarding his-
togram based breast tissue standardization, we discov-
ered the similarity in histogram shape in scans acquired
with the same MR coil. Scans acquired using the con-
structor coil show a single and distinct peak in the sub-
cutaneous fat whereas scans using the Sentinelle biopsy
coil display a more spread out plateau shaped histogram
with more than one peak. The discovery of the different
histogram pattern opens the way to test various other
methods that are mentioned in the state of the art sec-
tion. It will also be interesting to explore the reasons for
the differences in results acquired with the two coils,
some phantoms studies are scheduled to further investi-
gate that point.

6. Conclusions

In conclusion, our study demonstrates the importance
of non homogeneity correction for breast MR scans.
Due to the double coil nature of breast MR acquisition,
it may lead to a significant amount of bias in the scans.
Hence if default parameters for N4 bias correction are
efficient for brain MR images, they are not well-suited
for breast scans. The study also presents a computation-
ally convenient segmentation pipeline for the extraction
of breast subcutaneous fat layer. Further analysis of the
histogram shape of this fat layer revealed an unknown
confounding factor in MR breast analysis, due to the
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Subcutaneous Layer Histogram Points of first peak

Figure 12: A few examples of patients acquired with the constructor breast coil. From left to right: the subcutaneous fat, the histograms of image
intensities in this layer, the points corresponding to a small window centred around the first peak of the histogram.

Figure 13: A few examples of patients acquired with the Sentinelle biopsy coil. From left to right: the subcutaneous fat, the histograms of image
intensities in this layer, the points corresponding to a small window centred around the first peak of the histogram.
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different coils used for MR scan. It gives rise to further
investigate the effects of the two coils on the MR signal
intensities inside the breast.
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Abstract

Histopathology is the gold standard to diagnose and grade various kinds of cancer. However, stain color heterogeneity
can exist in histopathology slides of the same tissue type prepared in different pathology institutes due to various
factors arising from the staining procedure and environment. The stain color heterogeneity further effects the gen-
eralization performance in machine learning based computational analysis of digital pathology. It is challenging for
a computer aided diagnostic system to produce identical results on the slides prepared at different histology settings
with the same tissue and diagnostic objectives. In this thesis, the stain color heterogeneity across various pathology
centers has been investigated to minimize its effects on a convolution neural network based classification problem
through various preprocessing and domain adaptation methods. Several public histopathology databases have been
explored to reach at a suitable collection to conduct experiments on stain color heterogeneity. By considering the
suitable dataset, various stain color normalization and augmentation techniques are quantified on tumor and normal
tissue classification task to improve the generalization on external data. In addition to the stain color normalization
and augmentation techniques, the convolution neural network is also trained to learn the domain information of the
samples while training for class label classification. Comparative analysis of obtained results have shown significance
performance of the classifier on an external data when trained with stain normalization and augmentation methods.
Top ranked methods have shown even improved results on external test samples when probability based fusion is
employed.

Keywords: Digital pathology, Stain heterogeneity, Normalization, Augmentation, Domain learning, Machine
learning

1. Introduction

Cancer is recognized by the World Health Organiza-
tion as an important disease with global deaths amount-
ing to 9.6 million persons in 2018 alone. 18.1 million
new cases were diagnosed in the same year (WHO,
2018). Cancer is a collection of more then 100 dis-
eases related to the uncontrolled division of body cells
into the surrounding tissue (NIH, 2007). Such prolif-
eration of abnormal cells can be malignant, integrating
nearby cells into metastases. Lung, breast, colorectum
and prostate are the four most frequently effected organs
by cancer, so with the highest mortality rates (WHO,

Figure 1: Stain color heterogeneity in digital histopathology data of
the same tissue scanned with (a)Aperio and (b)Hamamatsu scanners.

2018). Histopathology is the gold standard to diagnose
and grade various kinds of cancer (Khosravi et al., 2018;
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Xu et al., 2017). The tissue samples of cancers are ex-
tracted through biopsies for microscopic analysis. Then
these tissue samples are processed through a chemical
procedure called histological staining. There are vari-
ous stages involved in histological staining such as fix-
ation, processing, embedding and sectioning (Alturk-
istani et al., 2015). Histological staining is an essential
chemical procedure that helps to discriminate different
structures within the tissue under a microscopic study.
For instance, hematoxylin and eosin (H&E) are the two
most frequently used chemical dyes that enhance the
contrast of the tissue by coloring the cell nuclei pur-
ple and connective tissue as pink respectively. Tissue
samples without staining have less contrast and appear
rather grey (Roy et al., 2018). Finally, the stained slides
of tissue samples can be scanned for pathologists and re-
searchers to analyze them further in a digital way (Pan-
tanowitz et al., 2011). Stain color heterogeneity exists
in whole slide images (WSIs) from distinct laboratories
(see Figure 1) due to the factors involved in staining
and the scanning process (Yagi, 2011). Variations in
thickness of specimen, staining and properties of digital
scanners make it inviable to obtain homogeneous data
from multiple laboratories (Tellez et al., 2019; Yagi,
2011). Heterogeneity in WSIs of the same tissue type
acquired from different laboratories or scanners makes
it challenging for machine learning, mainly deep learn-
ing based approaches to generalize identical results in
computer aided diagnosis across all WSIs (Zheng et al.,
2019).
This master thesis investigates the staining heterogene-
ity across public histopathology data-set of the same tis-
sue, taken from distinct staining laboratories or acquired
from different scanners. The main objectives of the re-
search work are as following,

• Investigation of various public histopathology
data-sets of different tissue type that include Colon,
Lung, Prostate and Breast to reach a data that
can be further utilized in stain color heterogeneity
study.

• Investigating various stain color normalization and
augmentation approaches that address stain hetero-
geneity on the suitable collection with diagnostics
tasks such as cancer classification.

• Combining the best performing stain color normal-
ization and augmentation methods to improve the
generalization on the external data-set by using a
convolution neural network based approach.

• Evaluate the performance of the convolution neu-
ral network by learning domain heterogeneity of
the corresponding training samples while class la-
bel classification.

2. State of the art

2.1. Reference Data-sets for Stain Heterogeneity

In order to conduct experimental analysis to quantify
generalization performance under heterogeneous con-
ditions, various public histopathology data-sets were
investigated, as shown in Table 1. These collections
are from various tissue types, such as colon, lung and
bronchus, prostate, breast and ovary. The selection of
the data-sets was limited to H&E stained whole slide
images (WSIs), patches and tissue micro arrays (TMA).
During data exploration and search, 18 public data sets
were found from several resources. Theses resources in-
clude public research repositories, grand challenges and
individual repositories of the researchers or institutes.
In the following paragraphs the characteristics of each
data set is briefly described. The Cancer Genome Atlas
(TCGA) is largest online repository for cancer genomics
and molecular characterization. It is initiated by Na-
tional Cancer Institute and the National Human Genome
Research Institute in 2006, now it is extended to multi-
ple institutions. The data is publicly available for di-
agnosis, treatment and prevention of cancer research.
TCGA contained three histopathology datasets of our
interest, TCGA-COAD, TCGA LSCC & LUAD and
TCGA-PRAD, all of them are the collections from mul-
tiple centers and annotated globally for different types
and subtyes of cancer. TCGA-COAD is a collection of
4 types of colon cancer and consisted of 453 WSIs, dig-
itized at 40× magnification with an average resolution
of 100, 000 × 100, 000 pixels. TCGA-COAD is pub-
lic storage with controlled access that requires a spe-
cific registration process to access the data according
the data access policy. TCGA LSCC & LUAD contains
956 WSIs of lung and bronchus with the same resolu-
tion, magnification and access type as TCGA-COAD.
Whereas TCGA-PRAD is an open access prostate ade-
nocarcinoma data and available in 272 WSIs from 25
different institutes with global annotations of Gleason
grades (Arvaniti et al., 2018). Tissue microarrays from
University Hospital Zurich (TMA-Zurich) is also pub-
lic repository that contains 71 prostate cases scanned by
Hamamatsu(C9600 NanoZoomer 2.0-HT) slide scan-
ner at a magnification and a resolution of 40× and
7, 000× 7, 000 pixels respectively (Arvaniti et al., 2018;
Zhong et al., 2017).
Automatic cancer detection and classification in whole
slide lung histopathology (ACDC@LUNGHP) is a
challenge providing 200 WSIs, digitized at First Hos-
pital of Changsha, China by Olympus VS120 with 20×
magnification (Li et al., 2018). ACDC@LUNGHP con-
tains the local annotations of cancer regions and pub-
licly available to the registered participant in the chal-
lenge (Li et al., 2018). Kather et al. (2016) collected
5000 patches of 150 × 150 pixels with a magnification
of 20× at Institute of Pathology, Heidelberg University.
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Table 1: List of the investigated histopathology data-sets of various tissue types for stain color heterogeneity study across the histology centers.

Dataset Tissue Images (Type) Center Scanner

TCGA-COAD1 Colon 453 (WSIs) Multiple centers -
CRCHistoPhenotypes2 Colon 200 (Patches) University Hospitals Coventry and

Warwickshire, UK
Omnyx VL120

GIaS16 warwick QU3 Colon 165(Patches) University Hospitals Coventry and
Warwickshire, UK

Zeiss MIRAX MIDI

CRAG v14 Colon 213 (Patches) University Hospitals Coventry and
Warwickshire, UK

Omnyx VL120

Kether Textures5 Colon 5000 (Patches) Institute of Pathology,Heidelberg Uni-
versity, Mannheim, Germany

Aperio ScanScope

ACDC@LUNGHP6 Lung 200 (WSIs) First Hospital of Changsha, China Olympus VS120
TCGA LSCC and LUAD1 Lung 956 (WSIs) Multiple centers -
Stanford TMA database7 Lung Multiple (TMAs) School of Medicine, Stanford Univer-

sity, USA
-

TCGA-PRAD1 Prostate 272 (WSIs) 25 centers -
TMA Zurich8 Porstate 71 (TMAs) University Hospital Zurich Hamamatsu (C9600

NanoZoomer 2.0-HT)
TUPAC9 Breast 821 (WSIs) Multiple centers -
PatchCamelyon10 Breast 327680 (Patches) Radboud University Medical Center,

University Medical Center Utrecht,
Netherlands

3DHistech Pannoramic
Flash II 250, Hama-
matsu NanoZoomer-
XR C12000-01

UCSB dataset11 Breast 58 (Patches) Center for Bio-image Informatics, USA -
MITOS-ATYPIA-1412 Breast 1420 (Patches) Pathology Department at Piti-Salpłtrire

Hospital in Paris, France
Aperio Scanscope,XT
Hamamatsu,
Nanozoomer 2.0-HT

Camelyon 1613 Breast 399 (WSIs) Radboud University Medical Center,
University Medical Center Utrecht,
Netherlands

3DHistech Pannoramic
Flash II 250, Hama-
matsu NanoZoomer-
XR C12000-01

Camelyon 1714 Breast 1000 (WSIs) Radboud University Medical Center,
Canisius-Wilhelmina Hospital, Univer-
sity Medical Center Utrecht, Rijnstate
Hospital, and Laboratorium Pathologie
Oost-Nederland, Netherlands

3DHistech Pannoramic
Flash II 250, Hama-
matsu NanoZoomer-
XR C12000-01, Philips
Ultrafast Scanner

Lymphoma15 Lymphoma 256 (Patches) Intramural Research Program Labora-
tory of Genetics, National Cancer Insti-
tute, National Institute on Aging

-

SFU dataset16 Ovary 133 (WSIs) 6 different pathology centers, Canada Aperio ScanScope

Note: WSIs: Whole Slide Images, TMAs: Tissue Microarrays
1https://portal.gdc.cancer.gov/, 2https://warwick.ac.uk/fac/sci/dcs/research/tia/data/crchistolabelednucleihe/, 3https://warwick.ac.uk/fac/sci/dcs/research/tia/glascontest, 4https://warwick.ac.uk/fac/sci/dcs/research/tia/data/mildnet/

5https://zenodo.org/record/53169#.XHzqdN1KjRY, 6https://acdc-lunghp.grand-challenge.org/, 7https://tma.im/cgi-bin/viewArrayBlockList.pl, 8http://dx.doi.org/10.7910/DVN/4WEMEQ, 9http://tupac.tue-image.nl/
10https://github.com/basveeling/pcam, 11https://bioimage.ucsb.edu/research/bio-segmentation, 12https://mitos-atypia-14.grand-challenge.org/Dataset/, 13https://drive.google.com/drive/folders/0BzsdkU4jWx9Bb19WNndQTlUwb2M
14https://drive.google.com/drive/folders/0BzsdkU4jWx9BaXVHSXRJTnpLZU0, 15https://ome.grc.nia.nih.gov/iicbu2008/, 16http://ensc-mica-www02.ensc.sfu.ca/download/

The collection is consisting of 8 different textures in col-
orectal low grade and high grade tumors. The patches
were annotation manually and collection is available
publicly. Similarly, for colon cancer research three pub-
lic datasets acquired at Department of Pathology, Uni-
versity Hospitals Coventry and Warwickshire. First two
collections, CRCHistoPhenotypes and CRAG v1 con-
tain 200 and 213 patches of 500 × 500 and 1500 × 1500
pixels respectively (Awan et al., 2017). These datasets
are digitized with OmnyxVL120 and locally annotated
for nuclie segmentation and colorectal adenocarcinoma

grading. GIaS16 warwick QU is the third collection
that comes with 165 patches of 775 × 522 pixels with
20× magnification, digitzied with Zeiss MIRAX MIDI
scanner and annotated for gland segmentation task (Sir-
inukunwattana et al., 2016). Stanford tissue microar-
ray database is an other large collection of histopathol-
ogy images of various organs aggregated by School of
Medicine, Stanford University (Marinelli et al., 2008).
Multiple TMAs are availabe of human lung with global
annotations of malignant and benignant and data can be
available on request. BenTaieb et al. (2017) aggregated
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very well structured collection of ovarian carcinoma
subtyping of 133 patients, slides were digitized by Ape-
rio ScanScope with a highest magnification of 40x and
having an average resolution of 50, 000 × 50, 000 pix-
els. WSIs were annotated by a common agreement of
three expert pathologists for carcinoma subtyping and
available publicly. The National Institute of Aging pro-
vides digitized histopathology images of various organs
of human and animal as benchmark for testing and com-
paring the performance of the different image analysis
algorithms (Shamir et al., 2008).
Moreover, numerous collections of histopathology im-
ages from women breast cancer were studied. Tu-
mor proliferation assessment challenge (TUPAC) is one
of the large collections of woman breast cancer re-
search, consisting of 821 WSIs acquired from multi-
ple centers and annotated for tumor regions (Veta et al.,
2018). Similarly, Center for Bio-image Informatics
is an online repository containing various bioblogical
datasets for benchmarking of segmentation and clas-
sification (Drelie Gelasca et al., 2008). Among other
datasets, it provides UCSB dataset which consists of
58 patches of two different resolutions 896 × 768 and
768×512 pixels with a global annotations of breast can-
cer malignant and benignant cases. MITOS-ATYPIA
is also an other interesting collection of breast can-
cer images by Pathology Department at Piti-Salpłtrire
Hospital in Paris (Roux et al., 2014). In the collec-
tion 1420 patches are from two different resolutions and
magnifications 1539 × 1376, 1663 × 1485 pixels and
20×, 40× respectively. The same tissues were digitized
with two different slide scanners, Aperio Scanscope XT,
Hamamatsu Nanozoomer 2.0-HT and color heterogene-
ity can be visualized clearly. The patches were an-
notated for scoring nuclear atypia and publicly avail-
able. In 2016, Camelyon16 challenge took place about
the diagnostic assessment of deep learning methods for
lymph node metastases detection in women suffering
with breast cancer (Veta et al., 2018). It provides 399
WSIs from two hospitals in Netherlands, Radboud Uni-
versity Medical Center and University Medical Center
Utrecht. The WSIs were acquired from two different
scanners 3DHISTECH: Pannoramic 250 Flash II and
Hamamatsu: NanoZoomer-XR with 20× and 40× mag-
nifications. The slides were annotated by the pathol-
ogists for macrometastases and micrometastases. Al-
though the challenge is over, however, dataset is still
available to download from the public repository (Lit-
jens et al., 2018). PatchCamelyon is an other public
repository which is an extraction of patches from Came-
lyon16 WSIs to benchmark deep learning algorithms
for tumor classification task (Veeling et al., 2018). It
provides well organized train, validation and test sets
all consisting of 327, 680 patches with a resolution of
96 × 96 pixels. The patches were extracted so that each
positive label indicates that the center region of 32 × 32
pixels in a patch contains at least one pixel from tumor

tissue. Finally, Camelyon17 challenge is also having a
repository of breast cancer WSIs which is the extension
of Camelyon16. It provides 1000 WSIs from 5 differ-
ent centers (Litjens et al., 2018). These centers are from
Netherlands and include: Radboud University Medical
Center, Canisius-Wilhelmina Hospital, University Med-
ical Center Utrecht, Rijnstate Hospital, and Laborato-
rium Pathologie Oost-Nederland. The slides were lo-
cally annotated for metastases and well organized train-
ing set contains WSIs from each center. From all above
collections, It is concluded that the characteristics of
Camelyon17 training set are suitable for the color het-
erogeneity experimentation. Therefore, in this thesis,
50 lesion-level annotated slides that provide 10 slides
from each center are used to quantify different methods
for color heterogeneity that exits due to the slide prepa-
ration method and scanning of histopathology slides at
five different pathology centers.

2.2. Global Stain Color Normalization
In order to overcome stain color heterogeneity, vari-

ous studies have been conducted to homogenize the data
acquired from different laboratories or different scan-
ners of the same tissue type with a common goal of di-
agnosis. It is worth mentioning that the stain hetero-
geneity in digital histopathology does not only effects
the computational analysis performed by the research
community but it is considered as a problem for the
pathologists when they perform visual analysis on the
whole slide images especially in telepathology. Such
a problem was highlighted by Yagi (2011), where ex-
tensive experiments were performed to calibrate display
systems using different color filters for H&E staining. In
this study, staining, thickness of specimen, scanner and
scanning process, viewing software and displaying sys-
tems were considered responsible for color heterogene-
ity. The display systems study through Macbeth color
chart was helpful to calibrate the color of the displays
across entire department to make the visual effects ho-
mogeneous in histopathology data.
Stain normalization in histopathology is not new to
the digital image processing domain especially when it
comes to color variation in the image due to incandes-
cent illumination, where it is important to bring different
images of the same scene to a common color distribu-
tion. Identification of such problem was presented by
Reinhard et al. (2001) and it was suggested to transfer
the color distribution of data to the color characteris-
tics of one common reference image among the data.
The experimental results presented by Reinhard et al.
(2001) were mostly focused on outdoor scenes, how-
ever, due to simplicity of the method, it has been uti-
lized for histopathology slides normalization. The Rein-
hard et al. (2001) method is based on color distribu-
tion model in each channel of the Lab color space. In
histopathlogy, the digitizing process of histology slides
is quite similar to image acquisition in other various
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applications, however, digitized slides contain variable
microscopic information depending on the magnifica-
tion used. In the slide scanning process, the appearance
of the stain depends on the intensity absorbed by the
tissue and it further depends on amounts of the stain
added to the tissue and its handling and storage meth-
ods. The linear relationship between the stains and ab-
sorbed intensity in the tissue is described by the cor-
responding optical density for stain normalization using
devolution model(Macenko et al., 2009). In the method,
the stain colors were estimated using a singular value
decomposition (SVD) based matrices and through lin-
ear per channel normalization based on the 99th per-
centile to map source image values to the target match-
ing. However, the Macenko et al. (2009) method de-
picts inconsistencies in the performance if a slide under
normalization contains higher number of stains. Fur-
thermore, the method modifies the color distributon of
both source and target images which is undesirable in
some cases where suitable reference image is used to
map the characteristics to the rest of data. In order to
overcome the problems faced by method presented by
Macenko et al. (2009); Reinhard et al. (2001), a non lin-
ear mapping of channel statistics based normalization
method from source to target images is introduced by
Khan et al. (2014). The method was mainly focused
on estimated stain matrix, color deconvolution and re-
construction steps. The stain matrix estimation was per-
formed by color classification. In the color classification
task a Relevance Vector Machine (RVM) was trained
in RGB color model. Significance of the method de-
pends on the robust deconvoulution matrix estimation
and mapping function. The color deconvolution sepa-
rates out the variation of each stain to correct it indepen-
dently. However, the pre-trained RVM color classifier
makes the method unstable in the test cases that deviate
from the train cases due to varying dye color. Moreover,
the manual or random choice of the target image in the
absence of the prior stain and biological information in
it make the normalization task to expect random gener-
alization on certain applications.
Ehteshami Bejnordi et al. (2016) proposed a color stan-
dardizing technique for whole slide image by using the
color and spatial information to classify the pixels into
stain components. The density and chromatic distri-
bution of the data in the hue-saturation-density color
space is aligned with a template slide. However, the
performance of the method in the new data relies on ex-
pert opinion about the chosen reference template slide
by considering the color and cellular information in
to account. On the other hand, Tam et al. (2016) il-
lustrated contrast limited adaptive histogram equaliza-
tion(CLAHE) based intensity centering model to bring
the color distribution to the center point within whole
data. The method avoids the reference and target image
significant statistics, however, the histogram equaliza-
tion is limited to the spatial dependency of pixels. In

order to preserve the biological structural information
while performing the color noramalizatin taks,Vahadane
et al. (2016) presented the structure preserving color
normalization. In the method, the stain density map was
considered as sparse and non-negative. In the sparsity it
was assumed that the biological material occupies one
given pixels location or other but not both. Similarly,
the non-negativity describes that either a biological ma-
terial is absorbing the light or not and optical density
cannot be negative. Based on the above assumptions
the color appearance and stained density matrices for
both source and target images were estimated for color
transformation.

2.3. Machine Learning based Stain Normalization
The stain color normalization techniques are able to

cope with the variability of the stain and appearance of
the digital histopathology for visual observations. The
stain heterogeneity is also dealt with several machine
learning based approaches. These techniques focus on
generalization improvement in computational analysis
by considering the texture feature along with color in-
formation during normalization process. In this con-
text, deep convolution feature-aware normalization was
presented by Bug et al. (2017). The study mainly fo-
cused on the visually relevant image deep features and
style transferring. The feature aware normalization was
inspired by batch normalization (Ioffe and Szegedy,
2015) and long term memory (Hochreiter and Schmid-
huber, 1997) mechanisms. The method performed pixel
wise transformation based on features contained in the
plasma or nucleus in the tissue. The color was treated as
a form of a style to integrate into the network by shifting
and scaling parameters of batch normalization layers.
The features extraction process was mainly performed
by a pretrained VGG19 architecture in both reference
and source images. The mean and variance metrics of
reference image features were used for color normaliza-
tion by shifting and scaling network parameters. Simi-
larly Samsi et al. (2018) normalized the histopathology
images by adopting the deep learning model that has
been used on natural scenes colorization (Baldassarre
et al.). In this study ResNet-v3 was used to extract the
features from the images and then these features were
fused with encoder-decoder model. The model was
trained to estimate ab color values of Lab color space
by minimizing the mean squared distance error between
actual and estimated values.

In (Janowczyk et al., 2017), an unsupervised stain
normalization method was introduced where the sparse
auto-encoders were used to normalize moving images to
a template image. The pixels were clustered by using k-
means according to the respective tissue partitions in the
saprse auto encoded feature space. Then the color distri-
bution of each partition in the moving data was aligned
with its respective color distribution of the template. Fi-
nally, the histogram equalization was performed across
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Figure 2: Block diagram representing work-flow of the system.

the color channels. The method was experimented on
different data sets of various tissue types with hetero-
geneity due to their domains or scanners. In digital
histopathology, the color normalization techniques of-
ten require the reference image to transfer the color
characteristics to the rest of the images. However, Sha-
ban et al. (2018) prosposed end-to-end generative ad-
versarial networks (GANs) based approach to transfer
the stain style by eliminating the requirement of an ex-
pert to choose a reference image. The experimentation
was performed on MITOS-ATYPIA dataset which is ac-
quired from the same tissue section with two different
scanners (Roux et al., 2014). The method mainly con-
sisted of two pairs of generator and discriminator to map
the stain style of the images belonging to one domain to
the other. Similarly, GANs architure was also employed
by Cho et al. (2017) to transfer the stain style from
source to target images. The conditional GANs were
trained to learn both color distribution and histopatho-
logical patterns present in the Camelyon16 data set (Lit-
jens et al., 2018). The images from two different cen-
ters were normalized to the gray-scale then style gen-
erator was used to colorize the gray-scale images again
to a standard stain style. Inspired by style transfer and
generative learning methods, (Bentaieb and Hamarneh,
2018) presented stain normalization technique by pre-
serving the structural information. The method avoided
to relay on single reference image therefore the match-
ing was performed on stain statistics over the entire do-
main of images. Instead of pixel level matching, the
feature representation of the images was used to nor-
malize them. The proposed network was divided into
stain transfer and task specific parts to perform both
stain normalization and classification or segmentation
tasks simultaneously. The stain transfer network learned
the probability distribution of the images of one domain
by minimizing the adversarial loss function to map the
input image to a stain normalized image. Whereas the
task specific model was used to maximizing the like-

lihood of the input image according to the given task.
The proposed technique was evaluated on three differ-
ent data sets of mitosis, colon and ovary (Bentaieb and
Hamarneh, 2018; Roux et al., 2014; Sirinukunwattana
et al., 2016) that contained color variability. Apart from
stain transfer and feature based stain normalization, the
generalization in convolution neural networks for com-
putational pathology can be improved by data augmen-
tation methods. In (Tellez et al., 2018), a data augmenta-
tion based technique was developed to improve the gen-
eralization of convolution network for histopathology
data. Each patch of the train set was modified in terms
of hematoxylin, eosin and residual channels then a com-
bination of rotation, color stain, scaling, elastic defor-
mation, image enhancement, blurring, additive Gaus-
sian noise was used as data augmentation techniques.
Extensive experimentation was conducted to improve
the generalization performance on different data sets of
various tissues from multiple centers (Bandi et al., 2019;
Kather et al., 2016; Veta et al., 2018). Finally, a recent
review (Roy et al., 2018) is considered as a reference
for further analyses on various global, supervised and
unsupervised color normalization methods.

3. Material and methods

In this thesis, several stain color normalization meth-
ods, data augmentation techniques and domain adver-
sarial based learning are evaluated on a convolution neu-
ral network classifier to improve the generalization spe-
cially on the external data. The overall work-flow is
shown in the Fig. 2 whereas the following subsections
discuss the data, methods and tools to conduct the ex-
periments in detail.

3.1. Data Preparation
We investigated several histopathology databases to

find best suitable data that can be used for stain color
heterogeneity quantification (see section 2.1). Through

11.6



Improving Generalization of Convolution Neural Networks for Digital Pathology by Minimizing Stain Heterogeneity
through Normalization, Augmentation and Domain Learning 7

Figure 3: Tumor and normal tissue patches from whole slide images of Camelyon17 dataset (Litjens et al., 2018), where the slides were prepared
and digitized at five different centers and three different scanners respectively, the color variability is clearly visible in the patches from all five
centers (a to e).

this investigation, it is concluded that Camelyon17
dataset has the desirable collection to perform the exper-
imentation. The Camelyon17 is the second grand chal-
lenge organized by Diagnostic Image Analysis Group
and Department of Pathology of the Radboud Univer-
sity Medical Center in Netherlands. The chanllenge
aimed at the evaluation of new and existing methods
for detection and classification of breast cancer metas-
tases particularly in whole slide image of histological
lymph node sections. The histological slides were pre-
pared and scanned at five different pathology centers
and acquired with three different scanners (Litjens et al.,
2018), where the stain color heterogeneity can be wit-
nessed clearly as shown in Fig.3. The local annota-
tion of tumor and normal tissues provide better way
to prepare a data for convolution neural network based
classification task. The slides were scanned at pixel
resolution of 0.23µm to 0.25µm and provided in TIFF
format. In this thesis, 50 annotated WSIs, 10 slides
from each center are used to extract the patches from
tumor and normal tissue areas of each slide. The tis-
sue masks of tumor and normal regions from a 64-times
down-sampled gray-scale WSI are generated by apply-
ing Otsu’s method (Smith et al., 1979). Then these tis-
sue masks are used to obtain tumor and normal regions
from original RGB WSI. From each tissue region of
each slide, around 500 patches of 224 × 224 pixels are
extracted. From the tumor tissue only those patches that
are covering at least 70% of tumor pixels are considered
and rest are discarded. A complete process of patch ex-

Figure 4: Patch extraction process, (a) Whole slide image, (b) seg-
mented tissue mask, (c) annotated tumor lesions (red) and normal tis-
sue (green) and (d) extracted patches.

traction is highlighted in Fig.4. Finally, the extracted
patches are carefully distributed to train, validation, in-
ternal test and external test so that the distribution in
each partition should contain all patches obtained form
a slide. In order to evaluate the performance of differ-
ent augmentation and normalization techniques, five sub
data sets or folds are prepared by leaving each time all
patches from one center as an external test set and rest
of patches from remaining four centers with slightly im-
balance classes are distributed among train (70%), val-
idation (15%) and internal test (15%) sets as shown in
Table 2. It is worth mentioning that the outcomes of
our experimentation are not comparable with the results
of the existing techniques in the grand challenge due the
different nature of experimentation. In our experimental
work only those WSIs are used where the relevant center
information is provided. In such case, the slides in orig-
inal train set of the challenge is center-wise organized
whereas the original test set does not contain such in-
formation. Therefore, the patch extraction is performed
on the WSIs from the original train set of the challenge.
The aim of the experimentation is to improve the gener-
alization on the data set which should be from an exter-
nal source or center then the one used in training, vali-
dation and internal testing phase with the known source.

Table 2: Data distribution into five different subsets or folds where
each subset has external test set of patches belonging to a center and
train, validation and internal sets are consisting of patches from rest of
four centers.

D.Fold Train-Validation-Internal Test Sets E.Test Set

1 Center1 Center2 Center3 Center4 Center0
2 Center0 Center2 Center3 Center4 Center1
3 Center0 Center1 Center3 Center4 Center2
4 Center0 Center1 Center2 Center4 Center3
5 Center0 Center1 Center2 Center3 Center4

Note: D: Data, E: External

3.2. Data Augmentation

The convolution neural networks (CNNs) consist of
large number of trainable parameters. Large quantity
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of samples in the training process make the networks
more robust by learning more features which further im-
proves the generalization on the test samples. Data aug-
mentation is very useful in the cases where less number
of training samples are available or in imbalance class
scenario where CNNs are more prone to converge to-
wards to a class with higher number of training sam-
ples. However, in our case the data augmentation en-
hances the characteristics of data to improve the gener-
alization on the external test samples that are belong-
ing to a different source with different variations in the
staining. Therefore, it is hypothesized that training a
network on the train data with more staining or color
variations through augmentation could improve the gen-
eralization performance by learning variability. Various
data augmentation techniques are individually evaluated
on training samples and then effective techniques are in-
cluded in the main pipeline. These data augmented tech-
niques are based on variations in color and stain, sym-
metric transformation and changes in brightness and
contrast as shown in Fig. 5 and Fig. 6. The color, bright-
ness, contrast variations and symmetric transformation
are performed by using the fast and flexible image aug-
mentation techniques (A. Buslaev and Kalinin, 2018).
In order to increase the color variability, RGB (red,

Figure 5: An example of data augmentation, on (a) and (e) original
images, by (b) rbg channel shuffle, (c) rgb channel shifting, (d) hsv
channel shifting, (f) brightness, contrast, inversion operations on gray
version, (g) rgb inversion and symmetric operations and (h) brightness
and contrast operations on rgb.

green, blue) and HSV (hue, saturation, value) channels
of each image are shifted with randomly generated val-
ues. For RBG channels, shifting values are between [-
80:80, -45:45, -40:40] whereas the HSV channels are
randomly shifted with a ranges of [-180:180, -20:20,
-27:27]. Different new colors of the each image are
also produced by randomly shuffling the RGB chan-
nels. The brightness and contrast variations are pro-
duced with ranges between [-1.2:1.2] and [-0.9:0.9] re-
spectively. The Contrast Limited Adaptive Histogram
Equalization (CLAHE) and random gamma correction
are also applied to variate brightness and contrast. For
the symmetric transformation, images are randomly ro-
tated between [-100:100] degrees and flipped horizon-

tally and vertically. Similarly, images from each train-
ing batch are randomly inverted and converted to gray-
scale to produce more variability in the training batch.
The gray version are also augmented with different sym-
metric transformation, brightness and contrast varia-
tions. The WSIs from Chamelyon17 are stained with
H&E stains, the linear transformation of these stain to
RGB space without the background can be represented
by stain matrix S as given in Eq.1.

S =

[
HR HG HB

ER EG EB

]
(1)

Where the first and second rows are corresponding to
the RGB compoents of the H&E stains respectively.
The stain matrix S is estimated by Macenko et al. (2009)
with the help of two largest singular values of decompo-
sition vector. The RGB components of H&E stains are
individually estimated by considering the light absorp-
tion coefficient C for each stain. Therefore, new staining
concentration in each image is produced by variation of
C coefficient by using Beer-Lambert law in Eq.2.

IRGB = I0 exp (−S RGB.C) (2)

In Fig. 6 an example of different variations produced by
stain augmentation of the same image are shown.

Figure 6: Stain augmentation, on (a) original image by obtaining dif-
ferent stain augmented versions from (b) to (g).

3.3. Stain Color Normalization

In order to reduce the color variations across data, the
stain color normalization methods are used to homoge-
nized train, validation, internal test and external test sets
in each fold or sub data. The stain color distributions
across different centers have been homogenized to a sin-
gle target or template image. The stain normalization
overcomes the color variance and model should per-
form well even on unseen stains due to the uniform stain
color distribution. In this thesis, three stain color nor-
malization methods are evaluated on tumor and normal
tissue classification task (Byfield, 2019). Firstly, the his-
togram specification or matching is evaluated for stain
color normalization in our data (Coltuc et al., 2006;
Gonzalez and Woods, 2006). Where histogram of each
patch in the data is matched to the histogram of speci-
fied target or template image with the help of cumulative
distribution function as given in Eq.3 and Eq.4.

cd fsrc(R,G,B)(si) =

i∑

j=0

psrc(R,G,B)(s j) (3)
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cd ftmp(R,G,B)(ti) =

i∑

j=0

ptmp(R,G,B)(t j) (4)

Where i is total number of gray level in each channel
of RGB image, cd fsrc(R,G,B)(si) and cd ftmp(R,G,B)(ti) are
cumulative distribution functions of each gray level si

and ti in source and template image respectively. Sim-
ilarly, psrc(R,G,B)(s j) and ptmp(R,G,B)(t j) are representing
the probability density function of each gray level si and
ti in source and template image respectively. Probabil-
ity density function are calculated from the histogram
of the both images, by considering the ratio of the fre-
quency of the gray value to the total number of the pixels
in the channel. Finally, ti value in the template image is
mapped to si value in each source image for a uniform
stain color distribution. Similarly, stain color distribu-
tion among all the patches from train, validation, inter-
nal and external tests are specified to a single template
image distribution in RGB channels.
Secondly, Macenko et al. (2009) stain color normaliza-
tion approach is evaluated where the normalization is
performed at H&E channels. All the patches from each
fold of data are mapped to a template image by esti-
mating stain colors in optical density. Where singular
value decomposition (SVD) is used to get the optimal
stain vectors from both input and template images to
perform the linear per channel normalization based on
the 99th percentile intensity values. Thirdly, Reinhard
et al. (2001) stain color normalization is evaluated, the
method is mainly based on color distribution model in
each channel of the Lab color space. Both source and
template images are converted from RGB to Lab color
space. Then mean and standard deviation of each chan-
nel of both images are calculated. The color distribution
of the template image is transferred to the source images
in the Lab color space by using the calculated mean and
standard deviation as shown in Eq.5.

Inorm(L,a,b) =

[
Isrc(L,a,b) − µsrc(L,a,b)

] × stdtmp(L,a,b)

stdsrc(L,a,b) × µtmp(L,a,b)
(5)

Where Isrc(L,a,b), µsrc(L,a,b) and stdsrc(L,a,b) are the respec-
tive channels, mean and standard deviation values of
source image in Lab color space. Similarly, µtmp(L,a,b)
and stdtmp(L,a,b) are representing mean and standard de-
viation of the corresponding template image respec-
tively. Finally, the normalized image in Lab color space
Inorm(L,a,b) is converted back to RGB. In this thesis, it
is also hypothesized that CNN models are efficient to
learn morphological patterns in histopathology images
and removing stain color information could improve the
performance. Therefore, beside above mentioned stain
color normalization methods, images are also converted
to grayscale and grayscale histogram stretched versions
to evaluate them on CNN model. The Fig. 7 presents
few examples of the different patches from five different
centers with color variability and then above mentioned

normalization methods are used for uniform stain color
distribution.

Figure 7: Stain color normalization, in the first row (a) A target or tem-
plate image is used to distribute stain color homogeneously across (b)
original images with the help of different color normalization meth-
ods ((c) Histogram specification, (d) Macenko, (e) Reinhard ) and also
original images were homogenized to (f) gray-scale and (g) gray-scale
histogram stretched images.

3.4. Convolution Neural Network Classifier

In this thesis, MobileNetV2 architecture is used as a
CNN classifier which belongs to the family of second
generation computer vision networks (Sandler et al.,
2018). Such networks are designed to perform detec-
tion, classification and segmentation related tasks at a
very low computational costs with the aim to integrate
them into personal mobile devices. The MobileNetV2
is the advance version of MobileNetV1 with more ro-
bustness and stability (Howard et al., 2017). The block
diagram of the network is shown in Fig. 8, where the
network contains the initial fully convolution layer with
32 filters, followed by 16 linear bottleneck blocks hav-
ing a shortcut connections between them. These build-
ing blocks encode intermediate inputs and outputs with
inner layer’s ability to transform pixels to higher level
descriptors with faster training and better accuracy. In
contrast to conventional networks, full convolution op-
eration is replaced with factorized depth-wise and point-
wise convolution operations. These operations are per-
formed with lightweight filtering and 1 × 1 convolution
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Figure 8: MobileNetV2, convolution neural network architecture.

operations to build new features through linear combi-
nations of input channels. In the network Relu6 is used
as non linearity due to its robustness when low preci-
sion computational tasks are required. The filtering op-
erations throughout the network are performed by 3 × 3
standard kernel size. The network is designed with the
expansion mechanism of the layers at each bottleneck
block to improve the performance with small network
size. The input channels to the layers are intermedi-
ately expended with a factor of 6 throughout the net-
work. Output of the last bottleneck block is applied to
two 1 × 1 convolution layers with an average pooling
layer between them. In order to make the network use-
ful for our class label classification task, the original net-
work is extended by adding two dense layers of 256 and
128 neurons with Relu as an activation function. The
network is extended upon adding globing average pool-
ing and a dropout layer with 50% drop probability of
neuron connections as shown in Fig. 8. Finally, a dense
layer with 2 neurons with Softmax as an activation func-
tion is used to obtain the class predictions of the binary
classification problem.

3.5. Domain Adversarial Network

In this thesis, it is hypothesized that training the CNN
network to adopt the domain information while training
for tumor and normal tissues classification task could
improve the performance with less efforts as compared

Figure 9: Domain adversarial convolution neural network.

to stain color normalization on an heterogeneous data.
Therefore, inspired by Ganin et al. (2016), the CNN
classifier is also trained to learn domain information
while training for class label classification task. An
extra domain network is added to the CNN classifier
(as in Fig.8) by introducing the gradient reversal layer
as shown in Fig. 9. The domain network is consisting
of the two dense layer with the same configurations as
task network. However, the last dense layer contains 5
neurons with Softmax as an activation function due the
reason that we have 5 domains or histopathology cen-
ters responsible for stain heterogeneity across the data.
While training the original network (MobileNetV2) is
shared between task and domain networks acting as
class label classifier and domain classifier. Both clas-
sifiers together form the domain adversarial network,
where the network learns the features that do not con-
sider the domain of the training samples. In the net-
work, the gradient reversal layer does not contains any
parameter to be updated, however, it remains unchanged
during forward propagation and reverses the gradient by
multiplying a negative scalar while backpropagation. In
the domain adversarial training, same training configu-
rations are used as described in section 3.6, the gradient
loss is updated on each batch of the train data.

3.6. Training Phase

The pretrained MobileNetV2 on ImageNet is fine
tuned on our prepared dataset of breast lymph node for
tumor and normal tissue classes with a combination of
stain color augmentation and normalization methods as
well as domain adversarial experiments. The model is
fine tuned over the patches from train set by preserv-
ing all the layers and its weights with the exception of
last two fully connected layers in each case (task or do-
main adversarial). Then the training is performed by
enabling all the layers of the network as trainable by
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minimizing the cross-entropy loss with Stochastic gra-
dient descent (SGD) optimizer. The initial learning rate
of 1×10−3 is used and during the training it is decreased
on every 5 epochs with a factor of 0.5. The model is
trained with 16 samples per batch until 25 epochs with
an early stop strategy. Upon training, the correspond-
ing trained weights with highest validation accuracy is
selected. The training for each experiment is repeated
5 times and averaged performance measures with stan-
dard deviation are recorded. The implementation of the
network is performed in Keras plateform with Tensor-
flow on the back-end.

3.7. Performance and Statistical Measures
The outcome of the tumor and normal tissues classi-

fication problem is evaluated with two measures, AUC
(area under the curve) and F1 score. AUC is the stan-
dard measure used in machine learning to validate the
performance of a model for a certain task on a scale
ranges between 0 to 1. AUC on a binary problem is
calculated from the ROC (receiver operating character-
istics) curve which is a visualization performance mea-
sure for a model. The ROC curve is a plot of true pos-
itive rate versus false positive rate of the classification
probability with a threshold. Whereas the F1 score is the
weighted average of the precision and recall. Precision
is the ratio of the true positive to all positive predictions
in the task and recall is the ratio of true positive to all
predictions in the tumor class. Since, the F1 is consid-
ered as better performance measure over the accuracy
in an uneven class problem, therefore, a slightly imbal-
ance classes in our data set are the reason to evaluate
the model on F1 score instead of accuracy. Both per-
formance measures, AUC and F1 score are evaluated
and reported on the internal and external test samples.
Besides, paired McNemar’s statistical test is applied to
the class predictions of each preprocessing settings of
the CNN classifier (McNemar, 1947; Raschka, 2018).
The test is evaluated in order to obtain the most signif-
icant stain color normalization methods with or with-
out augmentation on CNN classification when compare
with the baseline (training of CNN classifier without
any stain color normalization).

Table 3: Classification comparison on the PatchCamelyon dataset
with our baseline with and without augmentation.

Method Accuracy AUC

B.Veeling et al.2018 0.898 0.963
Baseline 0.830 0.923
Baseline with augmentation 0.881 0.950

4. Results

In order to deal with stain color heterogeneity prob-
lem in the histopathology slides acquired from different

centers, various experiments has been conducted. These
experiments are the combinations of the stain color nor-
malization augmentation methods.The proposed base-
line CNN classifier is trained on the original images
without applying any normalization method. However,
the baseline is trained by using train samples with and
without augmentation methods. Then each normaliza-
tion method with and without augmentation is quanti-
fied with the baseline. Besides, the domain adversarial
based training on the same data is performed by learning
the domain information of the training samples. In the
following sub-sections, the experimental results with
each setting on five different sub data folds are described
in detail.

4.1. Quantification of Data Augmentation

In this thesis, several suitable data augmentation tech-
niques to histopathology images have been investigated
as discussed in section 3.2. Before applying these data
augmentation techniques to our prepared data, it is con-
sidered to quantify them on available CNN classifica-
tion task to compare their performance with a bench-
mark. Therefore, the data augmentation techniques are
evaluated on PatchCamelyon, a benchmark data set
(Veeling et al., 2018). PatchCamelyon is the collection
of patches from Camelyon16 pathology grand challenge
(Veta et al., 2018), where the slides were prepared at two
different pathology centers. In PatchCamelyon, 327680
patches of 96 × 96 pixels from tumor and normal tis-
sues are equally distributed into train (262144), valida-
tion (32768) and test (32768) sets. A baseline on Patch-
Camelyon with proposed CNN classifier (as in Fig. 8)
is developed with same parameters as described in 3.6
and results are presented with and without our chosen
augmentation techniques. The performance comparison
of our proposed baseline with (Veeling et al., 2018) are
presented in Table 3. The performance is evaluated on
AUC and accuracy that were originally used by Veel-
ing et al. (2018). Both AUC and accuracy are improved
from 0.923 to 0.950 and 0.832 to 0.881 respectively
when the baseline is trained on proposed data augmen-
tation. The performance of our baseline along with pro-
posed data augmentation methods is almost comparable
with Veeling et al. (2018). This comparison supported
the application of these augmentation techniques to fur-
ther experiments on the prepared data in order to en-
hance stain color variability while training CNN classi-
fier to generalize well on external data.

4.2. Performance of stain color normalization methods

Experiments are conducted to train the proposed
CNN classifier on selected stain color normalization
methods as discussed in section 2.2. Stain color nor-
malization based classification process is followed in
all five sub-data folds that represent patches from five
different pathology centers. The performance of the
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Table 4: Experimental results of tumor and normal tissue classification on the internal and external test sets with different normalization, augmen-
tation and domain adversarial using proposed CNN network. The values show the AUC and F1 scores averaged across 5 repetitions with standard
deviation between the parenthesis along with p-values (paired McNemar’s statistical test).

Data Fold Normalization Augmentation Internal Test set External Test set p-valueAUC F1 AUC F1

1

Baseline NA 0.847(0.016) 0.765(0.007) 0.860(0.006) 0.766(0.006) -
Histogram Specification NA 0.852(0.015) 0.773(0.018) 0.862(0.014) 0.762(0.031) <0.0001*
Reinhard NA 0.842(0.004) 0.751(0.016) 0.871(0.007) 0.774(0.015) 0.0206*
Macenko NA 0.841(0.005) 0.763(0.010) 0.827(0.021) 0.747(0.025) 0.0019*
Grayscale NA 0.834(0.020) 0.751(0.011) 0.845(0.011) 0.722(0.029) 0.0181*
Grayscale-HS NA 0.840(0.010) 0.773(0.012) 0.839(0.003) 0.765(0.003) 0.6870
Domain Adversarial NA 0.627(0.014) 0.607(0.016) 0.658(0.016) 0.565(0.020) -
Baseline CS,BCS 0.867(0.009) 0.809(0.005) 0.874(0.003) 0.782(0.009) -
Histogram Specification CS,BCS 0.857(0.005) 0.791(0.010) 0.862(0.018) 0.780(0.018) 0.0016*
Reinhard CS,BCS 0.869(0.003) 0.798(0.008) 0.889(0.003) 0.810(0.001) 0.0080*
Macenko CS,BCS 0.874(0.002) 0.819(0.006) 0.854(0.003) 0.787(0.005) 0.0308*
Grayscale BCS 0.855(0.005) 0.748(0.050) 0.842(0.014) 0.710(0.073) <0.0001*
Grayscale-HS BCS 0.850(0.006) 0.777(0.008) 0.844(0.003) 0.772(0.003) 0.1098
Domain Adversarial BCS 0.530(0.018) 0.521(0.010) 0.551(0.043) 0.468(0.015) -

2

Baseline NA 0.876(0.010) 0.780(0.017) 0.816(0.009) 0.734(0.010) -
Histogram Specification NA 0.867(0.017) 0.785(0.018) 0.838(0.011) 0.748(0.006) <0.0001*
Reinhard NA 0.861(0.021) 0.775(0.010) 0.823(0.015) 0.746(0.005) <0.0001*
Macenko NA 0.848(0.003) 0.759(0.003) 0.812(0.003) 0.734(0.008) 0.6863
Grayscale NA 0.860(0.003) 0.761(0.023) 0.814(0.005) 0.726(0.014) 0.2538
Grayscale-HS NA 0.855(0.003) 0.743(0.0292) 0.829(0.008) 0.692(0.030) <0.0001*
Domain Adversarial NA 0.601(0.023) 0.575(0.012) 0.600(0.026) 0.571(0.025) -
Baseline CS,BCS 0.876(0.005) 0.795(0.005) 0.834(0.006) 0.751(0.008) -
Histogram Specification CS,BCS 0.866(0.004) 0.785(0.013) 0.852(0.006) 0.751(0.015) 0.1383
Reinhard CS,BCS 0.888(0.006) 0.814(0.005) 0.843(0.002) 0.767(0.001) <0.0001*
Macenko CS,BCS 0.881(0.005) 0.781(0.021) 0.832(0.006) 0.727(0.006) 0.5349
Grayscale BCS 0.868(0.007) 0.776(0.006) 0.843(0.002) 0.761(0.009) 0.0236*
Grayscale-HS BCS 0.863(0.003) 0.772(0.014) 0.844(0.006) 0.755(0.016) 0.4895
Domain Adversarial BCS 0.582(0.036) 0.552(0.027) 0.610(0.020) 0.578(0.008) -

3

Baseline NA 0.862(0.006) 0.772(0.015) 0.797(0.013) 0.646(0.023) -
Histogram Specification NA 0.850(0.002) 0.805(0.003) 0.858(0.002) 0.773(0.008) <0.0001*
Reinhard NA 0.853(0.006) 0.777(0.012) 0.860(0.005) 0.745(0.031) <0.0001*
Macenko NA 0.829(0.011) 0.748(0.025) 0.824(0.026) 0.735(0.010) 0.0048*
Grayscale NA 0.847(0.007) 0.760(0.021) 0.828(0.003) 0.731(0.017) 0.5986
Grayscale-HS NA 0.851(0.002) 0.784(0.012) 0.830(0.011) 0.733(0.013) 0.1465
Domain Adversarial NA 0.578(0.031) 0.551(0.022) 0.633(0.016) 0.594(0.014) -
Baseline CS,BCS 0.866(0.003) 0.789(0.013) 0.830(0.011) 0.742(0.003) -
Histogram Specification CS,BCS 0.863(0.001) 0.804(0.008) 0.877(0.006) 0.798(0.003) 0.0090*
Reinhard CS,BCS 0.869(0.002) 0.812(0.004) 0.872(0.004) 0.796(0.001) 0.0001*
Macenko CS,BCS 0.850(0.002) 0.799(0.002) 0.857(0.004) 0.787(0.007) 0.0390*
Grayscale BCS 0.857(0.014) 0.780(0.024) 0.827(0.014) 0.733(0.008) 0.3717
Grayscale-HS BCS 0.851(0.001) 0.797(0.008) 0.838(0.009) 0.757(0.012) 0.6867
Domain Adversarial BCS 0.461(0.028) 0.390(0.032) 0.633(0.061) 0.562(0.055) -

4

Baseline NA 0.839(0.010) 0.766(0.009) 0.839(0.028) 0.773(0.017) -
Histogram Specification NA 0.835(0.008) 0.751(0.024) 0.913(0.013) 0.831(0.011) 0.0665
Reinhard NA 0.845(0.011) 0.786(0.011) 0.883(0.013) 0.807(0.006) <0.0001*
Macenko NA 0.810(0.006) 0.717(0.043) 0.867(0.043) 0.782(0.033) 0.0048*
Grayscale NA 0.815(0.018) 0.736(0.048) 0.876(0.007) 0.759(0.045) 0.5986
Grayscale-HS NA 0.833(0.012) 0.739(0.020) 0.898(0.010) 0.806(0.016) 0.1465
Domain Adversarial NA 0.591(0.025) 0.548(0.023) 0.654(0.023) 0.590(0.032) -
Baseline CS,BCS 0.835(0.003) 0.777(0.005) 0.857(0.005) 0.799(0.006) -
Histogram Specification CS,BCS 0.829(0.015) 0.733(0.040) 0.890(0.024) 0.786(0.032) <0.0001*
Reinhard CS,BCS 0.848(0.001) 0.781(0.019) 0.900(0.003) 0.832(0.003) 0.0154*
Macenko CS,BCS 0.834(0.001) 0.771(0.003) 0.870(0.001) 0.812(0.003) 0.1813
Grayscale BCS 0.827(0.009) 0.736(0.033) 0.897(0.016) 0.801(0.004) <0.0001*
Grayscale-HS BCS 0.842(0.010) 0.781(0.009) 0.902(0.034) 0.838(0.040) 0.0998*
Domain Adversarial BCS 0.584(0.040) 0.531(0.007) 0.637(0.054) 0.581(0.050) -

5

Baseline NA 0.905(0.005) 0.819(0.002) 0.852(0.014) 0.736(0.052) -
Histogram Specification NA 0.903(0.003) 0.828(0.007) 0.847(0.008) 0.766(0.003) 0.0098*
Reinhard NA 0.920(0.006) 0.849(0.006) 0.841(0.011) 0.752(0.005) 0.0341*
Macenko NA 0.885(0.014) 0.802(0.006) 0.830(0.003) 0.719(0.034) 0.0122*
Grayscale NA 0.887(0.004) 0.808(0.001) 0.728(0.043) 0.550(0.083) 0.1282
Grayscale-HS NA 0.897(0.005) 0.824(0.009) 0.811(0.009) 0.705(0.035) 0.2006
Domain Adversarial NA 0.836(0.006) 0.764(0.020) 0.777(0.006) 0.716(0.008) -
Baseline CS,BCS 0.911(0.004) 0.841(0.007) 0.867(0.008) 0.786(0.005) -
Histogram Specification CS,BCS 0.901(0.002) 0.830(0.003) 0.872(0.021) 0.794(0.021) <0.0001*
Reinhard CS,BCS 0.918(0.007) 0.844(0.005) 0.882(0.002) 0.801(0.007) 0.0660*
Macenko CS,BCS 0.900(0.003) 0.823(0.003) 0.851(0.014) 0.775(0.011) 0.0291*
Grayscale BCS 0.892(0.004) 0.822(0.002) 0.804(0.005) 0.719(0.009) <0.0001*
Grayscale-HS BCS 0.898(0.001) 0.838(0.003) 0.857(0.013) 0.766(0.013) 0.2979
Domain Adversarial BCS 0.771(0.025) 0.710(0.029) 0.763(0.005) 0.670(0.014) -

Note: NA: No Augmentation, CS: Color and Stain, BCS: Brightness, Contrast and Symmetric, HS: Histogram Stretched
*p-value<0.05 (paired McNemar’s Test)
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Figure 10: Average AUC measure and standard deviation across five data folds on proposed classification task to deal stain color heterogeneity by
using normalization and augmentation methods. NA: No Augmentation, A: Augmentation

Figure 11: Average F1 score and standard deviation across five data folds on proposed classification task to deal stain color heterogeneity by using
normalization and augmentation methods. NA: No Augmentation, A: Augmentation

each stain normalization method along with the base-
line is presented in Table 4. The evaluation is based
on averaged AUC and F1 score measures along stan-
dard deviation of 5 training repetitions with best vali-
dated model weights for internal and external test sets
of each data fold. In order to make the results more in-
terpretive, the average performance scores across all five
data folds for each of the technique including baseline
are presented in Fig.10 and Fig.11. Where the base-
line obtained an average AUC across five data fold as
0.866 ± 0.026 and 0.833 ± 0.026 on internal and ex-
ternal test samples respectively. The corresponding F1
score is measured as 0.780 ± 0.022 and 0.731 ± 0.051.
Among stain color normalization methods, none of the
techniques scored higher then the baseline when eval-
uated on internal test set with AUC. However, the his-
togram specification and Reinhard outperformed on ex-
ternal test set with 0.864 ± 0.029, 0.856 ± 0.029 AUC
and 0.777±0.032, 0.765±0.026 F1 scores respectively.

4.3. Significance of Data Augmentation Techniques
Upon evaluation of the proposed classifier on the

normalization method to minimize the impact of stain
color heterogeneity, the investigated data augmentation
techniques are applied to the baseline as well as nor-
malization methods. The detailed experimental results

across each data fold are listed in Table 4 whereas
the average score is presented in Fig.10 and Fig.11.
It is evident from the results that all normalization
techniques including baseline showed improved perfor-
mance when evaluated on internal and external test sam-
ples with data augmentation. The average AUC across
all data folds on the baseline is raised to 0.871 ± 0.027
and 0.860 ± 0.027 with corresponding F1 scores of
0.802 ± 0.025 and 0.772 ± 0.024 on internal and ex-
ternal test sets respectively. Reinhard normalization
with augmentation outperformed over others including
baseline with 0.878 ± 0.026, 0.877 ± 0.022 AUC and
0.810±0.023, 0.801±0.024 F1 score in both internal and
external test data respectively. After Reinhard, the his-
togram specification with data augmentation achieved
0.871 ± 0.022 AUC and 0.782 ± 0.019 F1 score on ex-
ternal test set. However, Macenko showed better perfor-
mance then histogram specification on internal test set,
with 0.868 ± 0.026 AUC and 0.799 ± 0.023 F1 score.

4.4. Performance on Ensemble Predictions

The Mc Nemar’s significance test is performed to as-
sess the most significant preprocessing settings on the
classification compare to baseline on the obtained re-
sults as shown in Table 4. The test is evaluated on the
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combinations of augmentation and normalization meth-
ods with their prediction on both internal and external
test sets. The calculated p-values of the each tech-
nique are presented Table 4 where last column con-
tains the maximum p-value of internal and external test
sets. From the statistical evaluation, histogram speci-
fication and Reinhard with and without augmentation
on both test sets obtain an average p-value <0.017 at
significance level of 0.05. Smaller p-value then signif-
icance level showed that model on both methods pre-
dicted better then others. Therefore, predictions of both
histogram specification and Reinhard are ensemble by
fusing their probabilities through element-wise multi-
plication rule as shown inf Fig.12 (Liu et al., 2019).
Ensemble results on AUC and F1 measures are shown
in Fig.10 and Fig.11. Average ensemble AUC scores
without augmentation 0.881 ± 0.029, 0.882 ± 0.024 and
with augmentation 0.885± 0.025, 0.893± 0.022 are ob-
tained on internal and external tests respectively. The
corresponding F1 scores are recorded as 0.822 ± 0.027,
0.795 ± 0.037 and 0.823 ± 0.024, 0.817 ± 0.032 respec-
tively.

Figure 12: Fusion of CNN classifier trained on normalized images by
Histogram Specification and Reinhard.

4.5. Performance of Domain Adversarial
In domain adversarial, the network is trained with-

out any stain color normalization to train the network to
learn domain information of the training samples. Ap-
plying the normalization to the data removes the stain
color heterogeneity which is domain information that
we want the domain adversarial should learn. However,
non stain color augmentation methods such as symmet-
ric transformations, brightness and contrast variations
are included while training the domain adversarial net-
work. Both results (with and without augmentation) on

each data fold are listed in the Table 4 whereas the av-
erage performance is plotted in Fig.10 and Fig. 11. The
overall performance of the domain adversarial is below
0.67 on both AUC and F1 score with the evaluation on
internal and external test. However, better results ob-
tained when the network is trained on original data com-
pared to augmentation methods.

Table 5: Normalization time for each method on a randomly taken
patch with a resolution of 224 × 224 pixels.

Normalization Technique Time (Seconds)

Histogram Specification 0.031
Reinhard 0.198
Macenko 0.298
Grayscale 0.001
Grayscale-HS 0.002

Note: HS: Histogram Stretching

5. Discussion

In this thesis, the stain color heterogeneity in the
histopatholgy images has been explored by minimiz-
ing its effects on a CNN based classification task with
the help of various stain color normalization tech-
niques, data augmentation methods and domain adver-
sarial training. For a combination of stain color normal-
ization and data augmentation methods, a CNN classi-
fier is trained to classify tumor and normal tissues ac-
quired from Camelyon17 grand challenge, containing
stain color variability from five histology centers. The
prepared dataset is distributed into five sub data folds
by considering each time the images from a center as
an external source of patches for an external test evalua-
tion. A baseline classifier is trained on each fold of data
without any stain normalization or augmentation tech-
nique. Then in the first series of the experiments, the
patches from each fold are normalized in terms of stain
color before passing to the CNN classifier to quantify
their performance with the baseline. The stain color is
normalized by histogram specification, Reinhard, Mac-
nenko, grayscale and grayscale histogram stretched. By
analyzing the obtained results on the normalization ap-
proaches, it is evident that the classifier performed well
on external data when normalized with histogram spec-
ification and Reinhard. However, the Macenko and
grayscale enhanced version shown almost identical per-
formance on external test. Afterwords, in the second
series of the experiments, the assessed data augmen-
tation techniques are applied to the baseline and nor-
malization based training. By introducing augmenta-
tion in training, we were able to improve the overall
performance of the classifer, however, histogram spec-
ification and Reinhard again performed well on the ex-
ternal test set among other techniques. Then statistical
test is performed to obtain top normalization methods

11.14



Improving Generalization of Convolution Neural Networks for Digital Pathology by Minimizing Stain Heterogeneity
through Normalization, Augmentation and Domain Learning 15

along with augmentation to ensemble their probabili-
ties. Where the McNemar’s paired test also validated
both histogram specification and Reinhard with a sig-
nificance difference from the baseline at class probabil-
ity level. Therefore, in the third series of experiments,
the probabilities of both outperformed methods along
with augmentation are fused by element-wise multipli-
cation. Interestingly, the CNN classifier learned dif-
ferent features on both normalization methods and re-
sults are improved on both internal and external test sets
when their probabilities are fused. The best AUC and F1
score on external test are obtained as 0.893 ± 0.022 and
0.817 ± 0.032 respectively. During above experiments,
it is observed that Macenko normalization method was
computationally expensive as compared to other nor-
malization methods (see Table 5). The possible rea-
son was its lengthy calculations for stain vectors of both
template and original image in the optical density space.
It was also observed that in few cases where the size of
the nuclei is larger then the normal the Macenko treated
both nuclei and connective tissues similar in terms of
staining which makes it difficult to differentiate them.
In the beginning of this study, it was hypothesized
that CNN classifier could learn better on pattern in-
stead of colors. In order to evaluate this hypothesis,
the stain color was removed by converting the patches
to grayscale versions. In few cases the grayscale ver-
sions have shown better performances, however, over-
all results in above experiments are evident that the
stain colors are important and effects the CNN classi-
fication based decisions along with morphological pat-
terns. In addition to experiments on stain color normal-
ization and augmentation methods, the domain adver-
sarial network was also trained to learn the domain in-
formation along the class label classification. The ulti-
mate goal of the domain adversarial based experiments
was to minimize the effects of domain when training
the CNN classifier for the class label classification task.
However, domain adversarial could not converge well
on our data set. It was observed in the data that het-
erogeneity does not exits across the centers only but the
stain color is also heterogeneous within the slides be-
longing to a center. Intra-slide and inter-slide hetero-
geneities were found in some centers which makes it
difficult for the domain adversarial network to stay at a
decision while converging. The intra-slide heterogene-
ity could exist due to the temperature or stains used dur-
ing slide preparation. Whereas the inter-slide hetero-
geneity arising from difference in thickness and amount
of stain absorbed by the certain areas within a slide. In
overall picture, this could lead to the generation of the
several heterogeneous domains with the images origi-
nating from single (domain) center. Therefore, in such
heterogeneous conditions, the stain color normalization
along with data augmentation are useful to produce bet-
ter performance on the data from external source which
is also evident from the first series of experiments.

6. Conclusions

The findings of this work can be be summarized into
four folds. Firstly, the investigation of the publicly
available histopathology databases of various tissues.
Secondly, the suitable collection from Camelyon17 is
used to quantify various stain color normalization and
augmentation methods. The quantification is performed
on a convolution neural network based binary classifica-
tion task of normal versus tumor tissues on the extracted
patches from whole slide images of the Camelyon17.
Thirdly, combining best performed stain color normal-
ization and augmentation method to improve the perfor-
mance on the data set from a completely external source
then samples used in train, validation and internal test.
Following the above pipeline, five sub data folds are
created and extensive experimentation on various stain
color normalization along with augmentation methods
are conducted. The experimental results shown signif-
icance performance of the histogram specification and
Reinhard with augmentation on external test samples
over Macenko and grayscale versions. The best results
are obtained by ensemble probabilities of both methods.
Lastly, along with class label classification task, a do-
main adversarial network is trained to learn domain in-
formation of the corresponding training samples. The
network is evaluated on training with and without data
augmentation methods. The domain adversarial could
not achieve even the baseline performance due to inter
and intra slide heterogeneity with a center, however, the
method can be evaluated further by applying some fu-
ture work suggestions.

7. Future Work

In present work, normalization is limited to a single
template image, however, this work can be extended to
several template images to analyze the robustness of the
normalization method as well as by including more nor-
malization techniques to the comparison. An other pos-
sible extension can be the application of the best eval-
uated methods to other tissues with heterogeneity such
as colorectal and prostate for different diagnostics tasks.
The performance of domain adversarial network can be
evaluated on the same data by applying the best nor-
malization method at the slide or center level. The do-
main adversarial based learning can also be evaluated
on grayscale versions in order to learn morphological
features in the gray domain.
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Abstract

The difference between the chronological age of a person and the age predicted based on structural and functional
magnetic resonance imaging (MRI) data was proved to indicate for neurological and psychiatric diseases. The main
objective of the present investigation was to determine whether the combination of MEG, structural and functional
MRI could improve the brain age prediction accuracy. We achieved mean absolute error of 4.75 years and the coeffi-
cient of determination of R2 = 0.89. The prediction model was built by stacking of the ridge regression models using
the random forest algorithm. We evaluated the model performance on the largest available data repository combining
multi-modal data (MEG, structural and functional MRI) of approximately 700 participants aged 18-87 years, i.e. the
Cambridge Center for Aging and Neuroscience (Cam-CAN) data set.

Keywords: Age Prediction, MEG, MRI, fMRI, Machine Learning

1. Introduction

The World Population Ageing 2017 report prepared
by the Department of Economic and Social Affairs of
the United Nations Secretariat states that the number
of people aged 60 years and over has considerably in-
creased across the world and growth is projected to
accelerate in the future (DoEaSA-P, 2017). The age-
associated diseases challenge the established health care
systems (Vos et al., 2012). Still, there are numer-
ous challenges in understanding the complex biological
processes underlying the molecular mechanisms of ag-
ing (López-Otı́n et al., 2013). Moreover, there is no for-
mal notion of what constitutes the normal aging of the
human brain (Shafto et al., 2014). Hence, the chrono-
logical age of a person does not provide a sufficient
amount of information about the changes in the brain
structure and functioning.

The brain, as the whole human body, goes through a
series of changes intertwined with aging. In the work
of (Pfefferbaum et al., 1994) structural magnetic reso-
nance imaging (MRI) was used to identify the effects
of aging on the over-all state of the human brain. The
authors discovered that gray matter (GM) volume was
increasing from birth until the age of 4, then it was grad-
ually decreasing in the following decades. At the same

time, white matter (WM) volume grew steadily until the
age of 20, and remained constant during the rest of the
lifespan. Cerebrospinal fluid (CSF) and ventricular vol-
umes remained constant for the first 20 years of life,
and increased with age. These development patterns re-
flect different neuronal processes, such as cell growth,
myelination (i.e. the process of generating myelin), cell
death, and cerebral atrophy (i.e. a loss of neurons and
the connections between them). A more recent study,
conducted by Good et al. (2001), arrived at similar con-
clusions, while reporting accelerated grey matter de-
cline in some brain areas and significant microstructural
changes in white matter in general. Storsve et al. (2014)
discovered that the primary contributor to cortical vol-
ume reductions in aging was cortical thinning, while
cortical surface area experienced less profound changes.

Neurodegenerative diseases, notably Alzheimers dis-
ease (AD), lead to subtle changes in neuroanatomical
shape, complexity, and tissue characteristics (Ashburner
et al., 2003). A study, conducted by Davatzikos et al.
(2009), reported that patients with Alzheimers disease
or mild cognitive impairment (MCI) showed accelerated
brain atrophy relatively to cognitively normal individu-
als. Schizophrenia results in significant decrease in gray
matter concentration in multiple cortical and subcortical
regions (Meda et al., 2008). The pathological changes
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of the brain, caused by numerous brain disorders, can
be considered as an accelerated aging process, implying
accelerated brain atrophy (Franke et al., 2010).

Another acclaimed method of brain investigation is
functional magnetic resonance imaging (fMRI). It is a
magnetic resonance imaging technique that estimates
brain activity by measuring changes in the local level of
blood oxygenation, which reflects the intensity of local
brain activity (Poldrack et al., 2011). The study of the
individual neuronal connections using rest-state fMRI
(i.e. recorded while no explicit task is being performed)
is emerging as a mainstream tool for identification of
neurological and psychiatric illness (Castellanos et al.,
2013). For example, Dennis and Thompson (2014) dis-
covered that healthy aging and Alzheimers disease are
associated with changes in functional connectivity (i.e.
an assessment of the integration of brain activity across
distant brain regions). Normal aging led to non-uniform
decline in functional connectivity, while the decline due
to Alzheimers disease was more profound.

Magnetoencephalography (MEG) and electroen-
cephalography (EEG) are methods that allow to capture
electrical activity within the brain with a high tempo-
ral and relatively good spatial resolution (Hansen et al.,
2010). Therefore, these techniques provide another
mean of investigation of the brain activity. For ex-
ample, Hipp et al. (2012) observed highly structured
brain-wide correlation of rest-state electrophysiologi-
cal signals. M/EEG allow to directly record the elec-
tromagnetic signals related to the activity of neurons,
while fMRI only captures hemodynamic response asso-
ciated with the brain functioning. Additionally, Hipp
and Siegel (2015) found no generic, brain-wide trans-
fer function from hemodynamic correlation to the cor-
relation of frequency-specific neuronal activity. Re-
cent MEG and EEG studies of brain oscillatory activ-
ity showed correlation between aging and electrophys-
iological activity, e.g. the latency of brain responses
measured by MEG was linked to age (Price et al., 2017).
In the work of (Vlahou et al., 2014), it was shown that
healthy aging is accompanied by a marked and linear
decrease of resting-state activity in the slow frequency
range (0.5–6.5 Hz).

There are numerous aspects that constitute the pro-
cess of healthy brain aging. Regarding the wide accep-
tance of machine learning methods in neuroscience (Bz-
dok, 2017) and psychology (Yarkoni and Westfall,
2017), these techniques can be used to aggregate in-
formation about the aging process of the brain. The
difference between a biological age (the hypothetical
age of an organism, defined by measuring some aspect
of the organisms biology) and the organisms chrono-
logical age can indicate of residual lifespan, functional
capacity, and age-associated risks (Cole and Franke,
2017). Generally, a characteristic that is objectively
measured and evaluated as an indicator of normal bi-
ological processes, pathogenic processes, or pharmaco-

logic responses to a therapeutic intervention is referred
to as a biomarker (Atkinson A.J. et al., 2001). Thus,
the difference between the chronological age of a per-
son and their age measured using imaging data can be
utilized as a biomarker of neurological syndromes that
emerge late in the lifespan (Liem et al., 2017). To re-
alize it one requires a robust method of age prediction
for healthy population. MEG, structural and functional
MRI capture information about the brain anatomy and
activity from different perspectives. Hence, in our study
we want to investigate whether the brain age predic-
tion accuracy may be increased by incorporating these
sources of information together.

2. State of the art

2.1. Multimodal imaging data for age prediction

Figure 1: Age prediction of different modalities. The accuracy of
every model was assessed using mean absolute error (MAE), standard
deviation (STD) of age prediction was obtained as well. The figure is
reproduced from Liem et al. (2017)

The number of research papers demonstrating that
age prediction on MRI data using machine learning
methods has both clinical and scientific relevance grows
steadily (Cole and Franke, 2017). For example, in the
work of Franke et al. (2010) the T1-weighted MRI im-
ages and a relevance vector machine (Tipping, 2001)
were used to predict brain age. The authors achieved
a mean absolute error of 5 years, while testing this ap-
proach on data collected from four different scanners for
650 healthy subjects, aged 19–86 years. Moreover, ap-
plying the proposed framework to people with mild AD
gave a mean difference +10 years between the chrono-
logical and predicted age (Franke et al., 2010). In the
later study, conducted by Franke and Gaser (2012) the
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data of about 400 elderly subjects were analyzed. They
discovered accelerated brain atrophy (+6 years differ-
ence with the chronological age) in patients with AD
and the ones who had converted to AD within 3 years,
while during follow-up an additional increase in atro-
phy resulted into a difference of about +9 years. Ac-
cording to Franke and Gaser (2012), the accumulated
difference between the chronological and predicted age
was due to disease severity and prospective cognitive
decline. In the work conducted by Cole et al. (2015), it
was discovered that traumatic brain injury (TBI) accel-
erates the rate of brain atrophy. A regression model was
trained on structural MRI of 1,537 healthy individuals,
and tested on 99 TBI patients. The difference between
the predicted and chronological age for affected brains
was 4.66 years for GM-based features and 5.97 years
for WM-derived features. Moreover, in the investiga-
tion of Koutsouleris et al. (2014), the brains affected
by the mental disorders were found to be ’older’ than
healthy brains. In detail, the predicted age was higher
by 5.5 years in schizophrenia group (141 patients), fol-
lowed by major depression (4.0 years, 104 patients),
borderline personality disorder (3.1 years, 57 patients),
and the individuals in at-risk mental states for psychosis
(1.7 years, 89 patients). A machine learning model was
trained on structural MRI scans of 800 healthy individ-
uals using ν-support vector regression.

In the paper of Dosenbach et al. (2010), functional
connectivity MRI studies were used to predict individ-
uals brain maturity across development. Support vector
regression machines (Drucker et al., 1997) were trained
on 5 minutes long resting-state fMRI of 238 partici-
pants, aged from 7 to 30 years. The obtained functional
maturation curve accounted for 55% of the sample vari-
ance.

As we can see, both structural and functional MRI
data convey meaningful information about age. This
motivated Liem et al. (2017) to combine these modal-
ities. They used MRI data set obtained as part of LIFE-
Adult-Study of the Leipzig Research Center for Civi-
lization Diseases (LIFE) (Loeffler et al., 2015) to es-
timate brain age, as well as to find a relationship be-
tween predicted age and mental disorders. Effectively,
data from 2354 individuals between 19 and 82 years old
(1120 females and 1234 males) were processed. The
robustness of the investigation results were additionally
tested on the enhanced Nathan Kline Institute-Rockland
Sample (NKI-RS) data set (Nooner et al., 2012).

The feature engineering was conducted separately for
functional and structural MRI data. The fMRI predic-
tors were obtained using the Nilearn package (Abraham
et al., 2014). In detail, mean timeseries were obtained
from cortical and subcortical regions of the BASC par-
cellation atlas (Bellec et al., 2010), functional connec-
tivity between region pairs was calculated via Pear-
son correlation and further processed with Fisher’s r-
to-z transformation (Fisher, 1921). Connectivity ma-

trices from 197 and 444 regions were used. In the
case of structural MRI, cortical thickness, cortical sur-
face, and subcortical volumes were estimated using the
FreeSurfer software (Fischl, 2012). Available data were
resampled into the fsaverage4 standard space, the data
for the two hemispheres were concatenated. Therefore,
age prediction models were trained on two functional
maps of neural connections in the brain, namely con-
nectivity matrix 197 and connectivity matrix 444, de-
rived from the functional MRI data; and three vectors
of anatomical information originating from structural
MRI.

In the work of Liem et al. (2017), a two-level ar-
chitecture was proposed, for which the outputs from
the models, trained using one of the previously ob-
tained predictors, were aggregated into the final predic-
tion by non-linear stacking. The single-source models
were built using linear support vector regression (SVR).
On the stacking level, random forest (RF) (Breiman,
2001) regression models were used to combine out-
puts from the linear models. In total three versions
of multi-source models were investigated: stacked-
function which merged predictions from the fMRI data,
stacked-anatomy which merged predictions from the
anatomical data, and stacked-multimodal which merged
predictions from all available data. Mean absolute error
(MAE) of the age predictions were incorporated for per-
formance estimation, corresponding data for the LIFE
data set can be found in figure 1. The coefficient of de-
termination R2 was estimated for every model as well.

The authors state that all models deal quite good with
the task of age prediction, e.g. MAE = 5.25 years
and R2 = 0.8 for stacked-function model, and MAE =

4.83 years and R2 = 0.83 for stacked-anatomy. They
also note that the stacked models perform better than
single source models and the combination of the struc-
tural and functional information achieves the best ac-
curacy regarding the others. The mean absolute pre-
diction error for the latter was equal to 4.29 years and
R2 = 0.87. Moreover, in the paper it was shown that the
difference between the predicted age and chronological
age correlates with cognitive impairment. At the same
time, the authors discovered that the models do not gen-
eralize well to the data from a new site: the age predic-
tion accuracy of the models trained on the LIFE samples
deteriorates when tested on the NKI data. Though pre-
diction performance tend to increase while training on
the data from both sites, the same accuracy as in simula-
tions with the LIFE data (Fig. 1) was not achieved (Liem
et al., 2017).

2.2. Electrophysiology data for age prediction
Correlation between aging and electrophysiological

activity was discovered in several recent studies (Price
et al., 2017; Vlahou et al., 2014). This idea was further
investigated by Khan et al. (2018). The authors used
two data sets of resting-state MEG scans. The primary
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data were acquired at Massachusetts general hospital
(MGH), and consisted of 131 healthy subjects, between
7 and 29 years old. The second data set was intended
for validation purposes only. It consisted of the data ac-
quired from 31 young adults, between 21 and 28 years
old, as part of the Open MEG Archive (OMEGA) by the
McConnell Brain Imaging Centre of the Montreal Neu-
rological Institute, and the University of Montreal (Niso
et al., 2016). For all the available data MEG-specific
processing techniques were applied. In detail, the au-
thors performed noise suppression and motion correc-
tion using the signal space separation (SSS) method
for the first data set, after that all data were mapped
onto cortical space and obtained timeseries were aver-
aged across labels. They were band-pass filtered and
Hilbert transform was further performed on them. The
frequency bands were set as: delta (1–4 Hz), theta (4–
8 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma
(31–80 Hz).

Synchronicity between different cortical labels were
evaluated using orthogonal envelope correlation met-
ric (Hipp et al., 2012) using an overlapping sliding
window of 30 s with a stride of 1/8 of the window
side (Khan et al., 2018) for each frequency band. The
final result of the processing pipeline was a connectiv-
ity tensor of n × n × ntime × nbands elements, where n is
the total number of nodes, ntime is the number of sliding
windows, and nbands is the number of frequency bands.
Signal to noise ratio (SNR) was increased by estimat-
ing the median of correlations across time-dimension.
The adjacency matrix A, defined over a graph G such
that any element Ai j is 1 if the edge ei j between two
nodes vi, v j ∈ G exists and 0 otherwise; was obtained by
thresholding and binarizing the connectivity matrix for
each frequency band. The weighted adjacency matrix
which preserves the correlation values above the same
threshold was also computed.

Several metrics originating from graph theory were
used to evaluate cortical networks: the average shortest
path length, the degree and the local clustering coeffi-
cient for every network node, the average global and
local efficiencies of information transfer in graph G,
small world property (which measures the balance of
short and long-range connections), betweenness cen-
trality (which equals to the number of the shortest paths
that pass through the vertex), resilience (which esti-
mates the robustness of the network to the removal of
the most heavily connected nodes).

The features that were related to age (according
to Spearman correlation) were selected and combined
into three sets. In detail, local network efficiency and
small world property were found to increase with age
in the beta band, while for the same band resilience
of the network represented by connectivity matrix A
was found to decrease with age. For the connectiv-
ity data in the gamma band, global network efficiency
and resilience were increasing significantly with age,

while small world property was significantly weaken-
ing. The predicted ages for all subjects from the regres-
sion were converted to the maturation indices using a
scaling scheme from (Dosenbach et al., 2010). The ma-
turity index prediction for the beta band (MI-beta) was
obtained combining local efficiency, small world prop-
erty, and resilience. The maturity index for the gamma
band (MI-gamma) was obtained combining global effi-
ciency, small world property, and resilience. The com-
bined maturity (MI-combined) was estimated combin-
ing MI-beta and MI-gamma metrics together.

The random forest (Breiman, 2001) regression
method was used for cognitive age prediction using the
graph metrics found for each adjacency matrix A. One
third of all available predictors were randomly sampled
at each split and a total of 1000 decision trees were built.
The model performance on different feature sets was es-
timated by Akaike information criterion and R2 coeffi-
cient of determination, using nested bootstrapping with
1024 realizations. The reported results are as follows:
for MI-beta features R2

MGH = 0.39,R2
OMEGA = 0.34 for

the MGH and OMEGA data sets respectively, for MI-
gamma R2

MGH = 0.48,R2
OMEGA = 0.41, and for the case

of MI-combined R2
MGH = 0.52,R2

OMEGA = 0.41.

2.3. Research objectives

The analysis of the studies on the brain age prediction
suggests that such modalities as MEG, structural and
functional MRI convey important information related to
aging. In our work we want to investigate whether the
combination of these sources yields a better age predic-
tion model for healthy subjects. In detail, we want to
find how the age prediction accuracy and spread of pre-
diction errors will change due to the incorporation of
MEG data. Also, we want to examine whether the age
prediction accuracy depends on the chronological age of
participants. To solve this task we need to select an ap-
propriate data set, and to construct a separate data pre-
processing pipeline for every modality. Moreover, we
have to find suitable machine learning techniques able
to combine input data from different sources.

3. Material and methods

3.1. Cambridge Center for Aging and Neuroscience
study

The data used for the brain age prediction were ini-
tially acquired as part of the Cambridge Center for Ag-
ing and Neuroscience (Cam-CAN) study, which is a
multidisciplinary examination of healthy cognitive ag-
ing (Shafto et al., 2014). According to the paper, their
project was focused on normal age-related changes with
the aim to understand how these changes to neural struc-
ture and function interact to support cognitive abilities
across the lifespan. It was implemented in 3 stages. In
detail, during stage 1 a selected group of 3000 people,
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aged 18 and over, were interviewed about their health
and lifestyle, they underwent a core cognitive assess-
ment, a self-completed questionnaire of lifetime expe-
riences and physical activity. For the second stage,
700 individuals (50 men, 50 women from each age
decade) were selected. Unfortunately, for the youngest
decade (18–27) the data of only 56 participants (27 men,
29 women) were recorded. Different metrics of par-
ticipants’ cognitive health were taken, such as cogni-
tive testing and measure of brain structure and function
(MRI, fMRI, MEG), blood pressure measure, cognitive
task measuring attention, language, motor and learning,
memory, emotion. Finally, for the third stage 280 adults
were further selected for the in-depth cognitive neu-
roscience assessment (attention, language, motor and
learning, memory, emotion) with fMRI and MEG.

For our study we decided to focus on the information
obtained during stage 2 of the Cam-CAN study (Shafto
et al., 2014), since it contains raw and preprocessed
structural MRI, funtional MRI (active tasks and rest-
ing state), and MEG data (active tasks and resting state)
of 656 people, of cross-sectional adult lifespan (18-87
years old). We were investigating only the T1-weighted
structural MRI, resting state functional MRI, and rest-
ing state MEG data. According to Taylor et al. (2017),
all MRI data were acquired at the same site using a 3T
Siemens TIM Trio scanner with a 32-channel head coil.
Individuals rested with their eyes closed for 8 min 40 s
during the acquisition of the resting state scans. All
scans were saved in standard NIfTI-1.1 format using
single file storage (.nii).

As it was mentioned by Taylor et al. (2017), the MEG
scans were also collected at a single site using a 306
VectorView system (Elekta Neuromag, Helsinki). The
scanner 102 magnetometers and 204 orthogonal planar
gradiometers, it was put in a light magnetically shielded
room. The sampling frequency of data was around
1 kHz with a high-pass filter of 0.03 Hz. In order to per-
form further artifact correction four Head-Position Indi-
cator (HPI) coils were used to track head motion, ver-
tical and horizontal electrooculogram (VEOG, HEOG)
signals were monitoring eye blinks and movements, the
electrocardiogram (ECG) signal was recording partici-
pant’s pulse. During the resting state data acquisition
participants were sitting with their eyes closed for at
least 8 min 40 s. Neuromag’s FIF format was used to
store raw and maxfiltered MEG data.

3.2. MRI data preprocessing and feature engineering

The Cam-CAN Stage 2 repository contains raw and
preprocessed structural and functional MRI data (Tay-
lor et al., 2017). In our work we used the raw struc-
tural (anatomical) MRI and fMRI scans provided by the
Cambridge Center for Aging and Neuroscience. Fea-
ture engineering involved different operations described
in detail in the sections below.

3.2.1. Structural MRI

(a) The white (red) and pial (yellow) surfaces

(b) Subcortical volumes

Figure 2: FreeSurfer reconstruction output for subject CC410354. In
Fig. 2a the white and pial surface are presented. The boundary be-
tween white and grey matter is shown in yellow, while the pial surface
is red. Segmentation of subcortical volumes is presented in Fig. 2b.

Prior to extracting any useful information from the
provided raw data, we prepared it using our custom
preprocessing pipeline. In the case of anatomical im-
ages, preprocessing generally includes several opera-
tions, such as bias field correction, skull-stripping, tis-
sue segmentation.

Bias field manifest itself as a very low-frequency
variation in intensity across the MRI volume, brighter
at the center and darker toward the edges of the brain.
This is caused by inhomogeneities in the excitation of
the head for fields with high magnetic induction B0 ≥
3 T. Bias field causes problems in the analysis of struc-
tural information of MRI images. A simple approach
to correct image intensity variation is to remove low-
frequency signals from MRI data by a high-pass fil-
ter (Cohen et al., 2000).
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Removal of the skull and other non-brain tissue in the
MRI volume is called skull-stripping or brain extrac-
tion. It can be performed manually or using different
automated methods (Boesen et al., 2004). The extracted
brain can be obtained as part of a more general tissue
segmentation step, which divides brain tissue into sepa-
rate compartments (gray matter, white matter, and cere-
brospinal fluid). Automatic brain tissue segmentation is
a challenging task, as MRI images suffer from a variety
of issues, such as noise, intensity inhomogeneity, and
partial volume effect (i.e. voxels can contain a mixture
of different tissue types in varying proportion). Thus,
the intensity differences in T1-weighted MRI images
between these tissues do not provide enough informa-
tion to perform correct tissue segmentation. There are
many methods proposed to tackle this problem. For ex-
ample, a tissue segmentation algorithm, proposed in the
work of Ashburner and Friston (2005), combines infor-
mation form a probabilistic atlas with the intensity data
from an image to determine the tissue class of every
voxel. The atlas contains prior probability values that
any voxel contains gray matter, white matter, or CSF. It
can be obtained from a set of manually segmented MRI
volumes.

In our work, the preprocessing of structural MRI data
was implemented using the FreeSurfer software pack-
age (Fischl, 2012). It is ideal for use on large data
sets, due to the fact that most of its pipelines are au-
tomated. We used the recon-all script that executes
the FreeSurfer cortical reconstruction process for a se-
lected subject. The reconstruction process consists of
several streams: the cortical surface stream, subcortical
(volume-based) stream, et al. (Dale et al., 1999; Fischl
et al., 1999).

In the cortical surface stream FreeSurfer performs
registration to the MNI atlas (Collins et al., 1994), bias
field correction, skull stripping. Following that, it cre-
ates a model of the boundary between white matter and
cortical gray matter (the white surface) as well as a
model of the boundary between gray matter and cere-
brospinal fluid (the pial surface). Given the models of
those surfaces, the program can measure cortical surface
area, cortical thickness, which is the distance between
the white surface and the pial surface, and others. The
volume-based stream registers MRI volumes to the MNI
space, performs skull striping and assigns labels accord-
ing to subcortical tissue classes using the atlas of labels
provided with FreeSurfer (Fischl et al., 2002, 2004). An
example of the reconstruction procedure output gener-
ated by Freesurfer for subject CC410354 is shown in
Fig. 2.

To generate features from structural MRI we pro-
cessed T1-weighted volumes for every subject. Using
the mris preproc script provided by FreeSurfer we ex-
tracted estimates of cortical thickness and surface area
resampled into the fsaverage4 space. The data for left
and right hemispheres were combined into a vector with

n f eatures(thickness) = n f eatures(area) = 5124 entries,
separately for every subject. The asegstats2table

script was used to obtain measurements of subcortical
volumes and global volume into a vector for each sub-
ject with n f eatures(volumes) = 66.

3.2.2. Functional MRI
Prior to any analysis fMRI data should be prepro-

cessed. There are many approaches to solve this
task, but there is a standard set of methods to choose
from (Poldrack et al., 2011). The standard fMRI prepro-
cessing stream consists of distortion correction, motion
correction, slice timing correction, and spatial smooth-
ing.

The first typical operation is distortion correction,
this operation is used to combat several types of artifacts
specific to gradient-echo echoplanar imaging (EPI). EPI
imaging is the dominant method in fMRI studies. The
inhomogeneity of the steady magnetic field B0 due to
the air-tissue interfaces causes the reduction of signal in
the brain areas adjacent to these interfaces (i.e. dropout)
and spatial distortions of the signal location. These arti-
facts typically occur near the anterior prefrontal cortex,
orbitofrontal cortex, and lateral temporal lobe. Since
there is no possibility to restore data from a region af-
fected by dropout, it is suggested to reduce dropout us-
ing special MRI acquisition configurations. To correct
spatial distortions one can use a field map characterizing
the B0 field (Jezzard and Balaban, 1995). A field map
can be obtained using the difference in phase between
the two images acquired at different echo times. This
information allows to restore initial coordinates of each
voxel.

During fMRI acquisition any subject will move its
head, for example because of swallowing. The subject’s
movement causes bulk motion or a spin history effect.
The first one is a movement of the head as whole. Bulk
motion can significantly affect activation maps. It can be
corrected using standard motion correction techniques
by registering the images in the time series to a refer-
ence image. The spin history effect disrupts the fMRI
signal itself. Due to the head movements, the protons
change their location, which causes incorrect signal re-
construction. These can lead to large changes in the in-
tensity of neighboring slices. This form of motion can
be corrected using ICA (Jungl et al., 1998).

In most cases, fMRI data are obtained using two-
dimensional MRI acquisition, in which the image is ac-
quired one slice at a time. Owing to this, data in differ-
ent slices in the volume are acquired at different times.
However, during the analysis of fMRI data one assumes
that all data in the image were obtained at the same time.
To tackle the difference in acquisition time of differ-
ent voxels, one can use slice timing correction (Henson
et al., 1999). This algorithms interpolates the data in
all the slices to match the timing of a selected reference
slice.
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Spatial smoothing of MRI volumes increases SNR ra-
tio and reduces the variability across different subjects.
It applies a filter to the image, which removes high-
frequency information. A three-dimensional Gaussian
filter is commonly used. The amount of smoothing im-
posed by a Gaussian filter is determined by the width
of the distribution, which is defined as the full width
of the Gaussian distribution at half-maximum (FWHM)
FWHM = 2σ

√
2 ln(2), where σ is the standard devia-

tion.
To prepare fMRI data from the Cam-CAN study

we were following the functional MRI preprocessing
pipeline implemented in Python, the pypreprocess pack-
age. The pipeline relies on the SPM12 software for the
analysis of brain images and python-matlab interface
provided by Nipype (Gorgolewski et al., 2011). The
available fMRI data were visually inspected. The vol-
umes were excluded from the study provided they had
severe imaging artifacts or head movements with ampli-
tude larger than 2 mm. After the rejection of corrupted
data we obtained a subset of 626 subjects for further in-
vestigation. The fMRI volumes underwent slice timing
correction and motion correction to the mean volume.
Following that, co-registration between anatomical and
function volumes was done for every subject. Finally,
brain tissue segmentation was done for every volume
and the output data were morphed to the MNI space.

To obtain functional connectomes from fMRI data
the Nilearn package was used (Abraham et al., 2014).
We used two parcellation atlases in our study, namely
the BASC atlas with 197 functional parcels (Bellec
et al., 2010) and the MODL atlas with 256 func-
tional parcels (Mensch et al., 2016). Mean timeseries
were obtained from the regions defined by each at-
las. In the following step, functional connectivity ma-
trices were estimated using either correlation between
functional MRI signals or the tangent space projec-
tion (Varoquaux et al., 2010). The connectivity matri-
ces obtained using signal correlation further underwent
Fisher’s r-to-z transformation. Following that, feature
vectors of size either n f eatures(BASC 197) = 19306 or
n f eatures(MODL 197) = 32640 were created from the
lower triangle of each matrix.

3.3. Magnetoencephalography

In comparison to fMRI, magnetoencephalography
provides higher temporal resolution. The Cam-CAN
data set contains raw and processed MEG data. In our
study we used the raw data provided in Neuromag’s FIF
file format. They contain information from different
sensors: magnetometer, gradiometer, EEG, EOG, ECG
and stimulus. Processing of MEG data is challenging
because of the multi-dimensional nature of the data, and
low signal-to-noise ratio (SNR). The MEG preprocess-
ing pipeline, proposed by Jas et al. (2018), was used as
a guidance during preprocessing of MEG data.

3.3.1. Cleaning channel information
We started processing of the data by cleaning channel

information. Each study was visually inspected to con-
firm that all channels were given correct names. Due
to the compatibility requirements, the coil type in the
meta information of each file was initially set as 3022 or
3023. During our investigation we changed the coil type
to 3024, as it is the one actually used in during the data
acquisition. A list of channels with corrupted data was
obtained from Elekta Mafilter log files provided by the
Cambridge Center for Aging and Neuroscience. Those
channels were excluded from the following processing
steps.

3.3.2. Environmental artifacts
To suppress magnetic interference signal recording

is typically performed in magnetically shielded rooms,
the MEG systems are also equipped with gradiome-
ters, which are less sensitive to external signal than
magnetometers. Still, one needs to use advanced sig-
nal processing techniques to clean MEG recordings.
In our work we utilized the signal source separation
method (SSS) proposed by Taulu and Kajola (2005).
This method exploits the known physical properties of
magnetic fields to separate the measured signal into two
linearly independent subspaces comprising external and
internal, with respect to the sensor helmet, signals. It
is also called signal space separation. According to this
method each MEG signal can be decomposed into a lin-
ear combination of spherical harmonic functions. SNR
can be increased by keeping only the first functions of
such decomposition. It is generally referred to as spatial
filtering.

SSS requires a detailed sampling (more than about
150 channels) and a relatively high calibration accuracy,
which is machine- and site-specific. In our study we
used the fine-calibration coefficients and the cross-talk
correction information provided by the Cambridge Cen-
ter for Aging and Neuroscience.

In the real case scenario, with the data measured by
an Elekta Neuromag 306-channel device, the optimal
number of components is 8 for the harmonic decom-
position of the internal sources, and 3 for the external
sources. In this work we used the same number of
spherical components and a 10 s sliding window. The
correlation threshold, which is a limit between inner
and outer subspacesused to reject overlapping intersect-
ing inner/outer signals, was set to 98%. We performed
no movement compensation, since there were no con-
tinuous head monitoring data available at the time of
our study. The origin of internal and external multipo-
lar moment space is fitted via head-digitization, hence
specified in the head coordinate frame and the median
head position during the 10 s window is used.

The data were processed using the MNE
maxwell filter function. It is important to highlight
that after SSS, the magnetometer and gradiometer data
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are projected from a common lower dimensional SSS
coordinate system that typically spans between 64 and
80 dimensions. As a result, both sensor types contain
highly similar information, which also modifies the
inter-channel correlation structure (Garcés et al., 2017).
Thus MNE will treat them as a single sensor type in
many of the analyses that follow. A scale factor of 100
is used to bring the magnetometers to approximately
the same order of magnitude as the gradiometers, as
they have different units (T vs T/m).

3.3.3. Power spectral density
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(a) PSD of raw data
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(b) PSD of filtered data

Figure 3: Power spectral density of signals measured by magnetome-
ters and gradiometers before (Fig. 3a) and after (Fig. 3b) application
of the signal source separation method. The data was acquired for
subject CC110033 from the Cam-CAN data set. 4096 time points
were used to calculate fast Fourier transform, which corresponds to a
window of 12 s, given the 1 kHz sampling rate.

The spectral artifacts and bad channels can be easily
detected using the power spectral density (PSD) esti-
mates for all channels. The MNE package estimates the
PSD of MEG data using Welchs method (Percival and
Walden, 1993; Welch, 1967). In this method the sig-
nal for each channel is analyzed over consecutive time
segments of fixed duration. The power of the discrete
Fourier transform (DFT) coefficients is computed and
averaged over all segments. The averaging procedure
returns an unbiased and less noisy estimate of the PSD,

provided that each of these segments is a realization of
a stationary process. For example, in Fig. 3 PSD for
the MEG data of the selected subject is shown. From
the plot, it is easy to see that the SSS method removes
the outliers (bad channels with abnormally high spec-
tral power). In this study, thanks to the spatial filtering,
we did not found any potentially bad channels. By in-
specting a PSD plot visually one can easily find spectral
artifacts. In our case, we effortlessly see the peaks from
a power line at 50 Hz. This particular artifact should
not affect the age prediction since it is the same for ev-
ery subject, thus we did not remove it from the data.

3.3.4. Temporal filtering
To further improve SNR of MEG data one can ex-

clude signals with frequencies that are outside of the
band where the responses energy is supposed to lie.
To distinguish it from spatial filtering, it is referred to
as time-domain or temporal filtering. In our work, the
resting state brain responses were band-pass filtered the
range of frequencies from 0.1 Hz up to 150 Hz.

3.3.5. Filtering of bad data segments
In some case the filtered data still may include bad

data segments and bad epochs due to transient jumps.
The MNE package provides means to remove bad tri-
als by analyzing their peak-to-peak amplitude. Specif-
ically, it discards any trial which peak-to-peak ampli-
tude exceeds a certain subject-specific rejection thresh-
old. Additionally, instead of selecting the threshold
manually for each subject, we used the autoreject al-
gorithm (Jas et al., 2017). Autoreject is an unsupervised
algorithm, which find the optimal threshold by minimiz-
ing the Frobenius norm between the average signal of
the training set and the median signal of the validation
set.

3.3.6. Physiological artifacts
Physiological artifacts in MEG data are the ones

caused by subject’s heart beats and eye blinks. MEG
recording systems typically provide this physiological
information in the form of EOG and ECG signal record-
ings. In our work we mitigated the influence of physio-
logical artifacts using the signal space projection (SSP)
method (Uusitalo and Ilmoniemi, 1997). This method
uses the concept of signal and interference subspaces,
similar to the source space separation algorithm. Ac-
cording to the SSP method, the measurement data can
be projected onto a hyperplane orthogonal to the infer-
ence subspace, thus completely removing the contribu-
tion of the unwanted subspace.

In detail, we excluded bad data segments from the
EOG/ECG channels using global autoreject (Jas et al.,
2017). Then EOG/ECG signals were used to detect
time points associated with artifacts in the MEG sig-
nals. To isolate segments dominated by artifacts we
extracted epochs using 500 ms windows around those
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events and averaged those epochs. For each subject
data we obtained a vector x ∈ Rns×te , where ns is the
number of sensors and te the number of time points.
For each of those vectors the artifact amplitude domi-
nated signal amplitude. Assuming that the signal space
and the artifact space were orthogonal to each other,
we extracted the artifact from real signal by computing
the eigenvalue decomposition of the covariance matrix
xx> ∈ Rns×ns and removing the first eigenvector (SSP
vector) for each sensor type and each artifact type. This
procedure dampens the artifact influence, while not re-
moving it completely.

3.3.7. Epoching
In event-related paradigm, a stimulus channel con-

tains binary-coded trigger pulses to mark the on-
set/offset of events. There are no proper events of inter-
est in the resting state paradigm, so we used fixed length
segments of 30 s of data with no overlap. We extracted
segments of data from the continuous recording around
events of interest and stored them as single trials, which
are also called epochs in MNE. The duration of time
windows was selected to have a higher frequency reso-
lution. The selected overlap time allowed to get a less
noisy estimate of the brain dynamics in resting state.

3.3.8. Supervised spatial filtering
Following prepossessing of MEG signals, one needs

to generate suitable input data for machine learning
models. To find the relationship between aging and
MEG data Khan et al. (2018) analyzed functional con-
nectivity using graph theory. In our work we decided to
follow a simpler path, and to rely solely on signal pro-
cessing techniques. Thus, we inspected MEG signals
for age-related patterns using the source power comod-
ulation (SPoC) algorithm, introduced by Dähne et al.
(2014). It is a supervised spatial filtering algorithm that
uses a target variable to guide the signal decomposition
process. Incorporating this information allows the algo-
rithm to give preference to components whose power
comodulates with the target variable. SPoC chooses
spatial filters to maximize the covariance between the
power of the filtered signals and the target variable,
which is the chronological age in our case. In our work,
a covariance matrix of the MEG signals measured by
magnetometers was calculated separately for every sub-
ject in these frequency bands: 0.1–1.5 Hz (low), 1.5–
4.0 Hz (delta), 4.0–8.0 Hz (theta), 8.0–15.0 Hz (alpha),
15.0–26.0 Hz (low beta), 26.0–35.0 Hz (high beta),
35.0–50.0 Hz (low gamma), 50.0–74.0 Hz (medium
gamma), and 76.0–120.0 Hz (high gamma). These ma-
trices were processed using SPoC, while subject’s age
was set as the target variable. We utilized the spatial fil-
ters learned from the training data to estimate features
for age prediction.

3.4. Machine learning
3.4.1. Cognitive age regression

It is easy to see that the task of cognitive age pre-
diction given processed MRI, MEG data is a typi-
cal supervised learning problem (Hastie et al., 2009).
The provided data can be denoted as a vector x =

(x1, x2, . . . , xp)>, where p is the number of predictors
or features. In our problem we want to predict values of
the subjects’ age y ∈ R+, i.e. a target variable, which
should belong to a set of continuous, real, non-negative
numbers. In this case regression methods should be uti-
lized.

Linear models are widely used to solve the task of de-
coding, i.e. prediction of behavior or biomarkers from
brain images or signals (Varoquaux et al., 2017). This
is due to the fact that stable but biased linear models are
not only easy to train or interpret, but they are less af-
fected by the curse of dimensionality (Bellman, 1961),
than more flexible prediction models given the dimen-
sions of neuroimaging problems. Thus we decided to
use a linear regression model, which supposes that the
target variable y can be predicted from a linear combi-
nation of the features (Hastie et al., 2009). It can be
written as

y = β0 +

p∑

j=1

x jβ j = β0 + x>β (1)

where β ∈ R is a vector of coefficients, β0 ∈ R is the
intercept or bias. The latter term can be included in the
vector of coefficients, thus Eq. 1 becomes

y = x>β (2)

where β ∈ R(p+1) and the constant variable 1 was in-
cluded in x.

Assume we were given a learning set or training data
as in Eq. 3, where xi is an input vector and yi is the
corresponding response.

Dn = {(yi, Xi), i = 1, . . . , n} (3)

There are many methods to fit the linear model defined
in Eq. 2 to the given data, the most popular among them
is the method of least squares (Hastie et al., 2009). Ac-
cording to this method, the coefficients β are selected so
that the residual sum of squares RSS will be minimal

RSS(β) = (y − Xβ)>(y − Xβ) (4)

where X is an n × p matrix where each row is an input
vector, and y is an n-vector of the outputs in the training
set. Differentiating Eq. 4 with respect to β we obtain

∂RSS
∂β

= −2X>(y − Xβ) (5)

∂RSS
∂β∂β>

= 2X>X (6)
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If X has full column rank, i.e. input vectors are lin-
early independent, then X>X is positive definite. Thus
we can find a minimum value for RSS by finding the
point where the first derivative is zero

X>(y − Xβ) = 0 (7)

The equation above has the unique solution

β̂ =
(
X>X

)−1
X>y (8)

where β̂ is a vector of estimated coefficients of the linear
model defined in Eq. 2.

Typically, the least squares estimates β̂ have low bias
but large variance, and use a large number of predic-
tors. Prediction accuracy and the robustness to over-
fitting might be improved by introducing some bias into
the model (Hastie et al., 2009). This can be achieved us-
ing variable subset selection, shrinkage methods (ridge
regression, the lasso), partial least squares, and princi-
pal components regression. In the work of Frank and
Friedman (1993) a detailed study of those methods can
be found. The authors state that ridge regression (RR)
gives the minimal prediction error in comparison to
the other methods. Moreover, RR shrinks coefficients
smoothly, rather than in discrete steps (Hastie et al.,
2009). Thus we decided to use this method in our work.

Ridge regression was initially introduces in the work
of Hoerl and Kennard (1970). It imposes a penalty on
the size of coefficients. The ridge coefficient estimates
β̂ridge minimize a penalized residual sum of squares

RSS(λ) = (y − Xβ)>(y − Xβ) + λβ>β (9)

Differentiating this equation with respect to β we obtain

∂RSS
∂β

= −2X>(y − Xβ) + 2λβ (10)

∂RSS
∂β∂β>

= 2X>X + 2λ (11)

By utilizing the same approach as for finding the least
squares estimates in Eq. 8, we can find the final solu-
tion for the ridge regression coefficient estimates Eq. 12,
where I is the p × p identity matrix and λ ≥ 0 is the
regularization parameter that controls the trade-off be-
tween data-fitting and regularization. It is easy to see
that such regularization adds a positive constant to the
diagonal of X>X, thus it makes the problem nonsingular
even for rank deficient X>X. There are multiple strate-
gies to select the value of λ. In our work we decided to
use cross-validation, we were looking for the best value
of λ across n = 100 points on a logarithmic scale be-
tween a = 10−3 and b = 105, which is a set of points
S = {x1 = a, xi+1 = xir(b−a)/n}ni=1, where r = 10.

β̂ridge = (X>X + λI)−1X>y (12)

3.4.2. Stacking regressions
According to Breiman (1996), stacking regressions is

a method for forming linear combinations of different
predictors to give improved prediction accuracy. To cal-
culate the coefficients in the combination it uses cross-
validation and least squares under non-negativity con-
straints. The stacking procedure was initially proposed
by (Wolpert D., 1992), it implies that given a set of pre-
diction functions f1(x), . . . , fk(x) a more accurate pre-
dictor function can be built by combining those. The
method for combination is based on level 1 data defined
as follows: leave out the ith case and repeat the pro-
cedures for constructing the predictor functions, getting
f (−i)

j (x), j = 1, . . . , k. We define a vector zi ∈ Rk by

zi j = f (−i)
j (xi) (13)

Then the data on level 1 is (yi, zi), i = 1, . . . , n. This
data is typically used for selecting one of the f j with re-
spect to some minimization criterion, e.g. least squares.
According to Wolpert D. (1992), the level 1 data con-
tains more information and can be used to construct
a combination of the f j that exhibits even better accu-
racy. A simple approach to solve the problem of com-
bining the f j is to consider a linear combination as in
Eq. 14 (Breiman, 1996)

f (x) =
∑

j

α j f j(x) (14)

where α ∈ Rk such that

α = arg min
α

∑

i

(yi − αzi)2 (15)

Here the level 1 data is generated using leave-one-out
cross-validation (LOOCV), although the suitable level 1
data can be successfully obtained by less computation-
ally demanding k-fold cross validation (Breiman, 1996).

To perform stacking one can use not just linear re-
gression as in Eq. 15. For example in the work of Rahim
et al. (2016), the stacking step was implemented using
either logistic regression, or ridge regression, or random
forests. They found that three classifiers led to the sim-
ilar improvements in prediction accuracy, though ran-
dom forests gave more stable output than logistic re-
gression and ridge classifier, i.e. the standard deviation
of prediction accuracy was significantly reduced. Ac-
cording to the results of (Liem et al., 2017) stacking
with random forests significantly improved prediction
accuracy relatively to the originally used classifiers.

We combined single-source using RF, a flow-chart
depicting our stacking approach can be seen in Fig. 4.

3.4.3. Random forests
The bootstrap is a general tool for assessing statisti-

cal accuracy (Hastie et al., 2009). Assuming we have
a model fit to a set of training data as in Eq. 3, we
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Figure 4: Stacking diagram. The predictions from selected single-
source models are stacked using the random forest algorithm to obtain
age values.

should randomly draw data sets with replacement from
the training data m times, each sample the same size as
the original training set. In this way we will produce m
bootstrap data sets D∗bn , b = 1, 2, . . . ,m. In the follow-
ing step, we should fit the model again to each of the
bootstrap data sets, and examine the behavior of the fits
over those sets. Bootstrap aggregation or bagging finds
the average prediction of the model over the collection
of bootstrap samplesD∗bn from our training dataDn, see
Eq. 16.

f̂bag =
1
m

m∑

b=1

f̂ ∗b(x) (16)

Here f̂ ∗b(x) is the fit of the model to D∗bn . Bagging av-
erages the outputs of noisy unbiased models, thus it re-
duces the variances relative to any of those models when
considered separately.

Regression trees partition the space of all predictor
variable values into k disjoint regions R j, j = 1, 2, . . . , k
using greedy, top-down recursive binary splitting. The
jth terminal node of the tree corresponds to a region R j.
A constant γ j is assigned to each such region, which is
typically the mean or the mode of the training obser-
vations in the corresponding region. This constant is
called terminal-node value (Hastie et al., 2009). For ev-
ery observation x that falls into the region R j we make
the same prediction by returning γ j. Hence, we can
write it as

T (x; Θ) =

k∑

j=1

γ jI(x ∈ R j) (17)

where I(x ∈ R j) = 1 if x ∈ R j and I(x ∈ R j) = 0

otherwise, Θ = {R j, γ j}m1 , m is selected empirically.
The random forests algorithm developed by Breiman

(2001) combines decision trees and bagging. The idea
behind this method is to improve the variance reduc-
tion of bagging by decreasing the correlation between
the trees. It builds a large ensemble of de-correlated
decision trees {Tb}m1 over bootstrap samplesD∗bn . To re-
duce the correlation between those trees one should ran-
domly select the input variables during the tree growing
process. In detail, when growing a tree Tb on a boot-
strapped data set D∗bn , at each split only a randomly se-
lected subset of size s <= p of the input variables is
considered. In most cases, s =

√
p. The final random

forest regression predictor is shown in Eq. 18.

f̂ m
r f (x) =

1
m

m∑

b=1

T (x,Θb) (18)

In our work, the values of hyperparameters were the
same as the ones used by Liem et al. (2017). In de-
tail, we were building random forest using m = 100
estimators, while all the available features were consid-
ered when looking for the best split s = p, the default
values of the other hyperparameters were used, see the
RandomForestRegressor class from scikit-learn (Pe-
dregosa et al., 2011). Models were trained and evaluated
using cross-validation.

3.4.4. Model evaluation
While solving statistical learning problems we want

to find the most suitable model among the available
ones, which is the model selection problem. At the
same time, we want to assess the performance of our
estimated model f̂ (its generalization error) on indepen-
dent test data, i.e. the model assessment problem. The
generalization or test error can be approximated using
training error, see Eq. 19, which is equals the average
loss over the training data Dn. The loss can be quanti-
fied using the loss function L, which is typically either
a squared or absolute value of a residual, see Eq. 20.

err =
1
n

n∑

i=1

L(yi, f̂ (xi)) (19)

L(yi, f̂ (xi)) =


(yi − f̂ (xi))2

|yi − f̂ (xi)|
(20)

Unfortunately, this is not a good estimate, due to the fact
that a model with high complexity may overfit the data.
As a result, it will have very low training error, but high
test error.

One can solve those problems by randomly dividing
the data set into three parts: a training set, a validation
set, and a test set. Typically, the given data are shuffled,
then 50% of the samples are allocated for the training
set, used to fit the models to. The other 50% are equally
split into the validation set, used to find prediction error
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for model selection, and the test set, used to estimate the
generalization error of the selected model. The splits
should preserve the ratio of samples between groups,
i.e. stratified splitting. This approach is suitable when
the amount of data is relatively large. For other cases,
it is recommended to use K-fold or leave-one-out cross-
validation (Hastie et al., 2009).

K-fold cross-validation randomly splits the available
data into k roughly equal-sized parts. jth part of those
splits is used as the validation set, while other k−1 parts
are preserved to fit the model. The process is repeated k
times and the performance scores from all runs are aver-
aged. If we use a function κ : {1, . . . , n} 7→ {1, . . . , k} in-
dicating the partition to which observation i is allocated
by the randomization, then the prediction error can be
found as

CV( f̂ ) =
1
n

n∑

i=1

L(yi, f̂ −κ(i)(xi)) (21)

It is recommended to select k = 5 or k = 10. In case
the amount of available data is particularly scarce one
can choose k = n, which is called leave-one-out cross-
validation (LOOCV).

Besides test error, once can estimate how well the
model fits given data using the R2 statistic (the coeffi-
cient of determination), which equals to the proportion
of explained variance (James et al., 2013)

R2 = 1 − RSS
TSS

(22)

where RSS is defined as in Eq. 4 and TSS =
∑n

i=1(yi −
y)2 is the total sum of squares, and y = 1

n
∑n

i=1 yi is the
mean of the observed data. The R2 metric measures the
proportion of variability in y that can be explained by
the model using observations x.

3.5. Implementation details

During the inspection of the raw MRI, fMRI, and
MEG data provided by the Cambridge Center for Aging
and Neuroscience, we selected 625 subjects with suit-
able MRI, fMRI studies and 640 subjects with satisfac-
tory MEG records. The regression models were trained
on 588 studies from the CamCAN data set, which con-
tained high quality information for every modality.

The MEG, structural and functional MRI features
were extracted for every subject by Python scripts.
Single-source models were trained on the structural
MRI features (i.e. cortical surface area, cortical thick-
ness, and subcortical volumes), the functional MRI fea-
tures, and MEG data. The fMRI features were ob-
tained from connectivity matrices estimated either in
the tangent space or using Fisher’s r-to-z transforma-
tion (corresponding shortcuts tan and r2z), on brain
parcellations using the BASC (197 functional parcels)
or MODL (256 functional parcels) atlas. Multi-source

models were trained on different combinations of fea-
tures, such as structural MRI features; structural and
functional MRI features; MEG and structural MRI fea-
tures; MEG and functional MRI features; MEG, fMRI
and structural MRI.

To build regression models of the subject’s age
the RidgeCV, RandomForestRegressor classes from
scikit-learn (Pedregosa et al., 2011) were uti-
lized. Stacking was added using the code from a
scikit-learn feature proposal. Learning curves were
obtained using the learning curve function. 10-fold
cross-validation was selected to evaluate every model
and find its age predictions. The cross val predict

function allowed us to find the predicted age for every
participant. The performance of every model was es-
timated via mean absolute error and the coefficient of
determination using the cross val score function.

4. Results

The objective of the current investigation was to de-
velop a method for the brain age prediction that com-
bines information from MEG, structural MRI and func-
tional connectivity data. To achieve this aim we stacked
regularized linear models (ridge regression) with the
random forest algorithm. To evaluate the performance
of the age prediction models we estimated mean abso-
lute prediction error and the coefficient of determina-
tion. MAE and its distribution can be seen in Fig. 5,
corresponding values and R2 scores are presented in Ta-
ble A.1. All age regression models exhibit good accu-
racy, with MAE ranging from 4.75 to 10.39 years and
R2 ranging from 0.48 to 0.89. Multi-source models
perform better than single-source models, stacking with
MEG data improves the age prediction accuracy. The
highest accuracy was achieved by the model combin-
ing MEG, structural and functional MRI. The second
best model was the one combining structural and func-
tional MRI. Although stacking of single-source mod-
els improves prediction accuracy and the coefficient of
determination in comparison to the used single-source
models, the standard deviation does not follow this pat-
tern and shows less straightforward behavior.

For every model we also obtained a scatter plot of the
chronological age versus the age predicted by the model
for every participant, and its learning curves. For exam-
ple, in Fig. 6 these plots were done for the multi-source
model stacking MEG, structural MRI, and functional
MRI data. In Fig. 6a we see no outliers, which means
that our preprocessing pipeline was run successfully.
We performed this visual inspection for every model.
Learning curves in Fig. 6b show that MAE decreases
with the addition of new training samples, the same be-
havior was observed for other models, which implies
that prediction accuracy can be further improved by
adding new studies.
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Figure 5: MAE for single-source models and the models obtained via stacking of single source models. CSA, CT, and SV are abbreviations of cortical
surface area, cortical thickness, and subcortical volumes correspondingly. FMRI features estimated in the tangent space are denoted using the tan
abbreviation, while r2z denotes fMRI features calculated using Fisher’s r-to-z transformation. MRI Stacked combines all structural features,
fMRI Stacked combines the MODL 256 r2z and BASC 197 tan fMRI features. A green triangle and a vertical black line in every interquartile
range correspond to the mean and median of the distribution. Multi-source models (Stacked) perform better than single-source models, stacking
with MEG data improves the age prediction accuracy. The highest accuracy was achieved by the model combining MEG, structural and functional
MRI, namely the MEG, MRI, fMRI Stacked model.

In addition, we estimated mean absolute error of age
prediction of all models for each age group, where a
group constitutes of participants with age difference not
more than 10 years. In total, we obtained 7 age groups:
18–28 years, 28–38 years etc. The dependency of MAE
on age groups can be seen in Fig. 7. Singles-source
models trained on cortical surface area and MEG data
exhibit strong U-shaped dependency dependency be-
tween mean absolute prediction error and the chrono-
logical age, which indicates that the age prediction er-
rors were higher for younger and older participants. For
the other models the dependency is weaker, and the
multi-source models exhibit the least variation of MAE
across age groups.

5. Discussion

In our work we investigated whether the combi-
nation of MEG, structural and functional MRI data
yields a better age prediction model for healthy sub-
jects. As we anticipated, the best age prediction ac-
curacy was achieved by the multi-source model com-
bining MEG, structural and functional MRI data with
MAE = 4.75 years and R2 = 0.89. The accuracy of the
model trained on structural and functional MRI data was
MAE = 5.09 years and R2 = 0.87, the models trained
only on anatomy or functional connectivity data reached

MAE = 6.16 years and R2 = 0.82, MAE = 5.94 years
and R2 = 0.82 respectively. Based on this results we
can see that by integrating information from different
modalities we improved prediction accuracy by approx-
imately one year, in comparison to the structural or
functional MRI only models. Addition of MEG data
to the MRI, fMRI Stacked model increased predic-
tion accuracy by approximately 0.3 years. In contrast to
the prediction accuracy of the investigated models, the
standard deviation of the age prediction did not show
consistent improvement. The increase in prediction ac-
curacy of stacked models is due to the addition of new
information by each modality.

Among the single-source models trained on struc-
tural MRI data, the ones trained on subcortical volumes
showed the best value of MAE, which agrees with the
brain aging patterns discovered earlier by Good et al.
(2001); Pfefferbaum et al. (1994). The performance of
the models based on cortical thickness information was
almost as good, while linear models exploiting cortical
surface area showed significantly lower accuracy. This
observation is in agreement with the study of Storsve
et al. (2014), where a clear correlation between aging
and cortical thinning was found, while the relationship
between cortical surface area and brain maturing was
less pronounced.

While doing stacking of functional MRI single-
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Figure 6: The age prediction model combing data of all modalities (MEG, structural MRI, and functional MRI). The chronological age and age
predicted by this model for every subject are shown in Fig. 6a. Separate subjects are represented by blue circles, the perfect prediction is the
solid green line, dashed red lines bound values that differ from the perfect prediction by less than one standard deviation. The investigated model
captures the relationship between the chronological age and data quite good, demonstrating uniform variance and no outliers. The learning curve
of the same model is presented in Fig. 6b, the inverse dependency between the number of training sample (i.e. participant’s data) and MAE implies
that prediction accuracy can be further improved by adding new studies.

18-27 28-37 38-47 48-57 58-67 68-77 78-87
Age Group (Years)

4

6

8

10

12

14

16

18

20

M
AE

 (Y
ea

rs
)

MEA per Age Group
Cortical Surface Area
Cortical Thickness
Subcortical Volumes
BASC 197 tan
MODL 256 r2z
MEG
MRI Stacked
fMRI Stacked
MRI, fMRI Stacked
MEG, MRI, fMRI Stacked

Figure 7: MAE depending on age groups. A group is a set of partic-
ipants whose age difference is not more than 10 years. Straight lines
correspond to single-source models, while dashed lines correspond
to multi-source models obtained by stacking. Multi-source models
(Stacked) exhibit the least variation of MAE across age groups.

source models, we selected a connectivity ma-
trix estimated for the BASC atlas in the tangent
space (BASC 197 tan) and another one estimated
for the MODL atlas using r-to-z transformation
(MODL 256 r2z), due to the fact that correspond-
ing single-source models showed the best performance
among the other models trained on fMRI data and were
less correlated than other functional MRI-based fea-
tures, see Fig. A.8. The other features (anatomy, fMRI,
MEG) did not show any significant correlation between
each other.

It is important to note that stacking of MEG data with

other modalities substantially improves the brain age
prediction accuracy. In Fig. 5 one can see how adding
MEG data to any of the structural and functional MRI
features affects prediction accuracy. Moreover, the best
age prediction accuracy was obtained for stacked multi-
modal regression function trained on MEG, structural
and functional MRI features. The improvement intro-
duced by MEG data into the age prediction accuracy of
this multi-source model was not very large, 0.3 years
in comparison to the multi-source model trained on
fMRI and structural MRI data. This is because the
single-source model trained on MEG was not capable
of achieving high accuracy on its own, its best score
MAE = 9.22 years.

As one can see in Fig. 7, mean absolute error of the
brain age prediction depends on the subject’s age. High
variations in MAE values depending on the chronologi-
cal age were observed for single source models trained
on cortical surface area and MEG. This models tend
to have higher prediction accuracy for the young and
old participants than for the middle-aged participants,
which implies that the relationship between the partici-
pant’s age and these features is non-linear. In contrast,
the models trained on fMRI features tend to have sig-
nificantly lower variation in MAE values for different
age groups. Multi-source models demonstrated notable
decrease in MAE variance depending on the chronolog-
ical age, which is caused by the fact that aggregation via
random forest lowers the bias in the model parameter es-
timation and better captures non-linear relationships in
the training data, for example see Fig. 6a, 7.

There is direct correspondence between the perfor-
mance of the models trained on structural and functional
MRI in our study (Fig. 1) and the results presented in
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the work of Liem et al. (2017). In detail, the accuracy
demonstrated by the stacking of the fMRI and anatom-
ical MRI features is MAE = 4.29 years in the work
of Liem et al. (2017) and MAE = 5.09 years in our
study. In general, achieved MAE is higher in compari-
son to the results in the paper mentioned above, this may
be due to the fact that we were using a different data
set, which is almost four times smaller than the LIFE
data set (i.e. 656 versus 2600 unique studies). The per-
formance of single-source models trained on MEG data
was in accordance with the work of Khan et al. (2018).
We achieved R2 = 0.58 for the participants aged 18–
87 years, while the scores in the work mentioned above
are R2

MGH = 0.52,R2
OMEGA = 0.41 for the participants

aged 7–29 years.
In the work of Liem et al. (2017), it was demonstrated

that head motion had no significant influence on the
brain age prediction. Moreover, the authors found that
exclusion of motion-related signals affected meaningful
variance related to age. Thus in our work we did not
consider motion confounds while working with MRI
and MEG data. Though, it is interesting to see whether
for MRI and MEG data from the Cam-CAN data set mo-
tion correction can be of any use. The prediction accu-
racy of the MEG single-source model and related mod-
els can be improved by using more complex preprocess-
ing pipeline of the MEG signals. For example, instead
of considering signals in the sensor space one can ana-
lyze them in the source space. Although, prediction ac-
curacy can be further improved by adding new studies,
as can be seen from learning curves in Fig. 6b, it is hard
to find a data set with large amount of MEG, structural
and functional MRI data. Combining data from differ-
ent sites might be of interest. However, as it was shown
by Liem et al. (2017), usage of data from different sites
substantially lowers the age prediction accuracy. Nev-
ertheless, it is unclear how much the age prediction er-
ror can be lowered. Some prediction error will always
persist because of individual differences in the human
brains of the same age (Liem et al., 2017).

The main focus of this study was to assess how incor-
poration of MEG, fMRI and anatomy data can improve
the brain age prediction. Though, to incorporate brain
age as a reliable biomarker for neurological and psy-
chiatric diseases we need to understand better how the
models combining MEG and MRI data will behave in
relation to the diseased brains. Regarding the fact that
structural and functional MRI data showed promising
results (Cole and Franke, 2017; Franke and Gaser, 2012;
Franke et al., 2010; Liem et al., 2017), the combination
of MEG signals with structural and functional MRI data
should further advance the research in this area.

6. Conclusions

In the present study we determined that incorporation
of MEG, functional connectivity and structural MRI

data can improve the brain age prediction accuracy. To
achieve this we utilized stacking of the ridge regres-
sion models using the random forest algorithm, this
approach increased the prediction accuracy of multi-
source models compared to single-source models. We
demonstrated that the improvement was primarily due
to the fact that stacking takes into account non-linear
dependencies present in the training data. The further
investigations are required to be able to employ the pre-
dicted brain age as a reliable biomarker.
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Appendix A. Supplementary results

Modality MAE STD R2
Cortical Surface Area 10.39 1.00 0.48
Cortical Thickness 7.31 0.64 0.72
Subcortical Volumes 6.76 0.60 0.76
BASC 197 tan 5.85 0.51 0.82
BASC 197 r2z 6.74 0.40 0.76
MODL 256 tan 5.90 0.46 0.82
MODL 256 r2z 5.82 0.40 0.83
MEG 9.22 0.56 0.58
MEG, CSA Stacked 7.64 0.84 0.71
MEG, CT Stacked 6.45 0.57 0.80
MEG, SV Stacked 5.89 0.56 0.83
MEG, BASC 197 tan Stacked 5.59 0.79 0.84
MEG, MODL 256 r2z Stacked 5.72 0.34 0.84
MRI Stacked 6.16 0.49 0.82
fMRI Stacked 5.94 0.63 0.82
MRI, fMRI Stacked 5.09 0.38 0.87
MEG, MRI Stacked 5.43 0.50 0.86
MEG, fMRI Stacked 5.25 0.65 0.86
MEG, MRI, fMRI Stacked 4.75 0.46 0.89

Table A.1: Performance metrics for different models. Mean absolute
error, R2 score were measured using 10-fold cross-validation. STD
is a standard deviation of MAE. CSA, CT, and SV are abbreviations
of cortical surface area, cortical thickness, and subcortical volumes
correspondingly. FMRI features estimated in the tangent space are
denoted using the tan abbreviation, while r2z denotes fMRI features
calculated using Fisher’s r-to-z transformation. Multi-source models
(Stacked) perform better than single-source models, stacking with
MEG data improves the age prediction accuracy. The highest ac-
curacy was achieved by the model combining MEG, structural and
functional MRI, namely the MEG, MRI, fMRI Stacked model.
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(a)

(b)

Figure A.8: Correlation of absolute error between the models trained
on fMRI features. The color bar was added to indicate the age of
a subject. MODL 256 r2z is a connectivity matrix estimated for the
MODL parcellation atlas and further processed using Fisher’s r-to-z
transformation, MODL 256 tan is a connectivity matrix estimated for
the MODL parcellation atlas in the tangent space. BASC 197 tan

is a connectivity matrix estimated for the BASC parcellation atlas in
the tangent space. Correlation between fMRI features MODL 256 r2z
and BASC 197 tan are lower than the one of the features estimated in
the tangent space for both atlases.
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Abstract

Prostate cancer is the most common and the second deadliest cancer for males. Low-dose brachytherapy is based on
the implant of radioactive seeds directly in the prostate, and has become the technique of choice to cure prostate cancer.
In order to maximize the dose delivered to the cancerous area while minimizing the radiation effects on healthy organs,
both treatment planning and follow-up are necessary. Computed Tomography (CT) is the standard imaging modality
to perform radiation therapy dosimetry, but the implanted seeds are made of metallic coating, inducing severe artifacts
in CT images. While many Metal Artifact Reduction (MAR) methods have been proposed and implemented in the
past four decades, the focus has been on artifacts caused by orthopaedic, dental and hip implants. This paper presents
a MAR post-processing algorithm based on prostate CT images. The effect of the proposed correction is evaluated on
33 CT-scans of post-implant patients, and the changes in TG-43 compliant dose distribution calculation are discussed.
Results show a change in the absolute number of seeds detected after correction ( ± 2.9 seeds on average), inducing
minor changes in dose calculation. There were no significant changes in D90, V100 and V150 when seed detection is
consistent.

Keywords: Brachytherapy, Prostate cancer, Dosimetry, Metal artifact reductiona, Computed tomography

1. Introduction

Prostate cancer is the most common type of cancer di-
agnosed for males (behind skin cancers), and the second
leading cause of cancer related deaths. The American
Cancer Society (ACS) estimates that 31 620 prostate-
cancer related deaths are to be expected in 2019, from
174 650 newly diagnosed cases (Siegel et al., 2019).
Prostate cancer can be detected using a wide variety
of techniques: Prostate Specific antigens (PSA), Ul-
trasound (US), Magnetic Resonance Imaging (MRI) or
digital rectal examination (non-exhaustive list) (Rozet
et al., 2018). The most straightforward way to treat
prostate cancer is radical prostatectomy, but this oper-
ation induces irreversible and undesirable side effects
for the patient, such as sterility, incontinence or erec-
tile dysfunction. Research has been done on alternative
treatment methods in order to improve treated patients’
well-being, and several are now available. Nowadays,
according to the diagnosis, it is often possible for the
patient to choose among different available techniques

based on their respective side effects. This leads to a
common use of radiation therapy to cure prostate can-
cer, as its downsides are often considered to be minor.
This method aims to destroy cancerous cells by using
radiations, delivered using either External Beam Radi-
ation Therapy (EBRT) or BrachyTherapy (BT). Low-
Dose-Rate BrachyTherapy (LDR-BT) is a form of radi-
ation therapy, for which small metallic seeds containing
a radioactive source are inserted locally inside the pa-
tients’ body in order to deliver the radiations. With this
procedure, about 50 to 100 Iodine-125 (I-125) seeds are
permanently introduced into the prostate. BT allows for
localized treatment of low to middle grade cancer. Due
to the radioactive nature of the treatment and the close
proximity of the prostate to other tissues such as blad-
der and rectum, it is of paramount importance for the
delivered radioactive dose to be maximized on the can-
cerous cells, while being minimized for the surrounding
healthy tissues (Créhange et al., 2017).

This brings a need for accurate dose calculation
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Figure 1: Dosimetry analysis on post-implant CT-scans. The prostate
and rectum are outlined in red and lemon green, respectively. In ma-
genta, green and blue are represented the cumulative isodose line for
240 Gy, 180 Gy and 120 Gy respectively.

(also called dosimetry). According to the American
Brachytherapy Society recommendations (Nag et al.,
2000; Rivard et al., 2007), dosimetry study should be
performed after the seed implantation. The protocol for
brachytherapy dose calculations has been extensively
described by the American Association of Physicists in
Medicine (AAPM) Task Group No. 43 over several re-
ports and updates (Rivard et al., 2004). Updates are be-
ing published, according to the evolution of technolo-
gies in brachytherapy. It aims to define meaningful met-
rics for clinical evaluation, such as the dose covering
90% of the prostate (D90), the fractional volume of the
prostate receiving 100% of the prescribed dose (V100),
or the urethral and rectal doses received (see Figure 1).
There is now a standard procedure to input CT data of
post-implant patient into commercially available soft-
ware in order to obtain dosimetry data.

However, it is known that in the presence of metal-
lic objects such as prosthesis, dental implants or
brachytherapy sedds, X-ray and CT images are sub-
ject to corruption by artifacts (Barrett and Keat, 2004;
Boas and Fleischmann, 2012). These metal artifacts are
linked to several mechanisms. The most impacting one
is called beam hardening. It occurs when a X-ray beam
encounters a high density object, where only high en-
ergy photons are able to go through the object, result-
ing in ”hardening” the beam (i.e. increasing its mean
energy). This results in two types of artifacts, called
streaking (dark and bright bands) and cupping (dark re-
gions) artifacts, as shown in Figure 2. Correction of
such artifacts is necessary, as their presence may affect
any kind of segmentation based methods, clinical diag-
nosis or even visual evaluation of the images. The influ-
ence of Metal Artifact Reduction (MAR) algorithms on
CT-scans have been shown to bring improvements, for
both dosimetry analysis and ease of organ recognition
(Bazalova et al., 2007; Giantsoudi et al., 2017).

While it is now common for CT-scanner manufactur-

Figure 2: CT slice of post-implant patient zoomed at the level the
prostate. Are shown by red arrows the two types of artifacts: cupping
(bright and dark regions around seeds) and streaking (dark bands).

ers to provide built-in MAR techniques with their prod-
ucts, the proposed correction can be improved for spe-
cific cases, and beam hardening correction remains a
challenging task (Andersson et al., 2015; Huang et al.,
2015; Bolstad et al., 2018). Moreover, several stud-
ies consider MAR caused by metal object of differ-
ent sizes, but very few consider a large quantity of
metallic elements (and therefore many possible metal
artifacts sources). Regarding prostate radioactive seed
implant, very small objects in high quantity have to
be considered separately, making MAR a challenging
task when applied to post-implant CT-scans since con-
ventional MAR methods are not well-adapted (Karimi
et al., 2012).

However, it has been shown that the use of non-seed
specified MAR algorithms yields a positive impact on
post-implant dosimetry (Andersson et al., 2015). The
positive impact of two different scanner specific MAR
algorithms applied to lung and prostate brachytherapy
respectively has been demonstrated (Yang et al., 2015;
Shiraishi et al., 2016). Many MAR methods are based
on sinograms, which are commonly stored using propri-
etary format, and therefore often not accessible (Basran
et al., 2011). Finally, the validation of dosimetry ac-
curacy improvements due to MAR is often performed
on phantom data, as patient ground-truth data does not
usually exist.

To the best of the our knowledge, no seed-specific
MAR method have been proposed while being accom-
panied by the dosimetry changes induced by the correc-
tion. This works aims to: i) develop a MAR method
specific for brachytherapy seed without access to raw
sinogram data, ii) evaluate the dose calculations after
MAR using a commercial TPS.

2. State of the art

While introduced several decades ago, the formal-
ism for dose calculation of brachytherapy radionuclide
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sources proposed by the Task Group No. 43 (TG-43)
of the American Association of Physicists in Medicine
(AAPM) is still today recognized as a worldwide stan-
dard (Nath, 1995). The suggested protocols have been
updated over time, with respect to the technological ad-
vances applied to brachytherapy (Rivard et al., 2004;
Rivard et al., 2007). In 2012, the TG-186 released
guidelines for early adopter of Model-Based Dose Cal-
culation Algorithms (MBDCAs) (Beaulieu et al., 2012).
These MBDCAs are a novelty in the field, and it is nec-
essary to correlate their results with the TG-43 formal-
ism. In this section is first presented a brief overview of
the TG-43 formalism and its major implications regard-
ing clinical dose calculations. Secondly, the TG-186
formalism for MBDCAs will be presented with its im-
provements over the TG-43 formalism. Finally, a brief
review of common MAR concepts is given according
to their use in commercial CT-scanners, with specific
state-of-the-art for BT seeds.

2.1. TG-43 formalism
According to the general dosimetry formalism pro-

posed by the TG-43 (TG-43, TG-43U1, TG-43U1S1
and TG-43U1S2 reports), two different dose calculation
approaches are defined: 1D (point source) dose calcula-
tion and 2D (cylindrically symmetric line source) dose
calculation. They describe the dose distribution around
a single source centrally positioned in a spherical water
phantom.

This formalism give consideration for the photon flu-
ence around the source in scattering medium (i.e. wa-
ter), in opposition with older (pre TG-43 formalism)
protocols considering dose distribution in free space.
This transition is done by performing dose distribution
measurement in a water equivalent medium. The esti-
mation of the dosimetry of a seed model is generally
performed using a Lithium Fluoride (LiF) ThermoLu-
minescent Dosimeter (TLD), or by one-time source-
model specific Monte Carlo (MC) simulation (Bries-
meister et al., 2000; Kawrakow, 2001). Aside from
minor parameter value changes since the first TG-43
report, the 1D and 2D dose-rate equations remain un-
changed (Eq. 1 and Eq. 2 respectively).

Ḋ(r) = S K · Λ · GL(r, θ0)
GL(r0, θ0)

· gL(r) · φan (1)

Ḋ(r, θ) = S K · Λ · GL(r, θ)
GL(r0, θ0)

· gL(r) · F(r, θ) (2)

The equations are generalized for all type of sources
(i.e. encapsulated radioactive materials). In this work,
the source is specified as a seed (i.e. cylindrically sym-
metric brachytherapy source of effective length less or
equal to 0.5 cm).

While giving the reader a full understanding of these
equations and their parameters are out of the scope of

this work, it is essential to understand their principle,
assumptions and limitations. Therefore, only a simpli-
fied description of the parameters is given. For a more
detailed description of the parameters and functions,
please refer to the latest TG-43 updates (TG-43U1 and
TG-43U1S1). See Appendix 1 for an exact definition of
the terms used below.

For a given point of interest, with X being either ’P’
for point-source (1D) or ’L’ for line-source (2D) de-
pending on the approach considered in the geometry and
radial dose functions, and with the assumption of cylin-
drically symmetric source in a water transport medium:

r : Distance of the point of interest to the seed center
(cm);

θ : Polar angle of the point of interest w.r.t the seed
longitudinal axis;

r0 : Reference distance (1 cm according to this stan-
dardize protocol);

θ0 : Reference angle defining the transverse plane of
the seed (90◦ or π/2 radians);

S K : Air-kerma strength (kerma: kinetic energy re-
leased per unit mass) of the seed in µGy m2 h−1 (or
more commonly, U). This value differ according to
the seed model;

Λ : Dose-rate constant in water. Linked to S K (ratio);

GX() : Geometry function used to interpolate and/or ex-
trapolate data tabulated at discrete points;

gX() : Radial dose function, describing the dose fall-off

on the transverse plane due to photon attenuation
and scattering;

F() : 2D anisotropy function, representing the varia-
tion in dose according to the polar angle (w.r.t the
transverse plane);

φan() : 1D anisotropy function.

The main conceptual difference between the two ap-
proaches is the shape-model used. While Eq. 2 takes
into account both the seed location and orientation for
dose distribution calculation, Eq. 1 is an approximation
of the previous equation in which the seed is considered
as an isotropic point-source. Therefore, the 1D formal-
ism is taking into account, on a geometrical level, only
the radial distance of a point of interest from the source
center as parameter.

Overall, the TG-43 formalism allows for a common
ground between institutions regarding dose calculation
practices, Treatment Planning System (TPS) providers
and seed manufacturers. The combined use of the previ-
ous mathematical models and Monte Carlo simulations
enables fast dosimetry in clinical environment, and the
TG-43 formalism is respected in the vast majority of
TPSs.
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2.2. TG-186: Model-Based Dose Calculation Algo-
rithms

The limitations induced by the TG-43 formalism have
been quantified (Rivard et al., 2009), and it has been
shown a reduction of 2% to 10% regarding the estima-
tion of the D90 parameter. In report describes several
general-purpose methods (i.e. non organ specified radi-
ation therapy) considering a nonwater transport medium
for the photons as well as inter-seed attenuation, which
have been shown to more accurately estimate the dose
delivered to the patient than with the TG-43 formalism.
With time, these methods are being specified for their
application, such as prostate brachytherapy.

In 2012, the AAPM TG-186 released recommen-
dations regarding the early use of Model-Based Dose
Calculation Algorithms (MBDCAs). Model-based ap-
proaches either explicitly simulate the transport of ra-
diation in the actual media or employ multiple di-
mensional scatter integration techniques to account for
the dependence of scatter dose on the 3D geometry
(Beaulieu et al., 2012). MBDCAs have been clas-
sified in three groups according to their approach:
Collapsed-cone method (Ahnesjö, 1989), Monte Carlo
simulations solving the Linear Boltzmann Transport
Equation (LBTE) (Williamson, 1987), and Grid-Based
Boltzmann Equation Solvers (GBBS) (Zhou and Inanc,
2002).

As of 2017, there are three commercial TPS using
MBDCAs, with none for LDR (Rivard et al., 2017). The
absence of commercial MBDCAs for LDR can be at-
tributed to the challenge of accurately quantifying the
absorbed dose in tissues (Rivard et al., 2009). The ab-
sorbed dose is dependent on the transport medium com-
position and density, which can be estimated using CT
imaging. However, it has been shown that the pres-
ence of artifacts in CT images can lead to discrepan-
cies in dose calculation as the tissue density estimation
(Hounsfield Units, HU, that is a relative tissue density)
might be corrupted (Bazalova et al., 2007). The TG-186
stated that the accuracy of brachytherapy dose calcula-
tions could be improved by the development of CT-scan
metal artifact correction, especially in seed vicinity.

2.3. Metal Artifact Reduction

In their work, Gjesteby et al., 2016 gave an overview
of the evolution of MAR in the past decades. It is clearly
shown a high interest for MAR, especially in the last
10 years: 20 MAR related publications in 2009, for 95
in 2015. According to the literature, MAR can be per-
formed on different levels, which are presented below
together with the approach taken by four CT-scanner
manufacturers.

A first common approach is to correct data in the
sinogram space (called Projection Completion meth-
ods), as the CT values within the metal trace are often
missing or corrupted. This correction can be performed

either by direct interpolation from neighboring values in
the sinogram space (Veldkamp et al., 2010), by data nor-
malization (NMAR, Meyer et al., 2010, Siemens com-
pany), or by iterative forward reprojection of a prior im-
age. The iterative forward reprojection approach is fol-
lowed by:

• Single-Energy Metal Artifact Reduction (SEMAR)
algorithm, where a prior image is obtained from
first-pass metal artifact reduction by linear interpo-
lation in the sinogram, and is then used for forward
reprojection (Chang et al., 2012), Toshiba com-
pany;

• Orthopedic-MAR (O-MAR) algorithm, where an
iterative framework is used, in which the output
corrected input is subtracted from the original in-
put image, and then becomes the new input im-
age of the iterative framework (Healthcare, 2012),
Philips company.

Once the correction is performed in the sinogram
space, Filtered-Back Projection (FBP) is often used to
project the sinogram into the image space. However,
as the FBP assumes that the projection data is complete
and perfect, projection completion methods might in-
duce secondary artifacts when the correction is not ac-
curate, such as blurring around the metal object (due to
data interpolation).

A second approach for MAR is the Iterative Recon-
struction, where the FPB is replaced with objective
function optimization algorithms, such as Maximum-
Likelihood (ML), Expectation-Maximization (EM) or
Algebraic Reconstruction Technique (ART) (Mouton
et al., 2013). While Iterative Reconstruction methods
generally produce a better final result than sinogram
completion methods, their iterative schemes often have
a high computational cost, limiting their clinical use.

Thirdly, other methods try to take into account the
advantages of the two previous MAR approaches. This
is the case for the hybrid Iterative Metal Artifact Re-
duction (IMAR) proposed by Siemens company (Ax-
ente et al., 2015). This algorithm iteratively combines
two of their previously developed methods: Normalized
MAR (NMAR, projection completion) and Frequency
Split MAR (FSMAR, iterative reconstruction method)
(Meyer et al., 2010; Meyer et al., 2012). General
Electrics company implemented MAR is their Gem-
stone Spectral Imaging (GSI) Dual-Energy CT (DECT)
using fast kV-switch to obtain a Virtual Monochromatic
Spectral (VMS) image (Lee et al., 2012, Pessis et al.,
2013). Low-energy CT imaging (e.g. 80 keV) enable
high tissue contrast but is subject to high beam harden-
ing effect, while higher energy imaging (e.g. 140 keV)
allows for better differentiation of the metal-bone inter-
faces, while having a poor tissue contrast. By trying to
combine the advantages of each energy imaging while
minimizing their drawbacks, the produced VMS has a
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high tissue contrast, and the usually photon-starved re-
gions are corrected.

The methods mentioned above all have a common
component: the availability of the raw data (sino-
gram). While it might be easily obtainable for con-
structors and/or in some research environments, the raw
data is commonly stored in proprietary format, making
it hardly obtainable in a clinical environment, where
only post-FBP (reconstructed) CT-scans are available.
MAR methods performed in the image space are often
call post-processing methods. Such methods generally
yields worse results than all previous methods, as the
corruption in the metal trace is propagated in the image
space by the FPB. While it is possible to reconstruct
a virtual sinogram using the inverse Radon Transform
(iRT), the obtained sinogram will contain more corrup-
tion than the true original sinogram. Post-processing
MAR is under-developed compared to all the previously
mentioned methods, and the usual metal trace segmen-
tation has to be replaced by accurate seed detection in
the image space in order to perform MAR.

Overall, almost all MAR algorithm proposed in the
literature are based on sinogram correction and/or are
applied to specific metal implants, such as orthopedic or
dental filling (Mouton et al., 2013; Huang et al., 2015;
Andersson et al., 2015; Gjesteby et al., 2016; Bolstad
et al., 2018). Few considerations are given to MAR ap-
plied to artifacts generated by the presence of BT seeds.

The first work found in literature applied to prostate
BT seeds proposed a HU value thresholding method in
the image space to generate a metal only image (Taka-
hashi et al., 2006). Both the uncorrected image and
the metal only image are then converted into projec-
tion space using iRT, and the metal sinogram is sub-
stracted from the uncorrected sinogram. The resultant is
then converted back to the image space using the Radon
transform. This simple approach allowed for seed iden-
tification, but only minor improvements over streaking
artifacts were shown. They correlated the reduction of
artifacts with the reduction of the Standard Deviation
(SD) in the Region Of Interest (ROI).

In their work, Xu et al. (2011) present a raw sino-
gram based MAR for BT seeds, where the metal trace
detection was performed using the Steger method (Ste-
ger, 1998). Missing data were generated using linear in-
terpolation using adjacent projection, and the corrected
sinogram was converted to the image space using FBP.
They showed an increase only on the D90 parameter,
with plus 12% after correction with their method (one
case study).

Finally, a single study proposes a post-processing
MAR method applied to prostate BT (Basran et al.,
2011). Their approach takes advantage of the informa-
tion contained in the adjacent CT slices by using a 3-D
median filter. First, the dark bands are identified us-
ing a CT value threshold combined with a threshold on
the standard deviation of the adjacent voxels in the az-

imuthal direction. Then, the values of the voxels within
the dark bands are replaced with the median of the ROI.
Finally, an evenly-weighted 3-D median filter is applied
on the image (at the exception of seeds). Its size is
so that it covers a 5 x 5 x 5 mm3 area. While this type
of processing efficiently reduces the amount of visible
artifacts, it also reduces contrast in regions containing
bones and/or areas containing air. The influence of this
correction on dose calculation was not given, but the au-
thors mentioned that it is expected to have no impact (in
the case of TG-43 compliant dose calculations).

In this work is presented a new post-processing MAR
method when raw sinogram data is not available. It in-
volves (1) seed area extraction; (2) iterative intensity-
based clustering of voxels in seed proximity; (3) linear
interpolation of corrupted data; (4) dosimetry analysis
of the corrected image according, to the TG-43 formal-
ism.

3. Material and methods

3.1. Experimental data

The dataset used for this work is composed of
prostate CT-scans from 33 post-implant patients (pri-
mary and salvage brachytherapy). Data were obtained
from a UNCANCER-affiliated center (CGFL, Dijon,
France) from clinical cases were the patient was treated
for prostate cancer, and where post-implant dosimetry
analysis was performed by a physician. All patient CT-
scans have a voxel resolution of 1.2695 x 1.2695 mm2,
with a slice thickness of 1.25 mm. All CT-scans values
were converted to Hounsfield Units (HU).

The number of implanted seeds in a single patient is
varying from 17 to 97 (60 ± 22 seeds on average). The
only selection criteria was the availability of the prostate
segmentation performed by an expert. Therefore, there
is a high variety in patient data. Some cases may con-
tain metallic object(s) other than the seeds (such as hip
prosthesis), leading to an external (w.r.t prostate area)
source of metal artifacts, as shown in Figure 3.

Figure 3: CT slice of a patient having a metallic hip prosthesis (red
arrow), being a source metal artifacts exterior to the prostate.
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All patients were treated using the selectSeed I-125
cylindrically symmetric source model (Karaiskos et al.,
2001), of size L = 4.5 mm and radius r = 0.4 mm . The
prescribed peripheral doses for the 33 cases were rang-
ing from 90 Gy to 160 Gy, with activities between 0.372
U to 0.789 U.

Seed locations and dosimetry data were extracted for
each case from the VariSeed treatment planning sys-
tem (VariSeed 9.0, Varian Medical Systems, Palo Alto,
CA). Seed coordinates were converted from world space
to image space using the voxel resolution information.
Since the seed positions extracted from VariSeed have
been used in the clinical assessment of patient dose dis-
tribution, one could assume that their number and loca-
tion detection as ground-truth data. The dosimetry anal-
ysis performed by the used TPS is in compliance with
the TG-43 point-source formalism (i.e. 1D approach).

All data were stored using the DICOM format, and
all figures showing CT data in HU have the window and
level display parameter of 400 and 40 respectively (un-
less stated otherwise).

3.2. Metal Artifact Reduction framework

The framework for MAR has been designed accord-
ing to three main ideas, the first one being that artifacts
produced by the seeds are always connected to the seed
itself and/or to the overestimation of the seed area due
to the Partial Volume Effect (PVE). The second point is
that, for any given slice containing a seed, the informa-
tion contained in the adjacent axial slices can be useful
for both metal artifact detection and corrupted data in-
terpolation. Thirdly, the unavailability of ground-truth
data (metal artifact free post-implant images) for a given
patient limits the use of supervised methods.

In the early stages of this work, we tried to solve the
MAR problem using machine learning methods. A bi-
class balanced dataset of 10 000 3-D patches was cre-
ated, where the first class was composed of artifact-free
patches, and the second class was made of patches con-
taining metal artifacts. 10% of patches were kept aside
for the final testing of the proposed framework. Patches
where extracted from manual selection (based on visual
evaluation) of specific voxels locations from all 33 pa-
tient cases. Therefore, as each patch is defined by a cen-
tral voxel, on could easily change the patch size. Extrac-
tion was performed so that there was a high intra-class
variety regarding patches content. One example is, for
the second class, the selection of patches close to seeds,
bones or prostate contour. The approach taken was the
use of AutoEncoders (AE) for feature extraction com-
bined with Support Vector Machine (SVM) for a classi-
fication task using the latent space representation of the
data in the AE as input (Baldi, 2012; Cortes and Vapnik,
1995).

Several AE architectures have been designed, with
different number of filters, depth and input shape. Two

training configurations have been used: training of a sin-
gle AE on the full dataset regardless of the class, and
training of one AE per class (using the same architecture
for both classes). In the first case, the aim is to use the
features extracted at the end of the encoding part of the
AE as the input of a SVM for direct classification. In the
second case, we wanted to build two distinct AE, each
able to accurately reconstruct one and only one class.
After training, both AE were used in order to produce
a latent representation of the test patches. This method
was expected to produce aberrant results when a patch
of a given class was reconstructed using the inappropri-
ate AE, therefore allowing the discrimination of the two
produced representations for the classification task.

The two best models for the reconstruction task were
a 3-D AE and a 2.5-D AE, for all training configura-
tions. The 3-D AE was trained with the extracted 3-D
patches. The 2.5-D approach was trained for the recon-
struction of a patch central slice using information con-
tained not only in the considered patch slice, but also
in the two adjacent axial slices (where each slice was
considered as a distinct channel).

While the proposed architectures and training config-
urations could accurately reconstruct the input data, the
use of the representation of the data in the latent space
as the input of SVMs was inconclusive for all proposed
configurations, with the best area under the curve being
0.81. In section 5 are given our thoughts regarding the
inefficiency of this method.

In the light of the results obtained with the first de-
veloped framework, we tried a different method, being
a patient-specific approach based on intensity cluster-
ing of seed-centered patches. The number of patches
extracted from a given patient is equal to the number
of detected seeds in the considered patient. In the re-
maining of this work, the word ’patches’ will refer to
all the extracted seed-centered patches for a given pa-
tient. The radius of the patch used is 10 x 10 x 3 pixels
for all patients. The choice of patch with a large length
in the coronal and sagittal directions is motivated by
the fact that metal artifacts originating from a specific
seed mostly produce visible effect at a close to medium
distance from considered seed. Moreover, when the
patch size is increased (in the previously mentioned di-
rections), the ratio of uncorrupted voxels over the to-
tal number of voxels will generally increase, thus eas-
ing the identification of ’outliers’ (metal artifacts) using
clustering methods. Furthermore, due to the properties
inherent to 3D CT-scan construction from axial slices
acquisition, no streak will propagate in the axial direc-
tion, hence the choice of smaller radius in this direc-
tion. For clustering purposes, the values contained in a
patient patches can be seen as a 1-D vector, initially of
size 21 x 21 x 7 x number of seeds.

Due to proximity, a seeds (called secondary) might
appear in a patch centered on another seed (called pri-
mary). In this case, the HU values of the all secondary
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Figure 4: Iterative clustering framework workflow.

seeds (w.r.t primary seeds) are excluded from further
calculation. For each patch, only the main seed is con-
sidered and segmented, resulting in a mask hereinafter
called primary seed mask. Any secondary seed voxels
will be excluded from further calculation (see Figure 5).
However, duplicated data are kept, i.e. any patch may
share voxels with any other patch. Since a patch-based
centered on the seeds is taken, and knowing that only
seeds inside the prostate are considered, one can be sure
that no patch will be centered on the pelvic bone (having
high HU values). Therefore, we chose to perform seed
segmentation by performing a single K-means cluster-
ing with k = 2 on all patches data (Lloyd, 1982). Due
to its working principle, this method will consistently
create one cluster containing the highest HU values be-
ing the seeds, and voxels with lower HU values, such
as tissue form the second cluster. It is noteworthy that
voxels having medium HU value induced to Partial Vol-
ume Effect (PVE) are consistently clustered with tis-
sues. While these voxels values are high compared to
tissue values, they are relatively low compared to seed
HU values, hence their clustering with tissue data.

The obtained primary seed mask is used for the ini-
tialization of distance map D, which is then used in iter-
ative framework where remaining voxels are iteratively
clustered according to their intensities (see Figure 4).
The first cluster is therefore the seeds themselves, and
they take a label noted L in the distance map D, noted
DL=1, while voxels to be clustered have a different label,
noted DL=0. On each subsequent iteration, the remain-
ing data of all patches, noted P(DL=0) is clustered us-
ing K-means. In this work are consider 8 distinct clus-
ters (k = 8), and the data is normalized to zero mean
and unit variance. The value of k is chosen to be at

Figure 5: Central axial slice of a given patch. On the left are shown
the CT values, in the middle the segmentation of all seeds in the patch,
and on the right the segmentation of the primary seed only

the same time small enough in order to have realistic
computational times, but also high enough to ensure
enough inter-cluster disparity. In order to take advan-
tage of the close proximity of artifacts and seeds, Con-
nected Component Analysis (CCA) is performed using
a 6-connectivity in 3D for each distinct patch. For each
cluster component (i.e. distinct blob for a given cluster),
the connectivity with voxels previously labeled in the
distance map (DL,0) is verified, and unconnected com-
ponent will be discarded under the label C0, as shown
in Figure 6.

Once unconnected cluster blobs have been rejected,
one and only one seed-connected cluster Ci (with i ∈
[1; k]) is selected to be added to the distance map as a
new label DL+1, based on a metric M(Ci). According to
the literature, the removal of artifacts has a direct effect
on the decrease of standard deviation (SD) of the ROI.
Following tests with different metrics, we chose to use
Eq. 3, representing the change in the SD σ induced by
the removal of a given cluster Ci from P(DL=0), relative
to the cardinality |Ci| of the considered cluster.

M(Ci) =
σ(P(DL=0)) − σ(P(DL,0 ∪Ci))

|Ci| (3)

The cluster Ci giving the highest value of M(Ci)
(and therefore the highest relative change is the SD of
P(DL=0)) is selected, and added in the distance map
under the label L + 1. Then, new iterations are per-
formed (K-means - CCA - cluster selection - update)
until a given criteria. While we tried to use the value
of M(Ci) < 0 for the selected cluster (representing an
increase of the SD of P(DL=0)) as a criteria, results have
shown that such criteria caused and ’early stop’, leading

Figure 6: Case of cluster exclusion using connected component anal-
ysis. Left: HU value; Center: K-means clustering with k = 8; Right:
Retained cluster blobs after 3-D CCA.
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Figure 7: Example of all 21 computed clusters (center) for given CT
slice (left). On right are shown retained clusters (X = 12) for cor-
rection. The darker the label for a given cluster, the faster the voxel
considered was included in the distance map

to the partial correction of artifacts. Therefore, a criteria
based on the total number of clustered elements in P()
is used. Thus, this iterative process (clustering - CCA -
cluster selection) is performed until 80% of P() is clus-
tered. This empirical value of this criteria is chosen to
be high to ensure that all possible artifacts are consid-
ered.

Once the iterative process is finished, the labels L
contained in P are propagated onto the original CT-scan
(see Figure 7). Since a specific voxel can appear in
one or more distinct patches, it might have different dis-
tance label across several patches. This is due to the
CCA, where more iterations might have been necessary
to reach the considered voxel when starting from one
primary seed compared to another. Since the principle
idea of the proposed method is to reflect the rapidity at
which the considered voxel has been selected regard-
ing the decrease of σ(P(DL=0)) starting from a given
primary seed, keeping only the minimum label during
propagation is the most suitable approach. During this
merging step, only the labels with a high number of ele-
ments are kept (so that combined, they represent 95% of
the labeled voxels), and labels with a small number of
voxels are merged with bigger labels (according to the
mean value of neighbouring labels). From the resulting
distance map, only the X first clusters will be selected
for correction. This is due to the lack of a stopping crite-
rion for the iterative framework, thus inducing the pro-
gressive clustering of background voxels (i.e. artifact-
free tissue). For the same reason, no criterion has been
found for the selection of the value of X, which has to be
determined manually for the time being. Finally, once
the clusters to correct are selected, 3-D mean filtering is
performed using an evenly-weighted filter of radius 2.

3.3. Dosimetric & statistical analysis

In order to be able to accurately compare the influ-
ence on the proposed MAR algorithm on dose calcula-
tion, the prostate segmentation performed by the expert
on the original CT-scan has been transferred on the cor-
rected CT-scan, hence ensuring that that the exact same
volume is used for the calculation of dosimerty param-
eters. The values of the following parameters have been

extracted using VariSeed 9.0 point-source dose calcula-
tion before and after correction of the CT-scans:

• D90, the minimal dose received by 90% of the
prostate;

• V100 and V150, the prostate volumes receiving
100% and 150% of the prescribed dose respec-
tively;

• number of automatically extracted seeds

; For the seed detection, the seed finder tools included
in VariSeed was used. As one can explicitly indicate
the number of expected seeds to be found, we used the
number of seeds detected on the original CT-scan. To
interpret the possible changes in values of the param-
eters D90, V100 and V150,the following values are com-
puted before and after correction: i) mean with the as-
sociated standard deviation; ii) median value and iii) the
range of the parameter values. Moreover, the agreement
between parameters values before and after correction
is assessed by using paired samples Student’s t-tests (p
significance level: 5%), Spearman correlation coeffi-
cient ρ and Bland-Altman analysis (Bland and Altman,
1986).

4. Results

In the previous section, the correction process was
described. It has been applied on the dataset, and the
same set of parameters was used across all patients, at
the exception of the value of X (selection of the X first
clusters for correction).

An omnipresent difficulty in the evaluation of MAR
algorithms is the lack of both standardized correction
validation procedure and the absence of a metric for de-
scription and grading of metal artifacts. Four common
approaches found in the literature are: i) visual assess-
ment of the proposed correction; ii) quantification of the
noise reduction in a defined ROI, being either a given
tissue or region; iii) study of the dose calculation dif-
ferences induced by the MAR algorithm; iv) intra- and
inter-observer studies on the ease of delineation of tis-
sues, bones or organs. While ii), i.e. the evaluation
of the noise reduction in the CT-scan is the most used
method for MAR evaluation, in our opinion such eval-
uation does not fit to this work. This is motivated by
the fact that the noise reduction is often quantified by
the reduction of the standard deviation of the signal in
a given region. The reduction of the standard deviation
is used as part of the metric for cluster selection in our
proposed MAR algorithm, and therefore one could ar-
gue then that such evaluation would be biased. For this
work, approaches i) and iii) were chosen.

Examples of correction are given in Figure 8 where
severe artifacts are corrected, and in Figure 9, where
minor artifacts are present in the vicinity of the seeds
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Figure 8: Original and corrected CT
slices with highlighted points of interests.

(a) Original CT slice (left) and the associated corrected CT
slice (right). Highlighted in green are areas where transaxial Partial
Volume Effect (PVE) has been corrected, while the blue highlight
indicates a region subject to both transaxial and transverse PVE.

(b) Plot of the HU values associated with the profile indicated by the
red line on Figure 8a. In red are represented the original HU values,
and in blue the corrected HU values.

(a)

(b)

only. By comparison of the original and corrected CT-
scans, it is easy to see that most of the artifacts have
been corrected, regardless of their magnitude. While it
clearly appears that the CT has been modified in some
regions (due to simple interpolation method), one can
not easily assess the severity of the corruption in the
original image solely by looking at the corrected scan.
In Figure 8b are shown the HU values along the profile
depicted by the red line. It shows a sharpening of the
edges in the close proximity of the seeds, as well as an
increased stability in the HU values of prostate tissue.

On the original CT slice (Figure 8a), seeds that were
totally removed on the corrected slice are circled in
green. The presence of medium to high HU values in
the outlined area (200 - 700 HU) is due to the transaxial
PVE induced by the presence of the seeds in adjacent
slices. This effect inaccurately makes the seed length
appear longer that it is in reality, and is therefore cor-
rected.

While the size of the seed highlighted by the blue
square might seem to have been wrongly reduced, the
HU value of the only voxel kept (in this given slice)
was two times higher than the highest HU value adja-
cent voxels. This is due to the transverse PVE, causing
an increase of the HU values in the vicinity of the seeds,

Figure 9: CT slice containing metal artifacts (left) with the associated
corrected slice (right). In presence of minor metal artifact, the regions
to correct are not overestimated.

leading to an important overestimation of the seed di-
ameter on the CT-scan compared to its physical diame-
ter. It is to note that PVE is hard to identify with com-
monly used display parameters as they are selected in
order to give a good contrast in tissues (thus giving low
to non-existent contrast for higher CT numbers). Figure
10 shows the same area with a windowing better suited
for increased contrast in high HU values. Using these
display parameters, it now appears clearly that the HU
values of the highlighted regions are not uniform, in op-
position with the impression given by Figure 8a.

After correction, the number of automatically de-
tected seeds ranged from 16 to 97 units (mean 61 ± 22),
which is similar to the detection on original data (mean
60 ± 22). However, after correction only two cases
shared the exact same detected seed number and loca-
tion, with respectively 0.12 mm and 0.13 mm centroid
location error, cumulated across all axis. For the other
cases, the average absolute seed number difference in
seed number is 2.9 ± 2.4 with a median of 1, and with
a maximum difference of 8 more detected seeds after
correction. In the majority of cases (85%), the number
of detected seed was increased after CT-scan MAR pro-
cess. One can assume that the proposed method, and

Figure 10: CT slice with display parameters selected for a better con-
trast in medium to high HU values. Highlights correspond to areas of
PVE. (Window: 1200; Level: 400)
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Table 1: Clinical dose calculation parameters differences between original and corrected CT-scans. SD: Standard Deviation; p: paired Student’s
t-test p-value; ρ: Spearman correlation coefficient; BA: Bland-Altman analysis.

D90 (Gy) V100 (%) V150 (%) Volume (cc)Original Corrected Original Corrected Original Corrected
Mean (SD) 90.43 (35.11) 93.56 (37.05) 80.67 (21.57) 81.71 (21.33) 46.95 (18.45) 50.46 (20.42) 47.51 (19.30)

Median 99.50 100.37 89.73 90.16 44.37 46.55 42.47
Range 13.38 - 163.70 13.92 - 174.19 22.97 - 99.88 23.66 - 100.00 14.62 - 94.747 15.24 - 97.40 10.96 - 89.50

p 0.002 0.020 0.001
ρ 0.97 0.97 0.91

BA Bias -0.93 2.46 0.51

especially the correction of the PVE, can have a strong
influence in seed detection, especially when seeds are
close to each other, but its possible benefits are yet to be
validated (discussed in Section 5).

Regarding the two cases having the same number of
seeds before and after correction, their respective differ-
ences in dose calculation parameters are : D90 -0.31%
/ -0.44% , V100 0.08% / -0.28%, V150 -0.20% / -0.07%.
Then, we can say that results show no significant dif-
ference for these two cases. For the 31 other cases,
results are shown in Table 1, significant difference is
noted across all parameters (p < 0.05). In fact, while
the Bland-Altman analysis show a bias close to 0, this
bias induce small significant difference, especially on
the V100 dosesimerty parameter. Moreover, the value of
the Spearman coefficient ρ being close to one, results
show a high correlation between the parameters evalu-
ated before and after MAR. In Figure 11 are shown the
isodose lines for a cases where the number of automati-
cally detected of seeds has changed after MAR.

Figure 11: Dosimetry analysis on post-implant brachytherapy CT-
scans before(left) and after (right) MAR, where the number of de-
tected seeds was different. The prostate and rectum are outlined in red
and blue, respectively. In magenta, green and blue are represented the
cumulative isodose line for 240 Gy, 180 Gy and 120 Gy respectively.

5. Discussion

We present in this work a post-processing MAR
framework applied on reconstructed CT-scans. The
dataset was composed of 33 CT-scans having a high va-
riety regarding the strength of metal artifacts. By visual

evaluation, one can say that most of the metal artifacts
have been corrected by the proposed framework (more
comparisons are shown in Appendix 2). Compared to
the uncorrected data, significant difference in dose cal-
culation parameter after the correction of metal artifacts
is noted. Although the dose calculation was performed
in compliance with the TG-43 point-source formalism,
this significant difference is certainly due to the differ-
ence in automatically detected seeds. As mentioned pre-
viously, the challenge of the quantification and qualifi-
cation of metal artifacts has yet to be solved. In this sec-
tion are first discussed limitations of our first approach
and then the proposed framework, followed by the chal-
lenges faced regarding the evaluation of the dose calcu-
lation changes after MAR.

5.1. Autoencoder approach

The poor discrimination between the corrupted-
uncorrupted patches extracted in the scope of our first
approach was not expected, especially after the accu-
rate reconstruction of patches using an encoder-decoder
network. The initial reconstruction errors were present
mostly for high HU values (seed centers), and were re-
moved by reducing the HU value resolution for all val-
ues above 1500 HU. Regardless, the features extracted
from the last encoders’ layer were not enabling an ac-
curate classification of the patches by means of SVM.
One possible reason can be the extremely high variety
regarding the patches’ content in both classes. The cre-
ation of a new dataset or more classes (such as seed,
bone, dark streak, PVE) might have produced better re-
sults, given that the spatial resolution is high enough to
accurately capture the local data distribution.

In order to learn a deep representation of the data
in the latent space, several layers are necessary in the
AEs. However, the number of possible cascaded con-
volutional layers is limited by the input size of the data.
As there is only a small distance between seeds, an in-
crease in the input size often induce an even higher vari-
ance is the spatial location of high HU values. Also, the
higher the input size the lower the ratio of metal artifact
voxels over tissue voxels (for the metal artifact class).
While the information in adjacent axial slice can help
the correction of a given slice, the use of a small input
size (5 x 5 x 5 px) induces the consideration of the 2

13.10



Specified Metal Artifact Reduction (MAR) on CT-scan for dosimetry accuracy in I-125 prostate brachytherapy 11

adjacent axial slices in a given direction (for feature ex-
traction). Knowing that: 1) the slice thickness of the
data is 1.25 mm; 2) the seed length in the its longitudi-
nal direction is 4.8 mm; 3) the transaxial PVE produced
by a given seed occurs no further than one slice after the
last slice containing the seed; and 4) in the case of seed
whose longitudinal axis is normal to the axial slice, a
maximum of about 6 axial slices are sufficient to com-
pletely contain all the metal artifacts, one could argue
that an increase of the input size above a value of (5 x 5
x 5 px) would not add relevant information w.r.t to the
correction of metal artifacts originated from the given
seed (argument valid outside the scope of the AE train-
ing). This motivated the use of a 2.5-D AE, for which
an increase of the input size in the saggital and coro-
nal direction were not enforcing an size increase in the
axial direction. While the best final classification ac-
curacy was improved (0.73 AUC for 3D, 0.81 AUC for
2.5-D), this approach did not produce results satisfac-
tory enough for further investigation.

5.2. Clustering approach
The application of clustering methods onto data sub-

ject to spatial constraints (with a goal of segmentation)
is not a straightforward task. However, due to the ab-
sence of ground-truth data and discriminative metric
for metal artifact correction, clustering methods were,
in our opinion, a suitable approach. In the presented
framework, we tried to enforce spatial constraints by it-
eratively expanding the scope of the data available for
clustering by means of connected components analysis,
starting from the initial seed segmentation. However,
this method has its limitations, which are presented be-
low, associated with the ideas explored to solve them. It
is noteworthy that the changes discussed below have not
been validated, and therefore have not been used in or-
der to obtain results presented in this work (Girum et al.,
2018).

First, a remark concerns the initial seed segmentation
by K-mean with k = 2. While the resulting segmenta-
tion might be not be optimal nor validated, one could
provide an accurate segmentation of the seed as the ini-
tialization of the distance map. In the proposed method,
it is important for the seed area to not be overestimated
outside the PVE, and its underestimation does not have
negative effects, as long as at least 1 voxel is segmented
to represent the seed centroid. In the close future, a
brachytherapy seed segmentation method currently un-
der development will be joined with this work in order
to combine accurate seed segmentation and MAR.

As visible on the left panel of Figure 12, the cluster-
ing might be wrongly extended outside of the prostate,
notably in lower density regions and the pelvic bone.
This effect is often produced by the propagation of the
metal artifact outside of the prostate tissue, hence lead-
ing to a positive response of the CCA for this regions.
As the HU values of such area are far from the average

Figure 12: Transverse (top), sagittal (middle) and coronal (bottom)
CT slices, extracted from a given voxel location both before (left) and
after (right) correction.

value of prostate tissue, these regions will be selected
for correction as soon as they are reached. A simple
method to avoid this undesired effect is the integration
of the prostate segmentation as a constraint for the cor-
rection detection. In the scope of this work, this effect
does not have an impact aside from the visual distur-
bance, and is left uncorrected for clarity purposes re-
garding the algorithm limitations.

A second label refining option is the final sorting of
the labels w.r.t Eq.3. It was noted that this step, while
inducing a loss of the initial semantic role of the dis-
tance map, generally reordered few labels, being mostly
minor dark band artifacts in seed vicinity. However, this
step often produces a worse correction in presence of the
aforementioned effect (out of prostate correction). In-
deed, while having a relatively high label in the distance
map, regions outside of the prostate will inherently rank
in the first positions according to a sorting w.r.t Eq. 3.

An explored option was the definition of a model to
map each voxel to a real number in the domain [0; 1],
representing the degree of corruption of a voxel. The
main advantage of this approach was the mapping of the
data to values ranging from 0 to 1. In fact, such value
could then be used directly as a local weighting factor
for the interpolation of corrupted data. Thus, using such
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representation of the corruption, one could directly re-
place the currently used evenly-weighted 3-D mean fil-
ter of arbitrary size centered at a given location with a
filter whose weights are those of the CCS at the same
location. An example of result for this method is given
in Figure 13. For this approach, the corruption detec-
tion method was similar to the one rpesented in (Bas-
ran et al., 2011). We tried to transpose the generation
of this idea to the presented framework by also taking
into account the distance map and clusters’ mean with-
out success. Such scoring could remove the need for
the manual selection of X in the current framework (X
being the last label considered for correction).

Figure 13: Original (left), Corrected (middle) and CCS map (right)
slices for a particular case. The seeds have also been removed during
the process.

Finally, a remark is given on the presence of metal
artifacts due to metallic objects exterior to the prostate.
As visible on the top-left image from Figure 12, the
presence of such artifacts does not only strengthen the
artifacts originating form BT seeds, it also makes both
the metal artifact detection and data interpolation steps
more difficult. The presence of a such a wide dark streak
will at the same time induce a bias on the estimation of
the standard deviation in HU values inside the prostate
(and therefore on the estimation of clusters to correct)
and also introduce a similar bias in the interpolation of
missing data. The obtained correction, while acceptable
in cases displayed in Figure 12, does not have any no-
ticeable impact in cases such as figure 14. In this case,
the use of a dedicated MAR for large metallic implants
(as reviewed in Section 2.3) before BT seeds MAR cor-
rection is mandatory.

5.3. Dosimetry evaluation & Perspectives
In Section 4, consistent dose calculation before and

after MAR have been shown. In order to take this work
further, the authors would like to follow a different ap-
proach for the evaluation of the impact of the proposed
MAR framework on dose calculation parameters. As
mentioned in Section 2.2, no TPS using MBDCA can
currently perform the dose calculations for LDR-BT
seeds, such as the I-125 seed used to treat all patient
in the presented dataset. Therefore, there is currently no
way to evaluate the dose calculation differences due to,
and only to, the MAR algorithm.

However, it has been shown in this work that the use
of our MAR framework induced changes in the num-
ber of seeds automatically detected by VariSeed seed

Figure 14: CT slice of a case for which the proposed framework had
no noticeable impact

finder tool in a significant number of cases. In this work,
the cases forming the dataset are from clinical cases of
primary permanent prostate implant and from salvage
permanent prostate implant. This leads to a high vari-
ability regarding the true number of implemented seed.
While the number and location of the seed are deter-
mined before the implant, this values can, and most
probably will, change due to phenomena linked to the
time elapsed between the implantation of the seeds and
the imaging of the patients’ prostate after the implant.
In fact, changes in seed location can be noted over time.
Moreover, such displacements sometimes lead to the re-
jection of the seed through the urethra. Therefore, after
a given time, both seed number and location will have
changed. If one want to perform a study on the changes
in seed detection after MAR, common method to ac-
quire ground truth data for seed number and location are
the use of phantoms and experts annotation on CT-scan.
While the first have the downside of not being a clinical
case, the second can often be performed for few cases
only, as the task extensive time for one expert. However,
we would like to take this work further by following one
of the two mentioned option.

Finally, we will continue our work in order to im-
prove the proposed framework, with the goal of reach-
ing a fully automated process.

6. Conclusions

While MAR methods have been a strong point of in-
terest in the past year, a small number of studies present
methods for the correction of metal artifacts due to the
presence of brachytherapy sources, and to the best of
our knowledge, only one approach is not based on raw
sinogram data. In this work has been presented a frame-
work for MAR on reconstructed CT-scans. The pro-
posed solution is based on the strong spatial relation-
ship between metal artifacts and BT seeds. It has been
shown that the proposed MAR algorithm did not induce

13.12



Specified Metal Artifact Reduction (MAR) on CT-scan for dosimetry accuracy in I-125 prostate brachytherapy 13

a significant difference on dose parameters when the au-
tomatic seed detection was consistent, while small sig-
nificant changes were noted when the number of de-
tected seeds changed. We hope to extend this work
to a larger framework, where post-implant CT-scans
could be processed for seed detection, segmentation,
and MAR. In our opinion, such framework could in-
crease dose calculation accuracy, and ease the challenge
of automatic prostate segmentation, especially in the
presence of metal artifacts.
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Appendix 1: TG-43 definitions

Following are the definition of terms used in the TG-
43 formalism:

• A source is defined as any encapsulated radioactive
material that may be used for brachytherapy. There
are no restrictions on the size or on its symmetry.

• A point source is a dosimetric approximation
whereby radioactivity is assumed to subtend a
dimensionless point with a dose distribution as-
sumed to be spherically symmetric at a given ra-
dial distance r. The influence of inverse square
law, for the purpose of interpolating between tabu-
lated transverse-plane dose-rate values, can be cal-
culated using 1/r2.

• The transverse-plane of a cylindrically symmetric
source is that plane which is perpendicular to the
longitudinal axis of the source and bisects the ra-
dioactivity distribution.

• A line source is a dosimetric approximation
whereby radioactivity is assumed to be uniformly
distributed along a 1D line-segment with active
length L. While not accurately characterizing the
radioactivity distribution within an actual source,
this approximation is useful in characterizing the
influence of inverse square law on a sources’ dose
distribution for the purposes of interpolating be-
tween or extrapolating beyond tabulated TG-43 pa-
rameter values within clinical brachytherapy treat-
ment planning systems.

• A seed is defined as a cylindrical brachytherapy
source with active length, L, or effective length,
Leff less than or equal to 0.5 cm.
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Abstract

Convolutional neural networks (CNNs) have become one of the state of the art methods in image classification in
various applications. Training a convolutional neural network from scratch is sometimes difficult because it requires
a large amount of training data to ensure adequate convergence. In medical image classification where the training
data might be small in some situation, transfer learning using CNNs is often applied. To get a large set of medical
images for knowledge transfer is sometimes difficult. Alternative such as a large set of labeled natural images used on
the state of the art CNNs are generally used. One of the technique of transfer learning extracts generic image features
from the natural images and these can be applied in feature extraction in smaller dataset. Another technique of transfer
learning called fine tuning is to train a CNN from a set of weights pre-trained on large dataset. However, the difference
between natural and medical images may not be suitable in some knowledge transfer. In this thesis work, the two
transfer learning mode which is based on feature extraction and fine tuning are compared with training from scratch
using five selected state of the art pre-trained CNN models which include VGG19, ResNet50, InceptionResNetV2,
InceptionV3 and NASNetLarge. The fully connected layers on top of the base models were removed and a new
classifier on top of the base models was designed. Performance was evaluated on two publicly available datasets,
INbreast dataset for breast mass classification and HAM10000 dataset for skin lesion classification. The results
showed that transfer learning mode of fine tuning performed better than the other two training approaches in most
pre-trained CNN models in breast mass classification, training from scratch performed better than the other two
training approaches in most pre-trained CNN models in skin lesion classification, transfer learning mode of feature
extraction gave the least performance in all pre-trained CNN models in both classification and in overall, transfer
learning mode of fine tuning produced the best performance in both classification.

Keywords: Convolutional Neural Networks, Transfer Learning, Training from Scratch, Breast Mass, Skin Lesion

1. Introduction

1.1. Breast Cancer

Breast cancer is one of the most frequent cancer
cases affecting women in the world with an estimated
1.67 million new cancer cases diagnosed in 2012 and
the second cause of cancer deaths in women (Ferlay
et al., 2013). According to World Health Organiza-
tion (WHO), it is the fifth most common cause of death
(Clemmesen, 1948). In Japan, breast cancer is the most
frequent cancer among women in recent years, and the
number of patient increases year by year (Matsuda et al.,
2014). In Jordan, breast cancer constitutes around one
third of all malignancies among females and about 15%
of these are due to genetic origin (Abdel-Razeq et al.,

2018). Among all races, Chinese women are more
prone to develop breast cancer followed by Indian and
Malaysian women (Ting et al., 2019). Breast cancer oc-
curs due to damage of genes that regulate the growth
and differentiation of cells and this makes them to grow
and multiply in an uncontrolled manner. Symptoms of
breast cancer include: breast lump, changes to the skin
over the breast, changes in breast size or shape, and nip-
ple abnormalities. Studies have shown that there are
high chances of survival if it is diagnosed at an early
stage (Howlader et al., 2013).

Different factors can increase women risk of breast
cancer. Some of the factors that increase the risk of
breast cancer include:
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• Age: The risk of breast cancer tends to increase
with age. This implies that older women are prone
to have breast cancer than younger women.

• Previous Ionizing Radiation: Studies have shown
that radiotherapy in long term survivors of
Hodgkin’s disease are prone to develop breast can-
cer. Young women who received chest radia-
tion with high doses showed an increased risk
of breast cancer compared to patients with lower
doses (Travis et al., 2005).

• Hormonal Factors: Breast cancer is a hormone
related disease. Estrogen has shown to induce
and promote mammary gland tumors. Factors that
change sex hormone levels tends to increase the
risk of breast cancer.

• Hormone Replacement Therapy: Women who suf-
fer from menopausal symptoms at early age caused
by reduced estrogen and progesterone levels usu-
ally receive hormone replacement therapy. Hor-
mone replacement therapy tends to increase the
risk of breast cancer especially among women us-
ing combined estrogen and progesterone (Beral
et al., 2007).

• Breast density: Dense breast on mammography is
associated with an increased risk of breast cancer
(Boyd et al., 1995), (Boyd et al., 2002).

• Genetic Factors: Women in which there is a history
of breast cancer in their close families are prone
to develop breast cancer. There is increased risk
of breast cancer if many relatives were affected or
if relatives were diagnosed at younger age. High-
penetrant germline mutations in BRCA1 (Easton
et al., 1995) and BRCA2 (Wooster et al., 1995)
which are the two tumor-suppresor genes accounts
for about 20% to 25% of inherited breast cancer
cases and tends to increase the risk of developing
breast cancer at 40% to 80% (Ghoussaini et al.,
2013).

The two important markers for breast cancer are
breast mass and micro-calcification. Breast masses are
more difficult to detect than micro-calcifications due to
their blurred features and poor contrast. Breast masses
are visually characterized by gray to white regions in
the breast area of mammograms, and their shapes are
mainly described as oval, irregular or lobulated with
boundaries that can be circumscribed, obscured, ill-
defined or spiculated (Oliver et al., 2010), (Tang et al.,
2009). Breast mass is either benign or malignant. A
breast mass with round or oval shape, circumscribed
margin and low density has a high probability of being
benign, while a breast mass with irregular shape, spicu-
lated margin and high-density has a high probability of
being malignant (Grimm et al., 2014). Large variability
in describing masses is still reported (Boyer et al., 2013)
and thus automatic classification of breast mass is a po-
tential benefit in supporting radiologist final decision.

Benign mass is not cancerous because it forms a pseu-
docapsule that prevents the tumor growth from invading
the surrounding normal tissues. In contrast, a malig-
nant breast mass is cancerous because it does not have a
pseudocapsule and they tend to invade the surrounding
tissues.

Mammography is the main imaging technology used
to diagnose breast cancer. The x-ray radiation in mam-
mography can show breast cancer because of the differ-
ent x-ray absorption rates between the normal and ab-
normal areas of the breast. The tumors in mammogram
images can appear as masses or micro-calcifications.
The dense tissue in mammogram images can also look
like a mass and may sometimes cover the mass. This
makes mammography less sensitive in some situations.
In 2011, breast tomosynthesis as a new mammogra-
phy breast imaging technology was approved by US
Food and Drug Administration (FDA). In tomosynthe-
sis, multiple x-ray images are taken from different an-
gles and reconstruction to a video. This makes to-
mosynthesis to be more helpful to radiologists in iden-
tifying various abnormalities in the breast because it
avoids the overlay of dense tissue and mass. Also
contrasted-enhanced (CE) digital mammography pro-
vides more diagnostic accuracy than mammography in
dense breasts but it is not easily affordable due to high
cost and high levels of radiation (Lewis et al., 2017).
Mammography is the widely used imaging technology
to diagnose breast cancer because it is more affordable
than tomosynthesis. Mammograms are procured in two
standard orientations: Craniocaudal (CC) and Medio-
lateral-oblique (MLO) views during screening. Figure
1 is an example of the CC and MLO views of the mam-
mogram of two breasts from the same patient.

Figure 1: Craniocaudal and Medio-lateral-oblique view of Mammo-
gram

1.2. Skin Cancer

A skin lesion is an abnormal lump, bump, or sore on
the skin. A skin lesion on a human body is shown in
Figure 2.

Skin lesions include melanoma, melanocytic nevus,
basal cell carcinoma, actinic keratosis, benign kerato-
sis, dermatofibroma, vascular lesion etc. Some skin le-
sions are benign while some such as melanoma, basal
cell carcinoma and squamous cell carcinoma are cancer-
ous. The world health organization (WHO) reported a
rapid increase of skin cancer cases (INTERSUN, 2003).
Between 2 to 3 million cases of non-melanoma cancer
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Figure 2: Skin lesion on a human body

and 132,000 melanoma cancers are reported annually
worldwide (Baldwin and Dunn, 2013).

Melanoma is the most dangerous type of skin cancer
and the cause of 75% of skin cancer related deaths in
the world. It is generally known to occur in the skin
but occurrence in the eyes, nasal passages is also pos-
sible (Satheesha et al., 2017). Melanoma affects the
melanocyte cells which are responsible for producing
the skin pigment called melanin. Skin with lack of
melanin have more chances of sunburn because of the
ultra-violet rays from the sun. The excess sunburn then
leads to melanoma. A skin affected by melanoma can
be identified by careful observation of the skin area by
a dermatologist (a doctor specialized in skin diseases).
Classical clinical algorithms such as ABCD - Asymme-
try, Border, Color and Diameter (Stolz, 1994), ABCDE
- Asymmetry, Border, Color, Diameter and Evolution
(Blum et al., 2003), Menzies method (Menzies et al.,
1996) and the seven-point checklist (Argenziano et al.,
1998) are normally used for the diagnosis of melanoma
skin lesion. A normal skin anatomy and the stages of
melanoma as defined by Cancer Research UK is shown
in Figure 3 and Figure 4 respectively. The stages of
melanoma is mainly grouped into five stages.

• Stage 0 (Tis): It can be referred to as the ini-
tial stage of melanoma generally called insitume-
lanoma. It is the first stage of melanoma. Abnor-
mal melanocytes occur in the top layer of the skin.
Melanoma in this stage is 100% curable.

• Stage 1 (T1): The melanoma in this stage have
spread into the skin but only in the epidermis layer
of the skin. The depth is less than 1mm. The pa-
tient can be cured through surgical procedure at
this stage.

• Stage 2 (T2): The melanoma lesion is between
1mm and 2mm in depth. The patient can still be
cured through surgical procedure at this stage.

• Stage 3 (T3): The lesion is between 2mm and 4mm
in depth in this stage. The cancer have spread to
the lymph nodes but still localized. The patient can
still be cured through advanced surgery and post-
surgical care but the survival rate is less.

• Stage 4 (T4): The lesion is more than 4mm in
depth. The cancer have spread from its primary
site to other organs and lymph nodes. The survival
rate is very low among patients.

Figure 3: A normal skin anatomy

Figure 4: Stages of melanoma

From the above stages, it can be seen that detection
and diagnosis of melanoma at the early stage helps in
achieving efficient and effective treatment.

Dermoscopy technique which can also be referred to
as surface skin microscopy or dermatoscopy is a nonin-
vasive method that allows the in vivo evaluation of mi-
cro structures of the epidermis, dermoepidermal junc-
tion and the papillary dermis of the skin with the aid
of a dermoscope. It is generally performed by a der-
matologist. Cascinelli et al. (1987) performed the first
pilot study with computer-aided dermoscopic diagnosis
using digital slides. Dermoscopy is performed by the
application of a gel on the skin and a dermatoscope is
then used to obtain a magnified image. The magnified
skin images provide color, pattern and structure. This
enables the dermatologists to identify the type of skin
lesion and help in the diagnosis (Mayer et al., 1997).
Other techniques that are used to acquire skin lesion
images are high-frequency ultrasound (Vogt and Er-
mert, 2007), nevoscopy (Dhawan et al., 1984), acoustic
microscopy (Tittmann et al., 2013), trans-illumination
light microscopy (D’Alessandro and Dhawan, 2012),
and 3D high-frequency skin ultrasound images (Pereyra
et al.). These techniques construct 3D volumes and es-
timate the depth of skin lesions for accurate diagno-
sis. These techniques are not easily available and are
more expensive. This makes dermoscopy to be the most
widely and affordable technique in the diagnosis of skin
lesion.
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1.3. Deep Learning
Machine learning have witnessed various develop-

ments that lead to a lot of interest from industry, aca-
demic and medical domain. This is as a result of break-
through in artificial neural network generally called
deep learning. Deep learning consists of a set of tech-
niques that enable computers to identify complicated
patterns in a dataset and their models form the state-
of-art used in a wide variety of problems in computer
vision. A neural network consist of connected compu-
tational units called neurons which are arranged in lay-
ers. Data enters the network through the input layer fol-
lowed by one or more hidden layers which transforms
the data as it flows through and ends at an output layer
that produces the neural network’s predictions. During
training, the strength of the neurons are tuned until the
patterns identified by the network result in good predic-
tions for the training data. The network use the patterns
that are learned to make predictions on new or unseen
data.

The basic form of a neural network which is called
the feedforward neural networks are parametrized math-
ematical functions that maps an input to an output and
then fed through a number of nonlinear transformations.
A neural network is trained by changing its weights to
optimize the outputs of the network. This is done by
using an optimization algorithm called gradient descent
on a loss function which measures the correctness of
the outputs. As training data is fed through the network,
the gradient of the loss function is computed with re-
spect to every weight using the chain rule and the loss
is reduced by changing these weights using the gradient
descent. In deep learning, computer learns features and
representations directly from the input data. The main
characteristic of deep learning is their ability of feature
learning whereby representations of data are automati-
cally learned. This is the main difference between deep
learning and other classical machine learning.

Deep learning started to be widely known in com-
puter vision when neural networks began outperform-
ing other methods on high-profile image analysis. The
most outstanding is the ImageNet Large-Scale Visual
Recognition Challenge (ILSVRC) when a deep learn-
ing model, a convolutional neural network have the
second best error rate on the image classification task
(Krizhevsky et al., 2012). Before then, to enable com-
puters to recognize objects in natural images was con-
sidered to be a difficult task but now convolutional
neural networks have exceeded even the human per-
formance on the ILSVRC and arrived the level where
ILSVRC classification task is absolutely solved. The
deep learning techniques have become a standard for
various computer vision tasks. They are not limited to
image analysis but also to other areas like natural lan-
guage processing (Peters et al., 2018), speech recogni-
tion and synthesis (Xiong et al., 2018). The wide scope
of deep learning has led to improvements in the entire

field of machine learning because in some tasks, clas-
sical machine learning like support vector machine are
now incorporated with deep learning to improve their
performance. This has made it to be one of the inter-
esting areas of study world-wide and also offers lucra-
tive job opportunities. People with competence in deep
learning are now sought-after in industry, academic and
medical domain.

In deep learning, various new methods are developed
that will be able to solve problems by learning from ex-
periences. The goal is to create models that can gener-
alize well and deliver accurate predictions on the new
or unseen data. The generalization ability of the model
is estimated during training using a separate data called
the validation data and used as feedback for additional
tuning of the model. After several iterations of train-
ing and tuning, the final model is evaluated on a test
data which is used to show how the model will perform
when given a new or unseen data.

In healthcare, large amounts of data which contains
valuable information and signals are increasing in a
rapid rate that traditional methods of analysis finds it
difficult to analyze and process. Deep learning have of-
fered tremendous aid in such amounts of data. In health-
care practice, deep learning is not only used in medical
image analysis but also in one-dimensional bio-signal
analysis (Ganapathy et al., 2018), analysis of electronic
health records (Shickel et al., 2017), stratified care de-
livery (Vranas et al., 2017), prediction of medical events
e.g. cardiac arrests (Kwon et al., 2018), survival analy-
sis (Katzman et al., 2018), aid in therapy selection and
pharmacogenomics (Kalinin et al., 2018).

In image recognition, convolutional neural network
(CNN) which is a kind of neural network is generally
adopted for image classification because of its powerful
way to learn useful representations of images and other
structured data. The CNN consists of multiple layers
of neural connections with minimal systematic process-
ing. The input to a CNN is organized in a grid struc-
ture and connected through layers that preserve their re-
lationships with each layer connected to the previous
and next layer. CNN’s architecture is mainly composed
of convolutional, pooling and fully connected layer as
shown in Figure 5.

The main function of a convolutional layer is to detect
edges, lines and local patterns. Filter operators called
convolutions are adopted in the convolution layer and it
represents the multiplication of local neighbours from a
specified pixel by a certain array of kernel. The extrac-
tion of features such as edges are through the kernels.
The main function of the pooling layer is to give some
translational invariance to the CNN and the fully con-
nected layer act as a classifier to the CNN. The multi-
layer architecture and local connection in CNN can ex-
tract multi-level local features in image data. CNNs
enables learning highly representative and hierarchical
image features from a large set of training images. The
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Figure 5: A typical CNN architecture

main power of CNNs exists in its deep architectures (Si-
monyan and Zisserman, 2014), (Szegedy et al., 2015)
which makes CNNs to automatically learn mid-level
and high-level abstractions from raw image data. In
image recognition, deep CNNs have achieved a great
success due to the availability of large annotated data
(Deng et al., 2009) and fast graphics processing units
- GPUs (Raina et al., 2009). In the field of medical
imaging, acquiring data that is annotated as natural im-
ages from ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) is very difficult. ImageNet (Deng
et al., 2009) offers a large database of more than 1.2 mil-
lion categorized natural images of 1000 classes. CNN
models trained on this database help in significantly im-
proving many image classification problems using other
datasets. When such large amount of data are not avail-
able, using a very limited number of medical data to
train the deep CNNs usually causes overfitting and con-
vergence problems.

An approach to exploit deep CNNs on small dataset
is transfer learning. Transfer learning is a technique in
which the information obtained by a trained model is
re-used on another task. In transfer learning, the deep
CNNs is first trained on a large image dataset like Ima-
geNet. Natural images and medical images are different
but conventional image descriptors developed for object
recognition in natural images such as the scale-invariant
feature transform - SIFT (Lowe, 2004) and the his-
togram of oriented gradients - HOG (Dalal and Triggs,
2005) have been widely used for detection in medical
image analysis. The two main strategies of which trans-
fer learning can be applied in image classification are
based on feature extraction and fine tuning.

In transfer learning mode of feature extraction, the
pre-trained CNN models are used as feature extractors.
Some previous studies showed that generic descriptors
extracted from pre-trained CNN models are effective in
recognizing and detecting objects from natural images
(Oquab et al., 2014). CNN models that are trained us-
ing natural image dataset or which can also be medi-
cal dataset can be applied to a new medical task. The

pre-trained CNN models are used as feature generators
to extract features from the input images and these ex-
tracted features are used to train a new classifier such
as neural network classifier and support vector machine
classifier. Bar et al. (2015) used a pre-trained CNN
model as feature extractor in chest pathology detection.

In transfer learning mode of fine tuning, a CNN is
trained from a set of weights pre-trained using other
large dataset like ImageNet. The weight of the CNN
to train with is initialized with the weight of the pre-
trained CNN model with the same architecture. Several
or all layers of the network of the CNN are trained using
a new dataset. When the difference between the source
and the target is very significant, transfer learning mode
of fine tuning is preferable. Gao et al. (2018) fine tuned
all network layers of the pre-trained CNN model for the
classification of interstitial lung diseases.

In this thesis work, the two main transfer learning
mode based on feature extraction and fine tuning are
compared with training from scratch using five selected
pre-trained CNN models for breast mass classification
and skin lesion classification. The next sections include
the state-of-the-art in breast mass classification and skin
lesion classification, materials for the thesis work, pro-
posed methods, results, discussion, conclusion and ac-
knowledgement.

2. State of the art

2.1. Breast Mass Classification

Some studies have demonstrated the use of automated
diagnosis in the classification of breast mass. Their
methods have differentiated normal tissue from masses
either as main task or as an initial step in an automatic
diagnosis. The studies were done with machine learn-
ing which include support vector machine (SVM) and
deep learning. Their work were focused on extracting
the region of interest (ROI) and then the classification
into normal and benign/malignant mass.

Bruno et al. (2016) used local binary pattern (LBP)
operators with curvelet coefficients to distinguish nor-
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mal tissue and malignant masses, and also malignant
from benign masses. Using different classifiers, the
best performance was obtained by a SVM with poly-
nomial kernel with 91% accuracy for Digital Database
for Screening Mammography (DDSM) dataset.

Narváez et al. (2017) used an automatic Breast Imag-
ing Reporting and Data System (BI-RADS) character-
ization of masses contained in a ROI to learn relevant
radiological characteristics from various multiscale de-
composition of the visual information, zernike polyno-
mials and curvelet bases that are optimally fused by
a multiple kernel learning (MKL). Their method first
check the presence of masses in the ROI by training
a conventional SVM classifier. When a ROI is recog-
nized as a mass, it feeds a bank of SVM binary clas-
sifiers which selects the kind of shape from the Breast
Imaging Reporting and Data System (BI-RADS) terms.
The margin of the mass and density are then set by
joining together the BI-RADS labels of the five most
similar shapes in the database. 980 and 216 ROIs ex-
tracted from the DDSM and INbreast database respec-
tively were used in the evaluation. Masses were de-
tected with 96.2% sensitivity and 93.1% specificity.

In the work of Guan and Loew (2017), three meth-
ods which include CNN from scratch, transfer learning
mode of feature extraction and fine tuning using VGG16
model were used to classify ROI into normal tissue and
breast mass. Their best performance was on fine tuning
with a validation accuracy of 91.3%.

Suzuki et al. (2016) used transfer learning mode of
fine tuning with AlexNet model to classify ROI into nor-
mal and mass. Their result reported 89.9% sensitivity
for mass detection.

The above mentioned studies all used ROI in the clas-
sification between normal and breast mass. In this mas-
ter thesis work, breast mass classification on ROI and
whole mammogram image will be studied.

2.2. Skin Lesion Classification
Several studies have been done in the automatic clas-

sification of skin lesion. Most of the studies was done
towards the detection of melanoma, the most dangerous
type of skin cancer.

In the work done by Joseph and Panicker (2016), they
used image processing techniques which include hair
detection, lesion segmentation, feature extraction and
support vector machine classifier for the classification
of skin lesion images. They used a two-step classifica-
tion which first classifies the lesion into normal or ab-
normal mole. Then in the second step of classification,
the abnormal mole was further classified into atypical
or melanoma mole. Their method was evaluated with
ph2 dataset. Their performance was 91.5% accuracy in
the first step classification and 93.5% accuracy in the
second step classification.

Quang et al. (2017) fine tuned with VGG16 model
for the classification of skin lesion images into two cat-

egories. First task is classification into benign and ma-
lignant skin lesion and second task is classification into
melanocytic and non-melanocytic lesions using ISIC
2017 skin lesion dataset. Their best performance was
76.3% and 86.9% in the first and second task respec-
tively using the area under curve metric.

In the work of Hosny et al. (2018), fine tuning with
AlexNet model was used for the classification of skin le-
sion into melanoma, common nevus and atypical nevus.
The last layer of the AlexNet model was replaced for
the classification into three classes. Their method was
trained and tested with the ph2 dataset and performance
was 98.6% accuracy.

Kaymak et al. (2018) using HAM10000 dataset
that consists of seven types of skin lesions, fine-
tuned an AlexNet model for skin lesion classification.
They obtained accuracy of 78% for classification into
melanocytic and non-melanocytic lesions, 84% accu-
racy for classification into melanoma and nevus le-
sions, and 58% accuracy for classification into non-
melanocytic malignant and benign lesions. In their
work, they did two class classification even though the
dataset consist of seven types of skin lesion.

The mentioned studies were done for two or three
class skin lesion classification. However, in this thesis
work, seven class classification is carried out using the
HAM10000 dataset that consists of seven types of skin
lesion.

3. Materials

3.1. INbreast Dataset
The INbreast dataset (Moreira et al., 2012) was ac-

quired at the breast centre located in a university hos-
pital, Hospital de Sao Joao, Breast Centre, Porto Por-
tugal. The images were acquired between 2008 and
2010 using the acquisition equipment MammoNovation
Siemens full field digital mammography (FFDM) with
a solid-state detector of amorphous selenium and 14-bit
contrast selenium. The image matrix is 3328 × 4084
or 2560 × 3328 pixels which depends on the compres-
sion plate used in the acquisition. The images were
saved in the DICOM format and all confidential med-
ical information were removed from the DICOM file.
The images are from screening, diagnostic and follow-
up cases. The dataset contain normal mammograms,
mammogram with masses, mammograms with calcifi-
cations, asymmetries, architectural distortions and im-
ages with multiple findings. In total, the dataset con-
tains 410 images of which 107 images have mass and
303 images does not have mass. A mass which is the fo-
cus on using this dataset is defined by the BI-RADS as a
three-dimensional structure demonstrating convex out-
ward borders, usually evident on two orthogonal views
(Sickles et al., 2013).

The main characteristic of this dataset is the
groundtruth annotation. Most of the datasets usually
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give a circle around the region of interest (ROI) but IN-
breast dataset have annotations that were made by a spe-
cialist in the field and validated by another specialist.

For each image, there is a binary mask to remove
the black background from the mammogram image.
In addition, the images with mass also have a binary
groundtruth image.

Figure 6: Mammogram image with corresponding mask and
groundtruth

The INbreast dataset contains 107 mammogram im-
ages with mass and 303 mammogram images without
mass. In the 107 mammogram images that contain
mass, some images have more than one mass in them. In
total, there are 115 masses. The total mammogram im-
ages were divided into two, mammogram images with
mass and without mass. The mammogram images with
mass were further divided into three, 80% train, 10%
validation and 10% test. The mammogram images with-
out mass were also divided into three, 80% train, 10%
validation and 10% test.

3.2. HAM10000 Dataset

The HAM10000 (“Human Against Machine with
10000 training images”) dataset (Tschandl et al., 2018)
are from the ISIC 2018 competition on skin lesion diag-
nosis. The lesion images were acquired with a variety
of dermatoscope types from all the anatomic sites ex-
cluding the mucosa and nails. The lesion images are
from a historical sample of patients presented for skin
cancer screening from different institutions. The labels
for the images were established by one of the following:
histopathology, reflectance confocal microscopy, the le-
sion did not change during digital dermatoscopic fol-
low up over two years with at least three images and
consensus of at least three expert dermatologists from
a single image. The distribution represents a modified
“real world” setting. There are more benign lesions than
malignant lesions. The total images in the dataset are
10015. The seven disease categories and their number
of images are: melanoma - 1113, melanocytic nevus -
6705, basal cell carcinoma - 514, actinic keratosis - 327,
benign keratosis - 1099, dermatofibroma - 115 and vas-
cular lesion - 142.

The dataset is highly unbalanced. Melanocytic nevus
constitutes about 67% of the dataset. The dataset is split
into 80% train, 10% validation and 10% test. Distribu-
tion of the skin lesion in the dataset is shown in Figure
8.

4. Methods

4.1. Preparation of Mammogram Image Patches

To generate mammogram image patches without
mass (negative mammogram image patches), images of
size 454 × 454 were cropped from mammogram images
without masses with their respective binary mask. The
binary mask is used to remove the black background in
the mammogram image when cropping negative mam-
mogram image patches. Multiple patches were gener-
ated from a single image. As a result of that, many neg-
ative mammogram image patches were generated alto-
gether. Figure 9 illustrates how negative mammogram
image patches were generated.

To generate mammogram image patches with mass
(positive mammogram image patches), images of size
454 × 454 were cropped from mammogram images
with masses with their respective binary groundtruth.
The binary groundtruth is used to focus on the region
of interest in the mammogram image which is the mass.
Centre, left and right corners of masses were extracted.
Then the positive mammogram image patches were ro-
tated by 90, 180 and 270 degrees in order to increase
their number. Figure 10 illustrates how positive mam-
mogram image patches were generated.

In total, 2000 training, 150 validation and 148 test
mammogram image patches were used in this work.
The two class of patches were balanced in all sets. This
is as a result of augmentation done for the positive mam-
mogram image patches to match up with the negative
ones.

4.2. Base Model Architectures

Five selected base model architectures were used and
they include VGG19, ResNet50, InceptionResnetV2,
InceptionV3 and NASNetLarge. They are pre-trained
on ImageNet database which are used in the ImageNet
Large-Scale Recognition Challenge (ILSVRC).

• VGG19: Simonyan and Zisserman (2014) created
a 19-layer network which consists of 16 convolu-
tion and 3 fully-connected CNN layer. The model
used 3 × 3 filters with stride and pad of 1 with 2
× 2 max-pooling layers with stride 2. The VGG19
is a deeper CNN with more layers than VGG16. It
uses small 3 × 3 filters in all convolutional layers
in order to reduce the number of parameters. The
VGG19 model have a total of 143,667,240 param-
eters and a size of 549 MB.

• ResNet50: ResNet50 is a pre-trained model which
is highly useful in residual neural networks (He
et al., 2016). The network learns the residuals of
the input layer. Each block consists of a series
of layers and a connection adding the input of the
block to its output. The gradient signals can travel
back directly to early layers through the various
small connections and helps to solve the problem
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Figure 7: Typical example of the various skin lesion

Figure 8: Distribution of the skin lesion
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Figure 9: Creation of negative mammogram image patches

Figure 10: Creation of positive mammogram image patches

of vanishing gradients. Vanishing gradients arises
when gradient signals from the error function de-
creases rapidly as they are back propagated to ear-
lier layers. Some studies have shown that training
residual networks are easier than a CNN. ResNet50
model have a total of 25,636,712 parameters and a
size of 98 MB.

• InceptionResNetV2: InceptionResNetV2 uses
residual connections that add the output of the con-
volution operation of the inception module to the
input (Szegedy et al., 2017). The InceptionRes-
NetV2 model have a total of 55,873,736 parame-
ters and a size of 215 MB.

• InceptionV3: InceptionV3 is an improved version
of InceptionV2 and have additions which include:
RMSProp optimizer, factored 7 × 7 convolutions,
batch normalization in the auxillary classifiers and
label smoothing (Szegedy et al., 2016). The label
smoothing is a kind of regularizing component that
when added to the loss formula prevents the net-
work from learning more of a particular class and
prevents over fitting. The InceptionV3 model have
a total of 23,851,784 parameters and a size of 92
MB.

• NASNetLarge: NASNetLarge is based on re-
inforcement learning algorithms (Zoph et al.,
2018). It is capable of producing small-scale net-
works. The NASNetLarge model have a total of
88,949,818 parameters and a size of 343 MB.

4.3. Classifier on Top of the Base Model

The fully connected layers on top of the five selected
models were removed. A new classifier on top of the
base models was designed. The classifier on top of the
base models for breast mass classification and skin le-
sion classification are different. This is due to the dif-
ference in the number of classes and their distribution
in the two training sets. In this thesis work, a novel
neural network technique in which the classifier is con-
catenated was adopted for breast mass classification.
Compared with Nguyen et al. (2018) that used three

network architectures (InceptionV3, ResNet512 and In-
ceptionResNetV2) for feature concatenation in micro-
scopic image classification, concatenation of classifier
in this work is done with the same network architecture.
This approach gives a superior performance for train-
ing set that have balanced class distribution. In the skin
lesion classification, concatenation of classifier was not
applied because the approach gives a lower performance
than without concatenation of classifier. Also for the
skin lesion classification, more layers in the classifier
tend to reduce the performance and so less layers were
adopted. The classifier on top of the base models for
breast mass classification and skin lesion classification
are shown in Figure 11 and 12 respectively.

Figure 11: Classifier for breast mass. The green arrows illustrates be-
fore concatenation and the blue arrows illustrates after concatenation

Figure 12: Classifier for skin lesion

Global average pooling was proposed by Lin et al.
(2013) to replace the fully connected layers and it com-

14.9



Transfer Learning in Medical Imaging 10

putes the average value of all the elements in the feature
map. It is used to generate one feature map for each
corresponding category of the classification task in the
last convolutional layer. The global average pooling is
more native to the convolution structure by enforcing
correspondences between feature maps and categories.
This makes feature maps to be easily interpreted as cate-
gories confidence maps. It also prevents overfitting and
is more efficient to spatial translations of the input.

The dense layer also called a fully connected layer
connects every node in one layer to every node in an-
other layer. The number of nodes in the first and second
dense layers in the classifier for breast mass is 1024 and
128 respectively. The number of nodes in the first dense
layer in the classifier for skin lesion is 1024. The last
dense layer which is the output layer performs classifi-
cation based on the features extracted by the previous
layers and the number of nodes in it corresponds to the
number of classes to be predicted, two for breast mass
classification and seven for skin lesion classification.

The dense layer also contains activation function.
The activation function adds the nonlinear factors so
that redundant data are removed while preserving fea-
tures. The activation function also retains active neuron
feature and maps out these features by nonlinear func-
tions and this is essential for the neural network to solve
the complex nonlinear problems. ReLu activation func-
tion was used in the dense layer that does not do the
prediction. ReLu’s output is zero and maximum of in-
put. Its output equals to input when input value is non-
negative and this alleviate the gradient vanishing and ex-
ploding problems. ReLu activation function do not have
boundaries. Its range is from zero to infinity and so is
not good for prediction in the output layer. Softmax ac-
tivation function was used in the last dense layer that do
the prediction because its range is from zero to one and
can regulate the output values (Hinton and Salakhutdi-
nov, 2009).

Batch Normalization was proposed by Ioffe and
Szegedy (2015). Batch normalization reduces internal
covariate shift and this improves the training of deep
neural nets. Internal covariate shift is the change in the
distribution of network activations due to change in net-
work parameters during training. Batch normalization
reduces the internal covariate shift by using a normal-
ization step which fixes the means and variances of layer
inputs. It has a good effect on the gradient flow through
the network by decreasing the influence of gradients
on the scale of the parameters. It also regularizes the
model. Batch normalization when combined with ReLu
activation function achieves a great performance in fea-
ture extraction. Some state-of-the-art “non-plain” CNN
structures, He et al. (2016) and Huang et al. (2017) use
batch normalization with ReLu as a feature normalize
and nonlinear transform operator. However, the com-
bination of batch normalization and ReLu will extract
more active features from previous feature maps and

this improves efficiency but makes feature maps sparse.
This feature maps that are sparse will reduce the perfor-
mance in dataset that are greatly unbalanced. ReLu acti-
vation is used in the two classifiers and so adding batch
normalization will affect the classification in dataset that
is greatly unbalanced. Batch normalization was added
only in the classifier for breast mass because the training
set is balanced in distribution. The training set of skin
lesion is greatly unbalanced in distribution and batch
normalization was not used in the classifier for skin le-
sion.

Dropout was proposed by Srivastava et al. (2014).
It is a simple regularization technique to solve overfit-
ting. Overfitting occurs when the model includes more
terms or complicated approaches than what is needed.
This mostly occur when limited data in the training set
is used on deep network. It leads to a high accuracy
on the training set but a low accuracy on the test set.
Dropout prevents overfitting on the training set and im-
proves performance by combining exponentially many
different neural network models efficiently. It chooses
units to drop out randomly and removes them from the
layer temporarily. The dropout rate in both the classifier
for breast mass and skin lesion is 0.5.

4.4. Training Approaches

Three training approaches were adopted and was
done using the five selected network architectures that
were used in ImageNet classification. They include
transfer learning mode of feature extraction, transfer
learning mode of fine tuning and training from scratch.

• Transfer Learning Mode of Feature Extraction: In
transfer learning mode of feature extraction, all the
layers in the base model were frozen and only the
classifier was trained. The weight is initialized to
ImageNet.

• Transfer Learning Mode of Fine Tuning: In trans-
fer learning mode of fine tuning, all the layers were
trained and weight initialization to ImageNet ex-
cept for NASNetLarge model in training for mam-
mogram image patches in which the first 600 layers
of the base model were frozen. The first 600 lay-
ers of the base model were frozen when using the
NASNetLarge model for training of mammogram
image patches because concatenation of classifier
is applied. This takes more memory and made
NASNetLarge model to run out of memory when
all layers were to be trained.

• Training from Scratch: In training from scratch, all
the layers were trained except for NASNetLarge
model in training for mammogram image patches
in which the first 600 layers of the base model were
frozen. The same reason given above for freezing
the first 600 layers of the base model of NASNet-
Large model also applies here. There is no weight
initialization to ImageNet.
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The number of total and trainable parameters for the
five selected models in transfer learning mode of fea-
ture extraction, transfer learning mode of fine tuning
and training from scratch for breast mass and skin lesion
classification are shown in Table 1 and Table 2 respec-
tively.

4.5. Data Augmentation During Training

Deep neural networks usually require large number
of training data to achieve good performance. Data aug-
mentation can increase the size of the training data by
generating new data from the original input data. Data
augmentation also generates various versions of train-
ing samples because masses and lesions can appear in
various orientations. Data augmentation during train-
ing helps to minimize disk space to store the augmented
images. After the training, the augmented data are re-
moved from the system automatically.

For the mammogram image patches, each original
image was flipped horizontally, rotated by 20 degrees,
zoomed by 0.2, sheared by 0.2, shifted the width and
height by 0.1. Each original image of the mammogram
patch was thus augmented to six images.

For the skin lesion images, each original image was
flipped horizontally, rotated by 180 degrees, zoomed by
0.2, shifted the width and height by 0.1. Each original
image of the skin lesion was thus augmented to five im-
ages.

4.6. Optimizer

Optimizer update the weight parameters to minimize
the loss function. Three optimizers were used in this
work. They include Adam (Kingma and Ba, 2014),
RMSProp (Tieleman and Hinton, 2012) and Stochastic
gradient descent (SGD). Adaptive gradient optimizers
which include Adam and RMSProp have a rapid train-
ing time and take less time to reach convergence. Adap-
tive gradient optimizers are also ideal for small dataset.
Non-adaptive optimizers which include SGD take more
time during training.

In breast mass classification, Adam was used in all
training approaches. For skin lesion, RMSProp was
used in transfer learning mode of feature extraction and
SGD with momentum was used in transfer learning
mode of fine tuning and training from scratch. Momen-
tum is a method that helps move SGD in the right direc-
tion and dampens oscillations (Qian, 1999). It does this
by adding a fraction γ of the update vector of the previ-
ous time step to the current update vector. Momentum
helps to gain faster convergence and reduced oscillation.
The term for the momentum γ is set to 0.9.

4.7. Learning Rate and other Hyperparameters

Learning rate is a hyperparameter that controls how
the weights of the network are adjusted with respect
to the loss gradient. A learning rate that is too small

leads to a slow convergence while a learning rate that is
too large can limit convergence and make the loss func-
tion to fluctuate around the minimum. The learning rate
for the breast mass classification is 0.00001 and was in-
creased to 0.001 for skin lesion classification because of
the large training set. Other hyperparameters were kept
at their default value.

4.8. Batch Size and Epoch

Batch size is the number of samples to pass through
before the model is updated. Epoch is the number of
times for the learning algorithm to pass through the
training set. The batch size for all the models is 16 ex-
cept NASNetLarge model that is 8 due to large memory.
The number of epoch is set to 200 for all training.

4.9. Save Best Weight During Training and Early Stop-
ping

In training, the weight of the improved validation ac-
curacy is saved and updated. After 20 epochs, if there is
no further improvement in the validation accuracy, the
training is automatically stopped. This is helpful be-
cause the last epoch may not give the best validation
accuracy to be updated in the weight.

4.10. Performance Evaluation

The performance evaluation on the test set for the
three training approaches using the five selected mod-
els were done with the accuracy metrics. The best per-
formance was further evaluated using the normalized
confusion matrix and area under the receiver operating
characteristic curve (AUC).

Accuracy is the ratio of the number of correct predic-
tions to the total number of samples.

Normalized confusion matrix gives a matrix as output
and describes the complete performance of the model
by showing the percentage of the correct and incorrect
predictions.

Area under the receiver operating characteristic curve
(AUC) is the probability that the classifier will rank a
randomly chosen sample higher than a randomly chosen
of other samples.

4.11. Hardware and Software Environment

The work was developed with Python programming
language using Keras with Tensorflow backend. Keras
library have the five selected models used in this work
which are pre-trained on ImageNet. The work was done
with a remote machine that have the following features:
CPU of 1 with 8 hyperthreaded core, 256 GB RAM and
GPU of 2 TitanXp with 12GB onboard.
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Model Total Parameters Trainable Parameters
Transfer Learning Train from Scratch

Feature Extraction Fine Tune
VGG19 20,686,786 660,098 20,684,482 20,684,482
ResNet50 25,826,050 2,236,034 25,770,626 25,770,626
InceptionResNetV2 56,049,762 1,710,722 55,986,914 55,986,914
InceptionV3 24,041,122 2,236,034 24,004,386 24,004,386
NASNetLarge 89,190,740 4,271,618 73,976,834 73,976,834

Table 1: Total and Trainable Parameters for Breast Mass Classification

Model Total Parameters Trainable Parameters
Transfer Learning Train from Scratch

Feature Extraction Fine Tune
VGG19 20,556,871 532,487 20,556,871 20,556,871
ResNet50 25,693,063 2,105,351 25,639,943 25,639,943
InceptionResNetV2 55,917,799 1,581,063 55,857,255 55,857,255
InceptionV3 23,908,135 2,105,351 23,873,703 23,873,703
NASNetLarge 89,053,785 4,136,967 88,857,117 88,857,117

Table 2: Total and Trainable Parameters for Skin Lesion Classification

5. Results

5.1. Breast Mass Classification

In all the three training approaches using the five se-
lected models, the performance using accuracy metrics
was evaluated on the test set of the mammogram image
patches. The performance is shown in Table 3.

Further performance evaluation was done with the
best performance in Table 3 using normalized confu-
sion matrix and receiver operating characteristic (ROC)
curve. This is shown in Figure 13 and 14.

Using the weight of the best model performance, pre-
diction was done on a whole mammogram image. In
this, a frame work was designed in which the binary
mask was used to remove the black background from
the whole mammogram image so that only the breast
area will be left. The breast area is then forwarded to
the classifier to predict whether there is breast mass or
not. The framework was used to predict on the test set
of the whole mammogram images. The accuracy was
0.72 which is below 0.96 the model gave on the test set
of the image patches.

5.2. Skin Lesion Classification

In all the three training approaches using the five se-
lected models, the performance using accuracy metrics
was evaluated on the test set of the skin lesion images.
The performance are shown in Table 4.

Further performance evaluation was done with the
best performance in Table 4 using normalized confu-
sion matrix and receiver operating characteristic (ROC)
curve. This is shown in Figure 15 and 16.

6. Discussion

6.1. Breast Mass Classification

Three training approaches namely transfer learning
mode of feature extraction, transfer learning mode of
fine tuning and training from scratch were used in the
classification of breast mass using five selected models.
The training was done on 12,000 augmented mammo-
gram image patches and tested on 148 mammogram im-
age patches. Transfer learning mode of feature extrac-
tion have the least performance in all models. This is be-
cause mammogram image differ so much from the nat-
ural images in the ImageNet dataset. Transfer learning
mode of feature extraction is helpful when the training
set is small as it helps to control overfitting. In the three
training approaches, transfer learning mode of fine tun-
ing gave the best performance in four out of five mod-
els. The exception was seen in NASNetLarge in which
the first 600 layers of the base model was frozen and
the remaining layers was trained for both in fine tuning
and training from scratch. The reason for this exception
from the other four model performance could be that
sometimes in training, due to memory issues the result
to expect may not be seen. When many people use the
GPU at the same time, the result may vary from what to
expect. The best result overall was in transfer learning
mode of fine tuning with ResNet50 giving an accuracy
of 0.96 on the test set of mammogram image patches.
With four models having better performance in transfer
learning mode of fine tuning than training from scratch,
it can be seen that transfer learning mode of fine tuning
is the ideal to be adopted in breast mass classification
with mammography image modality when the training
set is large.
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Model Transfer Learning Train from Scratch
Feature Extraction Fine Tune

VGG19 0.78 0.95 0.93
ResNet50 0.79 0.96 0.91
InceptionResNetV2 0.76 0.93 0.91
InceptionV3 0.82 0.93 0.91
NASNetLarge 0.78 0.82 0.86

Table 3: Performance using accuracy metrics on the test set of mammogram image patches

Figure 13: Normalized Confusion Matrix with ResNet50 on the test set of mammogram image patches

Figure 14: ROC curve with ResNet50 on the test set of mammogram image patches
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Model Transfer Learning Train from Scratch
Feature Extraction Fine Tune

VGG19 0.68 0.80 0.81
ResNet50 0.68 0.79 0.81
InceptionResNetV2 0.70 0.73 0.76
InceptionV3 0.72 0.83 0.78
NASNetLarge 0.71 0.77 0.81

Table 4: Performance using accuracy metrics on the test set of skin lesion images

Figure 15: Normalized Confusion Matrix with InceptionV3 on the test set of skin lesion images

Figure 16: ROC curve with InceptionV3 on the test set of skin lesion images
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The false negatives and false positives on the test
set of mammogram image patches were analyzed. The
false negatives were due to the breast mass being very
small and not clearly visible in the mammogram image
patch and so the classifier see it as negative even in ac-
tual sense it contains breast mass. The false positives
were due to the presence of dense tissues in the mam-
mogram image patch. The classifier see the dense tis-
sue as masses. Two samples of false negatives and false
positives of mammogram image patches are shown in
Figure 17 and Figure 18 respectively. Tomosynthesis a
new technique of mammography in 3D helps to solve
the problem of the dense tissue and makes it not to be
clearly visible in the 3D tomosynthesis image.

The best model performance was used to predict on
the test set of whole mammogram images because in
clinical practice whole mammogram images are used
and not the mammogram image patches. However, pre-
dicting on a whole mammogram image is more difficult
than the mammogram image patch because of the ex-
panded size and feature space. The accuracy was 0.72
on the test set of whole mammogram images which is
below 0.96 the model gave on the test set of mammo-
gram image patches. The training was done on the
mammogram image patches in which the breast mass
appear bigger and when predicting on whole mammo-
gram image in which the breast mass appear smaller, the
classifier could not recognize some whole mammogram
image in which the breast mass is small. However, in the
whole mammogram image in which the breast mass is
bigger, the classifier predicted accurately of breast mass
in them. Also the presence of dense tissues overlapping
with mass was also a problem in predicting a false nega-
tive in whole mammogram image. In addition, presence
of dense tissue also make the classifier to predict a false
positive in whole mammogram image in which it see the
dense tissue as a mass. Two samples of false negatives
and false positives on whole mammogram images are
shown in Figure 19 and Figure 20 respectively.

Tomosynthesis a new technique of mammography in
3D in which the overlay and presence of dense tissues is
diminished will play a vital role in effective classifica-
tion of breast mass in both mammogram image patches
and whole mammogram images.

Figure 17: False negatives on mammogram image patch

6.2. Skin Lesion Classification

Transfer learning mode of feature extraction, transfer
learning mode of fine tuning and training from scratch

Figure 18: False positives on mammogram image patch

Figure 19: False negatives on whole mammogram image

were the three training approaches used in the classifi-
cation of skin lesions using five selected models. 40,050
augmented skin lesion images were used for the training
and tested on 1005 skin lesion images. The least per-
formance in all models were seen in the transfer learn-
ing mode of feature extraction. This is because the skin
lesions have features that are different from the natu-
ral images in ImageNet. The best performance in four
out of five models were seen in training from scratch.
The exception was seen in InceptionV3 in which the
transfer learning mode of fine tuning gave better per-
formance than training from scratch and that gave the
overall best performance with accuracy of 0.83. Like
stated before, many factors like GPU memory usage at
a time can make performance to vary. The difference
between the performance in training from scratch and
transfer learning mode of fine tuning were not so sig-
nificant. Even though the best performance was seen in
transfer learning mode of fine tuning with InceptionV3,
it can be observed that training from scratch is ideal to
be adopted in skin lesion classification when the training
set is large considering their general performance when
compared to the transfer learning mode of fine tuning.

The training set were greatly unbalanced with
melanocytic nevus (NV) consisting of 67% of the en-
tire set. The effect of the great unbalance in the train-
ing set was seen only in the transfer leaning mode of
feature extraction because of the large data. It did not
have effect on the model performance with the trans-
fer learning mode of fine tuning and training from
scratch because some model have better individual per-
formance for other skin lesions than the melanocytic ne-
vus. Global average pooling in the classifier which gen-
erates one feature map for each corresponding category
of the classification task in the last convolutional layer
helped to minimize the great unbalance in the training
set.

Dermatofibroma gave low performance generally in
all the predictions. This type of skin lesion are small
harmless growths that appear on the skin. This type
of skin lesion vary so much in color, size and features
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Figure 20: False positives on whole mammogram image

among them. This variation has made them to be dif-
ficult for learning and accurate prediction on the test
set. Increase in the number of their training images can
boost performance.

7. Conclusions

In transfer learning, the information obtained by a
trained model is re-used on another task. Five se-
lected architectures were adopted in this work which
include VGG19, ResNet50, InceptionResNetv2, Incep-
tionV3 and NASNetLarge. These architectures were se-
lected because they are available in the Keras library and
the architectures were deep enough that the three train-
ing approaches are suitable for it. Deeper architectures
have recently shown high performance in various tasks
of computer vision but their significant performance in
medical imaging have not thoroughly been investigated
in all medical imaging modalities.

The two modes of transfer learning which include
feature extraction and fine tuning have situations in
which one is preferable than the other. Like when the
training set is small, transfer learning mode of feature
extraction seems to be the ideal one because it helps
to control overfitting but when the training set is large,
transfer learning mode of fine tuning appears to be the
better one to be adopted. Training from scratch also
have good performance on large training set. From the
observations in this work, there is not much significant
difference between the performance in transfer learning
mode of fine tuning and training from scratch. In breast
mass classification using the INbreast dataset, transfer
learning mode of fine tuning gave better performance
than training from scratch in four out of five models
while in skin lesion classification using the HAM10000
dataset, training from scratch gave better performance
in four out of five models. In overall, the best perfor-
mance for both classification were in transfer learning
mode of fine tuning. The performance show that the
training approach to be adopted between transfer learn-
ing mode of fine tuning and training from scratch when
the amount of labeled data is large depends on the ap-
plication and medical imaging modality.

In addition, batch normalization and the number of
layers in the classifier play a vital role in image clas-
sification performance. From the findings in this work,
training set in breast mass classification which have bal-
anced classes got better performance with batch normal-
ization and more number of layers in the classifier while

the training set in skin lesion classification in which the
classes are highly unbalanced got better performance
when batch normalization is removed and less number
of layers in the classifier.

The performance reported for the five selected mod-
els in the three training approaches in both classification
can still be improved by preprocessing of the labeled
data before training. Preprocessing of the data was not
done in this work.

Due to limited time, only two medical imaging
modalities were covered which include mammography
and dermoscopy. Future work will be to study the three
training approaches in other medical imaging modali-
ties like MRI, CT, and Ultrasound using large dataset.
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Abstract

Autism Spectrum Disorder (ASD) is a brain disorder, typically characterized by deficits in social communication and
interaction, as well as restrictive and repetitive behaviors and interests. In this master thesis, a deep learning-based
method for classification of ASD versus typical control subjects is proposed. The method is based on incorporation of
both functional and structural information with the goal of maximizing classification accuracy. Functional connectiv-
ity patterns among brain regions, together with correlations of gray matter volumes among cortical parcels are used as
features for functional and structural processing pipelines, respectively. The classification network is a combination of
stacked autoencoders trained in an unsupervised manner and multi-layer perceptrons trained in a supervised manner.
Quantitative analysis is performed on both structural and functional data-based classification pipelines, as well as on
the pipeline that is the fusion of both, in order to quantify the classification accuracy improvement in the presence of
multimodal information. Furthemore, we performed statistical analysis with one-way analysis of variance (ANOVA)
and post-hoc Tukey honest significant difference (HSD) tests in order to measure the results’ statistical significance.
Ultimately, we propose a qualitative analysis which compares our findings with the common ones in the clinical re-
search. The method is validated on a multi-site, international Autism Brain Imaging Data Exchange I (ABIDE I)
dataset, which consists of 1112 cases. We report a classification accuracy of 85.67% when using an ensemble of
classifiers and analyze in detail the importance of a multimodal approach.

Keywords: Autism, ABIDE, deep learning, resting-state fMRI, structural MRI, classification

1. Introduction

According to the American Psychiatric Association,
Autism Spectrum Disorder (ASD) is a neurodevelop-
mental disorder characterized by persistent deficits in
social communication (APA, 2013). It is said to be de-
velopmental since it tends to evolve in severity over time
(Gotham et al., 2012; Szatmari et al., 2015). The symp-
toms generally appear in the first two years of life, and
include, but are not restricted to, difficulty with commu-
nication and interaction, restricted interests and repeti-
tive behaviors, as well as the degraded ability to func-
tion properly in various areas of life. The prevalence
of ASD has been increasing over the past decades. In
the United States, Xu et al. (2018) reported the preva-
lence of 0.67% in 2000, whereas APA (2013) estimated
a prevalence of 1.47% in 2013. However, it is unclear
whether higher rates reflect an expansion of the diagnos-

tic criteria and increased awareness or a true increase in
the frequency of ASD (APA, 2013). Furthermore, the
average lifetime costs of ASD patient’s treatment ex-
ceed one million dollars (Buescher et al., 2014).

The cause of the disorder is still unknown to this date,
although research suggests that it is most likely a re-
sult of a combination of factors that include genetics,
brain structure and function, as well as environmental
influences (APA, 2013). It is known that several risk
factors increase the likelihood of having ASD, such as
having a sibling with ASD, older parents, certain ge-
netic conditions or a very low birth weight (Ha et al.,
2015). Current diagnosis is interview-based, most com-
monly by conducting the Autism Diagnostic Observa-
tion Schedule (Lord et al., 1989) or the Autism Diag-
nostic Interview - Revised (Lord et al., 1994). Albeit
being quite accurate, these methods are unable to point
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out the biological basis behind behavioral symptoms,
since the neuroanatomy is unclear (Subbaraju et al.,
2017; Riddle et al., 2017). Furthermore, the diagnosis in
adults is often more difficult, since symptoms can eas-
ily overlap with other mental health disorders (Ha et al.,
2015). However, APA (2013) proposed some empiri-
cal differential diagnosis methods for separation of ASD
from other overlapping neural disorders, such as Rett
syndrome, selective mutism, language and social com-
munication disorders, stereotypic movement disorder,
attention-deficit/hyperactivity disorder and schizophre-
nia.

According to APA (2013), ASD consists of a vari-
ety of disorders that include (i) early infantile autism,
(ii) childhood autism, (iii) Kanner’s autism, (iv) high-
functioning autism, (v) atypical autism, (vi) childhood
disintegrative disorder, (vii) Asperger’s Syndrome and
(viii) pervasive developmental disorder not otherwise
specified (PDD-NOS). However, last decades have seen
an increase in works focusing on structural and func-
tional brain abnormalities that would be symptomatic
for the autism spectrum as a whole, and not on the
specific part of the spectrum. Varying sized datasets
have been used in order to observe common findings
across the subjects with ASD in contrast to control
groups. However, the findings typically do not hold
over the whole set of ASD subjects, although MRI stud-
ies have provided many implications of neurodevelop-
mental characteristics underlying ASD (Ecker et al.,
2015). Structural MRI studies usually focus on volu-
metric and morphometric analyses to examine abnormal
brain anatomy, while functional MRI studies have tried
to investigate connectivity patterns in the brain, both lo-
cally and globally.

This thesis presents a method that draws inspiration
from previous research by Heinsfeld et al. (2018) and
Kong et al. (2019), with the goal of improving the state-
of-the-art classification results of ASD versus control
group subjects. The method is evaluated using the large
and international multi-site Autism Brain Imaging Data
Exchange I (ABIDE I) dataset (Di Martino et al., 2014),
which contains 1112 cases. Quantitative analysis of
the results is conducted, for it allows the comparison
with state-of-the-art results. Figure 1 shows an example
of structural and averaged resting-state functional MRI
series taken from the subject ID-51456 of the ABIDE
I dataset. The principal hypothesis of the proposed
method is that using multi-site data and combining both
structural and functional information could potentially
unveil patterns that have not been exploited so far, while
at the same time improving generalization in terms of
classification, due to the lack of reliance on a specific
protocol.

The proposed method consists of several steps that
include structural and functional data preprocessing, ex-
traction of the features that are represented by connec-
tivity matrices, the Fisher score as a feature dimension-

(a) Axial slice extracted
from structural MRI volume

of an ASD subject
(ID-51456)

(b) Corresponding slice
taken from the averaged

resting-state functional MRI
volumes

Figure 1: Examples of structural and functional representation.

ality reduction technique and, ultimately, the classifica-
tion of the data. Structural data connectivity matrices
contain information about cortical gray matter volumes,
as suggested by Kong et al. (2019), whereas functional
data connectivity matrices contain information about
correlation coefficients of mean blood-oxygen level de-
pendent (BOLD) signals from pairs of regions of inter-
est, as proposed by Heinsfeld et al. (2018). A BOLD
signal is the magnetic resonance imaging contrast of
blood deoxyhemoglobin activity, correlated with neural
activity (Pelphrey, 2013).

Statistical analysis with one-way ANOVA and post-
hoc Tukey HSD tests was conducted on the obtained
results in order to quantify the statistical significance.
Additionally, we propose a qualitative analysis of the
feature selection and ranking, with the goal of observ-
ing some connections between our method and clinical
research findings.

2. State of the art

2.1. Structural MRI
Several studies tried to find the underlying ASD pat-

terns in structural MRI. Voxel-based morphometry anal-
ysis (Riddle et al., 2017) showed an increase in total
brain volume in children aged 2 to 4 with ASD, as well
as an enlargement of the left anterior superior tempo-
ral gyrus. Other reports on total brain volume increase
were based on measurements of the head circumference
(Campbell et al., 1982; Hazlett et al., 2005) or acceler-
ated postnatal brain growth (Piven et al., 1995; Courch-
esne et al., 2001). However, the picture is not so clear at
a later age when it comes to volumetric analysis. While
Aylward et al. (2002) observed no volumetric differ-
ences between ASD and control adult subjects, other
studies concluded that the increase in total brain volume
is still observable at a later age (Herbert et al., 2003; Pal-
men et al., 2005).

Other works investigated volumetric changes in par-
ticular regions of interest in brain, but also failed to
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reach similar conclusions. Palmen et al. (2005) re-
ported an increase in gray matter in all lobes of the
brain, whereas Courchesne et al. (2007) observed an in-
crease in gray matter volume particularly in temporal
lobes. On the other side, Herbert et al. (2003) reported
findings on increased white matter, while Palmen et al.
(2005) noted no difference in ASD versus control sub-
jects regarding white matter volume. Furthermore, Jou
et al. (2011) reported a decrease in white matter volume
in ASD patients. These inconsistent findings are most
likely due to the small sample sizes or due to the fact
that data was collected at a single site in each case (Rid-
dle et al., 2017), since the acquisition site has significant
effects on basic image properties (Nielsen et al., 2013;
Castrillon et al., 2014). Reduced corpus callosum area
is another common finding associated with ASD. How-
ever, recent studies have shown no difference in terms of
the corpus callosum area when considering a multi-site
dataset (Hiess et al., 2015). The same study confirmed a
slight increase in total brain volume on average in sub-
jects with ASD.

One promising study was based on the construction
of an individual brain network for each subject in or-
der to extract connectivity features between each pair
of ROIs; those features were then ranked and used to
perform ASD versus control classification via a DNN
classifier (Kong et al., 2019). Features of interest were
the cortical gray matter volumes in different regions of
the cortex. Kong et al. (2019) reported an accuracy
of 0.904, although the acquisition of the data was con-
ducted on a single site. This is also, to our knowledge,
the only notable study that tried to solve the classifica-
tion problem based on structural information, whereas
the vast majority of others tried to point out some of the
common patterns among subjects with ASD versus the
control group.

2.2. Resting-State Functional MRI
Resting-state functional MRI (rs-fMRI) was first de-

scribed in 1995, when it was shown that low frequency
oscillations in fMRI relate to spontaneous neural activ-
ity. The correlation of these low frequency fluctuations
arises from fluctuations in blood oxygenation or flow.
(Biswal et al., 1995). It is known that neurons do not
contain intrinsic energy, and are instead provided with
it by adjacent capillaries when activated, through a pro-
cess called hemodynamic response (Lv et al., 2018).
This results in a change of relative levels of oxyhe-
moglobin and deoxyhemoglobin that is consequently
detected by fMRI imaging. However, the delay of the
hemodynamic response following neural activation is
responsible for the relatively poor temporal resolution
of fMRI (Koch and Reid, 2012).

The lack of any task in rs-fMRI is particularly at-
tractive for the investigation of brain disorders in pa-
tients that have difficulties performing certain task in-
structions. Functional connectivity in rs-fMRI is widely

used to describe remote relationships in studies of the
cerebral cortex parcellation and brain disorders (Jiang
and Zuo, 2016). Further, rs-fMRI provides deeper in-
sights in pathophysiology, which is what is lacking in
the current diagnostic practice of ASD (Biswal et al.,
1995; Kennedy and Courchesne, 2008). Thus, rs-fMRI
can investigate, in a task-independent manner, the hy-
pothesis that ASD involves disruptions of large-scale
brain networks (Castelli et al., 2002; Belmonte et al.,
2004).

Functional connectivity is expected to provide
biomarkers for classifying brain disorders (Du et al.,
2018). The principal idea is the usage of fMRI to de-
tect brain networks among functionally interconnected
regions. However, the main challenge when it comes
to using functional connectivity for classification pur-
poses is choosing the optimal strategy for feature selec-
tion. Connectivity matrices that contain functional cor-
relations among different regions of the brain are very
large, and get significantly larger in a voxel-wise con-
nectivity analysis. If all those features are used, classi-
fiers will tend to overfit. Furthermore, there is a prob-
lem of inevitable redundancy when having that many
features. Moreover, the subjectivity of feature selection
can also be an obstacle for result comparison (Heinsfeld
et al., 2018). Another problem can be the separability of
the classes when using functional connectivity matrices,
which some research has tackled by projecting them in
orthogonal directions using the Fukunaga-Koontz trans-
form (Subbaraju et al., 2017).

Deep learning techniques have emerged as a recent
trend (Plis et al., 2014; Iidaka, 2015; Calhoun and Sui,
2016; Ju et al., 2019). Popular approaches that yielded
in good classification results include simple multi-layer
perceptron (MLP) networks combined with the unsu-
pervised training of stacked autoencoders (Kim et al.,
2016; Guo et al., 2017). Another proposed approach
involves graph convolutional networks, where nodes of
the graph are image-based feature vectors, and edges
represent phenotypic information (Parisot et al., 2018).
However, the obtained accuracy of 70.4% does not sur-
pass the ones obtained using the former, much more ex-
ploited method. The main drawbacks of deep learning
techniques in general are computational costs, overfit-
ting of the classifiers and interpretability of the results.
However, with the rapid development of the technol-
ogy, computational costs are becoming less of an issue,
and overfitting can be somewhat overcome by apply-
ing regularization methods and feature dimensionality
reduction. Furthermore, dimensionality reduction tech-
niques can sometimes unravel some underlying patterns
and tackle the interpretability problem up to a certain
extent, by pointing out which neuroanatomical and neu-
rofunctional alterations are of interest.

Since 2010, only 17 studies have used functional MRI
data to perform the classification of ASD (Du et al.,
2018). Figure 2 shows the classification accuracy ob-
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Figure 2: Overview and quantitative analysis of the state of the art
(Anderson et al., 2011; Murdaugh et al., 2012; Wang et al., 2012;

Deshpande et al., 2013; Nielsen et al., 2013; Uddin et al., 2013; Zhou
et al., 2014; Chen et al., 2015; Iidaka, 2015; Plitt et al., 2015; Chen
et al., 2016; Abraham et al., 2017; Jahedi et al., 2017; Ktena et al.,

2018; Sadeghi et al., 2017; Bernas et al., 2018; Heinsfeld et al., 2018)
on functional connectivity as a way of ASD classification. Figure

modified from Du et al. (2018).

tained in each of the studies versus the sample size
used. Even though several methods managed to obtain
relatively high classification accuracy, there are some
drawbacks of the proposed strategies that need to be ad-
dressed. Firstly, most of the studies used a small number
of subjects to perform the classification. This tends to
lead to unreliable results, because of the poor general-
ization. The real challenge is to replicate findings across
large datasets. An accuracy above 0.9 is obtained only
when using dozens of cases (Arbabshirani et al., 2017)
and drops significantly when a larger dataset is intro-
duced (Heinsfeld et al., 2018). Secondly, most of the
studies used data acquired on a single site. This also
does not generalize the problem efficiently, as the image
properties highly depend on the imaging protocol con-
ducted at each institution. Furthermore, only 4 of the
mentioned studies used multi-site data with a number of
subjects higher than 800, but only considered univari-
ate approach; that is, only focused on functional find-
ings, while neglecting structural information. Finally,
only one study conducted a fusion approach, combining
fMRI and diffusion tensor imaging (DTI) information,
but on a sample size of only 30 subjects in total (Desh-
pande et al., 2013).

3. Material and methods

3.1. Dataset
The Autism Brain Imaging Data Exchange I (ABIDE

I) dataset was used to conduct this study (Di Martino
et al., 2014). It was released in August 2012 as a result
of a collaboration involving 17 international sites and
consists of 1112 cases, including 539 from individuals

Table 1: Summary of number of subjects used from every screening
site in each of the strategies conducted - functional, structural and
combined classification pipelines. Rightmost column lists number of
corresponding subjects in the original ABIDE I dataset, including the
ones that failed the preprocessing step [ASD - Autism Spectrum Dis-
order, TC - Typical Control].

Site Functional Structural Combined ABIDE I
ASD TC ASD TC ASD TC ASD TC

Caltech 19 18 17 18 17 17 19 19
CMU 3 2 14 12 3 2 14 13
KKI 12 27 20 32 11 26 22 33
Leuven 27 34 26 35 24 34 29 35
MAX MUN 18 24 21 31 17 22 24 33
NYU 73 98 74 103 69 96 79 105
OHSU 12 11 9 14 8 11 13 15
OLIN 14 11 17 16 11 11 20 16
PITT 22 23 27 24 20 20 30 27
SBL 14 12 14 14 13 11 15 15
SDSU 12 21 13 18 12 17 14 22
Stanford 17 19 19 16 16 15 20 20
Trinity 21 23 19 24 17 22 24 25
UCLA 36 39 50 43 34 37 62 47
UM 48 65 52 72 38 62 68 77
USM 38 23 56 42 37 23 58 43
Yale 22 26 27 25 21 23 28 28

Total 408 476 475 539 368 449 539 573

with ASD and 573 from typical controls, aged 7-64 with
a median age of 14.7 years across the groups (Di Mar-
tino et al., 2014). The cases contain structural MRI im-
ages, resting-state fMRI series of images and a set of
phenotypic information about subjects. Therefore, the
dataset encompasses anatomical, functional and clinical
data. Clinical data is, however, not used in this project,
for some of it is missing from certain screening sites and
is therefore not available in its entirety for the whole
dataset. Table 1 summarizes the details of interest about
the dataset, including separate listings for every acqui-
sition site involved in the project.

Structural data and phenotypic information about
subjects were obtained directly from the ABIDE I ini-
tiative. However, the preprocessed dataset that includes
functional information was acquired from the Prepro-
cessed Connectomes Project (PCP) (Craddock et al.,
2013). All rs-fMRI series were subjected to process-
ing pipeline called CPAC (Configurable Pipeline for the
Analysis of Connectomes), which includes slice time
correction, motion correction, intensity normalization,
as well as band-pass filtering (0.01 Hz - 0.1 Hz) and
spatial registration to the MNI152 template space. Var-
ious derivatives of the functional data are available at
PCP, but the derivative of interest for the proposed clas-
sification pipeline is the time series of BOLD signals in
different areas of the brain. Two different, commonly
used atlases were tested - AAL (Automated Anatomi-
cal Labeling) atlas (Tzourio-Mazoyer et al., 2002) and
CC200 (Cameron Craddock’s 200 ROI) parcellation at-
las (Craddock et al., 2012).

It is important to note, however, that the functional
data is rendered useless in some cases, due to the mo-
tion artefacts, and is therefore not available from PCP.
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Motion artefacts are computed for each individual case
using mean framewise displacement, and if it surpasses
the value of 0.2, the corresponding subject is discarded.
Mean framewise displacement is a measure of head mo-
tion, which compares the motion between current and
previous volumes (Heinsfeld et al., 2018). This left us
with a dataset of 884 rs-fMRI subjects, including 408
ASD patients and 476 control cases. As a summary,
functional data for each subject is simply a set of time
series of mean BOLD signal tracked in different regions
of the brain, which are defined by AAL or CC200 atlas.

When it comes to structural information, the idea
is somewhat similar. Cortical parcellation using De-
strieux atlas (Destrieux et al., 2010) was performed for
each MRI volume. To achieve this, the well-known
Freesurfer software was used. The Freesurfer pipeline
that was used to extract useful information involves
multiple stages, most notable ones being motion cor-
rection, intensity normalization, skull stripping, regis-
tration of the volumes to a common space, segmenta-
tion and, ultimately, cortical parcellation. Apart from
the division of cortex, a series of statistical measures,
such as gray matter volume, cortical thickness or curva-
ture, were computed for each of the parcels. However,
due to the fact that serious motion artefacts are present
in some of the structural MRI volumes, this processing
was not possible. A total of 1014 cases were success-
fully processed, including 475 ASD patients and 539
control subjects. As a summary, structural data for each
subject is a set of statistical measures for each of the
cortex regions defined by Destrieux atlas.

Finally, since the proposed classification strategy
deals with structural and functional information, both
separately and jointly (because we want to analyze the
improvement of classification accuracy by incorporat-
ing data coming from different modalities), it is impor-
tant to note that cross-referencing the remaining cases
after preprocessing pipelines yields in 817 cases (368
ASD + 449 control) that are present in both subsets of
the original dataset.

3.2. Functional data classification pipeline
Our pipeline for classification based on functional in-

formation was inspired by the approach described in
Heinsfeld et al. (2018), as it was conducted on the whole
ABIDE I dataset and showed promising results. Once
the data was preprocessed with the CPAC pipeline and
the time series of mean BOLD signals from different
brain regions were extracted, the next step was to build a
connectivity matrix. Such a matrix was constructed for
each case individually and contained information about
the correlation of BOLD series between each pair of the
regions defined by an atlas (AAL atlas consists of 116
regions, whereas CC200 atlas consists of 200). There-
fore, the dimensions of a connectivity matrix are 116-
by-116 or 200-by-200, depending on the atlas used, and
each element ij inside a matrix is the Pearson correlation

(a) Connectivity matrix of an ASD subject (ID-51456)

(b) Connectivity matrix of a control subject (ID-51476)

Figure 3: Examples of connectivity matrices of two subjects from
Caltech subset of ABIDE I dataset constructed by using AAL atlas.

coefficient computed for the mean BOLD series from
regions i and j. By the definition of Pearson correla-
tion coefficient, elements of the matrix range from -1 to
1. All elements on the main diagonal are equal to 1,
since they correspond to correlation of a signal with it-
self. Also, such a matrix is symmetrical, because of the
commutative property of correlation coefficient compu-
tation. Examples of connectivity matrices are shown in
Figure 3. We are, therefore, interested only in the upper
triangle of the connectivity matrix, excluding the main
diagonal, since the remainder of it is redundant. The
part of interest is then flattened into a 1-dimensional
vector for further manipulation. In case of the AAL at-
las, such a vector contains 6670 elements, whereas in
case of the CC200 atlas it contains 19900 elements.

Because of its high dimensionality, the feature vec-
tor is subjected to a dimensionality reduction technique,
in order to get rid of highly correlated features, prevent
overfitting and make the model more generalizable. A
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technique used to achieve this goal is the Fisher score
computation, which ranks the features in the order of
distinctiveness and consequently decides which of them
are of a lesser importance (Chen and Lin, 2006). It
measures the discrimination of two sets of real num-
bers - the greater the score value, the higher the rank
of a certain feature is. Given training vectors xk, if the
number of positive instances is n+ and the number of
negative instances is n− (where positive and negative
instances mean the ones belonging to one class or the
other), Fisher score of the ith feature is:

F(i) =
(x̄+

i − x̄i)2 + (x̄−i − x̄i)2

1
n+−1

n+∑
k=1

(x+
k,i − x̄+

i )2 + 1
n−−1

n−∑
k=1

(x−k,i − x̄−i )2
(1)

where x̄i, x̄+
i and x̄−i are the mean of the ith feature of

the whole, positive and negative sets respectively, x+
k,i

is the ith feature of the kth positive instance, and x−k,i is
the ith feature of the kth negative instance (Kong et al.,
2019). The numerator indicates inter-set discrimination,
whereas the denominator indicates between-set discrim-
ination.

What is left after application of the Fisher score is a
reduced feature vector that serves as an input vector for
the classifier. The classification step itself is done in two
stages. First one consists of an unsupervised training of
stacked autoencoders. An autoencoder is a simple net-
work which tries to reconstruct the input as precisely as
possible. Given the input vector, it tries to learn a lower-
dimensional representation of it, from which it can then
reconstruct the original vector. These two steps are re-
ferred to as encoding and decoding. Simply, it has an
input layer, a hidden fully connected layer that encodes
the input, and then a fully connected output layer that
decodes the encoded representation. Parameters of the
model are adjusted by back-propagation until the differ-
ence between input and output has been minimized.

A stacked autoencoder has a better learning ability
and basically consists of two or more autoencoders. In
the case of having two, the output of the first encod-
ing stage is given as an input to the second autoencoder.
Then, the decoding stage is done in a two-fold man-
ner again - the second autoencoder decodes its input,
and then the first autoencoder decodes the original in-
put vector. An illustration of such a structure is shown
in Figure 4.b.

The end result of the autoencoder training is apparent
in the second stage of the classification step, which is
a supervised training of a multilayer perceptron (MLP).
The dataset is split into training, validation and testing
sets and fed to a simple MLP with two hidden layers
and the binary output layer. The number of nodes in
the hidden layers corresponds to the number of nodes
in the encoding layers of the stacked autoencoder. This
ensures that the weights of the MLP can be initialized

(a) Simple autoencoder (b) Stacked autoencoder

(c) Multilayer perceptron

Figure 4: Graphical representation of the (a) simple and (b) stacked
autoencoder structures and (c) multilayer perceptron. The colored

weights of the encoding part of stacked autoencoder (b) are used as
initializing weights of the MLP (c).

using the weights from the trained autoencoder, so that
the MLP is able to learn hidden features from input vec-
tors in the hidden layers, and then classify the subjects
accordingly in the ultimate layer with softmax activa-
tion. This is illustrated in Figure 4.c, where the corre-
sponding weights initialized from the autoencoder are
color-coded in the same manner as in Figure 4.b. In or-
der to prevent overfitting, dropout is introduced in the
hidden layers, as well as additional regularization terms
and batch normalization.

As a summary, the complete pipeline is illustrated in
Figure 5.a, which shows all the notable steps, includ-
ing the flattening of connectivity matrices into vectors,
dimensionality reduction and training of the stacked au-
toencoder and the multi-layer perceptron.

3.3. Structural data classification pipeline

Our proposal for structural data-based classification
was done in a similar manner. A connectivity matrix
was built for each subject, and the upper triangular part
was extracted and flattened to become a feature vec-
tor. The main difference between the functional and
structural pipelines is the way connectivity matrices are
built. Instead of computing the Pearson correlation co-
efficient, we are interested in relations between gray
matter volumes in each pair of the cortical parcels de-
fined by Destrieux atlas (148 regions, 74 in each hemi-
sphere). Element ij of the matrix is the correlation be-
tween two parcels i and j which is defined by:
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Figure 5: Graphical representation of the whole (a) functional and (b) structural separate data classification pipelines.

c(i, j) =
1

|gm(i) − gm( j)|2 + 1
(2)

where gm(i) and gm( j) are gray matter volumes of ROIs
i and j (Kong et al., 2019).

As a result, flattened vector extracted from the con-
nectivity matrix had 10878 elements prior to ranking
them using Fisher score.

Fisher score was then used to reduce the dimension-
ality of the feature vectors, and the newly obtained ones
were fed to the stacked autoencoders for unsupervised
learning, and consequently to the MLP for the super-
vised learning and classification task. The pipeline is
illustrated in Figure 5.b. This approach was inspired by
the one described in Kong et al. (2019), and was taken
for its similarity to the functional classification pipeline
and the possibility to eventually merge the two together.
Even though Kong et al. (2019) reported an accuracy of
90.39% on the ABIDE I dataset, the subset of cases used
in the paper consisted of only 182 subjects, all taken
from the NYU Langone Medical Center, making it a
single-site study that is prone to worse generalization.

3.4. Combined data classification pipeline
One of the main contributions proposed in this master

thesis involves combining the two previously described
pipelines into one, with the goal of improving the clas-
sification results by accounting for different types of in-
formation. Since the functional and structural pipelines
learn completely independent features, merging them
together could possibly compensate errors to some ex-
tent. It is important to note that only cases which suc-

cessfully underwent preprocessing pipelines, both func-
tional and structural, can be considered as a part of
the dataset for combined classification pipeline (in the
ABIDE I dataset, 817 cases were successfully prepro-
cessed). The merging was done using two different
strategies.

First strategy simply involved concatenating struc-
tural and functional feature vectors after dimensionality
reduction stages. Then, the classification was done us-
ing either newly obtained vector, or reducing its dimen-
sionality again with the Fisher score to get another vec-
tor to be used as an input to the network. The classifica-
tion stage itself remained unchanged, consisting of the
unsupervised stacked autoencoder training, followed by
the supervised training of an MLP. This approach is il-
lustrated in Figure 6.

Second strategy consists of separate classification
pipelines, as previously described and shown in Figure
5, followed by a decision-making method for choosing
the final labels. In other words, we trained one autoen-
coder and multi-layer perceptron using the functional
training and validation data, and the other set using the
corresponding structural datasets. Then, test subjects
were given as inputs to both classifiers, which led to
having two separate labels. When they matched, the
decision was to keep the obtained label; however, in
case of a mismatch, the corresponding probabilities of
softmax activations were compared, and the label with
higher softmax probability was chosen.

The latter approach was explored further by, instead
of having 2 classifiers, training an ensemble of a total of
10 classifiers (5 structural and 5 functional data based),
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Figure 6: Graphical representation of the whole functional and structural combined data classification pipeline.

but changing the number of nodes in the hidden layers
of autoencoders and MLPs, so that each one can learn
different feature representations. In this case, each sub-
ject’s feature vectors were given as input to all 10 clas-
sifiers, and the label assignment was conducted by ei-
ther averaging 10 softmax activation probabilities or by
majority voting. The underlying hypothesis is that addi-
tional classifiers with different ways of learning feature
representations can add a certain margin of improve-
ment in terms of classification accuracy and make the
decision-making more robust (Kamnitsas et al., 2017).

3.5. Validation

Every model was validated by performing 10-fold
cross-validation, similarly to the validation described in
the papers by Heinsfeld et al. (2018) and Kong et al.
(2019). In each fold, 10% of the corresponding dataset
was used to test the classifier, while the remaining 90%
of cases were used for training and validation, training
encompassing 70% and validation 30% of the set. This
allowed the evaluation of the model’s robustness and be-
havioral effects when training and testing with different
subsets of data. It is important to note that in each fold,
the set was split in such a way that the subsets retained
class balance and also contained cases coming from all
or almost all screening sites; the idea being to keep the
model as much generalizable as possible. Naturally, in
case of training 2 classifiers or an ensemble of classifiers
in the combined approach, the split into training, valida-
tion and testing sets was the same for all the classifiers
in a certain fold.

The models were evaluated using the accuracy as a
metric, which is the most common measure in the state

of the art, including the research by Kong et al. (2019)
and Heinsfeld et al. (2018) from which this thesis builds
upon. This allowed for the quantitative comparison of
our results with state of the art, although there is no
guarantee that the dataset used in our method is iden-
tical to the ones the other researchers used. However,
we tried to reproduce the results obtained in those two
studies as a baseline, in order to quantify the results’
potential improvement after merging the two modalities
together.

Ultimately, we used the best model to analyze the ac-
curacy obtained for each of the 17 screening sites indi-
vidually. This allowed for some qualitative and quan-
titative comparison of the results with state of the art,
especially since some of the previous research was con-
ducted using only the data collected at one of the sites.

3.6. Statistical analysis
In order to perform the statistical analysis on the re-

sults obtained through the presented models, we per-
formed one-way ANOVA (ANalysis Of VAriance) test,
together with post-hoc Tukey HSD (Honestly Sig-
nificant Difference) test, with the goal of indicating
which models were significantly different from which.
ANOVA and Tukey HSD tests were conducted sepa-
rately on each of the three groups of models - func-
tional data-based, structural data-based and combined
data-based. 95% confidence interval was chosen, mean-
ing that a p-value less than 0.05 indicates a high statisti-
cal significance of a certain result compared to another.

3.7. Qualitative analysis
In order to compare our method with common clin-

ical findings, we propose a qualitative test of feature
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ranking. Due to the fact that Fisher score ranks all the
features by their distinctiveness, the idea is to observe
whether the top ranked features correspond to discover-
ies noted in previous clinical and scientific research or
not, and to check for the presence of potential common
patterns.

According to Ha et al. (2015), the Default Mode Net-
work (DMN), which is one of the commonly analyzed
functional brain networks, shows a difference in brain
activity between ASD and control subjects. DMN gen-
erally tends to be hypo-connected in adults with the dis-
order and hyper-connected in children with the same
pathology. It comprises of several parts of the brain
and includes the posterior cingulate gyrus, retrosplenial
cortex, lateral parietal cortex, medial prefrontal cortex,
superior frontal gyrus and temporal lobe. It has shown
greater activity during resting-state functional MRI than
during task-based screenings (Greicius et al., 2003),
which is why it is of a particular interest for the ABIDE
I dataset.

4. Results

4.1. Baseline implementation

Several experiments were conducted in order to ver-
ify the results’ consistency with the ones obtained in
the research done by Heinsfeld et al. (2018) and Kong
et al. (2019). Functional data classification model was
made using the entirety of ABIDE I dataset available at
the Preprocessed Connectomes Project (884 cases, 408
ASD + 476 TC). We obtained a mean classification ac-
curacy of 66.5%, whereas the one reported by Heinsfeld
et al. (2018) was 70% (1035 cases, 505 ASD + 530 TC).

On the other hand, structural data classification
pipeline was used on the ABIDE I subset acquired at
the NYU Langone Medical Center, excluding the cases
with serious motion artefacts that Freesurfer software
was unable to process, which left us with 177 cases
(74 ASD + 103 TC). The obtained accuracy of 83.04%
was again lower than the one reported by Kong et al.
(2019), which was 90.39% (182 cases, 78 ASD + 104
TC). The summary is shown in Table 2 (baseline imple-
mentation).

4.2. Functional data classification

In order to test the pipeline for functional data clas-
sification, four experiments were proposed. Two of
those considered data preprocessed using the AAL at-
las, whereas the other two used the data obtained with
the CC200 atlas. In both approaches, we considered two
sizes of input feature vectors - both without and with the
application of dimensionality reduction method. When
using the AAL atlas, the accuracies of 64.12% and
66.6% were reached without and with dimensionality
reduction, respectively.

The accuracy was higher to a certain extent when
using CC200 atlas. We report an accuracy of 66.5%
without dimensionality reduction, and an accuracy of
71.27% when using Fisher score to reduce the size of
the input vector.

The last model, that uses the CC200 atlas with the
dimensionality reduction, was further explored by con-
ducting the classification using an ensemble of 5 classi-
fiers and averaging the softmax activations to obtain the
final label. A slight improvement was reached, resulting
in an accuracy of 71.95% (Table 2).

4.3. Structural data classification
When it comes to structural information, it was ob-

tained using only the Destrieux atlas. Similarly to the
previous approach, we tested two scenarios, both when
using the original feature vector and the reduced one.
The two obtained accuracies differ greatly, one being
only 50.5% and the other, which included dimensional-
ity reduction, being 76.13%.

Ensemble classification using 5 classifiers on the lat-
ter approach increased the accuracy to a greater extent
than the one shown in the functional data approach. Av-
eraging softmax activations in order to decide on the fi-
nal label yielded in an average accuracy of 80.73% over
the 10 folds of the cross-validation (Table 2).

4.4. Combined data classification
Combined approach was split into two major strate-

gies, one considering the concatenation of the reduced
vectors obtained via structural and functional data pre-
processing, and the other considering separate classifi-
cation of the functional and structural data, followed by
the fusion of the obtained labels, either by averaging the
softmax outputs or by majority voting.

Several models were proposed for both strategies, in-
cluding the additional dimensionality reduction of the
concatenated vector or classification using the ensem-
ble of classifiers. It is important to note that the best re-
sult was obtained when considering the separate classi-
fication strategy, using an ensemble of 5 functional and
5 structural data classification models, followed by the
averaging of all 10 softmax probabilities. We report an
accuracy of 85.67% when conducting this approach.

Table 2 summarizes all of the conducted experiments
and obtained accuracies, providing additional details on
standard deviations over folds in cross-validation and
peak accuracies (highest accuracies reached over 10
folds). For the best model, we performed a quantita-
tive analysis of the accuracy reached for each of the 17
imaging sites. Table 3 summarizes the obtained values.

4.5. Statistical analysis
When it comes to functional data classification mod-

els (experiments 3, 4, 5 and 6 from Table 2), all of pair-
wise p-values were lower than 0.05. In terms of struc-
tural data classification models (experiments 7, 8 and 9
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Table 2: Summary of the conducted experiments and the obtained results [Vector dim. - dimensionality of the input feature vectors, indicative of
whether dimensionality reduction was used or not; Strategy - indication of whether the functional and structural feature vectors were concatenated
prior to classification or classified separately; Ensemble - indication of whether an ensemble of classifiers was used or not, and if yes, how many
classifiers were considered; * - label fusion was done using the average of softmax probabilities; ** - label fusion was done by majority voting,
using average softmax probabilities only in case of a tie].

Baseline implementation

Exp. no. Pipeline Atlas Cases Vector dim. Acc. mean [%] Acc. std [%] Peak acc. [%]
1 functional CC200 884 19900 66.50 5.23 76.40
2 structural Destrieux 177 3000 83.04 4.31 89.47

Functional data classification

3 functional AAL 884 6670 64.12 4.09 70.79
4 functional AAL 884 3000 66.60 5.23 74.16
5 functional CC200 884 3000 71.27 4.44 77.01
6 ensemble of 5 CC200 884 3000 71.95 4.69 79.27

Structural data classification

7 structural Destrieux 1014 10878 50.50 3.63 54.90
8 structural Destrieux 1014 3000 76.13 4.03 82.35
9 ensemble of 5 Destrieux 1014 3000 80.73 4.22 86.58

Combined data classification

Exp. no. Strategy Ensemble Cases Vector dim. Acc. mean [%] Acc. std [%] Peak acc. [%]
10 concatenate no 817 6000 73.32 3.27 79.27
11 concatenate no 817 3000 71.86 3.27 76.83
12 concatenate yes (5) 817 6000 72.44 4.40 78.05
13 concatenate yes (5) 817 3000 73.05 4.21 79.27
14 separate no 817 3000 82.80 3.76 89.02
15 separate* yes (5+5) 817 3000 85.67 3.80 91.46
16 separate** yes (5+5) 817 3000 85.42 2.94 90.24

Table 3: Classification accuracy obtained for each of the 17 screening
sites using the best model, which considers a combined data classifi-
cation approach with an ensemble of classifiers.

Site No. of subjects Accuracy [%]

Caltech 34 79.41
CMU 5 60.00
KKI 37 83.78
Leuven 58 89.66
MAX MUN 39 76.92
NYU 165 86.67
OHSU 19 78.95
OLIN 22 90.91
PITT 40 82.50
SBL 24 79.17
SDSU 29 86.21
Stanford 31 90.32
Trinity 39 84.62
UCLA 71 87.32
UM 100 88.00
USM 60 85.00
Yale 44 90.91

from Table 2), all 3 pairwise p-values were statistically
significant (p < 0.05).

Lastly, in case of the combined approaches, we an-
alyzed the statistical significance of the best model in
comparison to the rest. The only reported p-value
greater than 0.05 was obtained for the pair of experi-
ments 15 and 16 from Table 2 and was equal to 0.8196;
the rest were all lower than 0.05.

4.6. Qualitative functional feature analysis
Since Fisher score ranks the features according to

how discriminant they are, we wanted to analyze
whether or not the top features (i.e. top functional con-
nectivity patterns between pairs of regions) correspond
to common findings in clinical research based on func-
tional connectivity. Table 4 lists the top 15 pairs of re-
gions whose connectivity patterns are of the most inter-
est when it comes to the classification task.

5. Discussion

The aim of this project was the improvement of ASD
detection via means of combining structural and func-
tional MRI information. Using our baseline implemen-
tations, which were based on the approaches developed
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Table 4: Top 15 most discriminant pairs of regions for the classifica-
tion task, corresponding to the top 15 functional connectivity features.

Feature rank Pair of brain regions

Right Superior Frontal Gyrus1 Right Middle Temporal Gyrus
Left Superior Medial Gyrus2 Left Superior Frontal Gyrus
Right Middle Frontal Gyrus3 Right Insula Lobe
Right Inferior Frontal Gyrus4 Left Middle Occipital Gyrus
Right Caudate Nucleus5 Right Insula Lobe
Right Inferior Parietal Lobule6 Right Middle Frontal Gyrus
Right Anterior Cingulate Cortex7 Right Calcarine Gyrus
Left Inferior Frontal Gyrus8 Left Cerebellum
Right Fusiform Gyrus9 Left Insula Lobe
Right Middle Frontal Gyrus10 Left Subcallosal Gyrus
Right Inferior Parietal Lobule11 Left Cuneus
Right Thalamus12 Left Inferior Frontal Gyrus
Right Angular Gyrus13 Left Superior Frontal Gyrus
Left Thalamus14 Right Calcarine Gyrus
Left Precuneus15 Left Angular Gyrus

by Heinsfeld et al. (2018) and Kong et al. (2019) for
functional and structural data classification respectively,
we could not reach the exact same results as the ones
presented in these two works. However, the results we
obtained are still comparable and this discrepancy be-
tween our results and the reported ones can be justified
through several aspects.

First of all, there is no guarantee that the cases we
used for classification are the same ones used by Heins-
feld et al. (2018) and Kong et al. (2019). The only
cases considered in this thesis are the ones that success-
fully underwent the functional or structural preprocess-
ing pipelines. This means that the subjects with seri-
ous motion artefacts were discarded, which particularly
reflected in the subset of the ABIDE I dataset coming
from the CMU screening site; out of 27 cases, only
5 were available at PCP after functional preprocessing
pipeline.

Another explanation for the results’ inconsistency is
the fact that the details of the implementation are not

available in the two mentioned works. This means that
some parameters of the network are left out, such as the
number of nodes in hidden layers or the regularization
strategies. Tuning these parameters can yield in differ-
ent classification results. Finally, there is no certainty
that the split of the dataset into training, validation and
testing is the same, because of the fact that the cases are
most likely not the same in the first place, but even if
they were, the split is generated randomly.

It is observable that using the Fisher score as a di-
mensionality reduction technique helps improve the re-
sults, both when considering functional and structural
pipelines separately, as well as in the combined ap-
proach. It prevents overfitting the classifier by selecting
the most discriminant features from the defined set of
features. Consequently, it minimizes redundancy. Di-
mensionality reduction is particularly beneficial when it
comes to structural data classification. From Table 2, we
can observe a jump from 50.5% to 76.13% classification
accuracy just by removing the redundant features (p <
0.05). This difference is much lower when it comes to
the functional data classification, but that pipeline also
shows variation in results as a consequence of the atlas
choice.

As shown, we used both AAL and CC200 atlases to
preprocess the functional data. The CC200 atlas outper-
forms AAL in all of the conducted experiments (66.50%
to 64.12% accuracy in experiments without dimension-
ality reduction; 71.27% to 66.60% accuracy in exper-
iments that incorporated Fisher score), which is con-
firmed via statistical analysis and reported p-values less
than 0.05. This may be due to the fact that CC200 atlas
has 200 defined regions, whereas AAL has 116. More
regions consequently unveil more information and con-
nectivity patterns, which may have not been present or
distinctive when using the AAL atlas.

If we consider separate approaches for structural and
functional data classification, we can conclude that the
structural pipeline outperforms the functional one in
terms of the obtained accuracy. This can be due to the
fact that there were more cases available for classifi-
cation after the structural preprocessing pipeline. Fur-
thermore, even though the features are defined indepen-
dently in different pipelines, since they come from sep-
arate modalities, it is shown that the dimensionality re-
duction technique has a greater effect on the structural
data classification than on the functional, which is an-
other justification for the quantitative results’ difference.
In order words, the improvement in terms of classifica-
tion accuracy is higher in the structural pipeline than in
the functional when Fisher score is applied.

When it comes to implementation using the ensemble
of classifiers, there is a statistically significant improve-
ment in terms of classification accuracy in both func-
tional and structural pipelines (p < 0.05). Each classi-
fier in the ensemble is able to learn different represen-
tations of the input feature vectors, and by fusing the
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output labels together, errors can be compensated up to
a certain extent. This compensation of errors is much
more significant in case of the combined classification
pipeline, because the input vectors are encompassing
more information coming from different modalities. As
far as the label fusion goes, we tried both majority vot-
ing and averaging the softmax activations. As it turns
out, the latter approach slightly outperforms the former,
because when conducting majority voting, all the labels
are given the same weight, whereas when considering
softmax probabilities, the classifiers that output proba-
bilities with higher certainty are given more weight in
the decision making than the ones with lower certainty.
However, this improvement was not statistically signif-
icant, with the reported p-value of 0.8196.

Quantitative per site evaluation was performed to test
the robustness of the best model and its generalization
capability. The idea was to collect misclassified sam-
ples over 10 folds of the cross-validation and conse-
quently find out which screening site they originated
from. Then, the classification accuracies were com-
puted for each of the 17 sites. The lowest accuracy of
60% was obtained for the CMU site, but the total num-
ber of cases considered from that particular site is only
5, which is significantly lower than the number of cases
coming from other sites. Having more available cases
would arguably increase this site’s accuracy in individ-
ual site analysis. In case of having a low number of
cases, 1 or 2 errors have a greater impact on classifica-
tion accuracy than the same number of errors in case of
having a larger dataset.

In order to assess our methodology in terms of the
common findings in clinical research, we performed two
qualitative analyses. First one was a comparison of the
average functional connectivity matrices coming from
ASD subjects versus control group subjects. The idea
was to see if there are observable functional patterns be-
tween the two classes, and if so, do they correspond to
the previous works’ findings. Figure 7 shows the two
mean matrices. Qualitatively, there is little to no dif-
ference between the two. This could mean that having
a lot of different cases coming from several screening
sites with varying protocols can, on average, neutral-
ize the functional connectivity differences. Also, an-
other hypothesis is that there are underlying groups of
patterns not observable simply by evaluating correla-
tions between pairs of regions of interest. However, the
model is able to extract those features when it comes to
binary classification, which shows in the obtained quan-
titative results.

Another analysis we performed tried to investigate
whether or not the top discriminant features ranked by
Fisher score correspond to the common findings in func-
tional brain connectivity, particularly in the research re-
lated to Default Mode Network connectivity.

By comparing the DMN regions with the regions cor-
responding to the top ranked features (shown in Table

(a) ASD

(b) TC

Figure 7: Average functional connectivity matrices of the two classes
obtained using the AAL atlas.

4), some similarities can be observed. There is a pres-
ence of superior frontal gyri and temporal lobe in both,
but there are also pairs of regions that the classification
network is able to discriminate well, that are not present
in DMN. The reasoning is that functional connectiv-
ity patterns are observed globally, not by focusing on
one particular brain network. Our method quantifies the
connectivity of all the ROI pairs, and consequently se-
lects the most distinct connections in order to optimize
classification accuracy, whereas the DMN analyses fo-
cus only on connectivity of the regions that fall under
the definition of DMN, disregarding the rest. This se-
lection of the most discriminant features can also justify
the improvement in the accuracy when conducting the
combined approach; we consider two different modal-
ities, with two separate types of features, selecting the
most distinguishable ones from both.

We conducted an analogous analysis to examine top
features in case of structural data. However, the way
features are extracted and presented does not allow for
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any comparison with other work nor for drawing any
parallels with common clinical findings, since the fea-
tures we used were described in work by Kong et al.
(2019) and, to our knowledge, were only used in that re-
search for these particular purposes. Nevertheless, there
are some observations and recurring patterns that can be
noted. For instance, in the top 15 features (i.e. top 15
most discriminant correlations between pairs of cortical
regions), left transverse temporal sulcus appears in 5.
This can signify some importance of that particular cor-
tical parcel when it comes to ASD classification, since
it is 1 of possible 148 parcels in total that appears in 5 of
the top 15 features. Other recurring regions on the list
are left intraparietal sulcus and transverse parietal sulci
that appear 4 times, as well as right subcallosal gyrus,
which appears in 3 features.

It is also important to note that, as far as the imple-
mentation choices go, the number of nodes in the hid-
den layers of the default autoencoder and MLP (which
is 1000 and 600 in two layers) was used in the work of
Heinsfeld et al. (2018) and was kept in our approach.
The same architecture was then preserved for the struc-
tural data classification pipeline. On the other hand,
the choice to lower the input vectors’ dimensionality to
3000 was shown to be the best one in the paper by Kong
et al. (2019) (different models were tested by varying
dimensionality of the input vectors from 2000 to 5000);
consequently, we applied the same reduction constraint
when conducting the functional data classification strat-
egy.

295 cases out of 1112 in the original dataset did not
meet the required preprocessing criteria, either on func-
tional or structural part, or in some cases both. This
is potentially one of the main drawbacks, because the
reported results are not obtained using the full dataset.
Furthermore, this restriction obstructs the comparison
with some of the other works on the same topic, be-
cause the subset we used does not necessarily corre-
spond to the ones used in other papers, which partic-
ularly reflected in our baseline implementation, where
we tried to reproduce results obtained in the works by
Heinsfeld et al. (2018) and Kong et al. (2019). The re-
sults we reported were somewhat lower, most likely due
to differences in datasets, parameters of the classifica-
tion networks or the split into training, validation and
testing sets. Another drawback of the proposed method
is the fact that preprocessing step is time and resource
consuming, especially when it comes to structural data
segmentation and computation of statistics for the ob-
tained cortical parcels. The Freesurfer pipeline was tak-
ing approximately 20 to 24 hours to process a single
case, while processing 42 batches of subjects in par-
allel on a 60-core processor. Considering that the to-
tal number of subjects in the ABIDE I dataset is 1112,
the structural data preprocessing took around 1 month
to complete.

However, we were able to obtain arguably high clas-

Figure 8: Comparison of the results obtained using the combined
functional and structural data classification pipeline with the ones

reached in previous works.

sification results in comparison to the other works, even
though the data originated from 17 different screening
sites and was acquired using different protocols. This
means that our method has a good generalization ability
and does not rely on a specific protocol.

Additionally, current diagnosis of ASD is based on
2 main criteria: impairments in social communication
and interaction and a restrictive, repetitive range of in-
terests, behaviors and activities (APA, 2013). An unex-
perienced clinician is likely to incorrectly apply the cri-
teria for autism and related conditions, which is a major
concern. Another significant problem in current clinical
practice is the delayed diagnosis, since early initializa-
tion of treatment increases probability for a favorable
outcome.

Taking this into consideration, our method may pro-
vide additional insight when it comes to ASD diagno-
sis. Even though the neuroimaging studies in the field
yielded in inconsistent results and are still not consid-
ered a diagnostic tool, our method may be used as a
stand-alone tool for ASD detection, as it may potentially
unveil some useful patterns and findings for discrimina-
tion of the disorder.

Finally, Figure 8 shows how our best model compares
to the already presented overview of the previous works
that dealt with classification of ASD. Even though the
accuracy we obtained is not the highest one, every other
result that is quantitatively better was based on a smaller
dataset, often including data originating from only a sin-
gle screening site. Furthermore, the works based on a
larger dataset than the one we used yielded in a signif-
icantly lower accuracy. However, the behavior of our
model when tested on the entirety of ABIDE I dataset
remains unknown, since a portion of subjects was dis-
carded due to various artefacts.
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6. Conclusions

In this master thesis we proposed a method for clas-
sification of Autism Spectrum Disorder versus control
group. The proposed method, based on a network con-
sisted of autoencoders and multi-layer perceptrons, was
tested on both functional and structural data (in both
separate and combined manner) available from ABIDE
I dataset. Our proposal was inspired by the works of
Heinsfeld et al. (2018) and Kong et al. (2019), which
dealt with the classification of ASD based on func-
tional and structural data, respectively. The classifica-
tion task itself was done in a similar manner in both
of those papers, even though the approach of Heinsfeld
et al. (2018) did not include any dimensionality reduc-
tion technique, and the approach of Kong et al. (2019)
was based only on ABIDE I subset coming from NYU
Langone Medical Center screening site. This opened up
the possibility to incorporate both structural and func-
tional information and analyze the potential improve-
ment in terms of classification accuracy.

We showcased the importance of the multimodal ap-
proach by analyzing the obtained results qualitatively
and quantitatively. By encompassing different types
of information in our classification algorithm, we were
able to improve the results in a statistically significant
manner, which was shown through the analysis with
one-way ANOVA and post-hoc Tukey HSD tests. The
highest obtained classification accuracy of 85.67% was
a result of a multimodal strategy that included en ensem-
ble of classifiers for both structural and functional data
classification. This model that yielded in best results in
terms of accuracy was further explored by performing
per-site analysis.

Furthermore, we analyzed the impact of feature di-
mensionality reduction technique in a two-fold manner.
From one perspective, it served to prevent overfitting of
the classifier and to control redundancy of the features;
from another, ranking the features and selecting the top
most discriminant ones allowed for interpretability of
the features to a certain extent. For instance, we were
able to observe some common findings between our top
features from functional dataset and a commonly ana-
lyzed Default Mode Network in resting-state functional
MRI research. On the other hand, we noted some re-
curring patterns in top features of structural data, which
could suggest the importance of certain cortical parcels,
such as transverse temporal sulcus, in ASD classifica-
tion task.

As a summary, even though some implementation
differences do not allow a direct quantitative compari-
son of our results with the ones obtained in other state-
of-the-art works, the proposed approach shows that in-
corporation of different modalities and types of infor-
mation significantly improves classification accuracy of
ASD versus typical controls.
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Castelli, F., Frith, C., Happé, F., Frith, U., 2002. Autism, asperger
syndrome and brain mechanisms for the attribution of mental states
to animated shapes. Brain 125, 1839–1849.

Castrillon, J.G., Ahmadi, A., Navab, N., Richiardi, J., 2014. Learning
with multi-site fmri graph data, in: 2014 48th Asilomar Confer-
ence on Signals, Systems and Computers, IEEE. pp. 608–612.

Chen, C.P., Keown, C.L., Jahedi, A., Nair, A., Pflieger, M.E., Bai-
ley, B.A., Müller, R.A., 2015. Diagnostic classification of intrinsic
functional connectivity highlights somatosensory, default mode,
and visual regions in autism. NeuroImage: Clinical 8, 238–245.

Chen, H., Duan, X., Liu, F., Lu, F., Ma, X., Zhang, Y., Uddin, L.Q.,
Chen, H., 2016. Multivariate classification of autism spectrum dis-
order using frequency-specific resting-state functional connectiv-
itya multi-center study. Progress in Neuro-Psychopharmacology
and Biological Psychiatry 64, 1–9.

Chen, Y.W., Lin, C.J., 2006. Combining svms with various feature
selection strategies, in: Feature extraction. Springer, pp. 315–324.

15.14



Improving the Detection of Autism Spectrum Disorder by Combining Structural and Functional MRI Information 15

Courchesne, E., Karns, C., Davis, H., Ziccardi, R., Carper, R., Tigue,
Z., Chisum, H., Moses, P., Pierce, K., Lord, C., et al., 2001. Un-
usual brain growth patterns in early life in patients with autistic
disorder: an mri study. Neurology 57, 245–254.

Courchesne, E., Pierce, K., Schumann, C.M., Redcay, E., Buckwal-
ter, J.A., Kennedy, D.P., Morgan, J., 2007. Mapping early brain
development in autism. Neuron 56, 399–413.

Craddock, C., Benhajali, Y., Chu, C., Chouinard, F., Evans, A., Jakab,
A., Khundrakpam, B.S., Lewis, J.D., Li, Q., Milham, M., et al.,
2013. The neuro bureau preprocessing initiative: open sharing of
preprocessed neuroimaging data and derivatives. Neuroinformatics
4.

Craddock, R.C., James, G.A., Holtzheimer III, P.E., Hu, X.P., May-
berg, H.S., 2012. A whole brain fmri atlas generated via spatially
constrained spectral clustering. Human Brain Mapping 33, 1914–
1928.

Deshpande, G., Libero, L., Sreenivasan, K.R., Deshpande, H., Kana,
R.K., 2013. Identification of neural connectivity signatures of
autism using machine learning. Frontiers in Human Neuroscience
7, 670.

Destrieux, C., Fischl, B., Dale, A., Halgren, E., 2010. Automatic par-
cellation of human cortical gyri and sulci using standard anatomi-
cal nomenclature. Neuroimage 53, 1–15.

Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X.,
Alaerts, K., Anderson, J.S., Assaf, M., Bookheimer, S.Y.,
Dapretto, M., et al., 2014. The autism brain imaging data ex-
change: towards a large-scale evaluation of the intrinsic brain ar-
chitecture in autism. Molecular Psychiatry 19, 659.

Du, Y., Fu, Z., Calhoun, V.D., 2018. Classification and prediction of
brain disorders using functional connectivity: Promising but chal-
lenging. Frontiers in Neuroscience 12.

Ecker, C., Bookheimer, S.Y., Murphy, D.G., 2015. Neuroimaging in
autism spectrum disorder: brain structure and function across the
lifespan. The Lancet Neurology 14, 1121–1134.

Gotham, K., Pickles, A., Lord, C., 2012. Trajectories of autism sever-
ity in children using standardized ados scores. Pediatrics 130,
e1278–e1284.

Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V., 2003. Func-
tional connectivity in the resting brain: a network analysis of the
default mode hypothesis. Proceedings of the National Academy of
Sciences 100, 253–258.

Guo, X., Dominick, K.C., Minai, A.A., Li, H., Erickson, C.A.,
Lu, L.J., 2017. Diagnosing autism spectrum disorder from brain
resting-state functional connectivity patterns using a deep neural
network with a novel feature selection method. Frontiers in Neu-
roscience 11, 460.

Ha, S., Sohn, I.J., Kim, N., Sim, H.J., Cheon, K.A., 2015. Charac-
teristics of brains in autism spectrum disorder: structure, function
and connectivity across the lifespan. Experimental Neurobiology
24, 273–284.

Hazlett, H.C., Poe, M., Gerig, G., Smith, R.G., Provenzale, J., Ross,
A., Gilmore, J., Piven, J., 2005. Magnetic resonance imaging and
head circumference study of brain size in autism: birth through age
2 years. Archives of General Psychiatry 62, 1366–1376.

Heinsfeld, A.S., Franco, A.R., Craddock, R.C., Buchweitz, A.,
Meneguzzi, F., 2018. Identification of autism spectrum disorder
using deep learning and the abide dataset. NeuroImage: Clinical
17, 16–23.

Herbert, M., Ziegler, D., Deutsch, C., Obrien, L., Lange, N., Bakard-
jiev, A., Hodgson, J., Adrien, K., Steele, S., Makris, N., et al.,
2003. Dissociations of cerebral cortex, subcortical and cerebral
white matter volumes in autistic boys. Brain 126, 1182–1192.

Hiess, R.K., Alter, R., Sojoudi, S., Ardekani, B., Kuzniecky, R., Par-
doe, H., 2015. Corpus callosum area and brain volume in autism
spectrum disorder: quantitative analysis of structural mri from the
abide database. Journal of Autism and Developmental Disorders
45, 3107–3114.

Iidaka, T., 2015. Resting state functional magnetic resonance imaging
and neural network classified autism and control. Cortex 63, 55–
67.

Jahedi, A., Nasamran, C.A., Faires, B., Fan, J., Müller, R.A., 2017.

Distributed intrinsic functional connectivity patterns predict diag-
nostic status in large autism cohort. Brain Connectivity 7, 515–
525.

Jiang, L., Zuo, X.N., 2016. Regional homogeneity: a multimodal,
multiscale neuroimaging marker of the human connectome. The
Neuroscientist 22, 486–505.

Jou, R.J., Mateljevic, N., Minshew, N.J., Keshavan, M.S., Hardan,
A.Y., 2011. Reduced central white matter volume in autism: Impli-
cations for long-range connectivity. Psychiatry and Clinical Neu-
rosciences 65, 98–101.

Ju, R., Hu, C., Zhou, P., Li, Q., 2019. Early diagnosis of alzheimer’s
disease based on resting-state brain networks and deep learning.
IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics (TCBB) 16, 244–257.

Kamnitsas, K., Bai, W., Ferrante, E., McDonagh, S., Sinclair, M.,
Pawlowski, N., Rajchl, M., Lee, M., Kainz, B., Rueckert, D., et al.,
2017. Ensembles of multiple models and architectures for robust
brain tumour segmentation, in: International MICCAI Brainlesion
Workshop, Springer. pp. 450–462.

Kennedy, D.P., Courchesne, E., 2008. The intrinsic functional orga-
nization of the brain is altered in autism. Neuroimage 39, 1877–
1885.

Kim, J., Calhoun, V.D., Shim, E., Lee, J.H., 2016. Deep neural net-
work with weight sparsity control and pre-training extracts hierar-
chical features and enhances classification performance: Evidence
from whole-brain resting-state functional connectivity patterns of
schizophrenia. Neuroimage 124, 127–146.

Koch, C., Reid, R.C., 2012. Neuroscience: Observatories of the mind.
Nature 483, 397.

Kong, Y., Gao, J., Xu, Y., Pan, Y., Wang, J., Liu, J., 2019. Classifica-
tion of autism spectrum disorder by combining brain connectivity
and deep neural network classifier. Neurocomputing 324, 63–68.

Ktena, S.I., Parisot, S., Ferrante, E., Rajchl, M., Lee, M., Glocker, B.,
Rueckert, D., 2018. Metric learning with spectral graph convolu-
tions on brain connectivity networks. NeuroImage 169, 431–442.

Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Maw-
hood, L., Schopler, E., 1989. Austism diagnostic observation
schedule: A standardized observation of communicative and so-
cial behavior. Journal of Autism and Developmental Disorders 19,
185–212.

Lord, C., Rutter, M., Le Couteur, A., 1994. Autism diagnostic
interview-revised: a revised version of a diagnostic interview for
caregivers of individuals with possible pervasive developmental
disorders. Journal of Autism and Developmental Disorders 24,
659–685.

Lv, H., Wang, Z., Tong, E., Williams, L., Zaharchuk, G., Zeineh, M.,
Goldstein-Piekarski, A., Ball, T., Liao, C., Wintermark, M., 2018.
Resting-state functional mri: everything that nonexperts have al-
ways wanted to know. American Journal of Neuroradiology 39,
1390–1399.

Murdaugh, D.L., Shinkareva, S.V., Deshpande, H.R., Wang, J., Pen-
nick, M.R., Kana, R.K., 2012. Differential deactivation during
mentalizing and classification of autism based on default mode net-
work connectivity. Public Library of Science One 7, e50064.

Nielsen, J.A., Zielinski, B.A., Fletcher, P.T., Alexander, A.L., Lange,
N., Bigler, E.D., Lainhart, J.E., Anderson, J.S., 2013. Multisite
functional connectivity mri classification of autism: Abide results.
Frontiers in Human Neuroscience 7, 599.

Palmen, S.J., Pol, H.E.H., Kemner, C., Schnack, H.G., Durston, S.,
Lahuis, B.E., Kahn, R.S., Van Engeland, H., 2005. Increased gray-
matter volume in medication-naive high-functioning children with
autism spectrum disorder. Psychological Medicine 35, 561–570.

Parisot, S., Ktena, S.I., Ferrante, E., Lee, M., Guerrero, R., Glocker,
B., Rueckert, D., 2018. Disease prediction using graph convo-
lutional networks: Application to autism spectrum disorder and
alzheimers disease. Medical Image Analysis 48, 117–130.

Pelphrey, K.A., 2013. Blood-oxygen-level-dependent (bold) signal.
Encyclopedia of Autism Spectrum Disorders , 465–466.

Piven, J., Arndt, S., Bailey, J., Havercamp, S., et al., 1995. An mri
study of brain size in autism. The American Journal of Psychiatry
152, 1145.

15.15



Improving the Detection of Autism Spectrum Disorder by Combining Structural and Functional MRI Information 16

Plis, S.M., Hjelm, D.R., Salakhutdinov, R., Allen, E.A., Bockholt,
H.J., Long, J.D., Johnson, H.J., Paulsen, J.S., Turner, J.A., Cal-
houn, V.D., 2014. Deep learning for neuroimaging: a validation
study. Frontiers in Neuroscience 8, 229.

Plitt, M., Barnes, K.A., Martin, A., 2015. Functional connectivity
classification of autism identifies highly predictive brain features
but falls short of biomarker standards. NeuroImage: Clinical 7,
359–366.

Riddle, K., Cascio, C.J., Woodward, N.D., 2017. Brain structure in
autism: a voxel-based morphometry analysis of the autism brain
imaging database exchange (abide). Brain Imaging and Behavior
11, 541–551.

Sadeghi, M., Khosrowabadi, R., Bakouie, F., Mahdavi, H., Eslahchi,
C., Pouretemad, H., 2017. Screening of autism based on task-
free fmri using graph theoretical approach. Psychiatry Research:
Neuroimaging 263, 48–56.

Subbaraju, V., Suresh, M.B., Sundaram, S., Narasimhan, S., 2017.
Identifying differences in brain activities and an accurate detec-
tion of autism spectrum disorder using resting state functional-
magnetic resonance imaging: A spatial filtering approach. Medical
Image Analysis 35, 375–389.

Szatmari, P., Georgiades, S., Duku, E., Bennett, T.A., Bryson, S.,
Fombonne, E., Mirenda, P., Roberts, W., Smith, I.M., Vaillancourt,
T., et al., 2015. Developmental trajectories of symptom severity
and adaptive functioning in an inception cohort of preschool chil-
dren with autism spectrum disorder. The Journal of the American
Medical Association Psychiatry 72, 276–283.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F.,
Etard, O., Delcroix, N., Mazoyer, B., Joliot, M., 2002. Auto-
mated anatomical labeling of activations in spm using a macro-
scopic anatomical parcellation of the mni mri single-subject brain.
Neuroimage 15, 273–289.

Uddin, L.Q., Supekar, K., Lynch, C.J., Khouzam, A., Phillips, J., Fe-
instein, C., Ryali, S., Menon, V., 2013. Salience network–based
classification and prediction of symptom severity in children with
autism. The Journal of the American Medical Association Psychi-
atry 70, 869–879.

Wang, H., Chen, C., Fushing, H., 2012. Extracting multiscale pat-
tern information of fmri based functional brain connectivity with
application on classification of autism spectrum disorders. Public
Library of Science One 7, e45502.

Xu, G., Strathearn, L., Liu, B., Bao, W., 2018. Prevalence of autism
spectrum disorder among us children and adolescents, 2014-2016.
The Journal of the American Medical Association 319, 81–82.

Zhou, Y., Yu, F., Duong, T., 2014. Multiparametric mri characteriza-
tion and prediction in autism spectrum disorder using graph theory
and machine learning. Public Library of Science One 9, e90405.

15.16



Medical Imaging and Applications

Master Thesis, June 2019

DeepDraw! Developing a web application for medical image annotation and
computer aided analysis

Zafar Toshpulatov, Robert Marti, Oliver Diaz

Computer Vision and Robotics Research Group of the University of Girona, Catalonia, Spain

Abstract

The analyzing and collection of large amount medical data with labeled groundtruth is the biggest challenge at present.
To guarantee accurate and valid groundtruth, medical experts are required to annotate medical image datasets. Re-
cently, Deep Learning has become widely popular in medical image analysis. In this paper, we present computer-aided
medical image annotation tool called DeepDraw, based on web application. This interactive web application integrates
two tools: manual annotation that performs the annotation by drawing manually by the user; intelligent annotation tool
that accomplishes fully automatic segmentation of provided medical image using well-known U-Net deep learning
architecture. In addition, after applying intelligent annotation tool, annotated contour can also be corrected manu-
ally by the medical expert. We adopted the OHIF web based medical image viewer platform to our work and the
Orthanc mini PACS system was connected to the platform. One of the conveniences of the platform is to register the
users. Moreover, the REST backend APIs were built to run the deep learning model and store the annotation into the
database. In order to do this task, the INbreast digital mammography dataset was used which contains of 107 images
of mass lesions. The results shows that a web platform allows medical experts to annotate huge and complex medical
image collections much faster.

Keywords: Medical image annotation, Web application, Digital mammography, Deep Learning, Segmentation,
U-Net

1. Introduction

Internet technologies have evolved gradually to such
an extent that it has become possible to build web ap-
plications comparable with commonly used desktop ap-
plications. Web applications are used in many differ-
ent areas, including education, media, business and the
medical community among others. Recently, many ra-
diologists have been involved with data scientists in the
development of these web applications for radiological
purposes. By developing web-based tools, users can
access medical imaging processing platform wherever
the Internet is exist. Although a large number of med-
ical web applications, there are still some technologi-
cal challenges that need to be solved such as medical
annotation applications for labeling lesions or organs
in human body. A growing number of medical image
data requires computer-assisted medical image annota-
tion (Qiusha Min and Liu, 2018).

The challenges of medical image analysis and
computer-assisted intervention are being addressed in
recent years with the aid of machine learning ap-
proaches. Currently, researchers are mainly using ma-
chine learning techniques to develop tools. Machine
learning is a set of algorithmic methods that allow com-
puter systems to make data-driven predictions from big
data. These methods have many applications that can
be adapted to the field of medicine (Akkus et al., 2017).
The developed machine learning platforms are flexible,
but they don’t provide certain functions for analyzing
medical images, and adapting them for this application
requires considerable implementation efforts. Most of
the proposed machine learning methods so far do not
use explicit dependencies between annotations (Eli Gib-
son, 2017).

Moreover, the collection of large amount medical
data with groundtruth is the biggest challenge these

16.1



DeepDraw! Developing a web application for medical image annotation and computer aided analysis 2

days. The successful deep neural network technique re-
quires thousands of annotated training samples. The an-
notated medical images with highest level that can be
used to train such models of neural networks improving
their accuracy.

The purpose of this master thesis is to develop a web
application that contains the following main objectives
and requirements:

• Build a manual online annotation tool for medical
imaging purposes.

• Build an automatic segmentation based on deep
learning.

• A user is able to manually correct the
semi/automatic annotation tool.

• Able to save groundtruth data for medical image
analysis purposes.

• Handle multi users with different roles.

• The uploaded image by a user is stored in a PACS
system.

So, the aim of the thesis is to develop a web appli-
cation called DeepDraw that allows doctors to remotely
do above mentioned tasks. We apply the DeepDraw on
breast image analysis, more accurately, on segmentation
of mass lesions in x-ray images of the breast.

Breast cancer is the most commonly diagnosed can-
cer among women worldwide after cardiovascular dis-
eases (European Parliament and Council of the Euro-
pean Union, 2017). In 2018, there were over 2 million
new cases (Bray F, 2018). For instance, in the European
Union it is responsible for one in every six deaths from
cancer in women (Luxembourg: Office for Official Pub-
lications of the European Communities, 2009). In order
to control this alarming mortality rate associated with
breast cancer, population screening is recommended by
the medical community world wide. Mammography is
a widely-used X-ray imaging modality for breast cancer
screening as it has the capability to detect various types
of lesions such as masses and micro-calcifications (Bal-
leyguier et al., 2005). Among all types of breast anoma-
lies, breast masses are the most frequent, but also the
most difficult to detect and segment because of the dif-
ferences in their size and shape and low signal-to-noise
ratio (Dhungel N., 2015). Breast mass morphology is
one of the most important characteristic for cancer. The
more irregular the shape of the mass, the more likely it
is that the lesion is malignant (Oliver et al., 2010).

Although the medical image annotation is quite com-
plex, the medical image analysis needs validation for
segmentation. Unlikely, there is no groundtruth or gold
standard for the analysis of medical data. In our work,
we first started with a typical approach of implement-
ing manual annotation. For this reason, we adopted the

web based OHIF1 medical image viewer platform (Trin-
ity Urban, 2017) to our work. During manual image an-
notation, most of the time is spent on locating regions of
interest by medical expert. In order to speed up the pro-
cess of image annotation, artificial intelligence is neces-
sary. For that reason, we developed a intelligent annota-
tion tool to precisely segment the breast masses using U-
Net convolutional network architecture. Furthermore, a
mini PACS system was connected to the platform to up-
load and store dicom images.

This thesis is organized as follows. Section 2 pro-
vides the related work of web based and desktop med-
ical applications. Used datasets, materials, technolo-
gies and libraries, the proposed methods for manual
and intelligent annotations are described in Section 3.
In section 4, experiments are performed on the pro-
posed method and the obtained results are compared
with other dataset. In addition, the restriction of the
proposed algorithm are explained in Section 5. Finally,
Section 6 concludes work of the thesis and suggests
some future work.

2. State of the art

Although web applications allow medical experts to
share medical images and interpret remote access, still
some technological problems that need to be solved.
Java is the most popular web technology for developing
these applications due to its cross-platform compatibil-
ity and remote access (P. T. Looney and Halling-Brown,
2016). Unluckily, Java implementation depends on Java
virtual machine (JVM) pre-installation. During installa-
tion, certain restrictions, such as administrator permis-
sions, prohibit changes on the computer. In that rea-
son, Java-based web applications do not start due to a
failed JVM installation. This flaw leads to many oth-
ers in web applications. Furthermore, there is a similar
issue with ActiveX applications. If this issue remains
unresolved, medical experts may not be able to use ap-
plications because of the lack of the necessary browser
plug-in, which prevents their implementation of remote
access interpretations in the future (Qiusha Min and Liu,
2018).

Another popular programming language for the web
development is Javascript. When a website uses
JavaScript, it is first downloaded to a local user machine
and runs locally in the client side by a web browser and
relies only on the local hardware, not the network speed.
It increases computational power and speeds up the pro-
cessing of a web site by a web browser. JavaScript
works well across different browsers and devices to-
gether with advanced features such as HTML5 Canvas,
WebGL and CSS3. HTML5 Canvas element allows to

1https://github.com/OHIF/Viewers
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draw 2D or 3D graphics and can be used for data visual-
ization, animation, game graphics, photo manipulation,
and real-time video processing (Basalla, 2014).

It is very critical to choose an appropriate web based
medical image viewer to build an application for annota-
tions. Therefore, we explored various web based med-
ical image viewer platforms and reviewed the desktop
application for annotations to investigate the state of the
art.

2.1. Web Based Applications

Web based applications for annotations in the med-
ical field are limited and they all have been created in
recent years. One of the most popular web based app in
the medical field is OHIF viewer (Trinity Urban, 2017)
provided by the Open Health Imaging Foundation that
supports for viewing, annotating, and reporting on DI-
COM images in 2D images and 3D volumes. It is an
open source, built using HTML, CSS and JavaScrip.
It can be configured to connect to Image Archives that
supports DicomWeb.

SAKE viewer (students, 2017) medical image anno-
tation tool was presented in Capstone project that built
based on OHIF viewer. It uses machine learning tech-
nologies that allows researchers to label medical images
and predict annotation in an automated fashion. How-
ever, it is quite sensitive and dependent to the intensity
and does not work in complex medical data.

DWV (DICOM Web Viewer) (ivmartel, 2019) was
presented by ivmartel (github) that uses Javascript and
HTML5 technologies. It is an open source zero foot-
print medical image viewer library and provides stan-
dard tools such as zoom, contrast, drag, draw regions,
thresholding and sharpening filters.

Papaya was designed and developed by Jack L. Lan-
caster, Ph.D. and Michael J. Martinez., it is a pure
JavaScript medical image orthogonal viewer that sup-
ports DICOM and NIFTI formats, overlays, atlases,
GIFTI, VTK surface data and DTI data (Jack L. Lan-
caster and Martinez, 2019). However, from a design
point of view, it makes difficult to construct an auto-
mated medical image annotation.

2.2. Desktop Applications

Most of the work on medical annotation has been
done in desktop applications. Because those apps run in
the server-side and allow any programming languages
and libraries. For instance, MITK, ITK-Snap, 3D Slicer
enable annotate organs and abnormalities manually or
with region growing techniques.

Recently, NVIDIA announced their latest research
and technology advances called Clara Train SDK for
the Artificial Intelligence (AI) Assisted Annotation and
Transfer Learning at the Radiological Society of North
America (RSNA) 2018. Clara Train SDK contains
of two tools which are Annotation SDK and Transfer

Learning Toolkit. NVIDIA AI-assisted Annotation tool
enables to accelerate the annotation process with trans-
fer learning in an organ or abnormality. Figure 1 shows
how fast it speeds up the process. This can be done
simply by clicking a few external points on a particu-
lar organ of interest in a 3D medical data and get auto-
annotated results for all the 2D slices of that particular
organ as illustrated in Figure 3-a. When a medical ex-
pert sends the extreme points to the Annotation SDK,
a deep learning model receives it as input and returns
the predicted results of the segmented organ or lesion
(Holger Roth and Roopa, 2019).

Figure 1: Acceleration of annotations in three organs (figure from Hol-
ger Roth and Roopa (2019)).

Figure 2: Corrections with smart polygon editing (figure from Hol-
ger Roth and Roopa (2019)).

This fast process enable scientists to annotate and
integrate deep learning tools built into the Annota-
tion SDK with existing medical imaging viewers (e.g.
MITK, ITK-Snap, 3D Slicer). This uses a simple ap-
plication program interface (API) and does not require
prior deep learning knowledge. Consequently, knowl-
edge can be increased by analyzing more patient data
while still using existing process. Until now, NVIDIA
have provided 13 deep learning models for different or-
gans which have been pre-trained on public datasets by
NVIDIA. Since deep learning models may give lower
annotation accuracy, in this case, 2D smart polygon
editing function supports in correcting inaccurate slices.
When a medical expert moves a single polygon point on
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Figure 3: a) Auto-Annotation using extreme points; b) Process of AI-assisted annotation with Transfer Learning Toolkit to improve annotation
accuracy (figures from Holger Roth and Roopa (2019)).

the 2D slice, all other points around a radius automati-
cally shift to the organ boundaries which is shown in
Figure 2.

Obtaining a large well-annotated dataset is much
harder in the medical domain, because of the medical
expertise that is required to annotate the medical im-
ages. In this case, transfer learning is quite suitable
way. It makes transfer learning a native for medical im-
age analysis to use pre-trained CNN on larger database
and then apply transfer learning to a target field of med-
ical images with limited presence. Figure 3-b demon-
strates this process for improving annotation accuracy
with Transfer Learning Toolkit.

3. Material and methods

3.1. Datasets
3.1.1. INbreast

The INbreast dataset is full-field digital mammogra-
phy that consists of 410 images, acquired using Mam-
moNovation Siemens FFDM between 2008 and 2010 at
a Breast Centre in a S.Joao Hospital, Porto. This dataset
contains examples of normal mammograms, mammo-
grams with masses, mammograms with calcifications,
architectural distortions, asymmetries, pectoral muscles
and multiple findings. The images were recorded from
screening, diagnostic, and follow-up cases in two pro-
jections for each breast: craniocaudal (CC) view, which
means from head to feet, and a mediolateral oblique
(MLO) view, which is a side view, over the lateral 90o

projection (Moreira et al., 2011).
The dataset has 115 masses among 107 images,

where 90 cases belongs to patients with both breasts,
and the remaining 25 cases are from mastectomy pa-
tients. The mass lesions were annotated accurately by
a medical expert According to BI-RADS, a mass is de-
fined as a three-dimensional structure showing convex
outer boundaries, usually appearing on two orthogonal
views. The average mass area is 479 mm2 with a stan-
dard deviation of 619 mm2 and the area of masses are

from 15 mm2 to 3689 mm2. In addition, the dataset is
16-bit images in Dicom format, with two matrix size
2560 x 3328 and 3328 x 4084 pixels.

In this work, above mentioned 107 images of masses
were used to experiment and evaluate the investigated
method on segmentation problem.

3.1.2. OMI-DB
The Optimam Mammography Image Database

(OMI-DB) is a comprehensive that contains of unpro-
cessed and processed digital mammography images.
The database were created support medical imaging re-
search. The images were acquired from different mam-
mogram equipment systems such as GE, Siemens and
Hologic. The groundtruth of this database was made a
rectangular shape around the lesions. The dataset was
used to test our trained model in INbreast dataset, that
to know how it behaves in other datasets, despite the
different intensity.

3.2. Medical Image Viewer

Building a web application from scratch is quite com-
plicated and it takes a lot of time and effort in terms
of design and architecture of the application. As men-
tioned in an introduction section, the medical image
viewer platform was adopted into our work. In this sec-
tion, we describe the library and platform used for dis-
playing medical images.

3.2.1. Cornerstone JS
Cornerstone2 is a lightweight JavaScript library for

displaying medical images that provides a complete
web based medical imaging platform. It is not a full
application, but can be used as a component to build
medical imaging applications. Nowadays, Cornerstone
is very popular in medical imaging and many companies

2https://github.com/cornerstonejs
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use this library in their application production. It en-
ables HTML5 canvas element latest technology in mod-
ern web browsers including tablet, mobile and desk-
top. The Cornerstone core is an independent of the ac-
tual container used to store the image pixels and trans-
port mechanism used to obtain an image data. Actu-
ally, Cornerstone Core itself does not have the ability
to read and parse or load images and alternatively, it
relies on one or more image loaders to work with, i.e.
CornerstoneWADOImageLoader. The purpose of do-
ing this is to avoid constraining to work within a sin-
gle container and transport. It allows to load images
with highest performance image display from any type
of image container using any variety of transport and
it doesn’t require the conversion to an alternative con-
tainer or transport. Cornerstone Image Loader refer
over HTTP (WADO-URI) or DICOMWeb (WADO-RS)
that can communicate with PACS systems or Dicom
servers. So, the Cornerstone enables to display a 8 or
16 bit grayscale and RGB color medical images as well
(Hafey, 2014).

The cornerstone provides the main following fea-
tures:

• Resize - changes a width or height of the image
• Change slice - shows different an image slice, e.g.

in 3D MRI
• Window level - adjusts brightness or contrast
• Zoom and pan - zooms an image and moves view
• Interpolation - turns on/off interpolation
• HTML overlays - illustrates overlays on top of the

image using HTML
• Event handling - if the top of the image is changed,

image is updated everytime
• Multimage - shows two medical images on one

page
• Flip and rotate - flips a image vertically or horizon-

tally, and rotates clockwise or anti-clockwise
• WebGL - renders 2D and 3D graphics
• False color mapping - creates a false color mapping

(i.e Hot Iron, HSV, Gray etc.)
• Display area - displays an image any area of the

page

Moreover, the Cornerstone provides the following ad-
ditional tools to process reports, measures and annota-
tions on an image:

• Angle tool - defines an angle
• Arrow annotate - marks the reports with arrow
• Bidirectional - measures a bidirectional length
• Cobb angle - defines a cobb angle
• Elliptical ROI - measures the area of the elliptical

ROI
• Freehand Mouse - draws a contour and measures

an area of the contour
• Length - measures a length of the two points
• Probe - determines a intensity of the pixel and co-

ordinates of the given pixel

• Rectangle ROI - measures the area of the rectangu-
lar ROI

• Magnify - zooms given particular area
• WWWC Region - changes a contrast and bright-

ness in accordance with the specified region

Figure 4: Cornerstone and OHIF viewer tools.

3.2.2. OHIF Medical Image Viewer
The Open Health Imaging Foundation (OHIF)3

Viewer is an open source, web-based, medical imaging
viewer platform. The application platform was created
using JavaScript, HTML, CSS, and displays based on
Cornerstone library. It is built in Meteor full-stack web
framework that consists of three types of applications:
the OHIF Viewer, Lesion Tracker and the Standalone
Viewer.

Figure 5: OHIF viewer web application in the browser.

The OHIF Viewer is a universal implementation of
the OHIF platform intended for users of general radiol-
ogy that implements most of the features of the corner-
stone. One of the main functionality is that it can be set
up to connect to PACS systems that supports DicomWeb
Standard. Furthermore, the maintained extensions add
support for viewing, reporting, annotating on 2D and
3D DICOM images which are shown in Figure 4.

3www.ohif.org
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The LesionTracker is second example implementa-
tion of the OHIF platform that focuses on oncology
progress and partially funded by the National Cancer
Institute (NCI). This implementation is targeted to mea-
sure and follow the lesions, and to store the measure-
ments of overlay images into a database. It is suitable
to compare and analyze the images in two or more win-
dows but the platform is not enriched with various tools.

The StandaloneViewer enables only the client-side
portions of the OHIF Viewer (single-page viewer), with-
out the image managing feature. It can be used for de-
ploying as a stand-alone web application.

As a starting point for the development of more re-
liable, full-featured viewer applications, we decided to
build our annotation tools on top of the OHIF Viewer
due to its performance and general purpose. The Fig-
ure 5 illustrates the main web page of the OHIF viewer
in the browser. The Figure 6 shows the study list of
OHIF viewer that images can be managed in this page
including searching by patient name, study date, modal-
ity, study description, retrieving.

Figure 6: Study list of OHIF viewer.

3.3. PACS System
The Orthanc4 is open-source software that provides

powerful Dicom server for clinical and medical re-
search. It is a research work by Sebastien Jodogne from
the University Hospital of Liege (Belgium), which is
currently being developed and maintained by Osimis
S.A. The Orthanc works in any computer running Win-
dows, Linux or Mac OS X to store dicom images that
performs task as a mini PACS system. A picture archiv-
ing and communication system (PACS) is a medical
imaging technology which enables secure storage and
image transmission to multiple machines (Svb et al.,
2018).

One of the main characteristic of the Orthanc is that
it provides a RESTful API and supports Dicom stan-
dart. The Orthanc has a plugin mechanism for adding
new modules such as a DicomWeb, web viewer, Post-
greSQL and MySQL database back-ends that expands
the capabilities of its REST API (Jodogne, 2018). This

4www.orthanc-server.com

API also allows full CRUD operations (create, read, up-
date and delete) on the dicom data and enables the fol-
lowing DIMSE Service (TCP/IP):

• C-Echo - test the connection between two devices
• C-Store - send images from the local imaging de-

vice to a remote device
• C-Find - search the content of a remote device
• C-Move - retrieve images from a remote device

The Figure 7 shows the web user interface of the Or-
thanc and named Orthanc Explorer that listens on the
port 8042.

Figure 7: Orthanc web user interface.

The DicomWeb is the web protocol (i.e HTTP or
HTTPS) that provides a simple mechanism for access-
ing a dicom data and contains the following a set of
RESTful services:

• WADO-URI - retrieve single dicom instances
• WADO-RS - retrieve dicom objects
• QIDO-RS - search for dicom objects
• STOW-RS - store dicom objects

One good illustration for this example is shown in
Figure 8, where HTTP get request is sent to WADO-
RS RESTful API by a user-side and Dicom Service re-
sponse a specific image study which was requested by a
user and QIDO-RS also searches and response informa-
tion to user respectively.

In our case, a user is the OHIF medical image viewer
application and dicom service is the Orthanc. As men-
tioned in section 3.2.2, the OHIF viewer also enables
DicomWeb Standard for exchanging medical images
and its metadata. Since, the OHIF viewer application
works locally in our machine, we connected it to Or-
thanc Dicom server by configuring the following ports
and urls:

• WADO-URI: http://localhost:8042/wado
• QIDO-RS: http://localhost:8042/dicom-web
• WADO-RS: http://localhost:8042/dicom-web
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Figure 8: Search (QIDO-RS) and Retrieve (WADO-RS) DicomWeb
Services (figures from dicomstandard.org).

3.4. Authentication

When a web application is used in the medical field,
all patient data must be safe and protected from others.
In order to avoid this issue, it is necessary to include
a authentication functionality into the web app. It also
makes easy for each doctors to remotely access and reg-
ister. In fact, that the authentication functionality was
developed only for the Lesion Tracker viewer but not
for the OHIF viewer. We integrated this functionality
and installed the package into the OHIF viewer as well.
Originally, the used authentication package has been
implemented by Clinical Meteor5 named clinical-entry
to use in Meteor frameworks. So, the package provides
4 pages for clinical web apps: ”Sign In”, ”Sign Up”,
”Forgot Password”, ”Change Password”, and ”Logout”.
Its components and routes were embedded with Mon-
goDB database similarly as Lesion Tracker viewer. It al-
lows a token based authentication to secure a password
and a user information is saved in MongoDB database.
We did not connect the ”Forgot Password” implemen-
tation into web platform. Because it requires an auto-
matic response. It can be implemented during deploy-
ment process of web app into hosting provider. The Fig-
ures 9 and 10 show the registration and sign in process.

3.5. Manual Annotation Implementation

This section describes the adding of two functional-
ities to the OHIF viewer which are manual annotation
and eraser tools.

5https://github.com/clinical-meteor/entry

Figure 9: Registeration page.

Figure 10: Sign in page.

3.5.1. Manual Annotation Tool
We started our work with a typical approach, that is a

manual annotation. For this reason, ”Freehand Mouse”
tool from the Cornerstone javascript library was used
and incorporated into the OHIF viwer platform. This
tool allows to draw on the image with two options. First
option is to draw point by point where a user is able to
add points sequentially on the image, a tool adds a line
between two point and displays on the screen after each
point. Second option similar to normal pencil that a user
can draw by moving a mouse continuously. While mov-
ing mouse, a tool adds points and represents similarly
as a first option (i.e connected points with lines). This
can be done by holding ”shift + mouse left button” in
the keyboard. However, in both cases, a user must stop
a drawing by connecting first and last points where a
user started and ended. The Figure 11 illustrates both
drawing options.

After applying this tool, region of interest (ROI) is
obtained. The tool also is able to show the mean and

16.7



DeepDraw! Developing a web application for medical image annotation and computer aided analysis 8

Figure 11: Example of manual annotation in two option (point by
point and drawing with many points).

standard deviation of pixels intensity of the ROI and
area of the ROI (pixels2). This functionality can be help-
ful for doctors or researchers. One of the main feature
of this tool is also a removing points of the contour (at
least 3 points must be left to display a contour), adding
points between two lines and changing coordinates of
any points. The adding and removing can be done by
holding ”ctrl + mouse left button” in the keyboard.

The pencil icon was designed for the manual anno-
tation tool button (see Figure 12) and, configured and
registered into the toolbar of the OHIF viwer.

Figure 12: Manual Annotation tool button.

3.5.2. Eraser Tool
The OHIF viewer provides ”Clear” tool which cleans

everything on the image (i.e. drawings, annotations,
measurements, lines, marked reports). But there is no
functionality to remove the annotations one by one. As
an additional tool, we integrated ”Eraser tool” from Cor-
nerstone javascript library to remove the annotations if
they are not correct. The implementation was done in
the same way as manual annotation tool (see Figure 13).
This tool works by clicking right mouse button on un-
necessary item.

Figure 13: Eraser tool button.

3.6. Storing Annotation
After annotation of lesion or organ by a medical ex-

pert, it is necessary to collect it in a safe place. So,

in this section, we introduce the implementation of the
storing annotation. We decided to save the annotations
in a database as well as in a local storage. The anno-
tated ROI contains of points that represent coordinates.
It is not easy task to generate the groundtruth of anno-
tated image in javascript. Therefore, the implementa-
tion was divided into two tasks on the client-side and on
the server-side.

3.6.1. Design (client-side)
In the client-side (i.e the OHIF viewer), we designed

the ”Store annotation” button in the form of radio button
that a user can select the type of annotated lesion. Since
we are working on mammography images, we included
benign and malignant options which is shown in Figure
14.

Figure 14: Annotation storing button.

3.6.2. Storing Annotation REST API (server-side)
In order to generate and save a groundtruth of anno-

tated image, we built a new server on the Flask frame-
work. The Flask is a lightweight and powerful micro
web framework which uses Python language. In this
framework, the REST API was created to do all task
including generating and storing process. The REpre-
sentational State Transfer (REST API) is a software ar-
chitectural style that can handle requests and receive re-
sponses via HTTP protocol such as GET, POST, PUT,
DELETE. We used secure POST method to transfer data
from client (OHIF viewer) to server (Flask) in HTTP.

After annotating and selecting a type of lesion, when
a user clicks the store annotation radio button in the web
browser, the annotation is saved in the following struc-
tural order (see Figure 15):

1. The client-side queries to the Orthanc dicom server
(port: 8042) to get a image information using
WADO protocol.

2. The client-side retrieves a response from the Or-
thanc dicom server

3. The client-side gets the name, size and view of the
image. Then it generates the coordinates (x,y) of
the points of annotated ROI. The name, size and
view of the image, coordinates and lesion type are
converted into one JSON format data and it will be
ready for the next step. JSON (JavaScript Object
Notation) is a data-interchange format that is easy
for machines to parse and generate as well as for
people to read and write.
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Figure 15: Structure of the storing annotation REST API.

4. The client-side sends JSON data to the server-
side (port: 5000) with HTTP POST request.
This was done using Ajax technology that en-
ables to send and receive data from the server
asynchronously, without affecting the display and
behavior of the existing page. In the server-
side, ”store-annotation” REST API was created
with POST method that it receives the JSON data
(in url: http://localhost:5000/store-annotation) and
performs the next processes.

5. The REST API is in Python language that first gen-
erates all data from JSON format. Then it builds
a groundtruth of the annotated image using coor-
dinates of the points of annotated ROI and im-
age size. This was done with wonderful fillPoly
OpenCV function. The API is able to build any
number of annotated contours. A groundtruth of
the image is saved into local storage with original
name and size in png format as well as all the an-
notated information in CSV format, so later that it
can be used by researchers.

6. All the annotated information is stored in the Mon-
goDB database in JSON format so later it can be
used again for visualizing in the OHIF viewer.

7. Finally, in the last step, the REST API responses
to the client-side with message that storing process
was performed successfully.

Figure 16: Manually annotated image and its stored groundtruth.

3.7. Intelligent Annotation Implementation

During the manual image annotation, most of the
time is spent on locating regions of interest by medical
expert. In order to speed up the process of image anno-
tation and segment the breast masses on mammography
images, we implemented an intelligent annotation tool
as a second prediction of annotation from a machine.
So, in this section, we introduce our implementation of
intelligent tool.
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Figure 17: U-Net architecture.

Figure 18: Cutting 186 pixels of black side from left and right.

3.7.1. Data Preparation

Before training our network, we applied pre-
processing techniques on the 107 mammogram images
containing mass lesions from the INbreast dataset. The
mammogram images consists of two different matrix
size (2560 x 3328 and 3328 x 4084 pixels). To make
them same size, we cut 186 pixels on the black side of
the 3328 x 4084 pixels image from left and right accord-
ing to the breast side (see Figure 18). Then, the cropped
images were resized to 2560 x 3328 pixels. The reason
of cropping 186 pixels is that it preserves its aspect ra-
tio according to the image resizing and also black side is
not needed for network to train. The images were con-
verted from 16 bit to 8 bit and rescaled between 0 and
255.

3.7.2. U-Net Network Architecture

In this work, our training dataset is too small. There-
fore, the well known U-Net architecture was used. The
U-Net is a Convolutional Neural Network (CNN) based
segmentation algorithm originally proposed by (Ron-
neberger et al., 2015) for biomedical image segmenta-
tion. The U-Net includes a contractive downsampling
and expansive upsampling path with skip connections
between the two parts, which uses standard convolu-
tional layers. The main advantage of using this archi-
tecture is that it performs well with limited training data
by concatenating multi-resolution information. After
trying a few experiments, a small design changes were
made to the standard U-Net implementation. It should
be noted that a groundtruth of the image disappears af-
ter each layer. Therefore, layers of architecture were
reduced. The typical U-Net was designed for images of
size 572 x 572. The input layer dimension of our archi-
tecture was modified to 256 x 256. All the convolution
layers uses ReLU activation functions with kernel size
of 3 x 3 and ”he” normal kernel initializer, except the
last layer which uses sigmoid activation function with
kernel size of 1 x 1 to define an output probability map
of two classes as shown in Figure 17. There are two max
pooling layers which reduces the size of feature maps
by 2. After each up-sampling and convolution with 2
x 2 kernel size, it is concatenated with previous feature
map of layers. The network contains total of 1,862,789
parameters.
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3.7.3. Network Training
The dataset consists of a total of 107 images with

mass lesions. To test fairly our training network, the
dataset was randomly divided into 80 % (85 images)
training and 20 % (22 images) testing.

The U-Net was trained with Adam optimizer, as pro-
posed by (Kingma and Ba, 2015). The method is an
adaptive learning rate optimization algorithm that com-
putes individual adaptive learning rates for different pa-
rameters using estimations of first and second moments
of the gradients. In our work, an Adam optimizer was
maintained with a learning rate of 0.0001.

A loss function was defined with a binary crossen-
tropy during training the network for each iteration (see
Eq. 1).

(1)
where y is the label (1 for mass lesion and 0 for no

mass) and p(y) is the predicted probability of the pixels
being mass for all N pixels. It adds log(p(y)) to the loss
for each mass pixel (y=1), that is the log probability of
it being mass. It adds log(1-p(y)) vice versa that is the
log probability of it being no mass for each mass pixel
(y=0).

As a evaluation metrics, the Dice similarity coeffi-
cient was calculated for training and testing the network
between two sets (see Eq.2).

DS C =
2 ∗ |X ∩ Y |
|X| + |Y | (2)

where X is a groundtruth and Y is a prediction.
The proposed method was developed on Python using

Keras (Chollet et al., 2015) with Tensorflow backend.
The implementation was developed on a 64-bit Ubuntu
operating system using a Intel(R) Xeon(R) CPU E5-
2630 v4 @ 2.20GHz and Nvidia Tesla K40c GPU with
12 GB of video RAM. During the network training, CS
Vlogger Keras callback functions were used to store the
values of the loss functions and metrics for each epoch.
The Model checkpoint callback was used to store the
weights of the network after every epoch as a best, if
there is a decrease in the loss function.

3.8. Intelligent Annotation Deployment

This section describes the process of deep learning
deployment for the production purposes using our pre-
trained model on segmentation breast masses and shows
how Intelligent Annotation is installed into the OHIF
viewer web application.

3.8.1. Design (client-side)
In the first stage, an icon was designed for the in-

telligent annotation tool button as a brain in the OHIF
viewer (see Figure 19). Then, the button was config-
ured and registered into the toolbar of the OHIF viwer
like a similar manual annotation button.

Figure 19: Intelligent Annotation tool button.

3.8.2. Intelligent Annotation REST API (server-side)
The Intelligent Annotation tool was designed simi-

larly as a storing annotation architecture building REST
API. Our pre-trained deep learning model was devel-
oped on Python using Keras with Tensorflow backend.
So, we are able to run this model in Flask framework
for segmenting breast mass lesions. In order to do this,
new REST API was created named ”segmentation” with
POST method and it can be seen in URL format follows:
”http://localhost:5000/segmentation”.

If we follow the order structure (see Figure20), it will
be easy to understand the logic of the algorithm. So,
when a user clicks the intelligent annotation button in
the web browser, the computer-assisted annotation gives
its prediction in the following structural process:

1. The client-side queries from the Orthanc dicom
server (port: 8042) to get a dicom image using
WADO protocol.

2. The client-side retrieves a response from the Or-
thanc dicom server.

3. The client-side gets pixel data from a dicom image
and, its height and width of image from a dicom
tag. It is necessary to have an image size to build
image from pixel data. Because, in javascript, a re-
trieved image pixel data looks like an array object
in one line, not numpy. Then, the OHIF viewer
converts the pixel data and image size to JSON
string.

4. The client-side (port: 3000) sends JSON data to
the server-side with HTTP POST request (URL:
http://localhost:5000/segmentation) using Ajax to
able to get prediction result and visualize for a user.

5. In the server-side, the new created REST API re-
ceives the JSON data and performs the follows:

• First, 16 bit image is generated and built us-
ing reshaping. Then, 16 bit image is con-
verted to 8 bit and rescaled between [0, 255].

16.11



DeepDraw! Developing a web application for medical image annotation and computer aided analysis 12

Figure 20: Structure of the Intelligent annotation REST API.

The converted image is resized to the size of
input (256x256) of U-Net network.

• The pre-trained U-Net deep learning model
is run as usual (i.e as how we test it for pre-
diction, (1) test generator generates image for
keras model, (2) network and model weight is
loaded, (3) predict generator gives segmenta-
tion probability map). After that, a API clears
a session of keras model. It is significant that
a session is cleared, otherwise in the next pre-
dict, it may give an error due to keras tensors.

• Then, applied thresholding (0.5) for a seg-
mentation probability map of image. The
small black holes are removed if there are in-
side a segmented contour using closing mor-
phological transformations. A segmented im-
age is resized to original size and coordinates
of segmented contour points is generated us-
ing openCV findContours function.

6. This contour points of segmented image are re-
quired to visualize in the client-side (web applica-
tion) for a user. Finally, API returns the contour
points to the OHIF viewer for visualizing.

The OHIF viewer can visualize any number of seg-
mented contours. One of the main advantage in this
method is that a user is able to correct the segmented
contour if image is not segmented well. This will be
done using manual annotation tool.

4. Results

This section provides the results of the both annota-
tion methods in different datasets, training and testing
experiments.

4.1. Manual annotation and Execution time

By testing the manual annotation tool, it was noted
that a medical expert is spent approximately one minute
per image for annotating mass lesion or more depend-
ing on the complexity. The tool for storing annotation
works very quickly, almost one second per image. A
communication between the Orthanc PACS system and
OHIF viewer is also fast.

4.2. Training results

Figure 21 shows the graphs for the training loss func-
tion and dice coefficient of U-Net for 500 epochs. It
can be noticed that the dice coefficient was reached sig-
nificantly to 0.95 in 200 epochs and gradually to 0.99
including decreased overtime. The loss function was
suddenly droppped at the beginning of training and then
decreased slowly.

16.12



DeepDraw! Developing a web application for medical image annotation and computer aided analysis 13

Figure 21: Training dice coefficient and loss.

4.3. Testing results
The box plot Figure 22 shows that the average dice

coefficient of 0.52 was obtained for 22 test images in IN-
breast dataset. Two images in test dataset were obtained
with almost close to 0. This and other different factors
have played essential role in making it lower. When
a dice is calculated between groundtruth and predicted
image, if they do not intersect, a dice will be obtain with
0.

Figure 22: Dice coefficient of test dataset (22 images).

The Figure 23 displays the overlap with a good,
medium and poor of test results. Where yellow color
is the groundtruth and along it, predicted image is spec-
ified with red color.

4.4. Intelligent annotation
The intelligent annotation tool was tested in different

datasets. The trained images were applied in the OHIF
viewer web application that the Figure 24 shows the ex-
ample before and after segmentation by intelligent an-
notation tool. The figure also shows the mean, standard
deviation and area of the segmented mass. This intelli-
gent annotation tool took approximately 30 seconds for

all process. It should be noted that it was tested on the
CPU Intel Celeron N2930@ 1.83GHz without GPU.

Figure 24: Example of the result of the intelligent annotation tool.

5. Discussion

In this section, the results of the algorithms imple-
mented are discussed and the conclusion of this work
are given.

5.1. Manual Annotation

The medical data is quite complex, even it is difficult
to distinguish a medical tissue. A machine does not al-
ways help to solve any problems on image annotation.
For that reason, our manual annotation tool can be use-
ful for the correction of predictions of machines. It does
this job fast and allows to work remotely for a medical
expert.

5.2. Intelligent Annotation

As observed on the previous section, the results of
dice coefficient of the test data is too low than the train-
ing dice, it seems that the network is over-fitted with
the training data. However, in terms of the number of
trained images and large full mammograms, the results
are a normal for this task.

In this thesis, we were more focused on the deploy-
ment part of the web application. Furthermore, the
proposed method was tested on the Optimam dataset
using intelligent tool in the web app. This dataset is
completely different in the term of intensity and does
not provided an accurate groundtruth which has only a
groundtruth of rectangular masses boundary. The re-
sults shows that the trained-model is able to segment
masses in some way (see Figure 25). The yellow con-
tours are prediction by U-Net model and the red color
contours are groundtruth that was annotated by us.

As mentioned previous section, all process of intel-
ligent annotation was performed in 30 second. Despite
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Figure 23: Example of testing segmentation results in INbreast (good, medium, poor), yellow = groundtruth, red = predicted.

the fact that the computational time of the intelligent an-
notation can be achieved great performance with a GPU
machine and powerful computer.

As a observed results, we realized that the better ap-
proach can be performed starting from the implemen-
tation of detection of masses then can be applied seg-
mentation algorithm. It is important to point out that the
deployment of the deep learning based method should
be done in auto mode where an image should be tested
immediately when a user uploads an image to the PACS
system. This can save time of medical experts.

6. Conclusions and Future Work

In this thesis work, we developed the DeepDraw deep
learning based tool that is able to segment breast masses
and correct it in the web medical image application. In
general, our proposed method has performed well in
terms of development of manual and intelligent anno-
tation and web application with a wonderful interface
possibility. This new approach can contribute and serve
for the computer-assisted web application in the medi-
cal field as well as reduce time and effort on annotation
for medical expert. Since, we have not yet deployed the
web application into a host due to time limit.

Some future works can be added into the web ap-
plication. For example, creating a web page to able
to manage with a stored annotation information such
as read, delete, visualize. The DeepDraw can also be
implemented for other medical segmentation problems
including 3D volume image. Using strategy of immedi-
ately predicting uploaded image can be helpful to visu-
alize a result and save time of medical expert. Current
Docker and Kubernetes software technologies makes
a web applications powerful on deployment and in all
respects. The Google Cloud Healthcare API can be
a powerful option for storing medical imaging data in
the cloud that the Google Cloud software is the service

provider as a PACS that enables cost effective image
storage solution.

An alternative to deploying your own PACS is to use
a software-as-a-service provider such as Google Cloud.
The Cloud Healthcare API promises to be a scalable,
secure, cost effective image storage solution for those
willing to store their data in the cloud. It offers an
almost-entirely complete DICOMWeb API which re-
quires tokens generated via the OAuth 2.0 Sign In flow.
Images can even be transcoded on the fly if this is de-
sired. The Cloud Healthcare API is a very attractive op-
tion because it allows us to avoid deploying the Meteor
server entirely. We can just deploy OHIF as a client-
only static site application.
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Abstract

Purpose: Our goal is to investigate using only case-level labels extracted automatically from radiology reports to
construct a multi-organ, multi-disease classifier for CT scans with deep learning method.

Methods: In this study, we used a dataset of 23,956 radiology reports from Duke University Health System. We
developed a rule-based model to analyze those radiologist reports, labeling disease by text mining to identify cases
with those diseases. Initially we focused on three chest-abdomen-pelvis(CAP) organs: lungs, liver, and kidneys. A
DenseVNet segmentation model was trained to navigate the target organ from CAP CT scans. Finally a 3D CNN was
developed for multi-disease classifications for each organ.

Results: 3D CNN achieved AUC of 0.89 for binary (normal vs. abnormal) and average AUC 0.77 in multi-class
for lung, AUC 0.69 for both binary and multi-class for liver, and AUC 0.62 for multi-class kidney classification. As
demonstrated with the lung cases, 3D models outperformed 2D models.

conclusion: As an initial baseline this study shows encouraging results of using weak supervision. Further extension
of the thesis can be to experiments with larger dataset with more disease types.

Keywords: Weak-supervision, 3D CNN, CT, Lung , Liver, Kidney, Segmentation, Rule-based Model, Radiology
reports.

1. Introduction

Computed tomography (CT) scans is one of the most
common radiological screening examinations produces
3D images with more finer details compared to stan-
dard Chest X-rays. In the U.S. alone, more than 80 mil-
lion CT exams are performed each year. This helps in
improving the detection capability of chest-abdomen at
early stages and hence allows for better treatment op-
tions. The voxel values in CT scans represent the ra-
diodensity of the tissues in the Hounsfield scale (HU)
which provides high-quality images with high contrast.

With the improvement of modern screening modali-
ties like CT scan, accurate detection becomes a major
part of the computer-aided diagnosis (CADx). Auto-
matic classification of diseases using CT generally fol-
lows a common pipeline. First, the suspicious candi-
dates are selected from the CT scans. After that, some
system includes a segmentation step to separates the re-
gion of interest (ROI) from the background in order to

remove unnecessary information. Handcrafted features
are then extracted from the ROI followed by a classifier,
which is trained to estimate the final disease classifica-
tion.

CNNs are the current standard techniques for image
classification. Especially for natural images both pre-
trained models and training from scratch models shown
surprisingly good accuracy. Although, the majority of
the existing studies in the field of medical imaging tar-
get one particular disease type which make them less
effective in practice. In practice, the radiologist can ob-
serve multiple finding and they often relate mutually.
one of the reasons for this limitation is the availability
of well-annotated medical data. It becomes truer in case
of CT scans where one CT volume could contain 1000
or more slices. Typically, the publicly available datasets
either focused on one organ or on specific disease type
such as The Lung Image Database Consortium (LIDC)
(Armato III et al., 2011), 2017 Kaggle Bowl challenge
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(kag, 2017) and, ChestX-ray8 (Wang et al., 2017). Gib-
son et al. (2018) used ImageNet state of art models
(VGG16, Xception, InceptionsV3, Resnet50) as feature
extractor and used Naive Bayes, MultiLayer Perceptron
(MLP), Support Vector Machine (SVM), Near Neigh-
bors (KNN) and Random Forest (RF) as lung nodule
classifier. Nibali et al. (2017) proposed the use of Resnet
(He et al., 2015) architecture and explored effect of cur-
riculum learning, transfer learning and varying network
depth on malignancy classification . Christodoulidis
et al. (2017) pre-trained their network on publicly avail-
able texture datasets which then fine-tuned on lung tis-
sue data. Afterward ensemble of the networks were per-
formed to fuse their knowledge. Gao et al. (2018) pro-
posed ILD imaging patterns classification uses the en-
tire image as a holistic input of size 224x244 pixels.

The segmentation of organs is often an important first
step in computer-aided detection pipelines and allows
quantitative analysis of clinical processes such as diag-
nostic, treatment planning and treatment delivery (Lit-
jens et al., 2017). Segmentation is the task of classify-
ing each of the voxels to a region. Multi-organ chest-
abdominal CT segmentation is a challenging task due to
the anatomical variability in organ shape, appearance,
and soft tissue deformation (Fries et al., 2017). Manual
segmentation of 3D chest-abdominal images is labor-
intensive, expensive and not suitable for most clinical
workflows. Traditional multi-organ segmentation tech-
niques can be categorized into statistical models (SM)
(Cerrolaza et al., 2015) , multi-atlas label fusion (Xu
et al., 2015), (Tong et al., 2015) and registration-free
methods. Statistical models (SM) and multi-atlas la-
bel fusion methods highly dependent on registration for
segmentation which is challenging due to high inter-
subject variability.Registration-free methods typically
train a voxel-wise classifier on unregistered images and
mostly relied on hand-crafted organ-specific image fea-
tures (Badura and Wieclawek, 2016).CT scans are vol-
umetric in nature and 3D context is known to be more
helpful to differentiate between disease patterns. How-
ever, existing most of the CT studies are in 2D.

This study will attempt to do multi organ, multi-
disease classification, and will use chest abdomen pelvis
(CAP) CT because it covers wide variety of organs and
disease over most of the torso. Specifically, we will fo-
cus on three organs lungs, liver and kidneys, which were
chosen because they represent large organs with very
different anatomical appearance, location, and range of
common diseases.

The lung is mostly consisted air, the liver is a dark
reddish-brown organ located in the upper right-hand
portion of the abdominal cavity, and the kidneys lie
on either side of the spine in the retroperitoneal space
between the parietal peritoneum and the posterior ab-
dominal wall, well protected by muscle, fat, and ribs.
Considering the immense variations of the anatomical
structures of chest-abdomen even experienced radiolo-

gists can fail to correctly identify the diseases.
Worldwide a substantial proportion of people suffers

from chest-abdominal diseases. An estimated 0.15 mil-
lion deaths in the U.S. from lung cancer comprising
approximately 25% of all cancer deaths (ALA, 2019).
The liver disease accounts for approximately 2 million
deaths per year worldwide, which account for 3.5% of
all deaths worldwide (Asrani et al., 2019). In 2016,
nearly 0.13 million people in the U.S. treatment for end-
stage kidney disease (ESKD), and more than 0.73 mil-
lion (2 in every 1,000 people) were on dialysis or were
living with a kidney transplant (CFD, 2019). According
to Centers for Disease Control and Prevention in (CFD,
2019), estimated 15% of adults in the U.S more than 20
million people are thought to have kidney diseases to
some degree and the condition is most common among
adults older than 60. Early screening and detection have
the potential to dramatically improve the survival rates
by finding the disease at an earlier stage when it is more
likely to be curable. Over 12,000 lung cancer deaths
could be prevented if early detection was possible for
high-risk patients (Cheung et al., 2018). For that rea-
son developing robust automatic distinction systems is
a critical step.

2. State of the art

Computer-aided detection/diagnosis (CADe/CADx)
using deep learning in CT images is been an active area
for many years. In spite of that, very few studies have
been conducted focused on developing multiple organs
and multiple disease prediction systems with weak su-
pervision using machine learning. Commonly, a lot of
studies can be found targeted one particular disease type
such as lung nodules, lung pneumonia, and liver lesion.

Wang et al. (2017) used ChestX-ray8 dataset and
textmined eight disease image labels from the radiolog-
ical reports using natural langiage preprocessing. Then
classified the X-ray images using weakly supervised
multi-label image classification and disease localization
framework. Tang et al. (2018) used attention-guided
curriculum learning (AGCL) for joint thoracic disease
classification and weakly supervised localization using
chect X-rays. Image-level disease labels and sever-
ity level information of a subset of data is been used
. This severity level information contributed to curric-
ular learning. Furthermore, they used the CNN gen-
erated disease heatmaps (visual attention) of confident
seed images to guide the CNN in an iterative training
process.

Wang et al. (2017) and Tang et al. (2018) both use
X-rays 2D images and shown promising results trough
weak-supervision. CT being an volumetic data make
it more harder to deal in the field of weak-supervision
compared to X-rays. Due to computational expense it’s
hard to feed the complete CT volume in deep models,
and using slice-level is challenging as particular disease
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could be belongs to only 10-15 slices out of whole vol-
ume.

Yan et al. (2019) proposed a lesion annotation net-
work (LesaNet) based on a multilabel CNN to learn the
label from the radiology reports associated with the le-
sion images. Peng et al. (2019) used a multi-head self-
attention mechanism to handle the long-distance infor-
mation in the sentence, and to jointly correlate different
portions of sentence representation subspaces in paral-
lel extract various clinical attributes from radiology re-
ports. Segmentation is the most common field of ap-
plying deep learning to medical imaging (Litjens et al.,
2017). Segmentation of volumetric images face particu-
lar challenges due to the need to process large volumet-
ric images under memory constraints and multi-organ
segmentation poses additional challenges as more infor-
mation must be propagated through the network.

Despite these challenges, deep learning showed
promising results in multi-organ chest-abdominal CT
segmentation. Zhou et al. (2016) segmented 19 abdom-
inal organs on 2D slices in multiple views and showed
combined results using majority-voting label fusion.
Roth et al. (2017) used 3D Unet (Ronneberger et al.,
2015a) to segment 7 organs using a two-stage hierarchi-
cal pipeline. Hu et al. (2017) segmented 4 organs using
a 3D FCN to generate organ probability maps as fea-
tures for a level-set-based segmentation. Larsson et al.
(2017) used MALF to identify an ROI for each organ
and a 3D FCN with hand-tuned input features to com-
plete the segmentation. In our work, to support the
target and navigation of chest-abdominal organs Den-
seVnet (Gibson et al., 2018) was adopted as segmenta-
tion framework.

Ke Yan (2018) mined the bookmarks by the radi-
ologists from the PACS and developed a dataset with
32,735 lesions in 32,120 CT slices of 4,427 unique pa-
tients. Using this dataset they proposed a lesion detec-
tor based on a regional convolutional neural network
(RCNN). Yan et al. (2018) proposed 3D context en-
hanced region-based CNNs (3DCE) to incorporate 3D
context into 2D regional CNNs. Getting the slice level
bookmarks from the Deeplesion dataset Ke Yan (2018)
they generate feature maps separately from multiple
neighboring slice which were then aggregated for final
prediction. one of the big limitation of these two stud-
ies is that these networks do not predict the type of each
detected lesion. This type of detection systems are use-
ful to find out the suspicious regions but not able to find
specific disease types.

Attempt to address these challenges, this study
presents a weakly supervised multi-organ multi-disease
3D classification workflow using chest-abdominal CT.
The contribution of this work is three-fold:

a) We proposed a rule-based model that can extract
high-accuracy case-level labels from the unstruc-
tured CT reports. We hypothesize this as process

of weak-supervision. The classification model will
learn disease patterns from these case-level labels.

b) For segmentation, we trained DenseVNet with nor-
mal chest-abdominal CT volumes, afterward Fine-
tuned the CNN with diseased CT volumes aiming
to transfer the organ pattern generalization capabil-
ity. This segmentation step supports the navigation
of the targeted organ in the classification task.

c) We developed weakly supervised 3D multi-disease
classifiers for lung, liver and kidneys. Our weak
supervision is based only on the radiology reports
using the rule-based model, without requiring hu-
man experts to ever look at any images.

3. Material and methods

The proposed weakly supervised multi-organ milti-
disease classification consists of three major step:
(a) Disease label mining, (b)Segmentation of chest-
abdomen CTs and (3)finally classification with weak-
supervision using CT sans.

3.1. Disease Label Mining

Machine learning algorithms are widely used in many
kinds of computer vision tasks and have achieved high
performances. Despite the recent advances, their ap-
plications have been mostly limited to well-annotated
large image datasets like ImageNet, MSCOCO, etc. In
the medical domain, however, there are no similar large-
scale labeled image datasets available and, it is hard
and expensive to label medical images directly. This
is particularly true for cross-sectional imaging modali-
ties such as CT, where a single scan may contain 1,000
or more slice images, creating not only a clinical chal-
lenge for radiologist interpretation but also a research
roadblock because of the impracticality of manually la-
beling disease in large numbers of slices or volumes.
Therefore, we are exploring an alternative approach to
provide case-level labels of medical images based on
the existing radiology reports. A radiology report pro-
vides a diagnostic imaging referral and used documen-
tation purposes. Although there exist some guidelines
for reporting, reports mostly contain free text, often or-
ganized in a few standard sections. In this study, we
developed a rule-based model that can quickly identify
certain types of abnormalities within CT reports with
high accuracy. We code reports as normal if they do not
contain any diseases, and as diseased if the radiologist
reported the presence of that disease.

3.1.1. Input Data
From CT scans conducted at Duke University Health

System from January to April in 2017, we downloaded

17.3



Weakly Supervised Multi-Organ Multi-Disease Classification using CT 4

Figure 1: Example language from radiology reports for CT scans.

23,956 radiology reports. Three organ systems were se-
lected for this study: lungs, liver/gallbladder, and kid-
neys. Example of an unstructured CT report we used is
shown in figure 1. Each report is free text, but typically
composed of parts for indication, technique, findings,
and impression. Only the findings part is used for our
rule-based model. Sentences pertaining to lung. liver,
and kidney have been highlighted in yellow, blue and
green respectively.

3.1.2. Selecting keywords
In order to select the keywords for each organ, we

computed term frequency-inverse document frequency
(TFIDF) for all words in each organ, which can reflect
how important a word is to a corpus. To illustrate the
TF-IDF values, we first identified sentences for each or-
gan based on anatomical keywords (such as for lungs:
lung, pulmonary, airway, airspace, etc.), then used each
set of anatomical keywords to filter the reports and made
a word cloud for each organ like shown in Figure 2. In
this way, we could find out which word is more impor-
tant for our rule-based system. The clinical experts pro-
vided guidance on whether the terms are negative (e.g.,
normal, no evidence of, unremarkable), positive (e.g.,
abnormal, status post, *itis), or do not matter.

3.1.3. Rule-based system
With the keywords, we designed a rule-based system

to classify selected, common diseases and normal re-
ports. Figure 3 shows the rule-based model’s workflow
and the logic. From the unstructured radiology reports
we first extract the findings section. Afterward the text
was converted to lowercase and sentence tokenization
was performed. As a final step the logic operation was
applied to code reports as normal if they do not con-
tain any diseases, and as diseased if the radiologist re-
ported the presence of that disease. For the lungs, we fo-

cused on normal, atelectasis, nodules, pneumonia, and
pulmonary edema. The liver and gallbladder were con-
sidered as one organ group, and we focused on normal,
masses, and stones. For the kidneys, we focused on
normal, atrophy, stone, and masses. The rules were in-
tentionally very specific to maximize positive predictive
value. Each combination of organ and disease resulted
in many hundreds to thousands of reports. The number
of cases was 16304 for lungs, 9286 for liver/gallbladder,
and 9700 for kidneys, for a total of 35290 rule-based
labeled cases. Clinical experts checked each category
and the model would be considered acceptable if at least
50 consecutive reports were labeled with 95% accuracy.
Almost all categories were 100% accurate.

3.2. Segmentation

In this study, we aim to use the segmentation model
as a prepossessing step or more precisely to support the
navigation and localization of the chest-abdomen organs
for the classification of abnormalities in CT volume.
Figure 4 shows an overall segmentation pipeline used
in this study including data splitting, pre-processing and
evaluation.

3.2.1. Segmentation data
The CT volumes used in this study for the train-

ing of the segmentation models are called 4D extended
cardiac-torso (XCAT) phantom, developed by a team
from Duke University Medical Center for multimodal-
ity imaging research based on Chest-Abdomen-Pelvis
(CAP) CTs studies (Segars et al., 2013). There are 50
CT volumes and almost all of them have intravenous
contrast enhancement. Selected organs and structures
were manually labeled and have been continuously re-
fined over the years. Currently, the dataset contains 29
different classes of structures available, including: ster-
num, ribs, spine, pelvis, scapula, clavicles, femur, heart,
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Figure 2: Word clouds generated from report sentences for (left to right) lung, liver/gallbladder, and kidneys, based on TFIDF.

Figure 3: Rule-based model

lungs, liver, gall bladder, stomach, spleen, thyroid, kid-
neys, pancreas, large intestines, skin, arm, bladder, ab-
domen muscle and background.

In this study we particularly focused on lungs, liver
and kidneys. Each CT slice and the corresponding seg-
mentation map (label slice) are of size 512 × 512 pix-
els. The resolution of each CT volume is approximately
0.7 × 0.7 mm, where the thickness of each slice var-
ied between 0.6-5.0 mm. The XCAT dataset (50 pa-
tients) was randomly split into 44 CT volumes for train-
ing, and 6 CT volumes for validation. Moreover, we in-
corporated 50 more recent patients with high-resolution
CTs with 0.7 mm slice thickness and manually labeled
kidney segmentation masks for the purpose of quanti-
tatively evaluating the performance of our trained seg-
mentation model.

3.2.2. Pre-processing
Based on population statistics, we selected a range of

intensity values [-1000, 800] for all CT volumes, fol-
lowed by a linear transformation, to obtain a normal-
ized and well-covered spectrum of CT intensity val-
ues across CTs in the dataset. For the low-resolution
(XCAT) data, each voxel in the original CT volume rep-
resented an intensity covering approximately a 0.7 ×
0.7×5 mm volume, which varied from patient to patient.
We re-sample the resolution across studies via B-spline
interpolation into voxels of size 2 × 2 × 2 mm. In order
to keep the segmentation labels consistent, we applied a
similar transformation on the labels using nearest neigh-
bor interpolation. We saved the transformation metrics
in case we need to go back to the original spacing for
some interpretation.

3.2.3. Segmentation Model
In the first stage of our segmentation study, we imple-

mented three well-known CNN architectures: 3D U-net
(Ronneberger et al., 2015b), FCN (Long et al., 2014)
and DenseVNet (Gibson et al., 2018). Based on the
evaluation of the performance on the XCAT validation
set, DenseVNet was selected as the segmentation model
in our workflow.

The DenseVNet segmentation network uses fully
convolutional neural network, with high-resolution acti-
vation maps through memory-efficient dropout and fea-
ture reuse. Gibson et al. (2018) used a patch size of
1443 as an input of the network. First, 723 feature maps
are computed using a strided convolution. Afterward,
a cascade of dense feature stacks and strided convolu-
tions generate activation maps at three resolutions. The
downsampling subnetwork is a sequence of three dense
feature stacks connected by downsampling strided con-
volutions (Gibson et al., 2018). A convolution unit is
applied at each resolution reducing the number of fea-
tures by half. After bilinear upsampling, the feature
maps are concatenated and a final convolution generates
the likelihood logits. Memory efficiencies of dense fea-
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Figure 4: Complete organ segmentation pipeline

ture stacks and batch-wise spatial dropout enable deeper
networks at higher resolutions, which is advantageous
for segmentation of smaller structures.

3.2.4. Training segmentation model with diseased CT
volumes

Further to achieve good results for the Duke diseased
CT cases, the model was fine-tuned with 30 abnormal
and 10 normal Cheat-abdominal CT scans. As men-
tioned earlier in Section 3.1 in this study for the clas-
sification we are using only case-level labels, so no seg-
mentation annotation mask was available for these dis-
ease cases.

The XCAT trained model was used to generate a
preliminary mask for 30 randomly selected, diseased
lung cases (10 for edema,10 atelectasis, 7 for pneumo-
nia, and 3 for nodule). The initial predicted segmenta-
tion mask was then manually corrected only for lungs.
Afterward combining this 30 annotated cases with 10
normal XCAT training volume we trained the model
from scratch using the pre-trained weights from XCAT
trained model.

3.3. Weakly Supervised classification

3.3.1. Classification data and Pre-procesing
From January to April of 2017, there were approx-

imately 5,000 chest CT scans at our institution, Duke
University Health System. After applying our rule-
based model, we identified many hundreds to over a
thousand cases for each category. Table1 shown the list
of data used in our classification tasks.These diseases
were selected based on their highly specific keywords,
as well as to represent a variety of disease sizes and ap-
pearances. We grouped the same disease types to one

class of disease. With IRB approval, these cases were
downloaded and de-identified. Same pre-processing
scheme mentioned in section 3.2.2 is been applied.

3.3.2. 2D CNNs for weakly supervised classification
We used Resnet50 (He et al., 2015) as the model

because of its advantages reducing the effect of the
vanishing gradient problem through residual blocks.
We removed its last fully connected layer, and then
added three fully connected layers with 2048,2048 and
5 neurons, respectively. These newly added fully con-
nected layers were initialized using Xaiver algorithm
and the rest of the model was initialized using Image-
Net weights. Softmax activation function was used for
the last layer.

3.3.3. 2D Training Phase
With the 2D model we focused only on the lungs as

a single organ, and characterized abnormality in terms
of four lung diseases with high prevalence: atelectasis,
edema, nodule, and pneumonia. Classification is per-
formed considering these as four diseases as separate
classes, combined with normal as a fifth class. For each
case, we chose 10 slices spaced regularly in the superior
to inferior extent of the volume. The network was fine-
tuned end-to-end using Adam with standard parameters.
We trained the model for 50 epochs using batch-size of
32 and an initial learning rate of 0.001. We picked the
model with the lowest validation loss.

The 4-fold cross-validation performance was mea-
sured by the Receiver Operating Characteristic (ROC)
area under the curve (AUC). We present the slice-level
performance, where each slice is treated separately, i.e.,
the patient is essentially being diagnosed using only a
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Table 1: Dataset Distribution used in CT classification for lungs, liver/gallbladder and kidneys. + sign denotes the grouping of same disease type
to single class.

Lungs Liver/Gallbladder Kidneys
Volume # of Volumes Volume # of Volumes Volume # of Volune
Normal 137 Normal 181 Normal 68
Edena 214 Dilation 54 Cyst 61

Atelectasis 201 Lesion+Mass+Nodule 102 Lesion+ Mass + Tumor 52
Pneumonia 101 Calci+Gallstone+Stone 70 Calcifi+Calcul+Stone 66

Nodule 168 Atroph+ Atrophy 58
Total 821 Total 407 Total 305

single slice. We also presented a simple ensemble ap-
proach to get a patient-level performance, where we av-
erage the probability for all 10 slices as the prediction
score for each patient.

3.3.4. 3D CNNs for weakly supervised classification
The baseline 3D CNN used in this study was in-

spired by Resnet (He et al., 2015). Figure 5 shown the
proposed 3D CNN architecture. One initial convolu-
tion was performed on input volumes, afterward, fea-
tures were learned in three resolution scales using 3 R-
blocks unit in each resolution. An R-block consists of
Batch-normalization, reLu activation, and 3D convolu-
tion. Long et al. (2014) showed that deeper network
have greater discriminative power due to the additional
non-linearities and better quality of local optima. How-
ever, convolutions with 3D kernels are computationally
expensive and 3D architectures have a larger number of
trainable parameters. We used 33 kernels that are faster
to convolve with and contain fewer weights. Batch-
normalization allows normalization of the feature map
activation at every optimization step. After each resolu-
tion, the features were reduced half by max-pooling and
the number of filters is doubled. After the 3rd resolution
last R-block there were 163×128 features, which passed
through batch-normalization, relu followed by a global
max-pooling and finally softmax classification layer for
the final prediction.

3.3.5. 3D Training Phase
As with the 2D classification experiments, it would

be desirable to do a 4-fold cross-validation to reduce the
variance due to data sampling. However, 3D models are
extremely time consuming to develop, with run times
of 1 day per fold with typical GPU cards such as the
GeForce GTX 1080 (Nvidia Corporation, Santa Clara
CA). Due to time constraints, for all 3D models, results
shown are the average of 2 of the 4-fold cross-validation
samplings.

We applied our fine-tuned segmentation model on the
classification dataset to get the chest-abdomen organ
segmenation masks. These segmentation masks guide
the 3D model to extract desired organ patches on the
fly. Due to the computational expense it’s not practi-
cal to feed the whole CT volume into 3D CNN. We ex-

tracted 2 patches of size 128× 128×128 from each vol-
ume using the segmented mask. While extracting the
patches the targeted organ labels got the highest pref-
erences. Adam was used as a optimizer to optimize
the weights. Cross-entropy error was used as the loss
function and the weights were updated using batch of 2
training samples for every iteration. Initialization of the
weights was done by uniform distribution. Training was
continued for 50000 iteration and only the weights for
the lower loss on the validation set was saved.

To start with the 3D experiments, We first explore the
performance of our weakly supervised model on lungs
CT scans. As mentioned in Table 1 for the lungs we
have five classes: normal, edema, atelectasis, pneumo-
nia, and nodule. We first combined all the lung dis-
ease classes (edema, atelectasis, pneumonia, and nod-
ule) into a single class as abnormal, and classified nor-
mal vs abnormal. Afterward we separated all the 5
classes and trained the model for a 5 class classification.

For the liver we focused on three diseased classes:
dilation, masses (lesion, mass, nodule), stones (calci*,
gallstone, stone), and normal class. Similarly in case of
liver we first combine all the liver disease classes: di-
lation, masses, and stones to a single class as abnormal
and classify normal vs abnormal. Afterward we sepa-
rate all the 4 classes and train the model for a 4 class
classification.

For the kidneys we focused on four diseased classes
(cyst, masses, stones, and atrophy), and the normal
class. Due to time constrain we couldn’t experiment
with the normal vs abnormal. We separate all the 5
classes and train the model for a 5 class classification.

The model is implemented using python tensorflow
framework.

4. Results

4.1. Segmentation Results

The XCAT dataset (50 patients) was randomly split
into training (44 patients), validation (6 patients), as
mentioned earlier in section 3.2.1. For the quantitative
comparison between the different segmentation models
dice similarity coefficient (DSC) was used as an eval-
uation metric. The average validation DSC values for
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Figure 5: Our baseline 3D CNN With 3 R-Blocks in each resolution. Number of FMs and their size depicted as (Size Number)

each organ are reported in Table 2. Figure 6 shown a
randomly selected CT scan from validation set,and cor-
responding ground-truth and prediction.

Figure 7 shows an example of lung edema and lung
atelectasis cases and the segmented labels by the model
before and after fine-tuning. Since there is no ground-
truth segmentation for the Duke data, the segmentation
labels were qualitatively evaluated by Duke radiology
experts. Results for all 50 Kidney test cases, including
7 without contrast, are shown in Figure 8.

4.2. Classification Results

4.2.1. Lung Diseases Classification
Figure 9 and figure 10 shown the slice-level and

patient-level performance of the 2D model. The patient-
level prediction provides better overall performance
than slice-level prediction for all classes.

For the 3D classification, Figure 11 shows the binary
results for the lungs, i.e., normal vs abnormal classifi-
cation. ROC curves are averaged across 2 of the 4-fold
cross-validation samplings.

Figure 12 show the ROC curves for multi-class clas-
sification (normal, edema, atelectasis, penumonia, and
nodule) using 3D CNN.

4.2.2. Liver Diseases Classification
In Case of liver 3D experiments, we first combine all

the Liver disease classes (dilation, mass, and stone) to a
single class as abnormal and classify normal vs abnor-
mal. Figure 13 shown the liver normal normal vs ab-
normal averaged across 2 of the 4-fold cross-validation
samplings

Figure 13 shown the multi-class classification (nor-
mal, dilation, mass, and stone) results for the liver.
ROC curves are averaged across 2 of the 4-fold cross-
validation samplings.

4.2.3. Kidneys Diseases Classification
Figure 12 shown the multi-class classification (nor-

mal, cyst, mass, stone, and atrophy) results for the Kid-
ney. ROC curves are 1 of the 4-fold cross-validation
samplings.

5. Discussion

In this study, a weakly supervised 3D classification
workflow was proposed for the purpose of classify-
ing multiple diseases of lung, liver and kidneys using
CT images. Unlike conventional methods which re-
quire well-annotated data and handcrafted features, the
proposed system adopts a rule-based model to analyze
radiology reports to provide case-level labels. These
provide a form of weak supervision, because each la-
bel (e.g., lung nodule) applies to all 2D or 3D patches
within a case, whereas the disease may be present only
in some or none of those patches. By providing suf-
ficient numbers of cases, the model can learn disease
patterns from these noisy, case-level labels.

5.1. Segmentation

As we are working with chest-abdominal organs, to
support the navigation and classification of specific or-
gans, we trained a deep segmentation model. Based
on the validation performance, the DenseVNet outper-
formed both 3D FCN and 3D Unet, with an especially
high margin for the kidneys. Over 0.9 DSC for lungs
and liver and over 0.8 for kidneys predictive segmen-
tation performance was achieved on the XCAT valida-
tion dataset. Compared to the XCAT ground truth es-
tablished by non-medical research assistants, there were
actually many instances where our segmentation model
provided more accurate segmentation. This demon-
strates the potential improvements from automated al-
gorithms trained with sufficient data.
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Table 2: Average Dice coefficient for the evaluation of XCAT validation set . Bold Font Highlights The Highest DSC.
Right lung Left lung Liver Right kidney Left kidney

Dice coefficient (%)
3D FCN 0.93 0.06 0.95 0.01 0.91 0.03 0.84 0.08 0.78 0.07
3D Unet 0.94 0.06 0.95 0.01 0.92 0.03 0.86 0.07 0.80 0.07

DenseVnet 0.95 0.02 0.95 0.01 0.92 0.01 0.89 0.03 0.89 0.02

Figure 6: An example of the segmentation.

Figure 7: Qualitative results on duke diseased data without ground-
truth segmentation labels. Top:Lung Edema,right lung (green),
left lung (blue). Buttom:Lung atelectasis CT volume,,right lung
(green),left lung (blue).

Figure 8: Segmentation results for kidneys on highresolution Duke
data.

Although we achieved a high segmentation perfor-
mance over the validation set of XCAT, the trained
model failed to generalize to new cases with diseased
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Figure 9: Slice-based ROC curves for 2D multi-class lung classifier
(normal, edema, atelectasis, penumonia, and nodule)

Figure 10: Patient-based ROC curves for 2D multi-class lung classi-
fier (normal, edema, atelectasis, penumonia, and nodule)

Figure 11: ROC curve for 3D binary lung classifier: normal vs abnor-
mal (combination of edema, atelectasis, penumonia, and nodule)

lungs. This downfall in performance can be explained
by the fact that all XCAT CT volumes (training and val-
idation set) belong to the normal class and no patholog-
ical abnormalities are present. Normally lung anatomy
consists mostly of air, but this can change with certain
diseases, which is why we selected lung diseases such
as edema which fill the lungs with fluid instead of air,
or atelectasis which can collapse the entire lung or area

Figure 12: ROC curves of 3D multi-class lung classifier (normal,
edema, atelectasis, penumonia, and nodule)

Figure 13: ROC curve for 3D binary Liver classifier: normal vs ab-
normal (combination of dilation, mass, and stone)

Figure 14: ROC curves of 3D multi-class liver classifier (normal, di-
lation, mass, and stone)

(lobe) of the lung. So during training, the segmentation
model have not learned these types of abnormalities to
handle during testing. However, our fine-tuning process
using manually corrected disease cases provided dra-
matic qualitative improvement in segmentation. More-
over, this semi-automated process is relatively quick
and easy, and demonstrates a potential workflow to im-
prove performance by enriching the training with diffi-
cult cases.
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Figure 15: ROC curves of 3D multi-class kidney classifier (normal,
cyst, mass, stone, and atrophy)

Using the lung cases, we demonstrated a technique
to pool together the predictive results from individual
CT slice images, producing a patient-level prediction
that provided better overall performance across all five
classes. This improvement in performance is expected,
as during slice-level prediction we labeled the slices
based on the radiology report and all slices shared the
same label. So the label was weak because often the
disease will not appear in all slices. When we averaged
the predictions for all slices of each patient, the high
predicted probabilities helped to improve performance.
Pooling by the maximum instead of the average may
further enhance performance, especially for focal dis-
ease such as lung nodules.

Moving from 2D CNN to 3D CNN allowed us to take
advantage of the volumetric nature of CT, as AUC was
improved for 3 out of the 4 lung disease classes. The
only exception was for pneumonia, which is logical be-
cause out of the 5 classes for the lungs, that had the
lowest samples, which affected the learning curve of the
3D CNN. This performance improvement is in the trad-
eoff of more computation power, time and expenses. Al-
though, our main goal is to investigate the effect of weak
supervision on multi-disease classification, experiment-
ing with normal vs. abnormal gives us a fair idea of how
hard it’s for that network to learn discriminate features.

In the case of liver, in multi-class classification, we
have a huge imbalance in data where the normal class
is almost 50% of the entire liver dataset. This reason
supports why the perforce outcome for both the binary
and multi-class AUC are exactly the same. As we con-
tinue to explore the relative advantages of these two ap-
proaches toward classification, it will be important to
keep the class prevalence in mind. In fact, one very im-
portant thing to notice in both 3D multi-class classifica-
tion task for lung and liver is that the worst performing
class is the class which has the lowest samples.

5.2. Limitations

Since this is our very first attempt towards multi-
organ, multi-disease classification, it has a few limita-
tions. Training a deep model requires a considerable
amount of data, with the most successful studies in the
literature sometimes boasting tens to hundreds of thou-
sands of cases. For our study, each disease class is near
200 CT volumes, with each organ represented by ap-
proximately 1000 cases. Although this is better than
many other studies, in the perspective of deep learn-
ing, this number is likely still insufficient. Download-
ing these CT volumes from PACS and performing de-
identification is a time-demanding task, and also storing
these volumes (each 0.5-1.0 GB) requires a lot of re-
sources due to data size. In ongoing work, we are in the
process of doubling the data which will likely improve
model performance and generalizability.

Compared to 2D CNN, working with the 3D CNNs
is computationally very expensive, so it becomes highly
nontrivial in case of CT volumes that can be 512×512×
1000 to process such large volumetric data. Due to
our time constraint, we couldn’t analyze the complete
performance of the 3D network. Our future experi-
ments will investigate important issues such as optimal
patch size for training, relationship of network depth
with features learned, optimal learning rate, and hyper-
parameter tuning.

We also observed that the segmentation performance
was much worse for the minority of cases without io-
dine contrast enhancement. This reflects the distribution
of cases in the clinical data. In the long term, it will be
advantageous to enrich the training data with less com-
mon cases acquired without contrast or with lower dose
protocols, or even cases with known image quality ar-
tifacts. This will enrich the training and improve the
generalization of the system.

6. Conclusions

In this study, we proposed a weakly supervised,
multi-organ, multi-disease classification framework that
uses a rule-based model to provide case-level labels.
A deep segmentation model provided navigation to tar-
get organs in chest-abdomen-pelvis CT scans. Finally,
we performed the multi-disease classification using 3D
CNN. To our best knowledge, this is the first medical
imaging study where multiple, diverse organs were tar-
geted to classify multiple, diverse diseases. As an initial
baseline, this study shows encouraging results of using
weak supervision and opens up a new, exciting, and un-
explored field. Further extension of the thesis can in-
clude experiments with a larger dataset and more dis-
ease types.
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Abstract

Metastatic melanoma is a malignancy of poor prognosis, although the recent use of immunotherapy has improved
global survival. Nevertheless there is a need for prognostic predictors to treatment response in metastatic melanoma.
Visual analysis of the CT scan by a radiologist can provide with some predictors (number of lesion, number of
metastatic sites, lesion sizes...), but little research has been published on computer aided prediction in metastatic
melanoma.
Purpose of this thesis is to compare the diagnostic performance of radiomic features and a convolutional neural
network (CNN) for classification of the metastatic melanoma patients in terms of 1 year survival and therapy response
to immunotherapy.
Manual segmentation (volumic (3D) and one slice (2D)) was performed on CT images. Radiomic features were
extracted from the segmented lesions, then selected by 5 different feature selection algorithms and classification
performed using 4 different algorithms. Same segmented lesions were used to feed the Deep Neural Network for
performance comparison. Although the number of patient is 71 and this is not enough for a deep learning based
classification, good results were obtained. Lastly, the effect of radiomic features for the survival time is searched
by using classical survival analysis methods such as Proportional Cox Hazar Model, Kaplan Meier Survival Curve
and hazard ratios of each covariates. The results shows that 3D radiomic features give better performance than 2D
radiomic features. The best results for both classification tasks are obtained by Convolutional Neural Network (CNN).

Keywords: Radiomics, Deep Learning, Survival Analysis, Metastatic Melanoma, Lifex, Transfer Learning

1. Introduction

Metastatic Melanoma (MM) is the type of malig-
nancy that has the highest mortality rate (Sabaila et al.,
2015). Melanoma causes more than 10,000 deaths each
year. It has a 98% five-year survival rate when di-
agnosed and treated early, at a local stage. In con-
trary, with advanced melanoma, at a metastatic stage
(i.e. with distant secondary lesions), five-year sur-
vival rate decreases up to 5 or 19% (Lens and Dawes,
2004). The first breakthrough in the treatment of
metastatic melanoma was the use of targeted therapy
blocking BRAF and MEK, which can unfortunately be
used in only 40% of patients whose tumour present a
BRAF V600 mutation (Larkin et al., 2014). The sec-
ond and major was the introduction of immunother-

apy (ipilimumab then pembrolizumab and nivolumab)
that proved to be associated with long overall survival
in metastatic melanoma (Robert et al., 2015). Im-
munotherapy is now commonly used as a first lign ther-
apy in MM.
The improvement in survival remains however hetero-
geneous when treated with immunotherapy. Adverse
events can occur during immunotherapy and can be se-
vere (Martin-Liberal et al., 2015). Clinicians need pre-
dictors to the response of immunotherapy for each pa-
tient to evaluate if he can benefit from immunother-
apy of if another treatment should be preferred (targeted
therapy, enrollment in clinical trials). The only predic-
tor known currently are the number of metastatic sites
(and notably presence of liver, lung and brain lesions)
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and the serum level of LDH.
CT scan is one the mostly used mean to assess the exten-
sion of the metastatic disease (it can be combined with a
brain MRI and/or with a PET CT). Visual analysis by a
radiologist of the CT scan can provide with the number
of sites with lesion (notably the presence of brain, liver
and lung lesion), the size and number of lesions. Fig-
ure 1 shows that an CT scan slice of brain metastasis of
melanoma.

Figure 1:Brain metastases of melanoma

Diagnostic imaging can provide the information such
as tumors overall shape, size, density. Heterogeneity
can not be quantified by the human eye, yet it has proven
to be a prognostic factor in some tumors (Rao et al.,
2016). Texture analysis is an emerging technique that
can be applied to quantify tumor heterogeneity (Lubner
et al., 2017). This technique analyzes the distribution
and relationship of pixel gray levels in the tumor and
identifies spatial variation of individual gray levels or
patterns.

The use of extracted high-dimensional data from
medical images (CT, MRI, PET CT, Ultrasound) is often
called in medical literature radiomics. It is mostly used
to evaluate prognosis in tumors, to detect or character-
ize tumors.It is a quickly developing area in medical im-
age analysis/ Figure 2 shows that a standard radiomics
based study flow. It first requires annotation (and often
segmentation) of the lesion in the medical image. Then
radiomics features are extraction for each lesion; they
describe the distribution of gray level in the segmented
image. Radiomics (imaging) features can then be com-
bined with other data for the patient such as clinical data
(age,sex...) and even genomics. Finally those combined

radiomic features can be used for classification, regres-
sion and survival analysis.

Besides from radiomics, another approach to Com-
puter Aided Diagnosis (CAD) is Deep Learning (DL).
It is becoming powerful tool for CAD systems day by
day. With increased number of images, classification
and regression models in medical image analysis are
extremely popular. Deep learning can be seen as a
type of machine learning. It is based on artificial neu-
ral networks. Learning phase of a deep neural net-
work is either supervised or unsupervised. If a label
or groundtruth is in the training step of the network, it
is called supervised. Unlike supervised learning, unsu-
pervised learning has no criteria to classify the data, the
computer determines the classes. Convolutional neural
networks (CNN) are a special type of Deep neural net-
work (DNN) that are used for images.

In the last recent years, it can be said that hand crafted
features (Radiomics) and deep features are equally .
Figure 3 shows Google scholar articles for deep learn-
ing and radiomics features. Although deep learning is
very popular in medical imaging field, the interest of ra-
diomics has been increasing. Figure 4 shows that the
main 4 applications domain of Hand-crafted and Deep
learning-based Radiomics.

In this study, we aimed at comparing radiomics and
deep features to predict survival time and therapy re-
sponse of the metastastic melanoma patients.

Radiomic data is combined with different feature se-
lection methods and machine learning classifiers. Then
by using CT scans, 2D tumor patches are extracted to
be used in a DNN for the same classification tasks. The
main aim is to show the difference between radiomic
features with machine learning versus DNN.

This thesis is organized as follows:
Section 2 explains applications and state of art articles
of comparison between radiomics and deep learning for
survival time analysis, therapy response or tumor clas-
sification based on survival time.
Section 3 presents the feature selection, classification,
data augmentation algorithms for Radiomics features
and convolutional neural network approach for classi-
fication in terms of time and therapy response. In addi-
tion, survival analysis is explained in the section 3. Af-
ter overview of the methods, the implementation part is
explained in this section as conclusion. Results for each
implemented method are in the section 4. Discussion
for the results are in section 5. The thesis is concluded
in section 6.

2. State of the art

The review takes into account not only the classifica-
tion by using Radiomics features, but also the deep neu-
ral network approaches to predict survival time, therapy
response survival analysis. The state of art studies cov-
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Figure 2:Pipeline and usage of radiomics (Gillies et al., 2016)

Figure 3: Google Scholar Results (Afshar et al., 2018)

Figure 4: Number of publications in the 4 application domains of
radiomics and deep features in medical image analysis (Afshar et al.,
2018)

ering the master thesis topic partly are; survival predic-
tion or classification with the comparison of radiomic
features and deep features. The literature review mainly
focus on the studies that use CT image modality. Exist-
ing groups can be divided into 3 and can be explained
by selected articles:

2.1. Radiomics Features and Machine Learning

In this section, the radiomic features are combined
with machine learning methods. Radiomics features are
extracted by using softwares and different feature selec-
tion methods are applied to reduce the dimensionality
of feature maps. Then conventional machine learning

classifiers such as Support Vector Machine, K-nearest
neighbor classifier, Random Forest Classifier are uti-
lized for classification in order to predict survival time
of the patients.
Sun et al. (2018) extracted 339 radiomics features that
are extracted from CT images of 283 patients presenting
with a pulmonary cancer (NSCLC). Then 5 feature se-
lection methods and 8 machine learning methods were
combined for the Overall Survival (OS) prediction. The
metrics for evaluation was concordance index. Method
evaluation is based on 3 cross-validation (CV).
Chaddad et al. (2017) proposed a method for NSCLC
patients: CT scans of 315 NSCLC patients were used
to extract 24 image features. Random forest classifier
were used to predict patient survival groups. Log-rank
test, Kaplan-Meier estimation and used for feature im-
portance.
Zhang et al (Zhang et al., 2017) studied 112 subjects
with lung cancer and the aim is to predict of lung cancer
recurrence and death. This study uses only radiomics
features.
Aerts et al. (2014) study is one of the most broad study
for relationship between radiomics features and survival
prediction in terms of number of patients with 1019 pa-
tients. In Yin et al. (2019) et al study aimed to find
optimal machine learning methods for preoperative dif-
ferentiation of sacral chorddoma (SC) and sacral giant
cell tumour (SGCT) by using CT images. Total number
of patient was 95 and 3 feature selection methods (Re-
lief, LASSO and Random Forest) were combined with
3 classification methods (SVM, RF and GLM).

In the above approaches, the number of patients
highly correlated with the performance of the classifiers.

2.2. Deep Features and Machine Learning
Some of the following studies use not only deep fea-

tures solely but also a combination of radiomics and
deep features. Aydin et al. (2017) proposed a search for
the comparison between radiomic features versus cnn
features for overall survival of brain tumour patients.
They concluded that the best prediction accuracy can be
achieved by using CNN features and linear discriminant
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combination. On the other hand Nie et al. (2019) used
3D patches to feed the convolutional neural network to
predict the survival time for brain tumor patients. Fi-
nal classification was achieved by using Support Vec-
tor Machines. 3D patches classification is a novel ap-
proach but the main limitation is number of images.
Lao et al. (2017) proved that the combination of deep
learning features and radiomic features performed better
than only radiomic features for prediction of survival in
an aggressive primary tymor of the brain, glioblastoma
multiforme.

2.3. Deep Learning

This approach aims to use only convolutional neural
network for survival time prediction classification.
van der Burgh et al. (2017) combined the deep learning
features and clinical data to feed the network to predict
survival time in terms of classification.
Li et al. (2017) study used the fully CNN pipeline for
survival analysis of rectal cancer.
Haarburger et al. (2018) used 2D patches for feature ex-
traction by using Resnet architecture. The deep features
were then combined with radiomic features for survival
predictions.

Table 1 shows the summary of state-of art review and
the information about image modality, number of pa-
tients and the feature properties.

It can be noted that studies from Table 1 focus on
mainly one type of cancer and on the primary tumor,
which means that images come from one part of body.
Indeed, the number of patients are much more than this
project. Number of samples have an effect on the ma-
chine learning and mostly the deep learning studies. Be-
sides, those studies tried to answer only one question at
the time : classification in terms of survival time, ther-
apy response or survival analysis. This thesis aimed to
find the answer all three questions.

2.4. CAD in metastatic melanoma

Only two studies used CAD in metastatic melanoma,
with only radiomic features. Smith et al. (2015) used
radiomic features from CT before treatment and their
changes on the CT after the beginning of treatment to
find prognostic factors of survival. This study contains
few patients (23), concerns an out of date treatment (be-
vazicumab).
Recently, Durot et al. (2019) analyzed radiomic features
on CT before pembrolizumab. But this study has limits
that this thesis wants to overstep : small number of pa-
tients (31), the features were evaluated on multiple le-
sion by patient but only their mean value was used, the
features were extracted on one slice only, and finally
no classification nor prediction was performed or eval-
uated (the result is just an association of features with
survival).

3. Material and methods

3.1. Materials
This is a monocentric retrospecticve study. All pa-

tients treated with anti PD1 immunotherapy (nivolumab
or pembrolizumab) for metastatic melanoma in the
Universite Clermont Auvergne Hospital were included,
with a total of 71 patients. Images of the last CT before
immunotherapy were visually assessed by a radiologist
to identify the metastasis. Then each mesurable lesion
was manually segmented on the DICOM image by two
radiologists with 4 and 8 years experience. It resulted
for each lesion in one volumic (3D) ROI for the whole
tumour and one 2D ROI for the largest slice of the le-
sion. The number of lesions per patient varied from 1
to 11; the total number of lesions was 539. Most lesion
were pulmonary lesions, then brain lesions.

3.2. Methods Overview
3.2.1. Radiomics Features

Radiomics is a recent field that aims to extract quan-
titative features from medical images for decision sup-
port. It can be defined as the conversion from images to
high dimensional data. Combination of radiomics data
and clinical data increase the power of decision support
systems. Radiomics features can be extracted from to-
mographic images. These features can be divided into
3 categories: First order, second order and high order
radiomics.
First order radiomics take into account the pixel in-
tensity distribution. First order radiomics have 2 cate-
gories; shape and intensity features. Shape based fea-
tures is useful to describe geometrical properties of re-
gion of interest. Shape based features are extremely use-
ful for tumor malignancy and therapy response predic-
tion (Afshar et al., 2018). Intensity based features are
used to investigate properties of the histogram of tumor
intensities. Examples of first order radiomics are com-
pactness, mean intensity, intensity standard deviation,
entropy, kurtosis, skewness and uniformity.
Second order radiomics concern texture features. Shape
and intensity features can fail when the correlation be-
tween different pixels of an image occurs. In that case
texture features are most important ones when hetero-
geneity has an indicator for a tumor type(Afshar et al.,
2018). In this thesis, 3 subcategory of texture features
are focused on. These are gray level co-occurrence, gray
level run length and gray level zone length (GLZLM).
Gray level co-occurrence is a matrix to show the fre-
quency of two intensity levels of two neighbour pixels
(Afshar et al., 2018). Gray level run length is also a
matrix for consecutive pixels. Gray-Level zone length
matrix focuses on the size of homogeneous regions in
a volume. More details are shown in Table 2. Table 2
shows the radiomic feature categories that are used in
this thesis. Table 3 is brief explanation of used radiomic
features in this project.
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Table 1: Review of Radiomics and Deep Learning articles for CT imaging
Author Modality Application Domain Features Number of patients
Napel et al. (2018) CT Lung Cancer Survival Prediction Radiomics Features 288
Haarburger et al. (2018) CT Image Based Survival Prediction of Lung Cancer Patients Deep Features 422
Li et al. (2017) CT+PET mage basedsurvival analysis of rectal cancer Deep Features 84
Nie et al. (2019) Mri+fMri+DTI Survival Time Prediction of Brain Tumor Patients Deep Features 69
van der Burgh et al. (2017) MRI Prediction of survival on MRI in amyotropic lateral sclerosis Clinical data+Deep Features 135
Truhn et al. (2018) MRI Classification of lesions at MRI Radiomics vs Deep Features 447
Bibault et al. (2018) CT Therapy response for advanced rectal cancer Radiomics vs Deep Features 95
Chato et al. (2017) MRI Prediction of overall survival of brain tumor patients using MRI images Radiomics vs Deep Features 163
Lao et al. (2017) Multi modality MR images Prediction survival in glioblastoma multiforme Radiomics and Deep 75
Zhang et al. (2017) CT Prediction of lung cancer recurrence and death Radiomics 112
Aerts et al. (2014) CT Lung ,head and neck cancer survival prediction Radiomics 1019
Oikonomou et al. (2018) CT and PET Lung cancer survival prediction Radiomics 150
Oakden-Rayner et al. (2017) CT Longevity prediction Radiomics,deep features 48
Paul et al. (2016) CT Lung Cancer short/long term survival prediction Radiomics and Deep features 81
Wu et al. (2019) CT Bladder Cancer treatment response prediction Deep Features 123

The radiomic feature extraction can be done in differ-
ent ways: there are softwares such as LIFEx software,
3DSlicer or pyRadiomics python package. LIFEx is a
software that is contributed by different universities and
institutes in France (Nioche et al., 2018). Compared to
pyRadiomics, LIFEx is user friendly. There is no need
to code any line to extract radiomic features, hence used
by radiologists; manual segmentation can also be per-
formed on LIFEx. The radiomic feature extraction in
this work was done using LIFEx. LIFEx enables the cal-
culation of conventional, histogram-based textural and
shape features from all image modalities (Nioche et al.,
2018). A total of 38 radiomic features were extracted
from all ROIs.

3.2.2. Feature Selection and Classification Algorithms
In the decision support and computer aided diagnosis

systems, the accuracy depends on the amount of data.
In the Gillies et al. (2016) study, rule of thumb is 10 pa-
tients per feature for the binary classification case. Since
the number of patients in this study is 71 and the num-
ber of extracted features are 38, feature selection is a
critical step to get better results. Feature selection meth-
ods are divided into 3 categories. These are filter meth-
ods, wrapper methods and embedded methods. Figure
5 shows the block representation of these methods.

Figure 5: (a)Filter methods, (b)Wrapper methods, (c)Embedded
methods

1. Filter methods: These methods are also called uni-
variate methods. They consider the relationship
between features and class labels. Redundancy is
not considered.

2. Wrapper methods: Wrapper or multivariate meth-
ods select the features iteratively by maximizing
prediction accuracy of the classifier.

3. Embedded methods: They are very similar to
wrapper techniques since they are likewise used
to streamline the target capacity or execution of a
learning calculation or model. The distinction to
wrapper strategies is that a natural model structure
metric is utilized amid learning.

In this study total 5 different feature selection algo-
rithms were utilized with radiomic features. These are
SFS (Sequential Forward Selection), Boruta, Relief, Re-
cursive and Random Forest feature selection algorithms.
Description of the each feature selection method is as
follows:

1. SFS: Input of SFS algorithm is whole feature set.
Output is a subset of features. Number of selected
features k are tuned by the rule of k > d where d
is the number of features. It is a wrapper feature
selection method.

2. Boruta Feature Selection: It is a wrapper built
around the random forest classification algorithm.
It tries to find important features in a dataset with
respect to the labels. First step is the duplication
of the feature vector, and shuffling values in each
column. These values are called shadow features.
Second step is to train a classifier on the dataset.
Usually random forest or logistic regression classi-
fiers are used. Next step, boruta algorithm checks
the higher importance features. The condition is
that an original feature has a higher Z-score than
not only maximum Z-score of its shadow features
but also higher than the best of the shadow features.
If it is true, then this feature as selected. Selected
feature is called a hit. All the hits are found itera-
tively. Note that a Z-score is the number of stan-
dard deviations from the mean a data point. In each
iteration, the algorithm compares the Z-scores of
shuffled shadow features and the original features
to see if the original features are performed better
than shuffled shadow features.If it performs better,
the algorithm will mark the feature as important.
Briefly it can be said that boruta is trying to val-
idate the importance of the feature by comparing
with random shuffled copies, which increases the
robustness.
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Table 2: Radiomics feature types
Category Description Sub-category
First Order Radiomics Information of pixel intensity distribution
Shape Features Geometric shape of region ROI,Sphericity,Compactness, Total Volume, Surface Area, Diameter,flatness and surface to volume ration [2,25]

Intensity Features Obtained from histogram of the region
Mean Intensity, Intensity Standard Deviation, Median Intensity, Minimum of Intensity, Maximum of Intensity,
Mean of positive intensities, Uniformity, Kurtosis, Skewness, Entropy [2,25]

Second Order Radiomics
Information of texture features and relationship
between pixels and tumor heteregonity

Gray Level Co-occurence (GLCM) Number of times of two intensity levels in a pixel pair. Distance between pixels can be specified . Contrast,Energy, Correlation, Homogeneity, Variance, Autocorrelation,Dissimilarity, Correlation.
Gray Level Run-Length(GLRLM) Information from size of homogenous zones Gray-Level nonuniformity,

Table 3: Radiomics features
Name of the radiomics feature Category Brief Explanation
GLCM Homogeneity Texture Features Homogeneity of grey-level voxel pairs.
GLCM Energy(Uniformity) Texture Features Uniformity of gray-level voxel pairs.
GLCM Contrast(Variance) Texture Features Local Variations in GLCM
GLCM Correlation Texture Features Linear dependency of grey levels in GLCM
GLCM Entropy log10 and GLCM Entropy log2 Texture Features Randomness of gray-level voxel pairs
GLCM Dissimilarity Texture Features Variation of gray level voxel pairs
NGLDM Coarseness Texture Features Level of spatial rate of change in intensity
NGLDM Contrast Texture Features Intensity difference between neighbour regions
GLZLM SZE Texture Features Long homogeneous zones in an image
GLZLM LZE Texture Features Long homogeneous zones in an image
GLZLM HGZE Texture Features Distribution of the low or high grey-level zone
GLZLM SZHGE Texture Features Distribution of the short homogeneous zones with low or high grey-levels
GLZLM LZHGE Texture Features Distribution of the long homogeneous zones with low or high grey-levels
GLZLM GLNU Texture Features Nonuniformity of the grey-levels or the length of the homogeneous zones
GLZLM ZLNU Texture Features Nonuniformity of the grey-levels or the length of the homogeneous zones
GLZLM ZP Texture Features Homogeneity of homogenous zones
GLRLM SRE Texture Features Distribution of the short or the long homogeneous runs in an image.
GLRLM LRE Texture Features Distribution of the short or the long homogeneous runs in an image.
GLRLM HGRE Texture Features Distribution of the low or high grey-level runs
GLRLM SRHGE Texture Features Distribution of the low or high grey-level runs
GLRLM LRHGE Texture Features Distribution of the long homogeneous runs with low or high grey-levels
GLRLM GLNU Texture Features Nonuniformity of the grey-levels or the length of the homogeneous regions
GLRLM RLNU Texture Features Nonuniformity of the grey-levels or the length of the homogeneous runs
GLRLM RP Texture Features Homogeneity of the homogeneous regions
minValue Texture Features Minimum pixel value of the ROI
meanValue Texture Features Average of pixel values
stdValue Texture Features Standard deviation of pixel values
maxValue Texture Features Maximum pixel value
CONVENTIONAL TLG (mL) First Order Features Total Lesion Glycolysis inside the ROI
HISTO Skewness First Order Features Asymmetry of the grey-level distribution in the histogram
HISTO Kurtosis First Order Features Shape of the grey-level Distribution (peaked or flat) relative to a normal distribution
HISTO Entropy log10 First Order Features Randomness of the distribution
HISTO Entropy log2 First Order Features Randomness of the distribution
HISTO Energy First Order Features Uniformity of the distribution
SHAPE Volume (mL) First Order Features Volume of ROI in mL
SHAPE Volume (# vx) First Order Features Volume of ROI in mL
SHAPE Sphericity First Order Features Sphericity of the volume. 1 for a perfect sphere.
SHAPE Compacity First Order Features Compactness of the ROI

3. Relief Feature Selection: It is a filter style feature
selection algorithm. It takes a data set with n sam-
ples (patients) of p features. The labels of sam-
ples are known. The features should be normal-
ized in the interval [0 1]. The number of iteration
of algorithm is called m. Algorithm starts with a
weight vector (W) of zeros. The length of this vec-
tor is also p. Relief takes the feature row vector
(X) which belongs to one random sample (patient)
and the feature vectors of the sample closest to X
(by Euclidean distance) from each class. The clos-
est same-class sample is called ’near-hit’, and the
closest different-class sample is called ’near-miss’.
The weight vector is updated as:

Wi = Wi − (xi − nearHiti)2 + (xi − nearMissi)2

Thus the weight of any given feature decreases if it
differs from that feature in nearby instances of the

same class more than nearby instances of the other
class, and increases in the reverse case.
At the end of iterations, divide each element of the
weight vector by the number of iteration. Result
is called relevance vector. Features are selected if
their relevance is greater than a threshold T.

4. Recursive Feature Selection: Recursive feature
elimination (RFE) is a feature selection method
that fits a model and removes the weakest feature
(or features) until the specified number of features
is reached. Features are ranked by the models
coefficient or feature importances, and by recur-
sively eliminating a small number of features per
loop, RFE attempts to eliminate dependencies and
collinearity that may exist in the model.

5. Random Forest Feature Selection: Random For-
est Classifier consists of many decision trees. By
using random forest classifier, the features can be
ranked in terms of importance. In the random for-
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Figure 6: Support vector machine

est, there is a nice property: for each feature there
is a condition at every node in the decision trees.
It is designed to split the dataset for classification.
Optimal case for splitting the dataset is called im-
purity. When random forest classifier is trained, it
detects the amount of decreased special impurity
weight. Since each feature has own special impu-
rity, the features can be ranked according to special
impurity.

For the classification, Support Vector Machines, Lo-
gistic Regression, Random Forest and k-neighbor clas-
sifiers are used.

1. Support Vector Machine (SVM): SVM is a su-
pervised machine learning algoritm. It aims to
find a best hyperplane to split a dataset into two
classes. A support vector is a data point that is
nearest to the hyperplane. They are accepted as
critical element of a data set. The term margin is
defined as the distance between support vector and
hyperplane. SVM choses a best hyperplane with
the biggest margin between the hyperplane and
any point within the training set. This increases
the classifier performance. Figure 6 shows a SVM
classification.

2. Random Forest: Random forest consist of many
decision tree blocks. A decision tree can be defined
as a decision support tool that uses a tree-like graph
or model of decisions and their possible outcomes,
including chance event outcomes, resource costs,
usage. Since a random forest classifier are made
by decision trees, each decision tree in the classi-
fier considers a random subset Ni of features when
forming questions and only has access to a random
set of the training data points. This increases the
power of random forest classifier. Figure 7 is the
representation of random forest classifier. For each
feature, there is one decision tree.

3. K-nearest neighbour(KNN): It is also a supervised

Figure 7: Random Forest Classifier(Adapted from Global Software
Support)

machine learning algorithm. The algorithm as-
sumes that similar things are close to each other.
Therefore, for KNN distance or closeness is the
metric for similarity. It calculates the distances be-
tween points on a graph.

Figure 8: KNN Classifier (Adapted from mathwork)

4. Logistic Regression: It is a supervised machine
learning classification algorithm that uses sigmoid
function σ. An equation can be written as :

hθ(x) = σ(Z)

hθ(x) =
1

1 + e−θT x

The logistic function has asymptotes at 0 and 1,
and it crosses the y-axis at 0.5. Figure 9 shows an
example of logistic regression classifier.

All these classification and feature selection algo-
rithms have been applied to radiomic features in the
state of art studies. There is no study in the state of
art (Section 2) that focused on metastastic melanoma,
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Figure 9: Logistic Regression Classifier(Adapted from Medium)

that is the reason why this study aimed to investi-
gate the effect of classification and different feature se-
lection methods on radiomic features from metastastic
melanoma lesions.

Table 4 shows that the selected features with different
feature selection algorithms.

3.3. Data Augmentation and Data Preprocessing
3.3.1. SMOTE

This study investigates the survival time prediction
and therapy response prediction of the patients. Clas-
sifier performance depends on data balance. For both
cases, there is an imbalanced data problem. Patients are
not equally distributed between classes in each study.
Imbalanced dataset is the most common accurance for
cad and decision support systems due to smaller number
of labelled images.

Since the data is real and limited, it is not easy to
find a dataset that has 2 classes equally distributed.
Therefore, data augmentation to overcome imbalanced
datasets are highly important and common in data sci-
ence. One of the data augmentation method is SMOTE.
It is the abbreviation of Synthetic Minority Oversam-
pling Technique. This method is a very popular over-
sampling method that was proposed to improve random
oversampling but its behavior on high-dimensional data
has not been thoroughly investigated (Lusa and Others,
2013).

From the Figure 10, SMOTE can be summarized as
follow : SMOTE finds the n-nearest neighbors in the
minority class for each of the samples in the class.Then
it draws a line between the the neighbors and generates
random points on the lines.

In this study, SMOTE is used for radiomic features.
Many radiomics papers employ SMOTE data augmen-
tation method to overcome imbalanced data solution.

3.3.2. Image Preprocessing and Patch Extraction
Above subsection explains the data augmentation for

radiomic features. Recall that in this study total 71 pa-
tients’ CT scans were used. For classification, deep
learning needs a lot of data. When the dataset gets

Figure 10: SMOTE Data Augmentation (Lusa and Others, 2013)

larger, the network is able to learn the features and
parameters more accurately. Larger dataset makes the
deep learning model more generalized for predictions
and it prevents the over-fitting. There are 2 main ad-
vantages of CT images in this study. First advantage of
CT images is that they are 3D volumes. The 2D slices
can be extracted easily and augmentation can be done
easily. Second advantage is that these 2D slices can be
extracted not only from axial axis but also from sagital
or coronal axes. In medical imaging field, even though
the number of instances are less, data augmentation can
be done successfully. Figure 11 is a patient’s metastatic
melanoma lesion in axial sagital and coronal axes view.

Before 2D patch extraction, all DICOM files were
converted to nii files. Nii file type is easier to use in
Matlab. Then image normalization is applied using the
following equation:

Figure 11: Axial-Coronal-Sagittal Axes of a Tumor Patient

Inew =
Icurrent − Imean

S tandard deviation
(1)

where I is the intensity of the pixel.
Data normalization is an important step in this study

because CT images are from different parts of body.

18.8



Radiomics versus Convolutional Neural Networks for Survival Time Prediction and Therapy Response of Metastatic
Melanoma in Computed Tomography 9

Table 4: Selected Radiomics Features for different feature selection methods
Classification Task Feature Selection Method Selected Features

Survival Time Prediction Boruta
’GLRLM SRHGE’, ’GLZLM ZLNU’, ’SHAPE VOLUME’, ’MAXVALUE’,
’GLZLM GLNU’

Survival Time Prediction Relief ’GLCM Entropy log2’, ’GLCM Dissimilarity’, ’GLRLM LRE’, ’GLRLM LRHGE’, ’GLZLM LZHGE’

Survival Time Prediction SFS
’stdValue’, ’GLCM Correlation’, ’GLCM Dissimilarity’, ’GLRLM SRHGE’, ’GLRLM GLNU’,
’NGLDM Contrast’, ’GLZLM LZHGE’, ’GLZLM ZP’

Survival Time Prediction Recursive
’HISTO Skewness5’, ’SHAPE Volume10’, ’SHAPE Sphericity’, ’GLRLM SRE’, ’GLCM Energy’,
’GLRLM SRHGE’, ’GLRLM RLNU’, ’NGLDM Coarseness’,’NGLDM Contrast’,’GLZLM ZLNU’

Survival Time Prediction Random Forest

’minValue’, ’meanValue’, ’stdValue’, ’maxValue’, ’CONVENTIONAL TLG (mL)’,
’HISTO Skewness’, ’HISTO Kurtosis’, ’HISTO Energy’, ’SHAPE Volume (mL)’,
’SHAPE Sphericity (only for 3D ROI (nZ>1)’, ’GLCM Correlation’, ’GLRLM HGRE’,
’GLRLM SRHGE’, ’GLRLM GLNU’, ’GLZLM HGZE’, ’GLZLM ZLNU’, ’GLZLM ZP’

Therapy Response Boruta
’GLZLM HGZE’, ’HISTO Skewness’ ,’meanValue’, ’GLRLM HGRE’,
’SHAPE Sphericity’)

Therapy Response Relief
’GLCM Correlation’, ’GLCM Entropy log10’, ’GLRLM SRHGE’, ’GLRLM GLNU’,
’NGLDM Contrast’, ’GLZLM SZHGE’

Therapy Response SFS

’minValue’, ’meanValue’, ’CONVENTIONAL TLG (mL)’, ’HISTO Kurtosis’,
’HISTO Entropy log10’, ’HISTO Energy’, ’SHAPE Volume (mL)’,
’SHAPE Compacity only for 3D ROI (nZ>1)’, ’GLCM Energy’,
’GLCM Dissimilarity’, ’GLRLM SRE’, ’GLRLM GLNU’, ’GLRLM RLNU’,
’GLRLM RP’, ’GLZLM SZE’, ’GLZLM ZP

Therapy Response Recursive

’minValue’, ’meanValue’, ’stdValue’, ’maxValue’, ’HISTO Skewness’,
’HISTO Kurtosis’, ’HISTO Energy’, ’SHAPE Volume (mL)’,
’SHAPE Sphericity (only for 3D ROI (nZ>1)’, ’GLCM Correlation’,
’GLRLM LRHGE’, ’GLZLM SZE’, ’GLZLM HGZE’, ’GLZLM SZHGE’,
’GLZLM ZP’

Therapy Response Random Forest

’minValue’, ’meanValue’, ’stdValue’, ’maxValue’, ’HISTO Skewness’,
’HISTO Kurtosis’, ’HISTO Entropy log10’, ’HISTO Energy’,
’SHAPE Volume (mL)’, ’SHAPE Sphericity (only for 3D ROI (nZ>1)’,
’GLCM Correlation’, ’GLRLM SRE’, ’GLRLM HGRE’, ’GLRLM SRHGE’,
’GLZLM SZE’, ’GLZLM HGZE’

Equation (1) helps to normalize intensity level of ct im-
ages.

In this study, 2D patch extraction is done by using
mask window method. For all CT images, ROI masks
are available. These are also 3D volumes. Given the di-
mension of the CT images and the ROI of the lesions, it
would not be wise to use the full image as a direct input
for the network training. In that regard, each image is
split into 30 by 30 pixels windows. The window moves
first horizontally and from top to bottom. The starting
point (top left or top right) is chosen according to the
image orientation. The window is then analyzed to de-
fine if there is a full lesion inside this 30 by 30 pixels
windows. Bounding boxes of each tumor slices are cal-
culated then the maximum bounding box size is taken
for this study. It is obtained as 30 by 30 pixel windows.
The bounding box is calculated according to axial axis
of each tumor, the reason is that axial axis tumor ROI
for all lesions are bigger than coronal or sagital axes.By
the augmentation, dataset of 71 patients are enlarged to
21190 . Each CT image is sliced to obtain 2D grayscale
images. Since each patient has different numbers of CT
scans, the 2D image acquisition is achieved as figure
13. An example of axial-coronal and sagital views of a
lesion is shown in Figure 12.

The tumor patch extraction algorithm is detailed in
Algorithm 1. This algorithm is implemented in Matlab.

3.3.3. Convolutional Neural Networks
Convolutional Neural Networks (CNN) are one of the

best architectures for classification of images or detec-

Figure 12: 2D axial-coronal-sagittal patch extraction example

tion a region in the images. CNNs are getting popular
everyday due to the proved success. Imagenet challenge
is a proof for the power of deep learning. This annual
challenge shows that deep learning performance is ex-
ceeding the humans (Zaharchuk et al., 2018). The real
power of a CNN comes from convolutional layers. They
are responsible for the extraction of features across the
input image through convolution. Each convolutional
layer is connected to a small chunk of spatially con-
nected neurons. Another type of layers in CNN is max
pooling. This layer is derived from convolutional layers
to reduce the size of feature maps. This helps a lot for
reducing the computational time. Fully-connected lay-
ers are called flatten layers. Each neuron of the flatten
layer is connected to activation function of its previous
layer. The main contribution of flatten layers is to learn
non-linear relationship in the featuremap. At the end ,
usually either a soft-max layer or sigmoid layer ends the
architecture. Its functionality is to normalize the output.

The main power of CNN comes from discriminant
feature extraction. Although CNN is a good approach
in medical image analysis, it has some drawbacks. First
of all, a huge amount of data is required. This is the first
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Figure 13: 2D image acquisiton for one patient for axial axis (Afshar et al., 2018)

challenge in medical imaging because annotated data is
not much. Data acquisition is expensive and annota-
tion is time consuming. Second drawback is parameter
tuning. Deep learning has many parameters and when
train a CNN, overfitting is a common issue. In con-
clusion, it can be said that training of a CNN is very
challenging for medical imaging field (Pan and Yang,
2010). The training problem is solved easily. Networks
that are trained by Imagenets are available. This method
is called Trans f erLearning

It has been proven that transfer learning is more ro-
bust than training from scratch (Tajbakhsh et al., 2016).

In this thesis one of the popular CNN architecture is
implemented for time prediction classification and ther-
apy response classification of patients by using transfer
learning. VGG-16 is network that has 33 convolutional
layers a 16 weight layers net. It is built by Oxford’s vi-
sual geometry group (Simonyan and Zisserman, 2014).
Although VGG-16 pretrained network is trained by Im-
ageNet database and these images are not medical im-
ages, it is shown that transfer learning can be adapted
easily to medical imaging. The network is shown in fig-
ure VGG16. The reason behind VGG-16 is that among
pre-trained architectures, VGG-16 has the minimum in-
put size. It was trained 48 by 48 RGB images. The
architecture is shown in Figure 14.

3.3.4. Deep Features
Traditionally extracted feature methods are called

handcrafted feature engineering. Radiomic features are
in this category. Although handcrafted features are quite
popular in medical imaging, the number of features per
image is limited. For example, in radiomics there is
no more than 200 features. The main contribution and
advantage of deep learning is automatic feature extrac-
tion. Until fully connected layers, convolutional layers
are responsible to extract big-dimensional features. The
power of deep features is that it is not effected by any
human bias.

3.3.5. Survival Analysis
Survival analysis is the study of time-to-event data for

an individual. In medicine, the most common events are
death, therapy response. The main problem for survival
analysis in medicine is the time indicator. While for
some patients time is the time-to-event, for others is the
time of last follow-up. In the second case data are called
censored data and usually are shown as 0. Indicator 1
means that the patient died and indicator 0 means that
the patient left the study and the last state is unknown.

Survival analysis can show the prediction of hazard.
The most common hazard prediction is called ”cox pro-
portional hazard model” (CPH) (D.R.Cox, 1972). This
model utilizes the predictors (covariates) and it deter-
mines each patient’s hazards. The output of the CPH is
the patient’s risk of dying at a time t.

h(t) = h0(t).exp(βT.covi ) (2)

In the equation 2, h0(t) is called the baseline hazard ra-
tio. The risk is symbolized in exponential part of the
equation. It assumes that risk is linear combination of
the predictors. The relationship between the hazard and
the survival time is inversely proportional. If S(i) and
S(j) denote the survival time of the patients then i and j
relationship becomes as follow:

S (i) > S ( j)→ h( j) > h(i) (3)

Note that S(i) and S(j) are concordant pairs.
The most common metrics in survival analysis is
concordanceindex. It is defined as the ratio of number
of concordant pairs and total possible pairs.

c index =
number of concordant pairs

total possible pairs
(4)

A Kaplan Meier curve (Leger et al., 2017), shows the
probability of survival S(t) in given points of time.

S (t) =
Number of patients survived until t

Number of patients at the beginning
(5)
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Algorithm 1: Patch Extraction Algorithm
Input: Input: CT image and mask
height=30, weight=30, stride=30
[rowsintensity,colsintensity,numbero f slice]=dimensions of CT
for i← 1 to numbero f slices do

intensity=CT(:,:,numbero f slice)
mask=mask(:,:,numbero f slice)
f=sum(sum(mask));
if f, 0 then

for i← 1 to rows do
Finalrow=initialrow+height;
if Finalrow<rowsintensity then

for i← 1 to colsintensity do
Finalcolumn=initialcolumn+width;
if Finalcolumn<colsintensity then

newmask= crop(mask,[initial initialcolumn height-1 height-1]);
e=sum(sum(newmask));
if e = f then

newintensity=crop(intensity,[initialrow initialcolumn height-1 height-1]);
newintensity=resize(intensity,[48,48]);
newmask=resize(mask, [48 48]);

initialcolumn=initialcolumn+stride;
initialcolumn=1

initialrow=initialrow+stride;
initialrow=1;

Output: Output: 2D 48x48 patches

But in medicine, clustered survival data are widely
common in clinical studies. The most important prop-
erty of a clustered data is that observations from differ-
ent patients are independent, while observations within
a patient may be correlated(LIANG and ZEGER, 1986).
To apply cox proportional hazard model on clustered
data, a set of estimating equations is provided by the
standard partial likelihood equations that incorrectly
ignore within cluster. To overcome clustered data
Royall (1986) proposed generalized estimated equa-
tions(GEE). It is used for estimation the parameters (co-
variates) of a linear model with unknown correlation be-
tween outcomes. In R programming, Cox proportional
hazard model can approach GEE by adding cluster pa-
rameter to a CPH model (Xiaohong Zhang, 2006). In
this thesis, CPH used with cluster parameter in order to
approach the problem as GEE for solving the correla-
tion problem of clustered data.

3.3.6. Therapy response and the survival time classifi-
cation

In this study, therapy response levels are obtained
from clinical data. For the survival time classification,
the clinical data has also the time between 2-follow up
for each patient. This information is used and assumed
that patient lived between these 2-follow up. The clas-
sification is binary for both cases. Therapy response la-
bels are bad or good prognosis and the survival time

classification labels are patients who lived in more than
1 year and less than 1 year after treatment initiation.

3.4. Implemented Methods

3.4.1. Machine Learning and Radiomics Features
In this case, a total 5 feature selection and 4 classi-

fication methods were combined for both therapy re-
sponse and patient survival time prediction classifica-
tion. And, the effect of data augmentation is also con-
sidered. SMOTE data augmentation method is used on
2D and 3D radiomic features. In total 4 ∗ 5 ∗ 2 = 40 dif-
ferent combinations are applied to the following label
and data:

1. Therapy response prediction with 2D radiomic fea-
tures (40 combinations)

2. Therapy response prediction with 3D radiomic fea-
tures (40 combinations)

3. Survival time prediction with 2D radiomic features
(40 combinations)

4. Survival time prediction with 3D radiomic features
(40 combinations)

A total of 160 different combinations were imple-
mented. For each model, 5 k-fold cross validation was
used in order to tune the hyper parameters. It is called
grid-search and the aim was to determine the optimal
values for a given model.
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Figure 14: VGG-16 Architecture

In this study, the data type was multiple lesion per
patient and the aim was to predict the therapy response
and survival time patient based. Therefore, leave one
out cross validation was used to assign the label for pre-
dictions. For each iteration of a model, one patient was
kept as test set and rest is used for training. After train-
ing, predictions for each tumor in a patients were as-
signed. To finalize the patient based assignment, the
majority class of the predictions were used. For each
patient, the majority of the predictions were assigned as
the patient based prediction of the model.

3.4.2. Machine Learning and Deep Features
In this method, extracted patches were used to feed

the network. The VGG-16 was used to extract deep

features from each patch. Then all the features were
stored as .csv file. Every patient has his own .csv file.
Next step was the feature reduction. Due to huge num-
ber of covariates (512), this step was needed. Decision
tree feature selection method was used for feature re-
duction. Number of covariates decreased from 512 to
178. Then SVM, Random Forest, Logistic Regression
and K-nearest neighbour algorithms were used to clas-
sify the deep features in terms of therapy response and
the survival time prediction.

3.4.3. Deep Learning
VGG-16 architecture was used for both classification

tasks. Transfer learning was used by freezing the first 4
convolution blocks: Conv block 1 , conv block 2,conv
block 3 and conv block 4. Later on, due to huge amount
of augmented data, only freezing first two convolutional
blocks (conv block 1 and conv block 2) was used for
both cases. Since the tasks are binary classification, bi-
nary crossentropy is set as loss function and sigmoid ac-
tivation function is used as the last layer activation func-
tion. The method for patient classification is applied in
a same way machine learning section. For each patient,
subfolders were created. Each subfolder, has the all tu-
mor patches from axial coronal and sagittal axes. In
each iteration of the network, one patient was kept as
test set and the rest was used as training the network.
Number of epochs per patient was 5. At the end of each
iteration, network predicted the labels for all the patches
in the test folder. Later on, patches labels were voted
and majority class label was assigned as the predicted
patient label.

In deep learning, activation function is one of the
most important element. Currently, the most common
activation function is the Rectified Linear Unit (ReLU).
First, the ReLU activation functions were utilized in the
fully connected layers. After the network fails, other
activation functions were searched. In 2017, Google
brain proposed a new activation function which is
called swish (Ramachandran et al., 2017). Swish can
be simplified as f (x) = x ∗ sigmoid(x). (Ramachandran
et al., 2017). Their experiments show that Swish is a
better option than ReLU as activation funcion in DNN
across a number of challenging data sets. Swish is as
simple and similar as Relu and it is easy to replace Relu
with swish in a deep neural network. Swish and relu
activation functions are shown figure 15:

The main challenge of this study is survival time clas-
sification. The reason is that, all patients have same
disease and some of them are censored which is their
events are unknown. VGG-16 has not used to classify
the patients in terms of survival time. The closest study
Haarburger et al. (2018) used the pretrained Resnet-50
as feature extractor then these features are combined
with radiomics features.
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Figure 15: Swish and Relu activation functions (Ramachandran et al.,
2017)

For a neural network, an activation function can be
written as:

output = activation f unction(dotproduct(weights,
inputs + bias)

Equation shows that the inputs are multiplied by
weights, and a bias value is added to the result. The
bias value allows the activation function to be shifted to
the left or right, to better fit the data. Hence changes
to the weights alter the steepness of the sigmoid curve,
whilst the bias offsets it, shifting the entire curve so it
fits better. Note also how the bias only influences the
output values, it doesnt interact with the actual input
data (Lacki, 2017).

The bias is added to the last layer of sigmoid’s func-
tion and the network is trained with biased last layer. Bi-
ased values are different in two tasks. While 0.7 is the
new threshold for the patient time classification prob-
lem, 0.4 is the new threshold for patient response clas-
sification. The effect of bias can be seen in Figure 16.
Bias moves the sigmoid function either −x or +x di-
rection. It can be said that the sigmoid moves to +x
direction for survival time prediction problem, whereas
this function moves to −x direction for therapy response
classification. Bias in the output layer is highly rec-
ommended if the activation function is sigmoid (Huang
et al., 2006).

Figure 16: Effect of bias

In summary, fully connected layers of Figure 14 have
modified. By adding bias, last layer has a sigmoid acti-

vation function with threshold of 0.7 and 0.4 instead of
0.5. Then first two layer’s activation functions are set to
swish.

3.4.4. Survival Analysis
For survival analysis, Kaplan Meier curves for good

and bad prognosis patients are plotted. Besides, the
hazard ratios for each radiomic covariate is calculated.
To investigate the hazard ratios of each radiomics sub-
groups, first and second order radiomic features are
clustered and cox proportional hazard model is calcu-
lated.

3.4.5. Evaluation Metrics
The performance of two classifications are evaluated

by accuracy and the confusion matrix that are obtained
by CNN and machine learning classifiers’ predictions.

1. Accuracy Accuracy is the most common and one
of the most robust evaluation metric for a classifier
performance. Figure 17 shows a confusion ma-
trix. From that matrix, accuracy is calculated as
follows:

Accuracy =
T P + T N

T P + T N + FP + FN
(6)

2. Confusion Matrix: Performances are calculated on
confusion matrix. A confusion matrix keeps the all
information about correct and wrong predictions.
True Positive, True Negative, False Positive and
False Negative values are the elements of that ma-
trix.
Indeed, confusion matrix is not helpful only accu-
racy; sensitivity and specifity can be calculated by
this matrix. In medical imaging field, sensitivity
and specifity are as important as sensitivity. Sensi-
tivity is the indicator that how often a test correctly
generates a positive result for people who have the
illness. In contrast, specificity is a metric for a tests
ability to correctly generate a negative result for
people who are not sick. Sensitivity and specifiy
are calculated as in the equation (7) and (8).

Figure 17: Confusion Matrix

S ensitivity =
T P

T P + FN
(7)
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S peci f ity =
T N

T N + FP
(8)

4. Results

In section 4.1, the best 10 performances are shown.
The performances of all combinations is in Appendix
A.

4.1. Machine Learning and Radiomics Features

Patient Survival Time Prediction : The best 10 com-
binations in terms of accuracy are shown in Table 5. The
best accuracy is achieved by the combination of Recur-
sive feature selection, logistic regression classifier and
smote data augmentation with 3D radiomic features.

Table 5: Survival time prediction
Feature Type Combination Accuracy Sensitivity Specifity
3D Recursive Feature Selection+Logistic Regression Classifier+Smote Data Augmentation 0.8591 0.9111 0.7692
3D Relief Feature Selection+ KNN classifier+ Smote Data Augmentation 0.8169 0.7555 0.9230
3D Random Forest Feature Selection+ Logistic Regression Classifier 0.8169 0.8444 0.7692
3D SFS Feature Selection+ Logistic Regression Clasifier 0.8169 0.9777 0.5384
3D Recursive Feature Selection+Logistic Regression 0.8169 0.8881 0.6923
3D SFS Feature Selection+Logistic Regression + SMOTE 0.8169 0.9777 0.5384
3D Random Forest+Logistic Regression Classifier+SMOTE 0.8028 0.8881 0.8076
3D Recursive+KNN 0.7883 0.7111 0.9230
3D Recursive+KNN+SMOTE 0.7887 0.6666 1.0
3D SFS+SVM 0.7746 1.0 0.3846

Therapy Response: The best 10 combinations in
terms of accuracy are shown in the Table 6. The best
result belongs to the combination of SFS selected fea-
tures, Random Forest Classifier and Smote data aug-
mentation.

Table 6: Therapy response classification with radiomics features
Feature Type Combination Accuracy Sensitivity Specifity
3D sfs+rf+yessmote 0.8611 0.9117 0.8157
3D Boruta feature selection+SVM classifier+ SMOTE 0.8611 0.9411 0.7894
3D Boruta feature selection+Random Forest Classifier+SMOTE 0.8472 0.9111 0.7894
3D Boruta feature selection +KNN classifier+ SMOTE 0.8472 0.9111 0.7894
3D Random Forest Feature Selection+KNN classifier 0.8472 0.7647 0.9210
3D SFS feature selection+KNN classifier+SMOTE 0.8472 0.8823 0.8157
3D Borura selection+Random Forest Classifier 0.8333 0.8235 0.8421
3D Random Forest Feature Selection+KNN classifier+SMOTE 0.8333 0.7647 0.8947
3D Random Forest Feature Selection+SVM+SMOTE 0.8194 0.7647 0.8684
3D Relief Feature Selection+Random Forest Classification 0.8194 0.7058 0.9210

4.2. Machine Learning and Deep Features

As it is stated in materials and method section, ex-
tracted deep features from 2D tumor patches are used in
VGG-16 to extract deep features. Then the conventional
machine learning classifiers are classified with leave one
out cross validation to classify patients according to 1
year survival time and therapy response. Table 7 is a
summary of time prediction classification results and
Table 8 shows the results for therapy response classi-
fication.

Table 7: Time Prediction-Deep Features
Feature Type Combination Accuracy Sensitivity Specifity
Deep Logistic Regression 0.58 0.5869 0.56
Deep SVM 0.6857 0.60 0.8127
Deep Random Forest 0.74 0.86 0.5
Deep KNN 0.6771 0.5813 0.8076

Table 8: Therapy Response-Deep Features
Feature Type Combination Accuracy Sensitivity Specifity
Deep Logistic Regression 0.61 0.5579 0.76
Deep SVM 0.70 0.61 0.83
Deep Random Forest 0.72 0.86 0.5
Deep KNN 0.78 0.77 0.63

4.3. Deep Learning

The tables show the performance of VGG16 network
on survival time prediction and therapy response classi-
fications on metastastic melanoma patients. As it is ex-
plained in the materials and method section, two differ-
ent approaches are applied to these classification tasks.
First one is to train first 4 convolutional blocks of VGG-
16 and second method is to train only two convolutional
blocks. The result of 4 frozen convolutional blocks
VGG-16 is shown in Table 9 and Table 10 shows the
2 frozen convolutional blocks.

Table 9: Result for VGG-16 with 4 frozen blocks
Classification Task Accuracy Sensitivity Specifity
Survival Time Prediction 0.82 0.635 0.747
Therapy Response 0.78 0.80 0.53

Table 10: Result for VGG-16 with 2 frozen blocks
Classification Task Accuracy Sensitivity Specifity
Time prediction 0.92 0.9259 0.8723
Therapy Response 0.901 0.85 0.9333

4.4. Survival Analysis

Kaplan Meier survival curves for each therapy re-
sponse group are plotted. Cox proportional hazard mod-
els were calculated as a whole covariates, only his-
togram based covariates and only texture features. The
c-index of each case was calculated. The cumulative
event and cumulative hazard curves were plotted. Haz-
ard ratios were calculated. The population’s survival
curves for all covariates and only histogram based co-
variates were plotted. For each radiomics features, the z
and p and values were obtained.

Hazard ratio measures of an effect of an intervention
on an outcome of interest over time. p value shows the
effect of a covariate on survival time. Lower p values in-
dicate that this covariate has a significance on survival
time. The coefficient of a covariate is interpreted as the
hazard ratio. It indicates the effect of covariates for haz-
ard. Figure 21 shows the all 3D radiomic features’ haz-
ard ratios. The last column of the figure corresponds
to p values for each covariate. The p values who have
asterisks∗ show that these covariates effect the survival
time. Third column and fourth column are for confi-
dence interval. Confidence interval is the precision of
the Hazard Ratio. In the figure, fourth column is the vi-
sual confidence interval. In this column it is seen that
there is a vertical reference line. This line divides the
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Figure 18: Survival probabilities of each therapy response labeled pa-
tients over time

Figure 19: Cumulative hazard curves of each groups

Figure 20: Cumulative event curves of each groups

interval into two. If this line locates on the confidence
interval of a covariate, then this covariate is statistically
not significant. Even though the p value shows that a
covariate has effect on survival time, confidence interval
rejects this statement. Thats why confidence interval is
the confirmation of p value.

For Cox-proportional hazard model, this study has 3
cases. The first model has all the radiomics features.
It is represented in Figure 21. Second model considers
only histogram features which are in Figure 22. Last
case takes into account only texture features and it is in
the Figure 23. The results of three cases is explained

as follow: In case one, significant features are shape
sphericity, GLZLM LZE and GLZLM ZLNU but
the confidence interval (CI) indicates that even though
these covariates’ have significance in survival time, it
is failed for CI. Figure 22 has one covariate who has
a significant p value. For HISTO Skewness , both p
value and CI indicate of significance in a positive way.
For the third case, GLRLM SRE, NGLDM contrast,
GLZM LZE and GLZLM ZLNM have the significant
p value. Among these features, only NGLDM contrast
pass the CI test.

Survival curve for each therapy response group is
plotted. Indeed, the cumulative hazard and cumulative
event graphs are shown in below.

Integral of the hazard function is called cumulative
hazard function.In other words, it gives the probability
of failure at time x given survival until time x. Figure 19
is the cumulative hazard functions of this study. When
proportion of patients that die in one year versus time is
plotted, figure 20 is obtained. It shows that the propor-
tion of patients that die at time t.

5. Discussion

5.1. Radiomics and Machine Learning

In radiomics, the results are surprisingly good. First
glimpse is that 3D radiomic features are much better
than 2D radiomic features. This is an expected result
according to Ng et al. (2013) study. For the feature se-
lection algorithms, even though the selected features by
SFS are the most meaningful covariates with the com-
bination of random forest classifier, it is obvious that
Boruta and Random Forest feature selection algorithms
are the most powerful 2 feature selectors for both clas-
sification tasks. With the classification algorithms, lo-
gistic regression works in high performance for survival
time classification. On the other hand, KNN works sur-
prisingly good for therapy response classification task.
The effect of data augmentation and balanced datasets
are shown in the survival prediction table as inverse pro-
portional. Another example is from therapy response ta-
ble. In the table 6, the random forest features KNN clas-
sifier combination has a better performance than ran-
dom forest features, KNN classifier and SMOTE. It can
be said that synthetic data augmentation does not always
increase the performance of a classification task. Usu-
ally, data augmentation helps to increase the accuracy,
SMOTE is not efficient in a positive way with the ran-
dom forest covariates. But, it is seen that for both tables,
the highest accuracies are achieved by positive effect of
SMOTE.

5.2. Deep Features and Machine Learning Classifier

With the high dimensional deep feature data, it can be
said that a traditional classifier failed. But, the reason
behind the fail of deep features can be explained. Deep
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Figure 21: Forest plot for a Cox-regression model fit.

Figure 22: Forest plot for the cox model who has only histogram based
covariates

features are extracted from 2D tumor patches, it can be
said that all the deep features are 2D features. When
2D radiomic features and deep features performance are
compared, it can be seen that results are not extremely
different. It can be concluded as 2D features and tra-
ditional classification algorithms do not work properly.
Although annotation of 3D tumor volume takes much
more time than one slice tumor annotation, according to
the results, annotations through whole tumor is worth it.

5.3. VGG-16
This study shows that changing the activation func-

tion and adding some bias to sigmoid function can be a
novel approach for survival time prediction. Until now

Figure 23: Forest plot for the cox model who has only histogram based
covariates

survival analysis as classification problem has not been
used by VGG16. Without clinical data, pure deep fea-
tures and deep learning classifier are the best combina-
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tion in this study. Note that the number of patient in
this study is 71. Although the total number of lesions is
539, it is known that the data is not sufficient to feed a
deep neural network. Since the tumors from same pa-
tient may have the same information, there is few vari-
ety of data. All these reasons are solved with changing
the sigmoid thresholding. The threshold is not a specific
number, it increased only from 0.5 to 0.7 for time clas-
sification task and it decreased from 0.5 to 0.4 for ther-
apy response. If a sufficient number of patient was sup-
plied to the project, the deep learning results would be
much better with no biased activation function. Indeed,
it is known that variance of an activation function can
cause overfitting whereas bias can cause underfitting a
network (?). It can be said that for these classification
tasks, overfitting probability is very low.

The effect of swish activation function is seen in this
study. When the VGG-16 last layer had Relu activation
funtion, the network could not detect any diferences be-
tween the two classes. This makes sense because both
classes have same tumor type and have same disease.
With a pretrained VGG-16 and with a very sharp activa-
tion fuction such as Relu, the performance was too low.
Although inside the dataset there is a low variety, the
performance of 2 frozen block case is much better than
the 4 frozen block. This can be explained as follows:
Imagenet dataset does not contain any medical image.
Pretrained network for medical image analysis would
be the best solution for small medical datasets. On the
other hand, the pretrained 4 block frozen VGG16 archi-
tecture is still much more better than the best conven-
tional machine learning classification combinations.

It can be seen that there is a correlation between best
results of machine learning with radiomics features and
VGG16 results. Best result tables have many logistic
regression classification combinations. Logistic regres-
sion classification uses sigmoid function. VGG-16 last
layer activation function is also biased sigmoid function.
It is clearly seen that sigmoid function can be a good
choice for survival time classification problem.

5.4. Survival Analysis

Survival analysis results showed that the degree of
radiomics affects hazard ratio differently. Besides, the
continuous survival risk predictions over time t is sig-
nificant in terms of rescheduling therapy or the chang-
ing the dosage of therapy. Survival analysis can be used
as decision support system for the doctors. A doctor can
decide the continuity of a threapy, schedule the therapy
day for a specific patient.

It is seen that patients who responded the therapy had
less hazard than the other patients. It is seen both in
figure 19 and figure 20. Both plots stop around day
1000, because the follow up days are often less than
1000 days. For the patients in the responder class, the
risk of death is very low in the first 500 days. After that

risk increases. This can be a good indicator that doc-
tors should reschedule the follow up dates for patients
in order to early diagnosis or early therapy start.

5.5. Future Work

This thesis can be developed with the following con-
tributions: First of all, there is very few metastatic
melanoma patients. Collecting more data effects the
deep learning a lot. Besides, other feature selection
methods can be implemented for metastatic melanoma
studies. For classification tasks, the clinical data can
be combined with the hand crafted or deep features.
The combination of hand crafted and radiomic features
might give good results for survival time classification
in metastatic melanoma patients. For Cox regression
models, the selected features that come from feature se-
lection algorithms can be used to build a model to in-
vestigate survival analysis.

One approach can be done by training a VGG-16 net-
work from strach. Since the dataset has around 22000
images, the result can be improved by training the all
layers. But, with only 2 frozen block, the accuracy is
0.92 , and if the frozen blocks are unfrozen, then com-
putational cost would increase a lot. So, fully training
approach may increase the accuracy a bit but the com-
putational cost will increase dramatically.

6. Conclusions

This study’s first approach is the survival analysis as
a classification problem. The main criteria is the days of
follow up alive of patients with metastastic melanoma.
The patients are divided into two groups according to 1
year survival situations. Second task is to predict ther-
apy response of the patients.
Until now only one paper published radiomic features
in metastatic melanoma Durot et al. (2019). Due to high
amount of published radiomics papers in other pathol-
ogy, the state of art articles were collected and their
methods were examined. All possible combinations that
are the best from published papers were implemented
to see the effect of algorithms on metastatic melanoma.
Furthermore, this study aimed to see the difference be-
tween one slice radiomic features and whole tumor ra-
diomic features. The main contribution of this study is
to use a deep neural network to predict the survival time
of a patient (less than 1 year or more than one year).
Deep neural network is fed by only 2D tumor patches,
there is no clinical data. Clinical data is as important
as handcrafted or deep features, and even though clini-
cal data is not used, still the results are satisfying. Sur-
vival analysis showed that the second order radiomics
features have the most significant information for sur-
vival time of a patient.

For the results, it can be said that they are sufficient
enough and good. They can be improved easily by
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adding more data. The main drawback is that the num-
ber of patient is only 71 whereas it is seen that state of
art publications have 2 time more data than this study.
Data is the key for performance in machine learning and
artifical intelligence.
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voie d’administration dans les carcinoses péritonéales d’origine
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Appendix A. Radiomics Features and Machine Learning Classifiers Results

lr:logistic regression, rf: random forest , svm: support vector machine, knn:k-nearest neighbour, 3D: 3D radiomics
features, 2D: 2D radiomics features

Type Classification Task Feature Selection+Classification Smote
(Y/N) Acc Sensitivity Specifity

2D Survival time prediction boruta+knn+nosmote N 0.64 1.0 0.76
2D Survival time prediction boruta+lr N 0.66 0.7215 0.6817
2D Survival time prediction boruta+svm Y 0.7042 0.6222 0.8846
2D Survival time prediction boruta+rf Y 0.7042 0.6222 0.8846
2D Survival time prediction boruta+knn Y 0.7042 1.0 0.1923
2D Survival time prediction boruta+lr Y 0.66 0.9333 0.1923
2D Survival time prediction recursive+knn N 0.7183 0.9777 0.2692
2D Survival time prediction recursive+lr N 0.7042 1.0 0.1923
2D Survival time prediction recursive+rf N 0.55 0.1176 0.9473
2D Survival time prediction recursive+svm N 0.55 0.1176 0.9473
2D Survival time prediction recursive+knn Y 0.55 0.1176 0.9473
2D Survival time prediction recursive+lr Y 0.6478 0.9032 0.1153
2D Survival time prediction recursive+rf Y 0.6338 0.9333 0.1153
2D Survival time prediction recursive+svm Y 0.7605 0.9333 0.4615
2D Survival time prediction relief+knn N 0.7605 0.9333 0.4615
2D Survival time prediction relief+lr N 0.6338 0.9333 0.1153
2D Survival time prediction relief+rf N 0.6338 0.9333 0.1153
2D Survival time prediction relief+svm N 0.6338 0.9333 0.1153
2D Survival time prediction relief+knn Y 0.55 0.1176 0.9473
2D Survival time prediction relief+lr Y 0.7042 0.6222 0.8846
2D Survival time prediction relief+rf Y 0.55 0.1176 0.9473
2D Survival time prediction relief+svm Y 0.7042 0.6222 0.8846
2D Survival time prediction rf+knn N 0.6056 0.9072 0.1735
2D Survival time prediction rf+lr N 0.6447 0.9375 0.1428
2D Survival time prediction rf+rf N 0.6479 0.9213 0.4718
2D Survival time prediction rf+svm N 0.6447 0.9375 0.1428
2D Survival time prediction rf+knn Y 0.6447 0.9375 0.1428
2D Survival time prediction rf+lr Y 0.6338 0.9333 0.1153
2D Survival time prediction rf+rf Y 0.7605 0.9333 0.4615
2D Survival time prediction rf+svm Y 0.6447 0.9375 0.1428
2D Survival time prediction sfs+knn N 0.6478 0.5111 0.8846
2D Survival time prediction sfs+lf N 0.7042 0.6222 0.8846
2D Survival time prediction sfs+svm N 0.6447 0.9375 0.1428
2D Survival time prediction sfs+rf N 0.6478 0.5111 0.8846
2D Survival time prediction sfs+knn Y 0.55 0.1176 0.9473
2D Survival time prediction sfs+lr Y 0.7183 0.9777 0.2692
2D Survival time prediction sfs+svm Y 0.6447 0.9375 0.1428
2D Survival time prediction sfs+rf Y 0.7273 0.9677 0.2992
3D Survival time prediction boruta+rf N 0.6619 0.9333 0.1923
3D Survival time prediction boruta+rf Y 0.7183 0.9777 0.2692
3D Survival time prediction boruta+knn N 0.6338 0.9333 0.1153
3D Survival time prediction boruta+lr N 0.6617 1.0 0.76
3D Survival time prediction boruta+svm N 0.6478 1.0 0.03
3D Survival time prediction boruta+knn Y 0.7183 0.9777 0.2692
3D Survival time prediction boruta+lr Y 0.6315 0.9375 0.1077
3D Survival time prediction boruta+svm Y 0.6447 0.9375 0.1428
3D Survival time prediction recursive+rf Y 0.7606 0.6444 0.9615
3D Survival time prediction recursive+rf N 0.7323 0.6444 0.9614
3D Survival time prediction recursive+knn N 0.7883 0.7111 0.9230
3D Survival time prediction recursive+lr N 0.8169 0.8881 0.6923
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Type Classification Task Feature Selection+Classification Smote
(Y/N) Acc Sensitivity Specifity

3D Survival time prediction recursive+svm N 0.7323 0.9333 0.3846
3D Survival time prediction recursive+knn Y 0.7887 0.6666 1.0
3D Survival time prediction recursive+lr Y 0.8591 0.9111 0.7692
3D Survival time prediction recursive+svm Y 0.7605 0.9333 0.4615
3D Survival time prediction relief+rf N 0.7323 0.6222 0.9230
3D Survival time prediction relief+rf Y 0.7042 0.6222 0.8846
3D Survival time prediction relief+svm N 0.7042 1.0 0.1923
3D Survival time prediction relief+lr N 0.7042 1.0 0.1923
3D Survival time prediction relief+knn N 0.7887 0.7333 0.8846
3D Survival time prediction relief+knn Y 0.8169 0.7555 0.9230
3D Survival time prediction relief+lr Y 0.7183 1.0 0.23
3D Survival time prediction relief+svm Y 0.6901 1.0 0.1538
3D Survival time prediction rf+knn N 0.7605 0.68 0.8846
3D Survival time prediction rf+knn Y 0.7042 0.6222 0.8461
3D Survival time prediction rf+lr N 0.8169 0.8444 0.7692
3D Survival time prediction rf+lr Y 0.8028 0.8881 0.8076
3D Survival time prediction rf+rf N 0.6760 0.5555 0.8846
3D Survival time prediction rf+rf Y 0.6478 0.5111 0.8846
3D Survival time prediction rf+svm N 0.7323 1.0 0.2692
3D Survival time prediction rf+svm Y 0.7183 0.9777 0.2692
3D Survival time prediction sfs+knn N 0.7183 0.6888 0.7692
3D Survival time prediction sfs+knn Y 0.7042 0.5777 0.9230
3D Survival time prediction sfs+lr N 0.8169 0.9777 0.5384
3D Survival time prediction sfs+lr Y 0.8169 0.9777 0.5384
3D Survival time prediction sfs+rf N 0.6901 0.5333 0.9615
3D Survival time prediction sfs+rf Y 0.5492 0.3111 0.9615
3D Survival time prediction sfs+svm Y 0.7183 1.0 0.2307
3D Survival time prediction sfs+svm N 0.7746 1.0 0.3846
2D Therapy response boruta+knn N 0.7083 0.6764 0.7368
2D Therapy response boruta+lr N 0.5833 0.1470 0.9736
2D Therapy response boruta+svm Y 0.6944 0.6470 0.7368
2D Therapy response boruta+svm N 0.7083 0.6176 0.7894
2D Therapy response boruta+rf Y 0.7916 0.9111 0.6842
2D Therapy response boruta+rf N 0.7361 0.7352 0.7368
2D Therapy response boruta+knn Y 0.75 0.7941 0.7105
2D Therapy response boruta+lr Y 0.5694 0.1176 0.9736
2D Therapy response recursive+knn N 0.72 0.5294 0.8947
2D Therapy response recursive+lr N 0.6944 0.5294 0.8421
2D Therapy response recursive+rf N 0.6666 0.6764 0.6578
2D Therapy response recursive+svm N 0.5138 0.0 0.9736
2D Therapy response recursive+knn Y 0.75 0.6470 0.8421
2D Therapy response recursive+lr Y 0.6944 0.6470 0.7368
2D Therapy response recursive+rf Y 0.6666 0.7647 0.5789
2D Therapy response recursive+svm Y 0.6944 0.4411 0.9210
2D Therapy response relief+knn N 0.75 0.7647 0.7300
2D Therapy response relief+lr N 0.55 0.1176 0.9473
2D Therapy response relief+rf N 0.6225 0.5588 0.6842
2D Therapy response relief+svm N 0.5416 0.08 0.9473
2D Therapy response relief+knn Y 0.7361 0.7058 0.7631
2D Therapy response relief+lr Y 0.62 0.47 0.7613
2D Therapy response relief+rf Y 0.5694 0.7352 0.42
2D Therapy response relief+svm Y 0.5833 0.3235 0.8157
2D Therapy response rf+knn N 0.7083 0.5588 0.8421
2D Therapy response rf+lr N 0.5277 0.0 1.
2D Therapy response rf+rf N 0.6944 0.7058 0.6821
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Type Classification Task Feature Selection+Classification Smote
(Y/N) Acc Sensitivity Specifity

2D Therapy response rf+svm N 0.6388 0.3823 0.8684
2D Therapy response rf+knn Y 0.7222 0.6764 0.7631
2D Therapy response rf+lr Y 0.5277 0.0 1.0
2D Therapy response rf+rf Y 0.7361 0.8529 0.6315
2D Therapy response rf+svm Y 0.6805 0.4705 0.8684
2D Therapy response sfs+knn N 0.7083 0.5882 0.8157
2D Therapy response sfs+lr N 0.5277 0.0 1.0
2D Therapy response sfs+svm N 0.5277 0.0 1.0
2D Therapy response sfs+rf N 0.5684 0.6176 0.5263
2D Therapy response sfs+knn Y 0.6944 0.6764 0.7105
2D Therapy response sfs+lr Y 0.5277 0.0 1.0
2D Therapy response sfs+svm Y 0.5 0.0 0.9473
2D Therapy response sfs+rf+ Y 0.6666 0.7647 0.5789
3D Therapy response boruta+rf Y 0.8333 0.8235 0.8421
3D Therapy response boruta+rf Y 0.8472 0.9111 0.7894
3D Therapy response boruta+knn Y 0.8472 0.9111 0.7894
3D Therapy response boruta+lr N 0.75 0.5882 0.8947
3D Therapy response boruta+svm N 0.8055 0.6470 0.9473
3D Therapy response boruta+knn N 0.8055 0.7647 0.8421
3D Therapy response boruta+lr Y 0.8194 0.7941 0.8421
3D Therapy response boruta+svm Y 0.8611 0.9411 0.7894
3D Therapy response recursive+rf N 0.7916 0.8823 0.7105
3D Therapy response recursive+rf Y 0.7777 0.7058 0.8421
3D Therapy response recursive+knn Y 0.7911 0.6470 0.9210
3D Therapy response recursive+lr N 0.7916 0.5888 0.9736
3D Therapy response recursive+svm N 0.5416 0.05 0.9736
3D Therapy response recursive+knn Y 0.8194 0.7647 0.8684
3D Therapy response recursive+lr Y 0.7777 0.7058 0.8421
3D Therapy response recursive+svm Y 0.6994 0.4117 0.9473
3D Therapy response relief+rf N 0.8194 0.7058 0.9210
3D Therapy response relief+rf Y 0.7361 0.7941 0.6842
3D Therapy response relief+svm N 0.7083 0.3823 1.0
3D Therapy response relief+lr N 0.7222 0.5588 0.8684
3D Therapy response relief+knn N 0.8055 0.7941 0.8157
3D Therapy response relief+knn Y 0.7777 0.7352 0.8157
3D Therapy response relief+lr Y 0.7638 0.6764 0.8421
3D Therapy response relief+svm Y 0.6805 0.3823 0.9473
3D Therapy response rf+knn N 0.8472 0.7647 0.9210
3D Therapy response rf+knn Y 0.8333 0.7647 0.8947
3D Therapy response rf+lr N 0.5277 0.0 1.0
3D Therapy response rf+lr Y 0.5277 0.0 1.0
3D Therapy response rf+rf N 0.7638 0.7647 0.7631
3D Therapy response rf+rf Y 0.7777 0.8235 0.7368
3D Therapy response rf+svm N 0.7777 0.5882 0.9473
3D Therapy response rf+svm Y 0.8194 0.7647 0.8684
3D Therapy response sfs+svm N 0.5277 0.0 1.0
3D Therapy response sfs+svm Y 0.5277 0.0 1.0
3D Therapy response sfs+lr N 0.5277 0.0 1.0
3D Therapy response sfs+lr Y 0.5277 0.0 1.0
3D Therapy response sfs+rf N 0.6944 0.6470 0.7368
3D Therapy response sfs+rf Y 0.8611 0.9117 0.8157
3D Therapy response sfs+knn Y 0.8472 0.8823 0.8157
3D Therapy response sfs+knn N 0.8194 0.7647 0.8684
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Appendix B. VGG16 Networks

1. Batch size: 8
2. Number of epochs per patient: 3
3. Optimizer : Adam
4. Loss function: Binary crossentropy
5. Fully connected classifier block: 2 dense layers have swish activation function.

The aim is to use as same as possible one VGG16 network for both classification tasks. Thats why batch size, number
of epochs per patient and optimizer are used same for both classsification tasks.

These parameters are same for 4 blocks and 2 blocks frozen VGG-16 networks.

Appendix C. Dataset Information

This section is the summary of the dataset that is used in this thesis:

1. Total number of patients: 71
2. Total number of lesions: 539

For therapy response, class 0 has 37 patients and class 1 has 34 patients. Class 0 represents that patients do not
response the therapy whereas class 1 shows that patients response the therapy.

For patient survival time classification class 0 has 27 patients and class 1 has 44 patients. The classification based
on time between two follow up. It is assumed that if days between two follow up of a patient is more than 1 year, this
patient has lived more than one year.

18.23



18.24



Medical Imaging and Applications

Master Thesis, June 2019

Patch-based segmentation of brain tumor with selective sampling and a U-Net
architecture

Liliana Valencia Rodriguez, Mariano Cabezas, Arnau Oliver, Xavier Lladó
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Abstract

Gliomas are the most frequent tumors of the central nervous system (CNS) and one of the most deadliest human
cancers. The diagnosis is assessed using MRI images, which is a powerful tool to improve the treatment and survival
rate of the patients. The multimodal Brain Tumor image Segmentation challenge (BraTS) was proposed as a bench-
mark for brain tumor segmentation. We use their publicly available BraTS’18 dataset, specifically the training set, to
develop a method for brain tumor segmentation. The dataset is composed of 285 cases, each one with images of four
modalities: native (T1), post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated Inversion
Recovery (FLAIR), and ground truth. Our method is based on the simplest but most efficient strategies of the state of
the art with U-Net architecture, which have been proved to provide satisfactory segmentation results. We analyze the
sampling methods and the loss function using five folds cross-validation with the entire training set. In the case of the
sampling methods, we study two approaches, uniform and selective. Regarding the loss functions, we train models
with cross-entropy loss and dice loss. The obtained dice scores of our approach are 0.63 for the Enhanced Tumor
(ET), 0.75 for the Whole Tumor (WT) and 0.64 the for the Tumor Core (TC). Our results show that in the brain tumor
segmentation task, the sampling of the data is fundamental to obtain good segmentation results. A selective sampling
is therefore required. The success of the segmentation highly relies on the sampling rather than on sophisticated
network architectures, while the dice loss used in the training does not has significant difference in the results.

Keywords: MRI, Brain tumor segmentation, Sampling, U-Net

1. Introduction

Gliomas are the most frequent tumors of the cen-
tral nervous system (CNS). They include a highly di-
verse group of primary CNS tumors and were tradition-
ally classified according to their microscopic similari-
ties with putative cells of origin along glial precursor
cell lineages (Pisapia, 2017). Nowadays, gliomas are
classified based on genotype information about the isoc-
itrate dehydrogenase 1 and 2 (IDH1/IDH2) mutation
status. The High Grade Glioma (HGG) are considered
the tumors with IDH-wildtype and Low Grade Glioma
(LGG) the ones with IDH-mutant. Patients with LGG
tumor are generally younger and have a better progno-
sis. In general, gliomas are one of the most deadliest
human cancers (Ostrom et al., 2015).

To assess the gliomas diagnosis, the usage of Mag-
netic Resonance Imaging (MRI) has become very pop-

ular in the latest decade. MRI makes the production
of different types of tissue contrast possible by varying
excitation and repetition times. This makes it an ap-
propriate tool for imaging different structures of interest
(Bauer et al., 2013). The automatic segmentation us-
ing MRI images could be a powerful tool to improve
the treatment and survival rate of the patients. Tumor
segmentation is crucial in tasks such as monitoring the
tumor development in patient during therapy, tumor vol-
ume measurements and surgical or radiotherapy plan-
ning. However, the underlying issue is that gliomas
do not have a defined shape or location and usually are
mixed with healthy tissues. Hence, these basic charac-
teristics cannot be segmented automatically, which rep-
resents a significant challenge.

Many studies have been carried out to improve the
automatic diagnosis. In fact, The Multimodal Brain
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Tumor image Segmentation Challenge (BraTS) was
proposed as a benchmark for brain tumor segmenta-
tion in association with the Medical Image Comput-
ing and Computer Assisted Interventions (MICCAI)
conference 2012 - 2013, and it has been active un-
til now. BraTS provides a publicly available dataset
of multi-institutional pre-operative mpMRI scans, and
encourages the development of new solutions every
year. The image modalities provided by the BraTS’18
are native (T1), post-contrast T1-weighted (T1Gd), T2-
weighted (T2), and T2 Fluid Attenuated Inversion Re-
covery (FLAIR) volumes.

Each of the modalities contains different and useful
information used to perform the annotation according to
Menze et al. (2015), as shown in Figure 1 and described
as follows:

• T2 and FLAIR were used for the segmentation of
the edema. In T2 images the edema region appears
brighter. FLAIR is effective to distinguish between
the edema region from the Cerebral-Spinal Fluid
(CSF) due to the suppression of water molecules
in the imaging process (Liu et al., 2014).

• T1c was used to obtain the segmentation of the en-
hancing core by thresholding the intensities and
also to segment the necrotic core from the low in-
tensity necrotic structures within the enhancing rim
visible in T1c.

• T1 was used together with T1c to segment the
gross tumor core. From T1 the inhomogenous
component of the hyper-intense lesion and hypo-
intense regions were evaluated. The evaluation of
the hyper-intensities was done with T1c. The non-
enhancing (solid) core was extracted after the sub-
traction of the other two structures: enhancing core
and the necrotic (or fluid-filled) core.

In the first edition of the BraTS challenge, most of the
frameworks were based on traditional machine learn-
ing approaches. A discriminative probabilistic approach
relying on a random forest classifier was the winner
(Bauer et al., 2012), and popularized this method for
the 2013 edition.

Nowadays, the application of deep neural networks
has become a milestone in the challenge. U-Net ar-
chitecture has the most extended application for brain
tumor segmentation (Dong et al., 2017), (Wang et al.,
2017). This architecture was applied with the aim to
improve the biomedical image segmentation. It uses
skip connections to recover the full spatial resolution in
the network output being able to segment fine structures
successfully (Ronneberger et al., 2015). The power of
the architecture was demonstrated in the BraTS’18 chal-
lenge where the second place holders (Isensee et al.,
2018) showed that a well trained U-Net with minor
modifications provided high segmentation results. In-
deed, the authors stressed the importance of the training

procedure as well as the importance to consider how the
network is trained.

The major problem is related to the high class imbal-
ance and the proposed strategies need to be addressed to
solve it. The background, which is around 98% of the
image, can highly affect the behaviour of the network.
Thus, the way the data is handled has to be analyzed.
Patch-based segmentation is a helpful strategy to tackle
this problem. An input by patches allows more control
on the content of the patches to be extracted, and under
some conditions provides more positive samples to the
network.

Taking into account the described challenges, the aim
of this thesis is to study the current state of the art of
the most simple but effective brain tumor segmentation
methods and to propose strategies to deal with the seg-
mentation problem. We consider as main reference the
approach of Isensee et al. (2018). We analyze the pros
and cons of the approach, and implement a segmenta-
tion algorithm using the data provided in the BraTS’18
challenge training dataset. The dataset is composed by
210 HGG cases and 75 LGG cases for training.

We focus on the development of deep learning seg-
mentation strategies to provide accurate segmentation
that can overcome the class imbalance problem, using
a U-Net and a patch-based segmentation method. We
use five folds cross-validation with the 285 cases of
the training set. To evaluate the behavior of the net-
work, we use cross-entropy loss and dice loss func-
tions, comparing them with different sampling strate-
gies that help us defining the best possible algorithm.
Regarding the sampling, the patches are generated in-
side a brain bounding box to solve a memory problem
due the size and amount of images, and the class imbal-
ance problems. For the patches extraction we study two
approaches, an uniform sampling and a selective sam-
pling. Moreover, we present qualitative and quantitative
results for those strategies. For the quantitative results,
Dice Score Coefficient (DSC) is used as a main met-
ric because it is considered a reference metric to assess
segmentation.

2. State of the art

Before the BraTS challenge was proposed, the main
segmentation methods were divided into two categories:
generative and discriminative methods (Yi et al., 2009)
(Menze et al., 2010). The generative probabilistic mod-
els are very good in the generalization of unseen images,
as they use spatial tissue distribution and appearance for
the classification. For long time they were the state-
of-the-art method for some tumor segmentation tasks.
On the other hand, the discriminative approach directly
learn the relation between the image intensities and the
segmentation labels. It concentrates on local features
that appear relevant for the tumor segmentation task
(Wels et al., 2008). Both methods work, although each
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Figure 1: Examples from the BraTS training data, with tumor regions as inferred from the annotations of individual experts (blue lines) and
consensus segmentation (magenta lines). Each row shows two cases of high-grade tumor (rows 1−4), low-grade tumor (rows 5−6), or synthetic
cases (row 7). Images vary among axial, sagittal, and transversal views, showing for each case: FLAIR with outlines of the whole tumor region
(left); T2 with outlines of the core region (center); T1c with outlines of the active tumor region if present (right). Figure taken from Menze et al.
(2015).
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Figure 2: Glioma sub-regions. The image patches show from left to right: the whole tumor (yellow) visible in T2-FLAIR (A), the tumor core
(red) visible in T2 (B), the active tumor structures (light blue) visible in T1Gd, surrounding the cystic/necrotic components of the core (green) (C).
The segmentations are combined to generate the final labels of the tumor sub-regions (D): ED (yellow), NET (red), NCR cores (green), AT (blue).
Figure taken from Menze et al. (2015)

.

has its drawbacks. In order to perform properly, the gen-
erative probabilistic models require prior knowledge of
the lesion. Atlas-based algorithms which provide spatial
information combined with Expectation Maximization
(EM) algorithms were widely used for this task (Menze
et al., 2010). The tumor is considered a tissue class in
the EM algorithm. The main drawback of this strategy
is the requirement of accurate registration, which is of-
ten difficult. The discriminative models require a mas-
sive amount of data in order to overcome the problem
of intensity and shape variations, as well as image arti-
facts. The combination of both models, generative and
discriminant has also been considered. For instance,
in Tu et al. (2008), a combination of both approaches
was used for brain subcortical structure segmentation.
The generative model was used to describe the shape
while the discriminative approach was used to describe
the model appearance.

Regarding the dataset, before BraTS challenge, the
developed approaches were tested in private datasets.
Every approach was developed using different image
protocols and modalities, therefore making an objec-
tive comparison between the methods was quite chal-
lenging. The BraTS challenge organization proposed a
standardized dataset as benchmark for brain tumor seg-
mentation. The methods evaluated with this dataset de-
fine the current state of the art. The dataset has been
evolving and growing since its creation. The fist dataset,
BraTS’12, was composed of 80 cases for training: 30
multi-modal MRI scans (10 LGG cases and 20 HGG
cases, with manual annotations), and 50 simulated cases
(with same proportion of LGG and HGG). For testing,
16 simulated images (11 HGG cases and 5 LGG cases),
and 15 real cases (11 HGG and 4 LGG). It was manually
annotated for two tumor labels, edema and core. During

the first edition of the challenge, the use of generative
and discriminative approaches was crucial. The winner
of the challenge applied a discriminative method, reach-
ing average DSC of 0.73 and 0.59 for tumor and edema,
respectively (Bauer et al., 2012). In this approach the
segmentation task was modeled as a energy minimiza-
tion problem in a conditional random field. Random
forest was used as a classifier and a spatial regular-
ization where the weighting function depends on the
voxel spacing in each dimension was applied. During
the challenge aftermath, the insufficiency of two tumor
classes was considered. The core label contained sub-
structures with very different appearances in the vari-
ous modalities. Hence, this time, the images were re-
annotated with four labels divided as stated in Menze
et al. (2015):

• Label 1: NCR (Necrotic). Describes the necrotic
core which resides in the enhancing rim of the
HGG and sometimes appears cystic.

• Label 2: ED (peritumoral edematous/invaded tis-
sue). Describes the peritumoral edematuous and
invaded tissue.

• Label 3: NET. describes the non-enhanced areas
of the tumor core that in HGG are the surrounding
vasogenic edema on T2. In LGG, NET delineates
the gross tumor.

• Label 4: AT. Describes the enhancing regions
within the gross tumor abnormality, but not the
necrotic center.

To evaluate the performance of the algorithms, the
organizers of the BraTS challenge use a different con-
figuration of the structure. Three mutually inclusive tu-
mor regions define as Whole Tumor (WT) region, which
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Table 1: Number of cases and changes in tasks throughout the years of the BraTS Challenge (Taken from Bakas et al. (2018))

Brats
Instance

Training
data

Validation
data

Testing
data Tasks Type of data

2012 35 NA 15 Segmentation Pre-operative
2013 35 NA 25 Segmentation Pre-operative

2014 200 NA 38
Segmentation,

Assessment of disease progression Longitudinal

2015 200 NA 53
Segmentation,

Assessment of disease progression Longitudinal

2016 285 NA 191
Segmentation,

Assessment of disease progression Longitudinal

2017 285 46 146
Segmentation

Prediction of patient overall survival Pre-operative

2018 285 66 191
Segmentation

Prediction of patient overall survival Pre-operative

includes all four tumor structures (union of all labels),
Tumor Core (TC) region which includes all tumor struc-
tures except edema (union of labels 1,3 and 4) and Ac-
tive Tumor (AT) region which only contains enhancing
core structures unique, which only occurs in HGG cases
as shown in Figure 2.

From 2013, the synthetic data was removed from the
dataset and the amount of real data has been increasing
and expanding the dataset (Table 1 resumes the growth
of the dataset). The four labels were kept until 2016.
Later, an overestimation of the NET (label 3) by some
annotators was noticed and from 2017 on, this label was
removed and fused with NCR (label 1). Additionally,
contralateral and periventricular regions of T2-FLAIR
hyper-intensity were excluded from the ED region, un-
less they were contiguous with peritumoral ED.

Regarding the methods, and with the popularization
of convolutional neural networks (CNN), most of the
new approaches were based on these architectures, beat-
ing the results of the conventional methods. A simple
architecture with 2 convolutional layers that takes as in-
put 2D images (slices) of the axial view, obtained DSC
of 0.88, 0.79 and 0.73 for whole tumor, core and en-
hanced tumor respectively (Havaei et al., 2015). The
winner approach from 2015 (Pereira et al., 2016) was
based on an individual CNN architecture for each type
of glioma. LGG was segmented using a 9 layer archi-
tecture and HGG with 11 layers. For the optimization,
the Stochastic Gradient Descent (SGD) was used as the
main optimizer and the Nesterov’s Accelerated Momen-
tum applied in the regions where the curvature was low.
Leaky ReLu for the activation function and a normaliza-
tion proposed by Nyúl and Udupa (1999) used to make
contrast and intensity ranges more similar. The algo-
rithm was trained with the BraTS’15 dataset, composed
of 220 HGG cases and 54 LGG cases.The DSC score
obtained in the challenge, with a testing set of 53 cases

of both low and high grade gliomas, was 0.88, 0.83 and
0.77, for whole tumor, core and enhanced tumor respec-
tively. In the posterior challenges, popular 3D CNN ar-
chitectures started to be employed as DeepMedic (Kam-
nitsas et al., 2016).

Since BraTS’17, the dataset has bee changed with
comparison to the previous version. This dataset
contains more clinically-acquired 3T multimodal MRI
scans from different institutions and protocols. More-
over, the scans have been categorized as pre or
post-operative by expert neuroragiologists. The pre-
operative scans were annotated by experts for the differ-
ent sub-regions following the same annotation protocol.
The protocol comprises GD-enhancing tumor (ET label
4), the peritumoral edema (ED label 2), and the necrotic
and non-enhancing tumor core (NCR/NET label 1).

On this dataset, the combination of several CNNs
also achieved promising results. The approach proposed
by Kamnitsas et al. (2017), which was an ensemble of
the DeepMedic architecture, Fully Convolutional Net-
work (FCN) and U-Net architecture achieved the best
performance in 2017. In their approach, each model
was trained individually and provided class-confidence
maps as outputs. After ensembling the models, an en-
semble’s confidence map for each class was computed.
Every map was calculated of the average confidence of
each model for a voxel. The class assigned to the voxel
was the one with the highest confidence. The training
was performed with the BraTS’17 dataset which con-
sisted of 210 HGG and 75 LGG cases, and 46 valida-
tion cases. The DSC obtained in the challenge, with a
test set of 146 cases, was 0.886 for whole tumor, 0.785
for core and 0.729 for enhanced tumor.

The latest dataset, BraTS’18, is composed of 285
cases (210 HGG and 75 LGG cases) for training, 66
cases for validation, and 191 cases for testing. The sec-
ond place in the challenge was achieved by Isensee et al.
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Figure 3: Illustrative pipeline example for predicting patient overall survival. Figure taken from Bakas et al. (2018)

(2018) with an approach focused on the training rather
than tuning the network. The DSC score on the valida-
tion set was 0.908 for whole tumor, 0.854 for core tu-
mor, and 0.908 for enhancing tumor. They used a 3D
U-Net architecture with maxpooling, trilinear upsam-
pling and instance normalization with input patches of
128x128x128. For the activation function, Leaky ReLu
was applied, and a multi-class dice loss as a loss func-
tion. A co-training private dataset was used to train the
model.

A semantic segmentation of CNNs based on encoder-
decoder networks holds the first place in the challenge.
In the approach of Myronenko (2018) a larger encoder
part is in charge of the image features using the ResNet
(He et al., 2016) blocks with normalization and ReLu
as activation function. The decoder, dedicated to recon-
struct the segmentation mask, has the same structure as
the encoder but is smaller, having a single block per spa-
tial level. In the validation set, the DSC obtained was
0.88 for whole tumor, 0.81 for tumor core and 0.76 for
enhanced tumor.

It is important to mention that BraTS challenge aims
to go beyond the segmentation. The patient survival
prediction has been added as a secondary task in the
last two editions. For this task, clinical data of patient
age, overall survival, and resection status are provided
to develop methods that can predict the patient survival
via integrative analysis of the radiomic features and ma-
chine learning algorithms. The basic pipeline suggested
by the BraTS organizer for the survival task is shown in
Figure 3.

3. Material and methods

3.1. Dataset

The dataset used for the development of this mas-
ter thesis is the one provided by the BraTS Challenge
2018. The original characteristics of the BraTS dataset

(a) T1 (b) T1c

(c) T2 (d) FLAIR

Figure 4: Case Brats18 TCIA02 377 from BraTS’18 dataset. The
four modalities of the BraTS’18 dataset with segmentation label.

are shown in Table 2. The dataset is highly variate, con-
taining samples from 19 centers and the acquisition pro-
tocols are therefore diverse. It is pre-processed with co-
registration to the same anatomical template, the SRI24
atlas (Rohlfing et al., 2010), then skull stripped and in-
terpolated to the same resolution (1 mm3) (Bakas et al.,
2017). It contains 285 cases for training: 210 HGG
and 75 LGG, which are the ones used for this im-
plementation. All the images have the same size of
240x240x155. In Figure 4 different modalities with seg-
mentation labels exemplify the dataset.

3.2. Methods
Our proposed method for the brain tumor segmen-

tation includes pre-processing of the images, patch ex-
traction using different sampling approaches, training a
generic 3D U-Net model with two different loss func-
tions and segmentation, as shown in Figure 5. U-Net
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Table 2: Original characteristics of the BraTS dataset (Taken from Bakas et al. (2018)).

Acronym MRI sequence Property Acquisition Slice thickness

T1 T1-weighted Native image Sagittal or Axial Variable (1-5mm)

T1Gd T1-weighted
Post-contrast enhancement

(Gadolinium) Axial 3D acquisition Variable

T2 T2-weighted Native image Axial 2D Variable (2-4mm)
T2-FLAIR T2-weighted Native image Axial or Coronal or Sagittal 2D Variable

architecture consists on a contracting path which cap-
tures context and a symmetric expanding path that en-
ables precise location (Ronneberger et al., 2015). This
architecture was built based on the Fully convolutional
network (Long et al., 2015), where the usual contracting
network is replaced by successive layers with upsam-
pling operations, increasing the resolution of the out-
put. Furthermore, high resolution features from each
path, contracting and upsampled output, are combined
to improve the localization accuracy. Since the label
assignment has to be done per voxel, preserving the lo-
calization is one of the keys of this network.

The U-Net architecture implemented is based on the
proposal of Isensee et al. (2018) with some modifica-
tions, such as reduction in the features channels at the
highest resolution and the size of the patches (Figure
7). The modifications consider the limitation in the re-
sources that we have in terms of GPU memory. Also, we
believe that the proposed sampling strategies increase
the number of patches and help the learning process.

3.2.1. Pre-processing
The images are normalized to a normal distribution

by subtracting the mean and dividing by the standard
deviation for each modality. To reduce the background
voxels and the training time, a bounding box of the brain
is extracted from the image. Thus, just the pixels with
intensity higher than zero are kept. The patches are
extracted inside the brain bounding box. Some shape
problem may arise during the patch extraction, such as
patches lying in the borders of the image, containing
less voxels than the indicated patch size. Consequently,
the images are zero padded to the size of the patch in
each dimension.

3.2.2. Patch sampling
The sampling of the data is also crucial in the learning

process. We defined a uniform sampling, similar to a
sliding window, where the input data are patches that
overlap. There is no distinction between classes and the
full image, in patches, will go through the network. To
do so, a list of centers that defines the patches is created.
This list will define the location of the patches. The
patches shape are 32x32x32 with steps of 16x16x16.

A second sampling called selective sampling is pro-
posed. We take advantage of the prior knowledge of the
ground truth image to choose the centers that define the

patches for the labels 1,2 and 4. For label 0, which is
the background, we use the uniform sampling. An in-
creased number of positive samples will result from this
strategy and therefore a better prediction of each label is
expected. The total amount of patches will directly re-
late to the amount of voxels with tumor’s label in each
volume. The size of the patches is 32x32x32. In the
case of label 0 the step is 16x16x16.

3.2.3. Network architecture
The input of the network are patches of 32x32x32

and batch size of 150. We use 16 feature channels
at the highest resolution, resulting in a network with
2.642.980 parameters. The channels in last block of
the down path are scale 16 times. In the upsampling
path, the network accounts for the size of the blocks to
guarantee that the output size is the same that the input.
We use ReLu as activation function, pooling of 2x2x2,
and trilinear upsampling of 2x2x2. The architecture is
shown in Figure 7.

3.2.4. Training
Giving that the background, that is all but tumor, oc-

cupies the major area of the image, the learning pro-
cess often gets trapped into the local minima of the loss
function. Therefore, the predictions are biased towards
the background, and the target region is often missed or
partially detected. The proposed strategy to overcome
this problem is to reduce the background presence gen-
erating patches from the bounding box area. Moreover,
we tested two loss functions, considering the problem
in the learning process that generates the high class im-
balance of the dataset. The first loss function is the
cross-entropy loss function implemented in the Pytorch
library. The second one is the dice loss function. In
Milletari et al. (2016) a binary dice loss was proposed
to overcome the imbalance problem and Drozdzal et al.
(2016) proposed a multi-class adaptation that is used our
approach and defined as:

Ldc = − 2
|K|

∑

k∈K

∑
i uk

i vk
i∑

i uk
i +

∑
i vk

i

(1)

where k ∈ K are the number of classes, u is the soft-
max output of the network, v is one hot enconding of
the ground truth segmentation map, and i the number of
pixels in the training patch.
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Figure 5: Pipeline for the brain tumor segmentation strategy implemented defining the tasks: brain bounding box patch extraction, training and
segmentation.

3.2.5. Evaluation

Given that we want to compare our results with the
architecture proposed by Isensee et al. (2018), we use
the same evaluation with five folds cross-validation of
the 285 cases of the training set for our different config-
urations. We use 10 epochs and early stopping criteria
where the loss is evaluated with respect to the best loss
result. We define a patient of 3 epochs.

At the testing stage, we perform the segmentation of
the full patience at once. In this way, we avoid the prob-
lems that may arise in the reconstruction if the testing is
done by patches.

The evaluation is obtained from the online evaluation
platform of the BraTS challenge website for the training
dataset. The results provided by the online evaluation

Figure 6: Region T1 is the true lesion area (outline blue),T0 is the
remaining normal area. P1 is the area that is predicted to be lesion
byfor examplean algorithm (outlined red), and P0 is predicted to be
normal. Figure taken from Menze et al. (2015)

.

comprise of three labels: whole tumor (WT), tumor core
(TC) and enhanced tumor (ET). The metrics are DSC,
sensitivity, specificity and Hausdorff distance.

DSC is defined as:

DS C =
2 |X ⋂

Y |
|X| + |Y | (2)

where X is the ground truth and Y the resulting segmen-
tation.

The sensitivity or True Positive Rate (TPR) (3) and
specificity or True Negative Rate (TNR) (4) of each
class is computed as:

T PR =
T P

T P + FN
(3)

T NR =
T N

T N + FP
(4)

where TP are the true positive voxels, TN the true neg-
ative voxels and FN the false negative voxels.

The Hausdorff distance measures how far are the two
subset of regions, defined by the classes, from each
other. Hence, for all the points p on the surface ∂P1
of the given value P1 the shortest least-square distance
(p, t) is calculated to points t on the surface ∂T1 of the
other given volume T1 and vice versa, returning the
maximum value overall d

Haus(P,T ) = max
 sup

p∈∂P1

in f
t∈∂T1

d(p, t), sup
p∈∂T1

in f
t∈∂P1

d(p, t)
 (5)

Since we have to defined what is the best configura-
tion, we use paired t-test with the mean dices of each la-
bel. The paired t-test is performed for samples that are
connected. In our case, we evaluate the dice for each
label in each patient changing the sampling method or
loss function in the configuration. The resulting P-value

19.8



Patch-based segmentation of brain tumor with selective sampling and a U-Net architecture 9

Figure 7: U-Net architecture with some modifications with respect to Isensee et al. (2018). ReLu as activation function, patch size and number of
filters

.

from the paired t-test tell us if there is statistically sig-
nificant difference in DSC among the experiments con-
sidering label-by-label approach. We defined the signif-
icance level alpha = 0.01. For ET label, we did not
consider the cases where label 4 is not present in the
ground truth. P-Values can also be interpreted as the
probability that the results occurred by chance.

3.2.6. Implementation
The deep learning framework used for implementa-

tion is Pytorch in Python 3.6. We use a GPU GeForce
GTX 1080 with 12 GB of memory to perform the ex-
periments.

4. Results

To evaluate the impact of the sampling method in the
resulting model, we train a model for each method of
sampling in a five folds cross-validation configuration
of the 285 cases. Dice loss function is used during the
training, obtaining mean DSC results for uniform sam-
pling of 0.483 for ET, 0.543 for WT and 0.540 for TC.
For the selective sampling we obtained 0.629 for ET,
0.755 for WT and 0.708 for TC. DSC are shown in fig-
ure 8. For other quantitative results, see Table 3.

Then, we perform a paired t-test for each class obtain-
ing values of p > 0.01 for all the labels which shows
that they are statistically different between methods of
sampling.

We use the previous obtained model, train with dice
loss and selective sampling as base line. To compare
if the loss function affect the resulting model, we train

Figure 8: Dice scores for each label, ET, WT and TC resulting from
the segmentation model trained for each sampling method in five folds
cross-validation of 285 cases. The green triangle represent the mean
value for each class. In the selective sampling the mean DSC are:
0.629 for ET, 0.755 for WT and 0.708 for TC. In the uniform sampling
the mean DSC are: 0.483 for ET, 0.5428 for WT and 0.5400 for TC.

a model with cross-entropy loss function and selective
sampling. The DSC results obtained are 0.594 for ET,
0.756 for WT and 0.727 for TC (Figure 9). For other
metrics, refer to Table 4.

The paired t-test for the loss comparison shows that
the models trained with cross-entropy loss and dice loss
are not statistically different with p < 0.01.

In table 5 qualitative results of the experiments are
shown. The first two rows show the cases where the seg-
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Table 3: Quantitative results of segmentation for models generated with uniform and selective sampling respectively, in five folds cross-validation
of 285 case. Metrics were computed by the online evaluation platform.

Mean DSC Sensitivity Specificity Hausdorff distance

Label Uniform Selective Uniform Selective Uniform Selective Uniform Selective
ET 0.483 ± 0.307 0.629 ± 0.304 68% 75% 98% 0.99% 44.351 23.456
WT 0.543 ± 0.255 0.755 ± 0.168 85% 87% 88% 97% 58.018 51.959
TC 0.540 ± 0.302 0.708 ± 0.243 64% 77% 97% 99% 49.191 40.802

Table 4: Quantitative results of segmentation for models generated with dice loss and cross-entropy loss function respectively, in five folds cross-
validation of 285 cases. Metrics were computed by the online evaluation platform.

Mean DSC Sensitivity Specificity Hausdorff distance

Label DSC CE DSC CE DSC CE DSC CE
ET 0.629 ± 0.304 0.594 ± 0.303 75% 83% 99% 99% 23.456 29.656
WT 0.755 ± 0.168 0.756 ± 0.166 87% 93% 97% 96% 51.959 47.713
TC 0.708 ± 0.243 0.727 ± 0.227 77% 81% 99% 99% 40.802 38.577

Figure 9: Dice scores for each label, ET, WT and TC resulting from
the segmentation model trained for each loss function, dice loss and
cross-entropy loss, in five folds cross-validation of 285 cases. The
green triangle represent the mean value for each class. In the model
trained with dice loss mean DSC are: 0.629 for ET, 0.755 for WT and
0.708 for TC. In the model trained with cross-entropy loss the mean
DSC are: 0.594 for ET,0.756 for WT and 0.727 for TC.

mentation results highly agrees with the ground truth.
In the last row, segmentation results of one of the most
challenge cases is shown. In this case, many slices of the
intensity images do not have tumor content, and there-
fore the prediction ability of the model is tested.

In order to compare our results with the state of the
art, we report the DSC results obtained for Isensee et al.
(2018) in five folds cross-validation with the 285 cases
of the training set without cotraining data. They are:
0.734 for ET, 0.897 for WT and 0.821 for TC.

5. Discussion

In this master thesis, we analyze the effect of the sam-
pling of the data and the loss function in the generation
of models for brain tumor segmentation with U-Net ar-
chitecture. We study the impact of the sampling, testing
an uniform and selective patch sampling. The selective
sampling is based on the prior knowledge given in the
ground truth. Once we defined the sampling strategy,
we analyze the effects of the two loss functions, cross-
entropy loss and dice loss, in the training model with
different. We finally contrast our results with the state
of the art.

Handling the background is one of the main chal-
lenges in the brain tumor. Selecting the proper way to
input the data to the network is fundamental to over-
come this problem. We test the U-Net architecture with
the two defined ways of sampling, uniform and selec-
tive, using in both cases dice loss function in the train-
ing. In this way, we aim to determine if the result-
ing model would perform better or worse depending of
the sampling. Later, we segment the patients with each
model configuration, and send them to the online plat-
form for the training evaluation (Table 3). Qualitative
results are shown in Figure 11. For some cases, the DSC
for the ET label was zero. This is because this region is
not present in all the images of the data set, and at the
segmentation time, this label was the most challenging.

Using both sampling methods, we observe that label
2 ED from the training set, is the most miss-classified
label out of the tumor region in both sampling meth-
ods. This can be due to the intensity similarity with the
true voxels belonging to the class. However, in the case
of the selective sampling is possible to define a pattern.
The hyper-intense voxels out of the tumor region are the
ones assigned to this label as shown in Figure 10.

In Figure 8 is possible to visually check that the vari-
ability of the dices is large in the uniform sampling
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Table 5: Qualitative results. SS refers to the selective sampling, US to the Uniform Sampling and CE to the cross entropy loss function. First row:
case Brats18 TCIA04 192. Second row: case Brats18 CBICA AAP. Last row: case Brats18 CBICA AQA. The labels are described as: NCR &
NET (red), ED (green), ET (yellow).

Selective sampling + Dice loss Selective sampling + CE Uniform Sampling + Dice loss Ground Truth

(a) Flair (b) Segmentation mask

Figure 10: Left: FLAIR image. Right: FLAIR with segmentation
mask. Relation between the miss-classified voxels of label 2 with the
hyper-intense pixels.

model, also reflected in the standard deviation of the
mean. It shows, once again that the model is not able
to learn effectively the labels. This is reflected also in
the sensitivity results. The model under performs in the
classification of the positive samples. For the selective
sampling, the mentioned variability, specially in the WT
label, improves while there is still room for improve-
ment in the ability of the model to correctly classify the

positive samples.
The selective sampling method is chosen considering

the statistically significant difference resulting from the
paired t-test and the described results. In this way, we
conclude that the sampling method highly impacts the
resulting model and therefore the segmentation results.

Our hypothesis for the difference between the result-
ing models with the different sampling methods, is that
there is a high probability that the first input samples
to the net are background in the case of the uniform
sampling. The amount of patches with tumor content
is small when compared with the background samples.
Then the network could not receive enough inputs to
learn them, making the loss function to be completely
biased towards the negative sample.

Considering our results, the following trained models
use selective sampling.

Regarding the loss function, we were expecting
to have statistically significant difference between the
cross-entropy loss function and dice loss. Our assump-
tion is done on the basis that the dice loss works better in
high class imbalance problems. Its objective is to max-
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(a) (b) (c)

Figure 11: Up: images of the case Brats18 2013 17. Down: images of the case Brats18 TCIA01 231. Segmentation masks results for the models
trained with uniform and selective sampling where 11a are obtained with the model trained with selective sampling, 11b are obtained with the
model trained with uniform sampling and 11c are the ground truths. The labels are described as: NCR & NET (red), ED (green), ET (yellow).

imize the overlap between the prediction and ground
truth class, and then it should optimize all the classes,
while the cross-entropy loss looks for a general agree-
ment of the classes. Then, once the function identifies
correctly one of the classes, it tends to follow the traced
path, leaving behind the others. However, our results
show that there is not statistical significant difference
between them. Indeed, the behaviour in the general
DSC distribution is very similar, which is reflected in
the standard deviation values. An example of the result-
ing segmentation if shown in Figure 12.

The model trained with cross-entropy loss also miss-
classified hyper-intense voxels. There are some very
challenging cases, where both models miss-classified
big areas of the brain region (Figure 13). For instance in
the case Brats18 TCIA03 133, with segmentation mask
shown in Figure 13. In some intermediate slices of the
volume, the tumor content is not present . Thus, there is
not available reference for the learning process and this
represent a challenge in the method development. Our
models, in most those slices, assigned labels incorrectly.

Referring to the Hausdorff measure, this metric is
very susceptible to small outlying subregions. In the
box plot graph of all the approaches, we can observe
that we have large outliers represented by the extremes.
All the Hausdorff measures where computed over masks
that does not have a post-processing step and large

Hausdorff distances are therefore expected.
We try to apply the same architecture configuration of

Isensee et al. (2018) changing the normalization method
between layers. In their strategy, it is not possible to
use batch normalization, since they have a very small
batch of 2. Hence, the variance will be very close to
zero, making the estimations very noisy and impacting
the training negatively. In our implementation, we have
large batch sizes and we can avoid this problem. How-
ever, the obtained results are far from our expectations
and our base model. The training time is also consid-
erable high, being approximately 90 minutes per epoch.
Thus, we decide to continue with the simpler version of
the architecture.

In terms of comparison with the our state-of-the-art
reference, our DSC are below Isensee et al. (2018) re-
sults in the training set. Nevertheless, we highlight the
work developed for the sampling, being our main target
for the segmentation task in this master thesis.

6. Conclusions

In our approach, we demonstrate that the most impor-
tant consideration to have a good segmentation method
using deep learning is taking care of the data. By study-
ing two sampling approaches, uniform and selective,
we could prove that a generic U-Net configuration can
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Figure 12: Case Brats18 CBICA AOO. Left: segmentation masks results for the models trained with dice loss. Center: segmentation mask obtained
with the model trained with cross-entropy loss function. Right: ground truth

Figure 13: Case Brats18 TCIA03 133. Left: Mask generated for model trained with cross-entropy loss. Right: Mask generated for model trained
with cross-entropy loss. The labels are described as: NCR & NET (red), ED (green), ET (yellow)

perform very well when the data is carefully sampled,
which is the case of the selective sampling. Regarding
the loss function, we could prove that there is not signif-
icant difference between the cross-entropy loss function
and the dice loss function. Even when they differs in
DSC results, both are highly suitable for the brain tu-
mor segmentation tasks. However,it is certainly easier
to track the training process with the dice loss because
it allows to have an idea of the resulting segmentation.
As we mentioned, we do not include a post-processing
step which highly affects the Hausdorff distance. Since
our main metric was DSC, we preferred to prioritize the
results improvements in terms of this metric. This is a
task to work on and improve the results of this specific
metric. However, it requires an improvement of our ap-
proach because some cases have large areas of the brain
miss-classified, making impossible to implement a sim-
ple solution based on area exclusion. Finally, even when
we could not achieve the state-of-the-art results, we con-
sider that our work provides an appropriate base on the
sampling strategies.
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Dr Xavier Lladó and Dr Arnau Olivier for their sup-

port and the opportunity to develop my master thesis
in the VICOROB lab. My gratitude to Dr Mariano
Cabezas for his patience, support and advice. To Al-
bert Cleriges for his advise, coding lesson and snippets
of code. To Dr Sergi Valverde for your inspiration, mo-
tivation and advise. To MAIA administration staff, Aina
Roldan for her understanding and support.To my MAIA
friends who made this experience unique and unforget-
table. During challenging days, we stayed together cre-
ating links for life time. To my family, my biggest trea-
sure.

References

Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby,
J.S., Freymann, J.B., Farahani, K., Davatzikos, C., 2017. Advanc-
ing the cancer genome atlas glioma mri collections with expert seg-
mentation labels and radiomic features. Scientific data 4, 170117.

Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A.,
Shinohara, R.T., Berger, C., Ha, S.M., Rozycki, M., et al., 2018.
Identifying the best machine learning algorithms for brain tumor
segmentation, progression assessment, and overall survival predic-
tion in the brats challenge. arXiv preprint arXiv:1811.02629 .

Bauer, S., Fejes, T., Slotboom, J., Wiest, R., Nolte, L.P., Reyes, M.,
2012. Segmentation of brain tumor images based on integrated
hierarchical classification and regularization, in: MICCAI BraTS
Workshop. Nice: Miccai Society.

Bauer, S., Wiest, R., Nolte, L.P., Reyes, M., 2013. A survey of mri-

19.13



Patch-based segmentation of brain tumor with selective sampling and a U-Net architecture 14

based medical image analysis for brain tumor studies. Physics in
Medicine & Biology 58, R97.

Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y., 2017. Automatic brain
tumor detection and segmentation using u-net based fully convo-
lutional networks, in: annual conference on medical image under-
standing and analysis, Springer. pp. 506–517.

Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.,
2016. The importance of skip connections in biomedical image
segmentation, in: Deep Learning and Data Labeling for Medical
Applications. Springer, pp. 179–187.

Havaei, M., Dutil, F., Pal, C., Larochelle, H., Jodoin, P.M., 2015. A
convolutional neural network approach to brain tumor segmenta-
tion, in: BrainLes 2015, Springer. pp. 195–208.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning
for image recognition, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 770–778.

Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein,
K.H., 2018. No new-net, in: International MICCAI Brainlesion
Workshop, Springer. pp. 234–244.

Kamnitsas, K., Bai, W., Ferrante, E., McDonagh, S., Sinclair, M.,
Pawlowski, N., Rajchl, M., Lee, M., Kainz, B., Rueckert, D., et al.,
2017. Ensembles of multiple models and architectures for robust
brain tumour segmentation, in: International MICCAI Brainlesion
Workshop, Springer. pp. 450–462.

Kamnitsas, K., Ferrante, E., Parisot, S., Ledig, C., Nori, A.V., Crim-
inisi, A., Rueckert, D., Glocker, B., 2016. Deepmedic for brain
tumor segmentation, in: International workshop on Brainlesion:
Glioma, multiple sclerosis, stroke and traumatic brain injuries,
Springer. pp. 138–149.

Liu, J., Li, M., Wang, J., Wu, F., Liu, T., Pan, Y., 2014. A survey of
mri-based brain tumor segmentation methods. Tsinghua Science
and Technology 19, 578–595.

Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional net-
works for semantic segmentation, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3431–
3440.

Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani,
K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.,
2015. The multimodal brain tumor image segmentation benchmark
(brats). IEEE Transactions on Medical Imaging 34, 1993–2024.

Menze, B.H., Van Leemput, K., Lashkari, D., Weber, M.A., Ayache,
N., Golland, P., 2010. A generative model for brain tumor seg-
mentation in multi-modal images, in: International Conference on
Medical Image Computing and Computer-Assisted Intervention,
Springer. pp. 151–159.

Milletari, F., Navab, N., Ahmadi, S.A., 2016. V-net: Fully convolu-
tional neural networks for volumetric medical image segmentation,
in: 2016 Fourth International Conference on 3D Vision (3DV),
IEEE. pp. 565–571.

Myronenko, A., 2018. 3d mri brain tumor segmentation using autoen-
coder regularization, in: International MICCAI Brainlesion Work-
shop, Springer. pp. 311–320.
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Abstract

Breast cancer is one of the most common and dangerous cancers among women worldwide. An early detection leads
to less invasive treatment options and increases the survival rate. For this reason, breast cancer screening programs
have been established around the world, using mammography as the main imaging technique. One early sign of
breast cancer in mammograms is the appearance of calcification groups. With the aim of increasing the sensitivity
of the detection and reduce the workload created by screening programs, there is continuous interest in developing
more accurate systems for automatic detection of the disease. Computer aided detection (CAD) algorithms have been
developed for digital mammography (DM), and in recent years, the advent of deep learning has led to systems with
a performance comparable to that of the average radiologist. On the other hand, digital breast tomosynthesis (DBT)
is raising its popularity as screening technique, because it provides pseudo-3D images of the breast and reduces the
masking effect of breast tissue on lesions. Due to the novelty of the technique, large databases of screening populations
are not yet available to train deep learning algorithms. It would hold great value, if the information already collected
from extensive mammography datasets could be used in the development of new algorithms for detecting breast cancer
in DBT. Cross domain image to image translation has achieved state of the art performance in different problems for
computer vision and could be helpful in this context. In this work, we investigated cycleGAN to generate DM-like
images from DBT, with the purpose of using a classifier for microcalcifications previously trained on DM data. A
dataset containing around 12,000 exams was used for training and validation. A cycleGAN was trained using unpaired
images from Siemens DBT and Hologic DM. This resulted in the generation of realistic DM-like images providing
an increase of 0.065 in the AUC of the classifier in DBT images. Additionally, we proposed to include the classifier
inside the translation network during training, to guide it on making more reliable transformations. Although the loss
of the classifier decreased during training, there was no significant improvement in the generated images. Further
study should be focused on the integration of the new classifier network and the balance of the losses in the cycleGAN
objective.

Keywords: Breast cancer, microcalcifications, digital breast tomosynthesis, deep learning, domain adaptation

1. Introduction

Statistics from the World Health Organization show
breast is the most common cancer site and the deadliest
cancer among women worldwide. According to a study
conducted by Curado et al. (2007), one in eight women
in the European Union will develop breast cancer before
the age of 85. Fortunately, there is a good chance of
recovery if the detection is made at an early stage.

Breast cancer is characterized by the uncontrolled

growth of breast cells and the symptoms may include:
a breast lump, changes in the size or appearance of the
breast, discharge from the nipples or changes in the skin
over the breast. The most common techniques to de-
tect the disease are: breast examination, mammography,
breast ultrasound, biopsy and breast magnetic resonance
imaging (MRI).

Early detection of breast cancer is a key factor on
prognosis, for this reason self-exam campaigns and na-
tional screening programs have been established. Breast
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(a) Benign: vascular (b) Benign: popcorn (c) Benign: scattered (d) Malignant: scattered (e) Malignant: on mass

Figure 1: Examples of benign and malignant breast calcifications found in mammograms.

cancer screening in Europe has reduced the mortality
rate by 25 - 31% for women invited for screening, and
38 - 48% for women actually screened (Broeders et al.,
2012). However, this has meant an increase in the work-
load of radiology centers and radiologists.

Mammography has been for years the standard pro-
tocol for breast cancer screening, being able to detect
about 80% to 90% of breast cancer cases in asymp-
tomatic women. One important early sign of breast can-
cer in mammograms is the appearance of calcification
groups (MCs), which are found in 30% to 50% of mam-
mographically diagnosed cancer cases (Lanyi, 2012).
Calcifications are calcium deposits that can be seen in
mammograms as bright white spots, since calcium ab-
sorbs x-rays. Not all calcifications are signs of cancer,
most macrocalfications (greater than 1mm) are caused
by benign processes (Figures 1a, 1b), while microcal-
cifications (smaller than 1mm) require more attention,
especially if they are clustered together as seen in Fig-
ures 1d, 1e. However, classification is not always trivial,
as some benign calcifications can be small and clustered
like in Figure 1c.

The sensitivity of mammography is impaired by the
overlapping of tissues inherent to the technique, which
makes more difficult the detection and diagnosis of ab-
normalities (Park et al., 2007). This effect is especially
visible in women with dense breasts, since a higher por-
tion of fibroglandular tissue is present. Breast density
is also considered one of the risk factors for breast ma-
lignancy. MCs are difficult to see when they are over-
lapped with breast tissues, and superimposition of over-
lapping breast density can obscure them.

Digital breast tomosynthesis (DBT) has emerged as
an evolution of digital mammography. DBT allows to
obtain multiple projection views, acquired when an x-
ray source rotates around the imaged breast. The projec-
tion images are subsequently reconstructed into several
slices. Therefore, breast tissue volume can be visualized
in sequential sections through the breast, reducing the
masking effect of the fibroglandular tissue and improv-
ing breast cancer detection (Wu et al., 2003). Figure
2 shows an asymmetry as seen in both DM and DBT
images. This asymmetry could be diagnosed as a ma-

(a) DM (b) DBT

Figure 2: Digital mammography (DM) vs digital breast tomosynthe-
sis (DBT): 2a close-up mediolateral oblique view in DM shows asym-
metry in right upper breast (arrow); 2b DBT image reveals crossing
Cooper ligaments and fibroglandular tissue (arrow) with no associated
mass or spiculations. Recall was not necessary and this asymmetry
was stable on routine follow-up screening (Hooley et al., 2017).

lignant lesion by looking at the DM image only, but the
DBT image reveals it is actually a benign lesion. Re-
garding MCs, DBT has shown a superior or equivalent
visualization power to that of DM (Byun et al., 2017),
(Andersson et al., 2008).

To improve the detection of breast cancer in screen-
ing and reduce the workload, a lot of research has been
focused on the automatic detection of lesions in mam-
mograms with computer aided detection (CAD) systems
(Shen et al., 1993) (Strickland and Hahn, 1996), which
in recent years have made new advances using machine
learning and articial intelligence (Rodrı́guez-Ruiz et al.,
2018) (Wu et al., 2019).

DBT is rising as the standard imaging technique for
evaluation of breasts. Due to the increased number of
image slices, the workload generated by this technique
is significantly higher, and the need for accurate CAD
systems becomes more urgent. Unfortunately, large
public training DBT datasets for developing deep learn-
ing classifiers on screening populations are not yet avail-
able. Despite DBT is based on x-rays as DM, there
are significant differences in image resolution, contrast
and noise (Nelson et al., 2016). Figure 3 shows an ex-
ample where DBT offers a better visualization of ob-
jects of certain size and contrast (medium and large mi-
crocalcifications), but provides poorer overall resolution
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(a) DM images

(b) DBT images

Figure 3: Comparison between images containing microcalcifications generated by digital mammography (Hologic DM) and digital breast to-
mosynthesis (Siemens DBT). Differences in contrast and noise patterns can be observed.

and noise properties. Whereas the DM image contains
white noise texture, the DBT image exhibits a mottled
noise appearance. These variations prevent accurate al-
gorithms trained on mammograms to succeed on DBT
images.

It would be helpful if the information already avail-
able from extensive mammography datasets could be
used somehow to train CAD systems for DBT. The suc-
cess of domain adaptation on this setting, could open the
possibility of using networks trained on mammograms
directly on DBT images. In this work, we investigated
the use of domain adaptation to improve the classifica-
tion of calcification groups in DBT images, of a network
previously trained on mammograms.

2. State of the art

2.1. Automated detection of microcalcifications

As in many areas of image analysis, deep learning
techniques have achieved state of the art performance
on the detection and classification of microcalcifica-
tions in mammograms. Wang et al. (2017) employed
a CNN for detection of MCs in both screen-film and
digital mammograms, outperforming their previously
developed machine learning detector. Mordang et al.
(2016) also trained a deep convolutional neural network
(DCNN) on a much larger dataset, with images from
three different vendors, achieving a higher sensitivity
compared to cascade classifiers.

The detection of MCs in DBT poses a different chal-
lenge, since the clusters are often spread along several
slices. A synthetic 2D projection image can be derived
from the DBT study, which in combination to the DBT

volume has a similar sensitivity and specificity to that
of DM screening (Lai et al., 2018). 2D projection im-
ages are often used to simplify the problem of detec-
tion. Reiser et al. (2008) developed an algorithm for
detection of microcalcifications using a linear classifier
trained on projection images. Due to the limited amount
of data, the parameters could not be optimized, and the
sensitivity achieved was below the concurrent detection
algorithms on DM data. Although few deep learning
techniques can be found in the literature, Samala et al.
(2016a) showed the potential of this approach when
trained a DCNN using candidates extracted from the
projection images obtaining a patch based AUC of 0.93.

It is clear that the amount of available data is a limi-
tation for the development of deep learning based clas-
sifiers, since a large number of samples is required to
adjust the high number of parameters in the model. To
deal with this problem, several approaches can be con-
sidered: transfer learning, data augmentation, image to
image translation, among others.

2.2. Transfer learning
The advantages of using transfer learning in medical

imaging problems has been widely discussed in the lit-
erature, Tajbakhsh et al. (2016) demonstrated that the
use of a pre-trained CNN with adequate fine-tuning out-
performed or performed as well as a CNN trained from
scratch, and fine-tuned CNNs were more robust to the
size of training sets than CNNs trained from scratch.
Shin et al. (2016) also showed it is possible to achieve
state of the art performance by using transfer learning
for thoraco-abdominal lymph node (LN) detection and
interstitial lung disease (ILD) classification.
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For the detection of masses in DBT, Samala et al.
(2016b) proposed to train the generic layers of a DCNN
using mammography and fine-tune the specific layers
using DBT. Their results showed an increase in the AUC
for classification of DBT images from 0.81 to 0.90.
It would be interesting to see if similar results can be
achieved without the need to create a separate classifier
for DBT images, in other words, make DM classifiers
work directly on DBT images.

2.3. Image synthesis for data augmentation

When considering data augmentation, the most com-
mon methods include rotation, scaling, translation, flip-
ping and elastic deformation (Simard et al., 2003).
These transformations often fail to capture the real vari-
ation in shape, size or location of specific pathologies,
and certainly do not show the variations due to imaging
protocols and/or sequences.

Generative adversarial networks (GANs) are deep
neural network architectures able to estimate generative
models via an adversarial process (Goodfellow et al.,
2014). They consist of two networks trained simultane-
ously in a minimax two-player game: the first for im-
age generation and the second to discriminate real from
generated images. The model has achieved state of the
art performance on many tasks in computer vision and
has been used to generate synthetic medical data. Frid-
Adar et al. (2018) employed deep convolutional GANs
to generate synthetic patches of different liver lesions,
and combined them to the real training data, obtaining
an increase in both sensitivity and specificity. Costa
et al. (2018) presented a GAN model able to synthe-
size new vessel networks and corresponding eye fundus
images, using real pairs of images for training.

Korkinof et al. (2018) generated realistic high reso-
lution mammography images using progressive GANs.
The method consists in progressively increasing the
resolution of generated images by gradually adding
new layers to the generator and discriminator net-
works. However, the model was unable to generate
calcification-like structures, and some artifacts were
present in the generated images due to network failures.

According to the breast imaging report and database
system (BI-RADS), the difference between benign and
malignant microcalcifications is given by their distribu-
tion and morphology, therefore, the generation of im-
ages containing microcalcifications should be focused
on reproducing these characteristics to generate realis-
tic samples that can be used to increase the classification
performance. The freedom given to general GAN ap-
proaches in the generation of new images can be prob-
lematic in the context of creating samples with micro-
calcifications, and a more restrictive method could pro-
duce better results.

2.4. Image to image translation

One of the most impressive applications of GANs are
the image to image translation networks pix2pix (Isola
et al., 2017) and cycleGAN (Zhu et al., 2017), for paired
and unpaired data respectively. These networks pro-
vide cross domain synthesis, which is of great value
in medical imaging since it can be used to reduce ex-
tra acquisition time of different modalities (e.g. convert
MRI to CT images for bone delineation) or to generate
new samples constrained by the anatomical structures
present in the source image. Given that paired data is
rare in clinical practice, unpaired image to image trans-
lation has raised interest in the medical field. Wolterink
et al. (2017) showed that using unpaired data yields bet-
ter results than using aligned data. They used cycleGAN
to synthesize brain CT images from brain MR images,
and the model was able to generate images that closely
approximated reference CT images.

Although the research on the use of cycleGAN for
medical images is still at an early stage, some promis-
ing results have been found. Chuquicusma et al. (2018)
performed a visual Turing test showing that radiologists
considered lung nodules generated by a GAN as real
in 67% to 100% of the experiments. Chartsias et al.
(2017) showed a 15% increase of the accuracy of seg-
mentation when training with both real and synthesized
cardiac MRI data from CT.

CycleGAN could be used for adapting classifiers pre-
viously trained on mammography images to correctly
classify lesions on DBT images. In theory DBT images
can be translated to DM images using cycleGAN and
the translated images (DM-like) could be fed directly to
the DM classifier. This concept is attractive as no re-
training of the DM classifier would be needed, avoiding
the risks of decreasing the performance on the real data.
This is precisely the concept we explored on this mas-
ter thesis: the use of cycleGAN to improve the perfor-
mance of a mammography classifier on DBT data, for
the detection of microcalcifications.

3. Material and methods

3.1. Baseline cycleGAN framework

To increase the performance of the classifier on DBT
data, we used cycleGAN to translate DBT images to
DM. CycleGAN consists of four networks: one gen-
erator for each image type (GDM and GDBT ) and two
discriminators (DDM and DDBT ). Figure 4 illustrates the
relationship between the components inside the frame-
work. To translate from DBT to DM, three networks
are involved: GDM translates an image from DBT to
DM, GDBT translates the synthetic DM image back to
its original domain (DBT), and DDM tries to distinguish
between synthesized and real DM images. While DDM

seeks to spot the fake mammography images, GDM tries
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Figure 4: Frameworks used in this work to convert DBT images to DM images. Left: original cycleGAN. Right: proposed modification including
a classifier trained on DM data (class-aware cycleGAN).

to prevent this by synthesizing more realistic images.
For stability, the backward process is also trained: the
same generators GDM and GDBT are used to go from DM
to DBT and back, while the discriminator DDBT tries to
distinguish fake from real DBT images.

The adversarial goals of the discriminator and gener-
ator networks can be represented in the loss function:
DDM tries to predict the label 1 for real DM images
while the label for the synthetic images should be 0.
Therefore, in the generation of DM, the objective is to
minimize Equation 1.

LDM = (1 − DDM (IDM))2 + DDM (GDM (IDBT ))2 (1)

Similarly, to generate DBT from DM, Equation 2 is to
be minimized.

LDBT = (1 − DDBT (IDBT ))2 + DDBT (GDBT (IDM))2 (2)

The main difference between cycleGAN and the orig-
inal GAN framework is the concept of cycle consis-
tency. This is related to the property of the network to be
able to return to the original domain. In human language
translation, it can be expected that when translating a
sentence from English to Spanish, and then translating
the result back to English, a sentence close to the origi-
nal is recovered. This is a way to ensure the translation
is reliable and both generators are consistent.

Another reason for using cycle consistency in image
to image translation, is the fact that regular adversarial
training can learn mappings to generate random permu-
tation of images in the target domain from a set of input
images. In our case, such behaviour is not desirable,

since the input and the output image must contain the
same ground level information, e.g. same calcifications
at the same locations, and only the style needs to be
different. Adversarial losses alone cannot ensure that a
given output image will resemble closely its source, and
cycle consistency is used to reduce the space of possi-
ble mapping functions. The cycle consistency loss is
defined by Equation 3.

Lcycle = ‖GDBT (GDM (IDBT )) − IDBT ‖1+

‖GDM (GDBT (IDM)) − IDM‖1
(3)

The final cycleGAN objective is given by the sum-
mation of the previously defined losses as described in
Equation 4. Where λ controls the relative importance of
the objectives.

L = LDM +LDBT + λLcycle (4)

3.2. Class-aware cycleGAN

The main problem in this project is the classifica-
tion of abnormal microcalcification patterns from nor-
mal ones. To ensure the translated images remain clas-
sifiable, we proposed to include the original class of the
image to guide the learning process. This was imple-
mented by changing the final objective to include the
loss of a microcalcifications classifier resulting in Equa-
tion 5. A schematic of this framework can be found in
Figure 4.

L = LDM +LDBT + λ1Lcycle + λ2Lclassi f ier (5)
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3.3. Classifier previously trained on mammography
data

The classification between normal and abnormal
samples was assessed using a CNN previously trained
for classification of microcalcifications in DM data. The
network follows a VGG-11 architecture shown in Figure
5; batch normalization, padded convolutions and ReLU
activations were used. The input to this network is a
gray scale image patch, with a bit-depth of 16, and di-
mensions 224 × 224 pixels, which corresponds to ap-
proximately 2 × 2 cm.

Figure 5: Architecture of the classifier for microcalcifications in DM
patches.

3.4. Dataset
A large set of unpaired DBT and DM images were

used for the experiments, containing normal and ab-
normal exams. The images came from two vendors:
Siemens for DBT images, and Hologic for DM images
(Table 1). Exams were collected at multiple clinical
centers across Europe, including sites in the Nether-
lands, Germany, and the UK. Data collection sites are
representative for regular breast cancer screening and
asymptomatic patients in hospitals who have mammo-
grams for a variety of reasons; such as increased risk
for breast cancer or not being invited for population-
based screening program (e.g. because of age under
50). For the inclusion of the normal exams in the dataset
a follow-up of at least one year was required. Most of
the exams have mediolateral oblique (MLO) and cran-
iocaudal (CC) views of both the left and right breast.
The ground truth was based on the clinical reports from
both radiology and pathology. A region was considered
a true positive if the center of the patch falls within the
annotated contour of the lesion.

Table 1: Number of clinical exams available.

Normal

exams

Abnormal

exams

Hologic DM 180,406 1,378

Siemens DBT 674 60

In the experiments, the translation was done from
Siemens DBT images to Hologic DM, because the ma-
jority of the images for training the classifier came from
the Hologic vendor.

3.5. Patch preparation

Patches containing candidates of calcification groups
were extracted from an synthetic 2D projection im-
age. In order to construct the synthetic image, relevant
points in the DBT volume were identified by a classifier
that aimed at detecting individual calcifications; subse-
quently these points were mapped to a 2D representa-
tion. After extraction the patches were preprocessed us-
ing the method from Kooi et al. (2017), and then center
cropped to a size of 224 x 224 pixels to be used as in-
put to the cycleGAN network. Note that the dimensions
of the patches were selected to match the input of the
classification network.

Table 2 refers to the patches used during the exper-
iments. Note that in Table 1, a significantly higher
amount of normal exams for Hologic DM were avail-
able, therefore, more than 240,000 patches were ex-
tracted from them. To reduce the imbalance between
patches of different domains and decrease computa-
tional time, 10,000 patches were randomly selected and
used for the experiments. The patches were split into
training (80%) and validation (20%) sets.

Table 2: Number of patches used for training and validation.

Normal Abnormal

Hologic DM 10,000 2,920

Siemens DBT 654 102

For further evaluation, an independent test set was
available, the distribution of extracted patches is de-
scribed in Table 3.

Table 3: Number of patches in the test set.

Normal Abnormal

Hologic DM 2387 125

Siemens DBT 1207 151

3.6. Augmentations and upsampling

For training the cycleGAN, the following data aug-
mentations were used: random vertical flip, random
90◦ rotations, and small random translations. As the
dataset included fewer abnormal samples, for the exper-
iments when normal and abnormal patches were used,
interleaving was employed to upsample the abnormal
patches and avoid class imbalance.
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(a) DDBT (b) DDM (c) GDBT

(d) GDM (e) CycleDBT (f) CycleDM

Figure 6: Training losses for baseline cycleGAN.

3.7. Evaluation

As the goal of this project was to improve the clas-
sification of MCs, the main evaluation method used
was the analysis of the receiver operating characteristic
(ROC) curve. More specifically the area under the curve
(AUC) was employed to select the best models. For the
experiments with the baseline cycleGAN framework,
the translation models were saved every five epochs of
training, then, the models were used to translate the
DBT images in the validation set to DM, and finally,
the AUC of the classifier on the translated images was
measured. The model providing the highest AUC was
selected.

For the class-aware cycleGAN framework, the evalu-
ation was done with cross validation. In contrast to the
baseline framework, where only normal samples were
used for training and validation could be done in all the
abnormal samples; the class-aware framework required
both normal and abnormal samples for training, reduc-
ing the samples left for validation. To have an estimate
of the performance for all the abnormal samples, the
training was performed in five folds and the scores were
pooled. The data in Table 2 was split into five, for each
fold the resulting model was saved every five epochs
and the best model was chosen. Once all models were
available, the scores of the validation data for each fold
were concatenated to calculate the AUC on the totality
of the validation set. For the testing set all models were
tested and the average AUC was calculated.

4. Results

4.1. Baseline cycleGAN framework

The original Pytorch implementation of cycleGAN
from Zhu et al. (2017), was adapted to work with 16

bit depth, gray scale images. CycleGAN was trained
using normal DBT patches, and during testing time,
both normal and abnormal patches were transformed
into mammography-like patches, which were then fed
to the classifier of microcalcifications. The training was
done for 200 epochs with a batch size of 4, and learn-
ing rate 0.0002. The parameter in Equation 4 was set to
λ = 10. After 100 epochs the learning rate was linearly
decreased to zero.

Figure 7: Baseline cycleGAN framework. Receiver operating char-
acteristic curves of the microcalcifications’ classifier for different in-
puts in the validation set. Real DBT: real tomosynthesis patches. Fake
DM: mammography-like patches generated via original cycleGAN.

The change of the different losses during training can
be seen in Figure 6, as the curves were very noisy a
smoothing (bold line) was applied to better visualize the
trend over time. This experiment took 79 hours to com-
plete on a single NVIDIA Titan V GPU. The translation
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(a) Normal patches: original DBT

(b) Normal patches: DM-like generated

(c) Abnormal patches: original DBT

(d) Abnormal patches: DM-like generated

Figure 8: Baseline cycleGAN framework. Examples of correctly translated DBT patches to DM. T: true label, P: predicted label.

model which provided the highest AUC was chosen to
draw Figure 7. In the validation set, the model achieved
an AUC of 0.88 (95% confidence interval: 0.82 to 0.91,
estimated from 1000 bootstrap samples), with a mean
AUC increase of 0.065 (95% confidence interval: 0.001
to 0.132) with respect to the performance of the real
DBT patches.

The model was evaluated on the test set, giving the re-
sults shown in Figure 13. The performance of the clas-
sifier on real mammography data is also displayed for
comparison. The AUC of the classifier on the translated
patches via the baseline framework was 0.06 higher than
on real DBT.

Figure 8 shows examples of DBT images from the
test set correctly translated to the DM domain. For each
image, the classification score before and after transla-
tion is shown. The success of the framework is illus-

trated in the reduction of the difference between the true
and predicted scores for the translated images, and in
the noticeable changes in contrast and noise patterns.

Figure 9 shows examples where the translation de-
creased the ability of the classifier to correctly label the
images. This evidences how the score given by the clas-
sifier is affected by small changes in the image appear-
ance, such as a decreased contrast between calcifica-
tions and the surrounding tissues.

4.2. Class-aware cycleGAN framework

The best model obtained from the baseline experi-
ments was fine-tuned using the class-aware cycleGAN
framework. The training was done in five folds for 15
epochs, with a batch size of 4, and learning rate 0.0002.
The parameters in Equation 5 were set to λ1 = 10 and
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(a) Normal patches: original DBT

(b) Normal patches: DM-like generated

(c) Abnormal patches: original DBT

(d) Abnormal patches: DM-like generated

Figure 9: Baseline cycleGAN framework. Misclassified patches using translated images. T: true label, P: predicted label.

λ2 = 1. Model training took 21 hours per fold on a
single NVIDIA Titan V GPU.

Figure 10 shows an example of the losses during
training of one fold, which is representative of the be-
haviour of the other four folds.

The images in the validation set translated using the
class-aware cycleGAN had an AUC of 0.74 (95% con-
fidence interval: 0.688 to 0.787, estimated from 1000
bootstrap samples), with a mean AUC decrease of 0.058
with respect to the performance of the real DBT patches
(95% confidence interval: -0.124 to 0.004), as shown in
Figure 11.

The ROC curves of the testing set images translated
via the different models obtained in different folds are
shown in Figure 12. A variation in performance be-
tween models is observed, with an AUC between 0.71

and 0.79. The average performance of the class-aware
cycleGAN is shown in Figure 13, along with the perfor-
mance of original DM patches, original DBT patches
and fake DM patches generated via the baseline cycle-
GAN framework. The class-aware cycleGAN did not
represent an improvement in AUC with respect to the
baseline framework, having a similar performance to
that of the images without translation.

Examples of images that benefited from the class-
aware cycleGAN are shown in Figure 14, while unsuc-
cessful translations can be seen in Figure 15. For both
cases the contrast and noise properties translated via cy-
cleGAN are visible, but in general the images tend to
look smoother and even blurred. The translation of a
sample image via the different models obtained from
cross validation is given in Figure 16, showing the small
changes that each model made in the final image.
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(a) DDBT (b) DDM (c) GDBT

(d) GDM (e) CycleDBT (f) CycleDM

(g) Classi f ier

Figure 10: Training losses for the class-aware cycleGAN framework.

Figure 11: Class-aware cycleGAN. Receiver operating characteristic
curves of the microcalcifications’ classifier on the validation set for
different inputs. Real DBT: real tomosynthesis patches. Fake DM:
mammography-like patches generated via class-aware cycleGAN.

Figure 12: Class-aware cycleGAN. Receiver operating characteristic
curves of the microcalcifications’ classifier on the test set for different
folds.
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Figure 13: Receiver operating characteristic curves of the microcalci-
fications’ classifier on the test set for different inputs. Real DM: real
mammography patches. Real DBT: real tomosynthesis patches. Fake
DM baseline: mammography-like patches generated via original cy-
cleGAN. Fake DM proposed: mammography-like patches generated
via the class-aware cycleGAN .

5. Discussion

In this work we evaluated the use of cycleGAN for
transferring the style from mammography to DBT im-
ages, aiming to improve the classification of microcal-
cifications on DBT images. As described in Section 2,
the use of image to image translation for medical images
is of great interest for the field. However, the methods
employed to assess the performance of these approaches
are often qualitative, measuring if an expert can believe
that the generated images are realistic. Such evaluation
is relevant in computer vision where the appearance of
the images is the most important, but in medical images
the image intensity of each pixel has semantic mean-
ings, such as the x-ray attenuation. For this reason it
is not only important that the image looks realistic but
also that its shapes and structures are preserved. Cy-
cleGAN often gives certain freedom to the network to
generate the images and this can lead, in some cases,
to non-optimal results for diagnosis or classifier train-
ing. Since we wanted to improve the classification of
microcalcifications, in addition to an image appearance
perspective, we evaluated the performance of the classi-
fier in the fake images.

The available dataset was unpaired and imbalanced.
DBT and DM exams may come from different patients
without any relation to each other, this is the reason why
cycleGAN was chosen over pix2pix. An important is-
sue for training the image to image translation network
was to decide what ratio of data to use. As the main
focus of this work is on microcalcifications, it was im-
portant that the lesions were preserved and translated

accurately. A first approach was to perform the train-
ing using only abnormal samples (see Appendix A),
but the limited amount of data was an obstacle for im-
provement. Using both normal and abnormal samples
for training, without any supervision in the original cy-
cleGAN framework, can lead to normal patches trying
to be translated to abnormal ones and vice versa. For-
tunately, normal patches came from a candidate selec-
tion algorithm, and they also contained calcifications
(see Figure 8a), in principle this information could be
enough to train the translation network. Training with
normal patches also increases the size of the dataset for
DBT images significantly, which improved the perfor-
mance.

The training losses in Figure 6 showed the expected
behaviour: all losses changed gradually as the train-
ing advanced. A training is considered to fail when
the losses decrease rapidly and reach zero, making no
changes on the images. The discriminator for DM im-
ages (Figure 6b) decreased during the first few epochs,
it then stabilized and tended to increase slightly dur-
ing the rest of the training, showing the generator was
creating more realistic images and fooling the discrimi-
nator. The generator’s loss (Figure 6d) showed a ten-
dency to increase, meaning the training was close to
completion and the generation could not be improved
further. On the other hand, the behaviour of the transla-
tion from DM to DBT seemed to be poorer; the discrim-
inator of DBT images (Figure 6a) kept decreasing and
the generator’s loss (Figure 6c) tended to remain con-
stant. This can be explained with the imbalance of the
dataset: more examples of DM images were available
for the network to learn how should be their appearance.
The cycle consistency losses (Figures 6f, 6e) decreased
significantly with each iteration and this behaviour was
maintained until the training stopped. This can be an
indication that the weight assigned to the cycle losses
was higher than optimal, and the network was more in-
terested in generating images that could be translated
back, than in accurate translations. This suggests a de-
crease in the weight of the cycle consistency loss could
potentially improve the image generation.

The results revealed that the original cycleGAN
framework was able to generate mammography like im-
ages from DBT. As shown in Figures 8 and 9, the con-
trast and noise patterns of the DM images were suc-
cessfully transferred to the DBT images, providing re-
alistic results. For some images in Figure 9 it can be
seen that although the overall contrast of the image was
improved, the visibility of calcifications was compro-
mised, resulting in a harder classification. The ROC
analysis in Figure 7 shows an overall improvement in
classification when the fake images were fed to a classi-
fier previously trained on mammography data. In Figure
13 the comparison between the use of real and translated
images as input to the classifier is displayed. However,
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(a) Normal patches: original DBT

(b) Normal patches: DM-like generated

(c) Abnormal patches: original DBT

(d) Abnormal patches: DM-like generated

Figure 14: Class-aware cycleGAN. Examples of correctly translated DBT patches to DM. T: true label, P: predicted label.

this comparison is not completely fair, since DM and
DBT images were not paired. In Appendix B, an addi-
tional classifier was trained on combined DBT and DM
data, demonstrating that using DM-like images trans-
lated via the baseline cycleGAN framework on a classi-
fier trained on DM data, produced a similar AUC to the
one obtained using original DBT images on a classifier
trained with both DM and DBT images (Figure B.20).

Using the translated images on the classifier was ex-
pected to provide a result close to the original DM data,
this notion was supported by the appearance of the gen-
erated images. However, as seen in Figure 13, there
is still some room for improvement. The original cy-
cleGAN framework does not apply much restriction to
the generation of the images, and in clinical data too
much freedom can be detrimental. The main constraint
used in cycleGAN is the cycle consistency, which forces

the original image to be reconstructed from the fake
one. This has been proven problematic since the net-
work learns to cheat by encoding the information of the
original image in the generated version in a way that is
not easily visible (Chu et al., 2017). In our case, we
saw that when few data were available for training, as
the training advanced, the reconstructed images (from
the fake) became more similar to the original, but the
quality of the translation was not necessarily improved.
Examples of this can be found in Figure A.19, the first
row shows how some calcifications were faded, and the
second, a change in the pattern of the calcifications. In-
terestingly, for both cases the reconstructed images look
almost identical to the original ones.

This problem of cycleGAN has been discussed in the
literature and some alternatives have been proposed to
limit the freedom of the network during image gen-
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(a) Normal patches: original DBT

(b) Normal patches: DM-like generated

(c) Abnormal patches: original DBT

(d) Abnormal patches: DM-like generated

Figure 15: Class-aware cycleGAN. Misclassified patches using translated images via the class-aware cycleGAN. T: true label, P: predicted label.

eration, for example conditional cycleGAN (Lu et al.,
2018). This solution is however not desirable for our
problem since the generation requires an attribute, such
as the class label, and this is precisely what is unknown
at testing time. We proposed to use the classifier in-
side the cycleGAN to guide the translation, and generate
images that are not only realistic but also classifiable.
This concept was implemented via the loss function, by
adding the classifier’s loss to the cycleGAN objective.

The training losses of the class-aware cycleGAN in
Figure 10, display a relatively stable behaviour. The
classifier’s loss tended to decrease, specially during the
first epochs of fine-tuning, showing this was when the
network benefited the most from the addition of the new
loss. When its value decreases, it may be helpful to
increase the weight assigned to the classifier’s loss as
the training advances. This would help to provide more

meaningful information to the cycleGAN and improve
the image translation. Cross validation results show a
wide variation in performance for the models obtained
in the different folds (Figure 12). Figure 16 shows
how variations of the models can affect brightness and
contrast of microcalcifications in the translated images.
This can be a product of the limited number of abnormal
training samples, despite the efforts to upsample them
during training. When combining the scores of all vali-
dation images from every fold, the result was a decrease
in performance (see Figure 11). Due to the variation
between the models generated on each fold (see ROC
curves in Figure 12 and images in Figure 16), the dis-
tribution of scores given by the classifier to the images
translated using each model can differ. When the scores
were pooled together, these variations were not taken
into account to search for an appropriate classification
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Figure 16: Class-aware cycleGAN. A sample DBT patch translated to DM using the models obtained from different splits in cross validation.

threshold, producing a lower AUC. The decrease in per-
formance was confirmed in the test set (see Figure 13),
showing that the use of the classifier to guide the trans-
lation reduced the positive effects of image generation
via cycleGAN. A closer look to the generated images in
Figure 15, shows an over smoothing effect in the trans-
lated images that can be responsible of the poor perfor-
mance.

As with other GANs, stabilizing the training of cy-
cleGAN is a complex task, and adding a new loss to the
objective increases the complexity of the model. The
optimal weight of this new loss must be further investi-
gated, since it can have an impact in the final image. A
small weight can make the network ignore the informa-
tion from the classifier and a very high loss can result in
limiting the generation networks too much in producing
the images.

In the first stage of this project, we used a micro-
calcifications’ classifier, trained on heavily augmented
data in order to have a high performance on both DM
and DBT images. Using DBT images translated to DM
on this classifier was not showing an improvement re-
gardless of the efforts to fine-tune hyperparameters. It
seemed that cycleGAN had little to offer in this setting,
so we decided to simplify the experiments using a less
crafted classifier to evaluate the use of cycleGAN, lead-
ing to the results described above. It is possible that the
better classifier was already well trained, and translat-
ing DBT images to a DM-like space decreased its per-
formance. Probably, since the fake images were neither
completely DBT nor DM, the classifier had problems to
understand them. In contrast, the classifier used after-
wards felt more comfortable with images that resembled
more of a DM than images from a different domain.

6. Conclusions

In this work we investigated the application of cy-
cleGAN to improve the classification of microcalcifi-
cations on DBT images. DBT patches of suspicious
regions were translated to the DM domain, aiming to
improve their scores on a classifier previously trained
on DM data. The results suggest this methodology is
promising as the AUC for classification on DBT im-
ages increased in 0.065, being almost as good as a clas-

sifier trained on DBT data. To further improve these
results, we proposed to provide more guidance to the
cycleGAN framework by including the classifier’s loss
during training. However, it was problematic to assess
the weight of this new loss in regard to the multiple
loss functions inside the cycleGAN framework, lead-
ing to an overall decrease of performance. Further work
should be focused on tuning the weight for the different
losses in the cycleGAN objective, specially for the cycle
consistency and the classifier.
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Mendonça, A.M., Campilho, A., 2018. End-to-end adversarial
retinal image synthesis. IEEE transactions on medical imaging
37, 781–791.

Curado, M.P., Edwards, B., Shin, H.R., Storm, H., Ferlay, J., Heanue,
M., Boyle, P., 2007. Cancer incidence in five continents, Volume
IX. IARC Press, International Agency for Research on Cancer,
Lyon, France.

20.14



Automatic detection of calcification groups in DBT using domain adaptation from mammograms 15

Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J.,
Greenspan, H., 2018. Gan-based synthetic medical image augmen-
tation for increased cnn performance in liver lesion classification.
Neurocomputing 321, 321–331.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative adver-
sarial nets, in: Advances in neural information processing systems,
pp. 2672–2680.

Hooley, R.J., Durand, M.A., Philpotts, L.E., 2017. Advances in digital
breast tomosynthesis. American Journal of Roentgenology 208,
256–266.

Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A., 2017. Image-to-image trans-
lation with conditional adversarial networks. 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) , 5967–
5976.

Kooi, T., Litjens, G., Van Ginneken, B., Gubern-Mérida, A., Sánchez,
C.I., Mann, R., den Heeten, A., Karssemeijer, N., 2017. Large
scale deep learning for computer aided detection of mammo-
graphic lesions. Medical image analysis 35, 303–312.

Korkinof, D., Rijken, T., O’Neill, M., Yearsley, J., Harvey, H.,
Glocker, B., 2018. High-resolution mammogram synthesis us-
ing progressive generative adversarial networks. arXiv preprint
arXiv:1807.03401 .

Lai, Y.C., Ray, K.M., Lee, A.Y., Hayward, J.H., Freimanis, R.I.,
Lobach, I.V., Joe, B.N., 2018. Microcalcifications detected at
screening mammography: synthetic mammography and digital
breast tomosynthesis versus digital mammography. Radiology
289, 630–638.

Lanyi, M., 2012. Diagnosis and differential diagnosis of breast calci-
fications. Springer Science & Business Media.

Lu, Y., Tai, Y.W., Tang, C.K., 2018. Attribute-guided face genera-
tion using conditional cyclegan, in: Proceedings of the European
Conference on Computer Vision (ECCV), pp. 282–297.

Mordang, J.J., Janssen, T., Bria, A., Kooi, T., Gubern-Mérida, A.,
Karssemeijer, N., 2016. Automatic microcalcification detection in
multi-vendor mammography using convolutional neural networks,
in: International Workshop on Breast Imaging, Springer. pp. 35–
42.

Nelson, J.S., Wells, J.R., Baker, J.A., Samei, E., 2016. How does c-
view image quality compare with conventional 2d ffdm? Medical
physics 43, 2538–2547.

Park, J.M., Franken Jr, E.A., Garg, M., Fajardo, L.L., Niklason, L.T.,
2007. Breast tomosynthesis: present considerations and future ap-
plications. Radiographics 27, S231–S240.

Reiser, I., Nishikawa, R., Edwards, A., Kopans, D., Schmidt, R., Pa-
paioannou, J., Moore, R., 2008. Automated detection of microcal-
cification clusters for digital breast tomosynthesis using projection
data only: a preliminary study. Medical physics 35, 1486–1493.

Rodrı́guez-Ruiz, A., Krupinski, E., Mordang, J.J., Schilling, K.,
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Appendix A. Training with abnormal data only

As a first approach to the problem discussed in this
work, we considered to train the baseline cycleGAN
using only abnormal images. The experiment was run
for 100 epochs with a batch size of 1, and learning rate
0.0002. The parameter in Equation 4 was set to λ1 = 10.
The model was saved every five epochs and the AUC
was calculated on the validation set. The model which
provided the highest AUC was chosen to draw Figure
A.17. The model achieved an AUC of 0.77 (95% con-
fidence interval: 0.681 to 0.843, estimated from 1000
bootstrap samples), with a mean AUC increase of 0.012
with respect to the performance of the real DBT patches
(95% confidence interval: -0.081 to 0.118). The com-
parison of the performance of this approach against
training with only normals is shown in Figure A.18 for
the test set.

Appendix B. Classifier trained on combined DBT
and DM data

An additional classifier for MCs with the architecture
described in Section 3.3 was trained using combined
DBT and DM patches. Figure B.20 shows the compari-
son of the results obtained using the different classifiers
and types of images from the testing set. The AUC of
the DBT images translated to DM via cycleGAN was
comparable to that of the original DBT images classi-
fied using a network trained on DBT images.
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Figure A.17: Receiver operating characteristic curves of the micro-
calcifications’ classifier for different inputs. Real DBT: real tomosyn-
thesis patches. Fake DM: mammography-like patches generated via
original cycleGAN, using a model trained on abnormal patches.

Figure A.18: Receiver operating characteristic curves of the micro-
calcifications’ classifier for different inputs. Real DM: real mammog-
raphy patches. Real DBT: real tomosynthesis patches. Fake DM:
mammography-like patches generated via original cycleGAN.

(a) Real DBT (b) Fake DM (c) Reconstructed
DBT

(d) Real DBT (e) Fake DM (f) Reconstructed
DBT

Figure A.19: Example of calcifications poorly translated but recov-
ered during reconstruction.

Figure B.20: Receiver operating characteristic curves comparing cal-
cification classifiers with different inputs. Real DM on DM classi-
fier: real DM patches classified with a network trained on DM. Real
DBT on DM classifier: real DBT patches classified with a network
trained on DM. Fake DM on DM classifier: DM-like patches gener-
ated via original cycleGAN classified with a network trained on DM.
Real DBT on DBT classifier: real DBT patches classified with a net-
work trained on DBT and DM.
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Abstract

Breast cancer is the most common neoplastic disease in women around menopause. Due to this alarming
risks, detection at an early stage is key in reducing the rate of mortality. Background parenchymal enhance-
ment (BPE) is the enhancement of fibroglandular tissue (FGT) of the breast in response to MRI contrast
agent. Current studies proves that BPE can be used as a biomarker to determine the risk of developing
breast cancer. However, BPE rating suffers from large intra- and inter-observer variability. The purpose
of this study to investigate the use of automated tools (traditional machine learning and deep learning) to
classify BPE into their respective classes (mild, minimal, moderate and marked). The study was conducted
using 491 patients’ study. Each of these cases were manually evaluated by 3 radiologists from 3 different
countries. The qualitative approach was assessed as an initial step to establish ground-truth labels for the
automated techniques. Prior to BPE classification, segmentation of the region of interest (i.e FGT) was
carried out using an in-house proprietary segmentation tool. In the traditional machine learning approach,
hand-crafted features were extracted from the FGT in both pre-contrast (t0) and post-contrast (t1) DCE-
MRI volumes. These set of features were automatically classified into the 4 BPE classes using SVM and
Random Forest (RF) classifiers. Unlike the traditional machine learning approach, inputs to the deep neural
network were 2D slices selected from the middle of each volume for both t0 and t1. Using the concept of
transfer learning, pre-trained Resnet-50 model from PyTorch archive was used to automatically extract and
classify features. The optimal classifier found in the traditional machine learning technique was the RF clas-
sifier with 100 trees. Combination of all extracted features showed an overall accuracy and F1 score of 50%
and 0.46 respectively. Comparatively, the results obtained for the deep learning technique was higher than
the RF classifier with an overall accuracy and F1 score of 58% and 0.55 respectively. Thus, machine learning
algorithms have the potential to help automate BPE classification and provide supplementary opinion to
radiologists. However, more evaluation is needed before introducing it in a clinical environment.

Keywords: Breast cancer, DCE-MRI, FGT, BPE, Biomarker, Traditional Machine learning, Deep learning

1. Introduction

Breast cancer is the most common neoplastic dis-
ease in women around menopause (Kamińska et al.,
2015). According to estimates from the Ameri-
can Cancer Society (ACS) for breast cancer in the

Email address: ykatseena@yahoo.com (Ama Katseena
Yawson)

United States, approximately 41,760 breast can-
cer death are expected to occur among women in
2019 (Siegel et al., 2019). Though the exact cause
of this type of cancer is unknown, it can be at-
tributed mainly to factors such as age, family his-
tory, amount of dense tissue, hormonal changes,
lifestyle, etc. As a result of this alarming risks, de-
tection at an early stage is key in reducing the rate
of mortality. The commonly used imaging modal-
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Figure 1: Axial DCE-MRI slices of the first post-contrast difference images (t1-t0) of 4 different women showing the 4 categories
of BPE: (a) BPE 1 - minimal enhancement, (b) BPE 2 - mild enhancement, (c) BPE 3 - moderate enhancement, (d) BPE 4 -
marked enhancement.

ity for early breast cancer detection is x-ray mam-
mography. The use of other modalities such as
magnetic resonance imaging (MRI) and tomosyn-
thesis are rapidly evolving. Currently, ultrasound
and MRI for breast cancer is recommended by the
ACS as an adjunct to mammography for screening
(Wu et al., 2016). In the conventional breast MRI
protocols, dynamic contrast enhanced MRI (DCE-
MRI) represents the most sensitive breast imag-
ing technique for cancer detection. DCE-MRI con-
sists of 3D acquisitions of the entire breast volume
at different time points. Typically, a pre-contrast
(t0) and post-contrast (t1,t2,...tn) volumes before
and after the administration of an intravenous con-
trast agent. The time-signal intensity curves of
the different post-contrast sequences reflect the dy-
namic signal intensity variations induced by uptake
of contrast agent over a period of time and can be
described by contrast enhancement kinetics (Kuhl
et al., 1999)(Wu et al., 2016).

Background parenchymal enhancement (BPE) is
the enhancement of fibroglandular tissue (FGT) of
the breast in response to MRI contrast agent (Wu
et al., 2016). Presently, BPE is evaluated both
manually and qualitatively by radiologists using 4
ordinal categories defined in the breast imaging-
reporting and data system (BI-RADS) as: min-
imal, mild, moderate and marked (Park et al.,
2007)(Morris, 2007). Figure 1 illustrates sample
DCE-MRI slices of the 4 BPE categories. While

mammographic breast density has been established
as an independent risk factor, current studies proves
that BPE can be used as a biomarker to deter-
mine the risk of developing breast cancer, although
they must be interpreted with caution (Dontchos
et al., 2015)(Felix et al., 2016)(Mema et al., 2018).
Likewise, it is associated with tumor characteris-
tics, diagnostic performance and therapy response.
However, evidence suggests that BPE correlates
negatively with patients age and increases with
greater hormonal activity (Müller-Schimpfle et al.,
1997)(Pfleiderer et al., 2004)(King et al., 2011).
In contrast, recent studies contradictorily suggest
BPE to be an imaging feature without increased
cancer coincidence in asymptomatic or high-risk pa-
tients (Baltzer et al., 2011)(Bennani-Baiti et al.,
2016)(You et al., 2018).

King et al. (2011) were one of the first authors
who examined the relationship between BPE and
breast cancer risk. They presented evidence that
BPE might be more sensitive to breast cancer odds
than the amount of glandular tissue for certain
women subsets. Nevertheless, further research is
currently needed to explore the role played by BPE
in cancer risk assessment and provide an unbiased
mechanism for BPE quantification.

The most frequent BPE categories fall in the
range of minimal or mild with slow early and per-
sistent delayed kinetic curve (Giess et al., 2014).
These characteristics make MRI interpretation di-
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rect and easy. However, cases classified as moder-
ate or marked may interfere in accurate differen-
tiation of small breast lesions leading to increased
false-positive rates and reduced sensitivity of MR
examinations (DeMartini et al., 2012)(Giess et al.,
2014). This effect may also lead to unnecessary
biopsies and can influence a woman’s choice on get-
ting mastectomy rather than breast conservation
therapy (Klifa et al., 2011).

Although the 4 BPE categories are clearly de-
scribed by the American College of Radiology
(ACR), BPE rating suffers from large intra- and
inter-observer variability which ranges widely from
fair to substantial (Observers’ agreement, κ =
0.36–0.70) (Dontchos et al., 2015)(Pujara et al.,
2018). This variability can be linked to various fac-
tors such as level of experience, acquired training
and many others. Additionally, this task is tedious
and time consuming. To reduce these limitations,
automatic techniques are needed to aid radiologists
in their final decisions. Such tools could have other
potential applications, including training of young
radiologists in BPE classification or even the reduc-
tion of inter- and intra-reader variability.

2. State of the art

In recent clinical scenarios, dedicated worksta-
tions are commonly used to aid radiologists in mak-
ing their final decision for detection and recogni-
tion of breast lesions in DCE-MRI examinations
(Gubern-Mérida et al., 2015). As the potential
role of BPE in breast cancer risk determination
has gained attention, attempts to quantify BPE
has now become popular (Pujara et al., 2018).
This popularity can be attributed to the inherent
subjective, large intra- and inter-observer variabil-
ity in the current state of evaluation by radiolo-
gist (Dontchos et al., 2015)(Pujara et al., 2018).
In order to address these limitations, there is the
need to develop automated medical analysis tools
and computer-aided detection systems to aid in
the interpretation of DCE-MRI breast examina-
tions (Gubern-Mérida et al., 2015). These auto-
mated techniques have the ability to reduce the
workload of radiologists and help to improve diag-
nosis.

A new technique for computing FGT enhance-
ment in breast DCE-MRI was presented by Klifa
et al. (2011) aimed at quantifying the enhance-
ment of BPE. The adopted quantitative approach
for measuring breast MRI enhancement was an-
alyzed for a population of 16 healthy volunteers.
Their algorithm was tested on high risked women
who have already undergone 3 months of tamox-
ifen therapy. Quantitative parenchymal enhance-
ment measures were made in all cases. From their

experiment, they observed that high risk patient
demonstrated a 37% mean reduction in background
enhancement with treatment and hence suggested
that quantitative methods are robust and promising
tool that may allow radiologists to correctly quan-
tify and document the potential adverse effect of
BPE on diagnostic accuracy in larger populations.

Yang et al. (2015) published a new quantitative
image analysis method for improving breast can-
cer diagnosis using DCE-MRI examinations. The
aim of their work was to examine the feasibility of
applying a novel quantitative method to aid in im-
proving breast cancer diagnosis performance using
DCE-MRI and integrating BPE features into the
decision making process. Using a computer aided
detection system, segmentation was made on the re-
gion of interest (ROI) i.e. FGT. From the ROI, 18
kinetic features were computed. 6 of these features
were selected from the segmented breast tumour
and the rest from the parenchymal regions (exclud-
ing the tumor). A support vector machine (SVM)
classifier was trained and optimized using different
combinations of the extracted features. The leave-
one-case-out validation method was used to test the
performance of the classifier and also assessed using
area under the curve (AUC) of the Receiver Oper-
ating Characteristic (ROC). They concluded that
quantitative BPE features provide useful knowledge
to the kinetic features of breast tumours in DCE-
MRI and hence their integration to computer-aided
diagnosis techniques could improve breast cancer
diagnosis based on DCE-MRI examinations.

Quantitative three dimensional assessment of
FGT and BPE using a semi-automated computer-
ized methods was developed by (Ha et al., 2016). In
their approach, three-dimensional BPE quantifica-
tion method was evaluated with standardized BPE
qualitative cases. Based on their observation, there
was a significant positive correspondence between
quantitative MRI FGT assessment and qualitative
MRI FGT and hence the quantitative technique
may become a valuable tool in clinical use by pro-
viding computer generated standardized measure-
ments with less intra- and inter-observer variability.

Similarily, Pujara et al. (2018) also made a com-
parison between qualitative and quantitative assess-
ment of BPE on breast DCE-MRI. Qualitative eval-
uation was made by 4 breast radiologists using the
4-point scale (a–d same as BPE 1 - BPE 4) after
the administration of contrast agent at the first 90
s and 180 s. With the aid of a phantom-validated
segmentation algorithm, FGT masks were gener-
ated and co-registered to pre- and post-contrast fat
suppressed images to delineate the region of inter-
est and obtain a quantitative BPE measure (Pu-
jara et al., 2018). ROC analyses and kappa co-
efficients (κ) were used as comparison metric be-
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tween the subjective and quantitative approach.
Using ROC analyses, the authors concluded that
BPE at 90s was best predicted by the quantita-
tive BPE approach compared to subjective assess-
ment. However, at higher levels of quantitative
BPE, agreement between subjective BPE and quan-
titative BPE significantly decreased for all four ra-
diologists at 90 s and for 3 out of 4 radiologists at
180 s.

Despite the fact that quantitative methods pro-
posed by Klifa et al. (2011), Yang et al. (2015),
Ha et al. (2016) and Pujara et al. (2018) provide
supplementary information to aid radiologist mea-
sure accurately FGT and BPE, their methods are
still time-consuming and require initial delineation
of the ROI by the radiologist which may introduce
potential subjective bias (Eyal et al., 2009)(Clende-
nen et al., 2013)(Ha et al., 2019). Considering the
recent breakthrough of deep learning algorithms in
object detection and objection recognition, this has
influenced its application in many medical fields.
Ha et al. (2019) recently developed a fully auto-
mated approach using the convolutional neural net-
work (CNN) for quantification of FGT and BPE.
Using t0, t1, and (t1-t0) difference images of 137
patients, they manually segmented FGT and clas-
sified BPE levels to generate ground truth labels.
With the aid of a new 3D CNN built from the stan-
dard 2D U-Net architecture, voxel-wise prediction
for the whole breast and FGT borders was devel-
oped and implemented. At the end of their study,
they successfully quantified FGT and BPE within
an average of 0.42 s per MRI case. However, their
approach is still limited in terms of validation.

In this study, machine learning techniques (tra-
ditional machine learning and deep learning) are
investigated to classify BPE into their respective
classes; aiming to alleviate the subjective nature of
BPE. The study will be conducted using 405 pa-
tients’ study. Each of these cases were manually
evaluated by 3 radiologists from 3 different coun-
tries. The qualitative approach will be assessed
as an initial step to establish ground-truth for the
automatic methods. Evaluation will be provided
in terms of overall accuracy, accuracy per class,
F1 score, kappa (κ) agreement and the significance
level (p-value). The whole pipeline will be carried
out using Matlab R©R2018b with Weka-3-8 (Tradi-
tional Machine Learning) and PyTorch 1.0.1.post2
(Deep learning).

3. Material and methods

3.1. Data Acquisition
Breast DCE-MRI volumes used in this study were

collected from an existing clinical database at the

Radboud University Medical Centre (Nijmegen, the
Netherlands). The dataset consists of 491 DCE-
MRI examinations acquired from 405 women who
underwent breast cancer diagnosis at the hospi-
tal. In contrast to other studies, unilateral mastec-
tomy and breast implant cases with large visibility
of parenchymal enhancement were included in the
dataset. However, bilateral mastectomy were ex-
cluded. DCE-MRI examinations were acquired us-
ing 3 different Siemens scanners(Magnetom Vision,
Magnetom Avanto and Magnetom Trio) with mag-
netic field of 1.5 or 3 Tesla. Each of these scanners
has a dedicated breast coil which includes control
panel (CP) Breast Array, Siemens and Erlangen re-
spectively. Flip angles of 20o, repetition time of
5.5 s and echo time of 1.7 s were employed. In
each examination, TWIST (Time-resolved angiog-
raphy With Stochastic Trajectories) sequence was
followed as depicted in Figure 2. At least 3 post-
contrast acquisitions were available in the dataset
used in this study. The different scanners produced
different set of MRI volume sizes of 256×128×112,
384 × 192 × 160, 448 × 448 × 160, 448 × 448 × 176
and 512 × 256 × 120 with pixel spacing between 0.7
and 1.3mm2 and coronal slice thickness between 1
and 1.5 mm.

Figure 2: TWIST sequence for Breast DCE-MRI. 3D volume
of the breast is taken before and after the administration of
intravenous contrast agent. Signal enhancement computed
over the ROI can be classified as persistent (green), plateau
(blue) and early washout (red) (Gubern-Mérida et al., 2015).

3.2. Radiologist Assessment
As a way of addressing the bias that comes along

with an individual reader, three expert radiologists
from three different countries manually annotated
BPE levels of the dataset. The detailed informa-
tion of each reader is summarised in Table 1. Using
the guidelines defined in the ACR BI−RADS MRI
lexicon classification categories, each reader rated
the level of BPE independently into the 4 ordinal
categories. For this task, each reader visualised the
maximum intensity projection images at time point
t0 and t1 only to rate the BPE level. The pre-
contrast and post-contrast time points were used
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Figure 3: . Histogram of BPE annotations for each of the readers. The 4 plot represents the rate of each BPE reader with the
last representing the fused rate for all the readers as described in the text.

because they are assumed to be representative for
the BPE level within the entire volume (King et al.,
2011); although it is still not clear which time
point yields useful information for breast cancer risk
stratification and prediction of response to treat-
ment (Melsaether et al., 2017). As correctly pre-
dicted by Giess et al. (2014), all readers annotated
most of the dataset as mild or minimal with few
cases classified as moderate or marked. The rate
of each reader is summarized in the histogram plot
shown in Figure 3.

Table 1: Readers’ details

Readers’ ID Country Experience Speciality
Reader 1 (R1) Netherlands 8 Breast
Reader 2 (R2) Germany 3 Breast
Reader 3 (R3) Spain 25 Prostate

The agreement between readers was measured us-
ing the quadratic weighted cohen’s kappa coefficient
(κ) given by Equation 1.

κ = 1 −
Σn

i=1Σn
j=1wijxij

Σn
i=1Σn

j=1wijmij
, (1)

where n is the number of classes and wij , xij , mij

are elements in the weight, observed, and expected
matrices respectively.
κ < 0.0 was interpreted as poor agreement, 0.0≤

κ ≤ 0.20 as slight agreement, 0.20 < κ ≤ 0.40 as
fair agreement, 0.40 < κ ≤ 0.60 as moderate agree-
ment and κ > 0.60 as substantial agreement (Lan-
dis and Koch, 1977). Before computing the inter-
observer agreement, cases with suboptimal segmen-
tation mask were excluded. Similarily, datasets
without any agreement with at least 2 readers were
also filtered out. That is, patient study where

the 3 readers had 3 independent rate (R1 - BPE
1, R2 - BPE 4 and R3 - BPE 2). This precau-
tion was taken to avoid wrong assignment of la-
bels; thus the dataset reduced from 491 to 329. Us-
ing the majority voting ensembling technique, the
rate of the 3 readers were fused together to estab-
lish groundtruth labels for the automated approach.
The ensemble rate for all the readers is also dis-
played in Figure 3. Afterwards, the agreement be-
tween the ensembled rate and the individual rates
of each reader was also investigated.

3.3. FGT Segmentation
As an initial step to the machine learning ap-

proaches, segmentation of the FGT was carried out
using an in-house proprietary segmentation tool
developed by (Gubern-Merida et al., 2014). In
the segmentation algorithm, atlas based segmen-
tation was first used to delineate the borders of
breast from the image background and the chest
wall. The subsequent FGT segmentation involved
expectation-maximization (EM) for Gaussian mix-
ture models. EM was used to determine a thresh-
old intensity value to distinguish FGT from adi-
pose tissue. N4 bias-field correction algorithm was
performed prior to segmentation. The final FGT
segmentation was obtained within the breast vol-
ume after applying the fuzzy-c-means (FCM) seg-
mentation algorithm. Segmentation was performed
only in (t0) volumes and used for all the time
points. Segmentation results were generally satis-
factory but in some cases they were manually cor-
rected to minimise labelling errors. The output of
the segmentation was then used as a mask to ex-
tract appropriate voxel’s information in non-bias-
field corrected (t0) and (t1) volumes. Some samples
of segmented FGT are displayed in Figure 4.

21.5



Automated Background Parenchymal Enhancement Classification in Breast DCE-MRI 6

Figure 4: Axial representations of segmentated FGT of 3 cases: (a) pre-contrast (t0) image (b) first post-contrast (t1) image
(c) DCE-MRI slice segmentation mask (d) mask applied to (t0) image (e) mask applied to (t1) image.

3.4. Traditional Machine Learning Approach
3.4.1. Feature Extraction

Based on a prior knowledge of the FGT and
BPE volumes, enhancement (intensity) and statis-
tical features were extracted from the FGT region.
Initially, intensity information extracted from the
segmented regions in both pre-contrast and post-
contrast volumes was compared. Bias-field correc-
tion algorithms were discarded because it applies
non-linear normalization to the volume intensities
for each time point independently. Additionally,
in some cases it reduced the intensity difference be-
tween pre- and post-contrast volumes. Hence, voxel
information was extracted from non-bias-field cor-
rected volumes. A number of intensity and sta-
tistical texture based features were extracted from
DCE-MRI (Table 2). For the first 12 intensity-
based features, relative difference between pre- and
post- contrast volumes were calculated. The av-
erage distance between bins of two intensity his-
tograms were also computed. With the aid of soft-
ware library developed by Philips and Li, Haral-
ick statistical texture features were extracted from
the 3D volume. The software initially generates a
3D gray level co-occurrence matrix (GLCM) based
on the number of intensity levels in the 3D vol-
ume. From the generated GLCM, several metric
were measured. Table 2 is a list of all extracted
features. A total of 595 features were obtained per
each case of the dataset.

3.4.2. Data Augmentation
Considering the high imbalanced nature of the

dataset as displayed in Figure 3, data augmentation
was employed only in the train dataset. This tech-

nique was integrated in the adopted pipeline to help
increase the generalization performance of the clas-
sifiers. The synthetic minority over-sampling tech-
nique (SMOTE) described by Chawla et al. (2002)
was used for this purpose. The algorithm performs
augmentation in the feature space rather than data
space by taking least class samples and introducing
synthetic examples along the line segments join-
ing all of the k minority class nearest neighbors
(Chawla et al., 2002). In the training dataset,
SMOTE was adaptively applied to the least sam-
ple classes (BPE 3 and BPE 4) considering the im-
balance ratio. The ratio used in augmenting BPE
3 and BPE 4 were 2 and 3 respectively. Figure 5
shows the difference before and after applying the
SMOTE algorithm.

Figure 5: Histogram plot of a sample train dataset showing
the impact of SMOTE. BPE 1 and BPE 2 remained con-
stant because no augmentation was applied to these samples
while BPE 3 and BPE 4 increased by a factor of 2 and 3
respectively after applying SMOTE.
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Table 2: List of features extracted from DCE-MRI volumes for the traditional machine learning classification approach.

3.4.3. Classification

The final phase of the traditional machine learn-
ing approach involved training and testing the ex-
tracted features. Experiments were performed us-
ing the well-known SVM and random forest (RF)
classifiers. For initial configuration of the param-
eters of each classifier, the dataset was randomly
divided into 80% training and 20% testing. The
optimal number of trees used in tuning the random
forest classifier was 100 trees with batch size of 50.
For classification using SVM, the linear kernel with
complexity constant (C-regularizer) of 5.0 produced
optimal results. Afterwards, 5 fold cross validation
on the whole dataset was also carried out. That
is, the whole dataset was divided in 5 subsets of
similar size. One subset represents a test set (20%)
and the remaining 4 as train set (80%). This pro-
cedure was repeated for all the different subset un-
til the entire dataset was tested. Metrics used to
evaluate the performance of the proposed classifi-
cation tools were extracted from the corresponding
4-classes confusion matrix. These included over-
all accuracy (Acc), accuracy per class (AccBP En)

and F1 score. Equations used in measuring the
accuracy per class, overall accuracy and F1 score
are displayed in Equation 2, 3 and 4 respectively.
In addition, the κ was employed to quantify the
agreement between the predicted labels and true la-
bels. The significance level between predicted labels
and true labels was also determined using p-value,
where p-value < 0.05 represents high significance.

AccBP En = TPBP En

TPBP En + FPBP En
, (2)

where AccBP En is the accuracy of BPE n class,
TPBP En is the true positive of BPE n class and
FPBP En is the false positive of BPE n class.

Acc = TP

TP + FP + TN + FN
, (3)

where Acc is the overall accuracy, TP is the true
positive, FP is the false positive, TN is the true
negative and FN is the false negative.

F1 score = 2(pre ∗ rec)
pre+ rec

, (4)

where pre is the precision and rec is the recall.
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3.5. Deep Learning Approach
3.5.1. Data Preparation

Unlike the traditional machine learning ap-
proach, data preparation adopted in the deep learn-
ing approach differed. This is because the perfor-
mance of deep neural network is highly dependent
on the input data. As such, various image pre-
processing strategies were applied to the input data
before feeding it to the network. Considering the
different volumes due to the different MRI scanners,
an isotropic voxel spacing of (1 × 1 × 1) mm3 was
generated for pre-contrast (t0), post-contrast (t1)
and the first post-contrast subtraction (t1-t0) vol-
umes. Subsequently, 5 slices were selected from the
middle of each train volume and 1 middle slice for
each test volume. For each selected slice, the cor-
responding t0, t1 and (t1-t0) slices were stacked
together to generate 3-channel images. Using bilin-
ear interpolation, images were rescaled to ImageNet
(Deng et al., 2009) standard dimension of 224 × 224
pixels. A sample case is shown in Figure 6.

Figure 6: Data pre-processing for deep learning approach.
(a) selected t0 axial image (b) corresponding t1 axial image
(c) t1 - t0 difference image (d) 3-channels image. It consists
of t0 image as the red channel, t1 image as green channel
and t1-t0 as the blue channel.

The 3-channel images were independently nor-
malized using mean and standard deviation of
(0.485, 0.456, 0.406) and (0.229, 0.224, 0.225) re-
spectively in accordance to ImageNet reference.
The aim of this adopted normalization is to help
the deep neural network to learn faster and also
ensure that gradients act uniformly for each input
channel (Ioffe and Szegedy, 2015).

3.5.2. Data Augmentation
Although 5 non-zero slices were used for training

from each train volume, the high imbalance ratio
among the 4 BPE classes still persisted. According
to Perez and Wang (2017), data augmentation pro-
duces promising strategies to increase the accuracy
of classification tasks and hence data augmentation
was performed in the least samples to somehow bal-
ance the classes. For this reason, rotation of ±15◦

and horizontal flip were applied to BPE 3 and BPE
4 of the train dataset. In contrast to the traditional
machine learning approach, data augmentation was
performed in the data space. An example is dis-
played in Figure 7.

(a) Original Image (b) Rotation of −15◦

(c) Rotation of +15◦ (d) Horizontal Flip

Figure 7: An illustration of data augmentation performed
for smaller sample classes of the train dataset.

3.5.3. Implementation Details
Several classification networks such as Vgg-16,

Vgg-19, Resnet-50 and Densenet-121 were analyzed
and investigated for this tasks. However, Resnet-50
was selected over other network architectures be-
cause of its outstanding performance in the eval-
uation phase. This can attributed to its ability
to re-use features from upper convolutional layers
and also solve the vanishing gradient problem with
dense networks (He et al., 2016). The baseline ar-
chitectures of Resnet-50 follows the same trends as
a plain network with 50 layers except that shortcut
connections (residual blocks) are added to each pair
of 3×3 filters. Each residual block follows the bot-
tleneck design. That is, a stack of 3 layers consisting
of 1×1, 3×3 and 1×1 convolutions, where the 1×1
layers are responsible for reducing and then restor-
ing dimensions, leaving the 3×3 layer a bottleneck

21.8



Automated Background Parenchymal Enhancement Classification in Breast DCE-MRI 9

Figure 8: Overview of the proposed Resnet-50 architecture. The convolutional layers were pre-trained on ImageNet 1k natural
images dataset. The convolutional feature extractors and weights of the hidden layers were frozen and transferred directly to
BPE classification. Prb represents the probability.

with smaller input/output dimensions (He et al.,
2016). Using the concepts of transfer learning, pre-
trained Resnet-50 on ImageNet 1k natural images
was used. The pre-trained model was obtained
from torchvision (PyTorch) archives. Afterwards,
the model was fine-tuned to fit the task at hand.
In the fine-tuning phase, all the hidden layers were
frozen and the last fully connected layer was mod-
ified by reducing the number of features from 2048
to 595 using ReLU weight initialization followed by
a dropout layer with probability of 0.2. The role
of the dropout layer was to help reduce overfitting
while training the model (Srivastava et al., 2014).
Hence, the new last fully connected layer was made
up of 595 features classified into 4 classes using the
softmax (SM) classifier. As displayed in Figure 8,
the input to the network was a 3-channel image
made up of 3 set of images: pre-contrast (t0) as the
red channel, post-contrast (t1) as the green channel
and the difference image (t1-t0) as the blue chan-
nel. Therefore, each input image represents a mini-
batch of 3. For every batch size of 10, the train
samples were shuffled to avoid biased class result.
The cross entropy loss function (Equation 5) was
used to estimate the loss after every epoch.

H(T, q) = −ΣN
i=1

1
N
log2q(xi), (5)

where N is the size of the test set, q(x) is the prob-
ability of event, x is estimated from the training set

and H(x) is the estimated cross entropy loss.

This loss function was particularly useful for this
task because the dataset was unbalanced. Gra-
dients for back-propagation were estimated using
stochastic gradient descent optimizer with momen-
tum of 0.9. An initial learning rate of 0.001 was
used and periodically decayed by a factor of 0.1
using a scheduler after the completion of every 10
epochs. 20% of the train set was used as valida-
tion set to investigate if the network was either
overfitting or underfitting. From the 250 epochs
used for training, it was observed that the opti-
mal evaluation results were found at 100 epochs.
Early stopping using the best validation accuracy
as well as the least validation loss was also inves-
tigated. Just like the traditional machine learning
approach, 5 five fold cross validation was performed
until all the entire dataset was once used as a test
set. For initial investigation and estimation of the
deep neural network, the dataset was randomly di-
vided into 80% training and 20% testing. Experi-
ments were conducted with and without data aug-
mentation strategies. Evaluations were performed
by comparing the indices with the highest proba-
bility against the true classes using the SM classi-
fier. Subsequently, the 4×4 confusion matrix was
analyzed and various metrics such as accuracy per
class, overall accuracy, F1 score, κ and p-value were
computed.
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(a) RF classification without SMOTE augmentation (b) RF classification with SMOTE augmentation

(c) SVM classification without SMOTE augmentation (d) SVM classification with SMOTE augmentation

Figure 9: Confusion matrix of BPE classification with no cross validation using the traditional machine learning approach. The
diagonal of each confusion matrix coloured in green represents the correctly classified class (True positive) while plain white
cells represents misclassification.

4. Results

4.1. Inter-Observer Agreement
The inter-observers agreement between all radi-

ologist (R1, R2 and R3) participating in this anno-
tation task ranged from moderate to fair agreement
with p-value < 0.05 (except agreement between R1
and R3 with p-value = 0.0786). However after ap-
plying the ensembling technique, the agreement be-
tween the ensembled rates (E) and the individual
rating of each reader ranged from moderate to sub-
stantial with high significance p-value for each case.
The inter-observers agreement and the correspond-
ing p-value of each pair is summarized in Table 3.

Table 3: Inter-observers agreement.

Readers’ Pair kappa (κ) p-value Agreement
R1 & R2 0.41 0.0004 Moderate
R1 & R3 0.18 0.0786 Slight
R2 & R3 0.13 0.0291 Slight
R1 & E 0.65 0.0000 Substantial
R2 & E 0.66 0.0000 Substantial
R3 & E 0.46 0.0000 Moderate

4.2. Traditional Machine Learning
Following the methodologies described in sec-

tion 3, the performance of RF and SVM classi-
fiers using all 595 extracted features from the seg-
mented parenchymal volume are displayed in Fig-
ure 9. A total of 66 test cases were used to eval-
uate the trained models. For each experiment,

cases with and without data augmentation strate-
gies were compared. The various evaluation metrics
measured from each confusion matrix is displayed
in Table 4. Comparatively, the overall performance
of the RF classifier was better than the SVM classi-
fier. In Table 4, it can be observed that BPE 1 has
the highest accuracy with BPE 3 having the least
accuracy. The overall accuracy on the test samples
was 50% with F1 score of 0.46. The kappa agree-
ment between the true class and predicted class was
computed as 0.27 with p-value = 0.2601 > 0.05.
Hence the hypothesis of this test can be consid-
ered as insignificant. Nonetheless, after applying
the SMOTE data augmentation to the least class
samples .i.e: BPE 3 and BPE 4, the accuracy of
each class increased significantly for all cases with
the exception of BPE 2 which decreased by 10%.
Additionally, other metrics such as the overall accu-
racy, kappa agreement and F1 score also increased
accordingly. The p-value value of the true class
against the predicted class changed from insignif-
icant hypothesis to significant hypothesis (p-value
= 0.0034 < 0.05). Relatively, the changes observed
in the SVM classifier after applying the SMOTE
algorithm followed a similar trend as the RF clas-
sifier. Although the accuracy per class increased
after SMOTE in all the classes (except of BPE 1),
the overall accuracy and F1 score without SMOTE
augmentation was slightly higher (Overall accuracy
= 42.42% without SMOTE and 40% with SMOTE,
F1 score = 0.40 without SMOTE and 0.39 with
SMOTE. However, the κ agreement between the

21.10



Automated Background Parenchymal Enhancement Classification in Breast DCE-MRI 11

Table 4: Results of evaluation metrics from Figure 9. * represents results for a more balanced training dataset using SMOTE.

(a) RF (b) SVM

Figure 10: Boxplot of 5 fold cross validation using traditional machine learning approach. The green box represents the original
dataset without SMOTE augmentation while the blue box represents dataset with SMOTE augmentation. The first 4 pairs of
box and whisker plots show distribution of accuracy as a function of each BPE class assessment. The last pair represents the
overall accuracy for all the 5 fold. The red ’+’ symbol represents an outlier.

predicted and true class was significantly higher by
a factor of 2 after applying the SMOTE algorithm.
As previously observed with the RF classifier, the
p-value measured between the true class against the
predicted class also changed from insignificant hy-
pothesis to significant hypothesis (p-value = 0.0016
< 0.05). Afterwards, the same set of evaluation
were performed on the other fold until all the cases
were once used as a test case. The results obtained
for the 5 folds are summarized in the boxplot shown
in Figure 10. Each box indicates the median accu-
racy as line dividing the box with the interquartile
range as the height of the box. The whiskers extend
from both side of the box for most of cases. This
shows the ranges for the bottom 25% and the top
25% of the data values, excluding outliers. With
regards to the metrics measured for the 5 folds, it
is evident as displayed in Figure 10 that the over-
all accuracy (Acc) was compact for both classifiers
than the individual classes especially cases without
the SMOTE augmentation. For experiments con-
ducted with the RF classifier, none of the accuracy
measured for all 5 folds was recorded as an outlier in
the boxplot. However, the SVM classifier recorded
1 outlier case as illustrated in Figure10b. This was
an extreme case when added to the boxplot could
have a huge on the impact on the final appearance.

4.3. Deep Learning
In order to adequately compare the results of the

2 adopted methods (i.e: traditional machine learn-
ing and deep learning), the same train and test
cases used in the traditional machine learning ap-
proach were used for the deep learning experiments.
A total of 66 test cases were used to validate the
trained models. The results obtained for each case
study is displayed in Figure 11. Table 5 shows the
various metrics measured from the 4×4 confusion
matrix. From Table 5, it can be deduced that BPE
4 has the highest accuracy with (AccBP E4 = 75%)
while BPE 2 has the least accuracy with (AccBP E2
= 50%) when no data augmentation strategies were
applied. For the same experiment, the computed
overall accuracy was 58% with F1 score and κ of
0.55 and 0.40 respectively. The p-value between
the true class and predicted class was 0.0170 <
0.05, thus the hypothesis of this test was highly
significant. However, after data augmentation was
applied to the least class samples such as BPE 3
and BPE 4, there was a drastic reduction in all the
measured metrics with the exception of AccBP E4.
The accuracy of BPE 4 with and without augmen-
tation was the same for both cases. Subsequently,
5 fold cross validation was performed. The results
obtained for the acccuracy per class (AccBP En) and
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(a) Classification without data augmentation (b) Classification with data augmentation

Figure 11: Confusion matrix of BPE classification with no cross validation using deep learning approach. The diagonal of each
confusion matrix coloured in green represents the correctly classified class (True positive) while plain white cells represents
misclassification.

Table 5: Results of evaluation metrics from Figure 11. * represents results for a more balanced training dataset using data
augmentation strategies. SM represents Softmax classifier.

Figure 12: Boxplot of 5 fold cross validation using deep
learning approach. The green box represents the original
datasets without data augmentation while the blue box rep-
resent datasets with data augmentation. The first 4 pairs
of box and whisker plots show distribution of accuracy as a
function of each BPE class assessment. The last pair rep-
resents the overall accuracy for all the 5 fold. The red ’+’
symbol represents an outlier.

overall class is summarized in the boxplot displayed
in Figure 12. As illustrated in Figure 12, the accu-
racy of BPE 1 (AccBP E1) without any data aug-
mentation strategies was more compact than the
other BPE classes. However with data augmenta-
tion strategies, the accuracy of BPE 3 (AccBP E3)
was more compact than the other classes. Rela-
tively, the overall accuracy without any data aug-
mentation strategies was also more compact than
data augmentation strategies. This implies that for

all folds, the accuracies measured at each fold were
similar relative to each other with less deviation. 2
outliers were recorded as displayed Figure 12.

5. Discussion

This study presents machine learning techniques
(traditional machine learning and deep learning) for
automatic BPE level classification following the 4
ordinal categories defined by ACR. Although these
4 BPE categories are clearly described by the ACR,
manual annotation currently undertaken by radiol-
ogists suffers from large intra- and inter-observer
variability as proven by the inter-observer’s agree-
ment results obtained for the 3 readers ranging from
slight to moderate agreement as shown in Table 3.
As displayed in Table 1, the large variability ob-
served among the 3 readers originates from their
level of experience, speciality and training. Agree-
ment between R1 and R2 was moderate with κ
= 0.41 and p-value of 0.0004 < 0.05. However,
agreement between R1 and R3 was slight with κ
= 0.13 and p-value of 0.0291 < 0.05. Likewise,
the agreement between R2 and R3 with κ = 0.18
and p-value of 0.0786 > 0.05. This large vari-
ability was mostly caused by R3 because of his
field of speciality (prostate). Aside the large intra-
and inter-observer variability observed in current
BPE evaluation by radiologists, they are very te-
dious and time-consuming tasks. These discrepan-
cies might be regarded as an initial drawback as
previously observed in the literature by Dontchos
et al. (2015) and (Pujara et al., 2018). Hence,
there is the need for a further (quantitative and
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automated) re-definition of the BPE rating crite-
ria. These automated BPE classification tools, as
proposed in this study has the potential to reduce
the tedious, subjective nature of BPE classifica-
tion process. Additionally, such tools could help
in training young radiologists in BPE classifica-
tion or even the reduction of inter- and intra-reader
variability. Up to date, many literatures on quan-
titative BPE assessment have been performed by
Klifa et al. (2011), Yang et al. (2015), Ha et al.
(2016) and Pujara et al. (2018). Nevertheless, their
methods are still time-consuming and require ini-
tial delineation of the ROI i.e. FGT by the radiolo-
gist which may introduce potential subjective bias
(Eyal et al., 2009)(Clendenen et al., 2013)(Ha et al.,
2019). Due to these limitations posed by the semi-
automated approaches, fully automated techniques
are needed to completely remove the subjective na-
ture of BPE classification. Ha et al. (2019) recently
developed a fully automated approach based on the
convolutional neural network (CNN) for FGT quan-
tification and BPE classification. For further val-
idation with the task started by Ha et al. (2019),
the suggested approach in this study also adopts
automated techniques based on machine learning
algorithms (traditional machine learning and deep
learning).

In order to establish ground truth labels for the
automatic approaches, the individual rates from the
3 radiologists were fused together using the major-
ity voting ensembling technique. That is, for each
study, the final label was assigned based on the
agreement between at least 2 readers. Prior to this
ensembling technique, cases without any agreement
with at least 2 readers were also filtered out. That
is, patient study where the 3 readers had 3 indepen-
dent rate (R1 - BPE 1, R2 - BPE 4 and R3 - BPE
2). In this scenerio, the mean of the 3 rate gives
a value of 2.6 which is ≈ 3. However, none of the
readers evaluated the rate as BPE 3. Therefore, to
avoid wrong label assignment, cases without agree-
ment between at least 2 readers were filtered out.
Subsequently, the agreement between the ensem-
bled rates and each individual readers’ rate were
determined and found to range from moderate to
substantial agreement. These observed agreement
is indicative that all the individual rates were fairly
considered while assigning the final labels.

Although the goal of this study is a classifica-
tion task, the performance of the suggested auto-
mated techniques are highly dependent on the cor-
rect segmentation of the ROI i.e: FGT. For these
reasons, robust and fully automated segmentation
of the whole breast and FGT segmentation devel-
oped by Gubern-Merida et al. (2014) were applied
to each case study independently to generate seg-
mentation mask. Segmentation masks were gener-

ated only in (t0) volumes and used for all the time
points. This is because there were no records of
patient motion between the different time points.
As stated previously, the segmentation obtained in
some cases were suboptimal and hence some of the
segmentation masks were manually corrected.

With respect to the use of the traditional ma-
chine learning approach in conjunction with the the
hand crafted (enhancement and statistical haralick
texture) features, cases with and without data aug-
mentation strategies were compared in each classi-
fiers. For initial estimation of the performance of
each classifier, the dataset was divided into 80%
training made of 263 cases and 20% testing made
up of 66 cases. Comparatively, the overall perfor-
mance of the RF classifier was better than the SVM
classifier. This can be associated its ability to re-
duce risk of overfitting. Additionally, it is good
tool for multiclass problem. From the results ob-
tained as displayed Table 4, it can be observed that
BPE 1 recorded the highest accuracy for both RF
and SVM classifiers. The high accuracy observed in
BPE 1 class can be attributed to many sample cases
used in training the model as displayed in Figure
5. Nevertheless, after applying the SMOTE data
augmentation strategies to the least class samples
(BPE 3 and BPE 4), there was a significant in-
crease in all the individual BPE classes (excluding
BPE 2 which reduced by 10%). Surprisingly, ap-
plying the SMOTE data augmentation algorithm
to the least sample classes positively affected the p-
value between the predicted and true class for each
classifier by changing its value from insignificant
hypothesis to significant hypothesis. That is, the
p-value of the true class against the predicted class
without SMOTE data augmentation was measured
as 0.2601 which exceed the threshold value of 0.05
(insignificant) and p-value of the true class against
the predicted class with SMOTE was measured as
0.0014 which within the threshold value of 0.05 (sig-
nificant). From the 5 fold cross validation carried
out, results obtained (Figure 10) shows that the
overall accuracy (Acc) was compact for both clas-
sifiers than the individual classes especially cases
without the SMOTE augmentation. This implies
that the overall accuracy measured for all 5 folds
were less deviated from each other when compared
to the individual class cases.

The deep learning algorithms were also used to
investigate BPE classification. Unlike the tradi-
tional machine learning approach, features were au-
tomatically extracted by the deep neural network.
The input to the network were set of 2D slices se-
lected from the middle volume of each case study.
In the data preparation phase, the t0, t1 and (t1-t0)
images were stacked together to generate 3-channel
images. This step was undertaken to ensure that
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Table 6: Comparison between published works in section 2 on BPE classification and our adopted approach. * represents results
for a more balanced training dataset using data augmentation strategies. SM represents Softmax classifier. Bold numbers
represent the maximum value along the column. ’-’ represents unknown metrics.

Reference AccBPE1 (%) AccBPE2 (%) AccBPE3 (%) AccBPE4 (%) Acc (%) AUC

Klifa et al. (2011) 23.00 22.00 17.00 23.00 - -
Yang et al. (2015) - - - - - 0.865
Ha et al. (2016) 4.61 8.74 18.10 37.40 - -

Pujara et al. (2018) 20.20 25.20 50.00 50.00 - -
Ha et al. (2019) - - - - 82.90 -

Our Approach (SVM) 72.41 22.22 8.33 28.57 42.42 -
Our Approach (SVM∗) 51.72 27.78 25.00 57.14 40.91 -

Our Approach (RF ) 79.31 44.44 8.33 14.29 50.00 -
Our Approach (RF ∗) 82.76 33.33 16.67 57.14 54.55 -
Our Approach (SM) 57.50 50.00 62.50 75.00 58.00 -
Our Approach (SM∗) 53.33 38.46 50.00 75.00 51.00 -

the deep neural network learns effectively because
most of the subtraction (t1-t0) images were negli-
gible. That is, the sum of their intensity were 0.
Using the same train and test cases, the deep neu-
ral network were trained using pretrained Resnet-50
model. In contrast to the traditional machine learn-
ing algorithm, this approach was highly dependent
on the data size and data preprocessing. Initially 1
middle slice was used for both training and testing.
However, the generalization results obtained after
evaluating the trained model was suboptimal and
as such for each train samples, instead of 1 mid-
dle slice, 5 middle slices were selected. In addition,
transfer learning was also considered over training
from scratch. Another alternative considered in the
data preparation phase was projection of all the 2D
slices into one projected slice. This data prepa-
ration technique resulted in pixelated images and
hence their use were discarded. Data augmenta-
tion strategies were introduced such as rotation of
± 15◦ and horizontal flip as displayed in Figure 7
were applied to the least class samples in attempt
balance the classes. Contrary to the data prepara-
tion adopted in the training phase, only 1 middle
slice was used to evaluate the trained model dur-
ing the validation phase. This was done to make
the deep learning algorithm more comparable to
the traditional machine learning approach. The hy-
perparameters such as the batch size, learning rate
and epoch in the deep neural networks were care-
fully tuned to obtained optimal results. To investi-
gate whether the network was either overfitting or
underfitting, 20% of the train set were used as vali-
dation set to monitor the trends of both validation
loss with respect to the train loss. The deviation
between the train and validation loss was less for
first 100 epochs covered. However, the validation
loss increase progressively afterwards. Early stop-
ping using best validation accuracy and least vali-
dation loss were investigated. This technique saves

the model with best validation accuracy. Their
use was later discarded because, for most experi-
ments the results obtained without early stopping
was much better when compared to the early stop-
ping techniques. Hence, fixed epochs were set and
used throughout all the experiments.

Comparatively, the results obtained for the deep
learning approach were slightly higher than that of
the traditional machine learning approach. That is,
the best overall accuracy measured using the tradi-
tional machine approach without data augmenta-
tion was computed as 50% while that of the deep
learning was found to be 58%. As displayed Table
5, all the 4 BPE classes received fair accuracy per
class (AccBPEn), hence the accuracy per class was
not biased towards classes with many samples as
it was the case for the traditional machine learning
approach. As illustrated Figure 12, the accuracy
per class (AccBPEn) for the SM classifier were rel-
atively low when compared to RF and SVM classi-
fiers. These variations were as a result of the ran-
dom division employed while splitting the data set
into 5 folds. Hence folds with well balanced classes
performed better than folds with huge imbalance
among the classes. Unlike the traditional machine
learning approach, the adopted data augmentation
in the deep learning method did not improve any
of the metrics measured as observed on Table 5.

In the end, we compared our results to al-
ready published works on BPE level classification
as shown in Table 6. From the table, our ap-
proach received the best accuracies in terms of ac-
curacy per class (AccBPEn). However, Ha et al.
(2019) received the best overall accuracy (Acc).
The high performance observed in their approach
can be linked to the good baseline used to establish
ground truth as well as the robust segmentation
tool used in segmenting FGT prior to the classifi-
cation tasks. Nevertheless, our approach provides
a good baseline for further evaluation.
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6. Conclusions

Machine learning algorithms (traditional ma-
chine learning and deep learning) were investigated
in this study as a supplementary tool for radiolo-
gists in BPE level classification. The classification
models described in this work represents a step to-
wards an automated and objective classification of
BPE level following ACS recommendations. The
main advantages of such tools is the reduction of
inter- and intra-reader variability observed during
manual BPE classification. Such automated tools
could also be beneficial for radiologists with less
experience as they could be trained on the annota-
tions of a more experienced radiologists. Further-
more, automatic BPE classification tools could be
included into other applications such as breast can-
cer risk estimation models for patient stratification
and risk assessment in personalised screening sce-
narios.

For future studies, more BPE readers should be
engaged in rating BPE levels since the suggested
techniques are dependent on the manual annota-
tions given by radiologists’. Additionally, the 3D
U-Net architecture can be used to initially segment
the ROI before passing it to the various suggested
algorithms. Furthermore, larger dataset will likely
improve our models. Also, the use of N4 bias field
correction could further be explored.
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Abstract

Supervised machine learning techniques require large amounts of annotated training data to attain good performance.
However, annotated data are difficult and expensive to obtain, especially in the medical domain where only domain
experts, whose time is scarce, can provide reliable labels. Active learning aims to ease the data collection process by
automatically deciding which instances an expert should annotate in order to train a model as quickly and effectively
as possible. In this study we evaluate different data selection approaches (random, uncertain, and representative sam-
pling) and a semi-supervised model training procedure (pseudo-labeling), in the context of lung nodule segmentation
in CT volumes. Results showed that a strategy based on estimation of the uncertainty level and representativeness
slightly outperformed the pseudo-labeling technique, but both managed to reach the highest performance with ≈ 58%
of the training data.

Keywords: MAIA master, active learning, deep learning, lung nodule segmentation, annotation of biomedical data

1. Introduction

Supervised machine learning techniques require large
amounts of annotated training data to attain good perfor-
mance. However, annotated data are difficult and expen-
sive to obtain, especially in the medical domain where
only domain experts, whose time is scarce, can provide
reliable labels. Active Learning (AL) aims to ease the
data collection process by automatically deciding which
instances an annotator should label to train a model as
quickly and effectively as possible.

In a typical AL scenario (Figure 1) we start with a
small set of of annotated data (labeled pool), which are
used for the initial model training. Then an active learn-
ing strategy, which usually relies on the model predic-
tions, selects few data samples from the unlabeled pool
of data that should be annotated by a human or a ma-
chine. After chosen samples have been labeled, they are
added to the labeled dataset, the model is trained again,
and the whole process is repeated until the satisfying
level of a model performance is reached. 1

1Note that to be able to assess changes in the model performance
a separate set of annotated data is.

Figure 1: Active Learning procedure

The aim of this study is to implement and compare
active learning strategies that have shown promising
results for different tasks, and apply it within medical
domain, specifically, we chose lung nodules segmenta-
tion using CNN as a primary goal.
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2. State of the art

In recent years a range of active learning strategies
have been proposed, mostly with primary focus on clas-
sification tasks. In ‘Learning Active Learning’ (LAL)
by Konyushkova et al. (2017) a regression problem was
formulated: given a trained classifier and its output for a
specific sample without a label, the reduction in gener-
alization error that can be expected by adding the label
to that point is predicted. Two strategies were proposed
for the samples selection: LAL independent, where the
initial dataset is split into labeled and unlabeled ran-
domly, and LAL iterative, where AL procedure which
selects data points according to the strategy learned on
the previously collected data was simulated for parti-
tioning into labeled and unlabeled sets, and samples at
each iteration depend on the samples at the previous it-
eration. LAL has proved to work well on real data from
several different domains such as biomedical imaging,
economics, molecular biology and high energy physics.
One of the successful and simple strategies is called Un-
certainty sampling (US). It focuses on selecting samples
which the current classifier is the least certain about.
The most common options to estimate the level of un-
certainity:

1. Least confidence proposed by Settles (2009): all
the unlabeled samples should be ranked in an as-
cending order according to the value of lci:

lci = maxp(yi = j|xi; W) (1)

where p(yi = j|xi; W) denotes the probability of xi

belonging to the class j.
2. Margin sampling proposed by Scheffer et al.

(2001): all the unlabeled samples should be ranked
in an ascending order according to the value of msi:

msi = p(yi = j1|xi; W) − p(yi = j2|xi; W) (2)

where j1 and j2 the most probable classes for the
sample.

3. Entropy proposed by Shannon (2001): all the un-
labeled samples should be ranked in a descending
order according to the value of eni:

eni = −
m∑

j=1

p(yi = j|xi; W)logp(yi = j|xi; W) (3)

In addition to estimation of the uncertainty level in
CEAL by Wang et al. (2016) a strategy that automati-
cally selects and annotates the high confidence samples
was proposed. Not only uncertain samples are added
into the training set, but also the majority samples
with high prediction confidence. For these certain kind
of samples pseudo-labels are assigned automatically

without human labour cost. From the unlabeled pool
of data high confidence samples are selected as those
whose entropy is smaller than a certain threshold δ, and
the pseudo-label yi is defined as follows:

j∗ = argmaxp(yi = j|xi; W), (4)

yi =

{
j∗, eni < δ

0, otherwise (5)

The proposed strategy was tested on two datasets,
namely Cross-Age Celebrity face recognition Dataset
(CACD) and the Caltech-256 object categorization for
the classification task. CEAL algorithm with margin
sampling criterion outperformed other methods and re-
duced the need of labeled samples (63% of all labeled
data for CACD were required, 76% for Caltech-256).

Gorriz et al. (2017) contributes to the previous work
and apply the CEAL algorithm for medical imaging seg-
mentation using CNN. They propose to use the effect
of the dropout layer for the image uncertainty estima-
tion. The dropout works by randomly deactivating net-
work activations, and at test time it allows to estimate
pixel-wise uncertainty. Images were taken from ISIC
2017 challenge and were split randomly into a test set
with 400 images, initial labeled set with 600 images for
training and the remaning 1000 images were put into
the unlabeled set. At each active learning loop 10 sam-
ples with no melanoma detection, the 10 most uncertain
samples and 15 random samples were added into the la-
beled pool for further training. A Dice score of 0.74 was
reached after 9 active learning iterations with the help of
32% of data from unlabeled pool.

In Suggestive Annotation framework by Yang et al.
(2017) a deep active learning framework was introduced
and the goal was to determine the most representative
and uncertain samples. While uncertainty means that
annotated areas should be difficult for the network to
perform a segmentation task, representativeness means
that annotated areas need to have useful characteristics
(features) for as many samples from the unlabeled pool
of data as possible.
The key idea of the representativeness estimation is to
define the similarity between two images. If we take
the output of the last convolution layer from the en-
coder then it can be seen as high level features I f

i of
the image Ii. The similarity can be further estimated
as sim(Ii, I j) = cosine similarity(I f

i , I
f
j ). If we denote

S a as an annotated set, S u - unannotated set, then first
we can define the representativeness of S a for an image
Ix ∈ S u as f (S a, Ix) = maxIi∈S a sim(Ii, Ix), where sim(·, ·)
is the similarity measure between two images Ii and Ix.
And the final step is to choose those candidates from S a

that maximize F(S a, S u) =
∑

I j∈S u
f (S a, I j).

The method was applied to the 2015 MICCAI Gland
Challenge dataset and a lymph node ultrasound image
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segmentation dataset. By using only 50% of train-
ing data state-of-the-art segmentation performance was
achieved.

Ozdemir et al. (2018) proposed an active learning al-
gorithm that was applied for gland segmentation. It fol-
lowed the idea of Suggestive Annotation with two nov-
elties for selecting samples at every active learning loop:

1. Deep contour-aware network for the segmentation
was modified by adding the abstraction layer dur-
ing training to maximize information content. In-
stead of computing the representativeness as a co-
sine similarity between the descriptors of images,
a content distance was introduced:

dcont(Ii, I j) =
1
N

N∑
(Rl(Ii) − Rl(I j))2 (6)

where layer activation responses Rl(Ii) at the ab-
straction layer were used.

2. Instead of first selecting uncertain samples and
then choosing the most representative of those, a
Borda-count based method was proposed: samples
are ranked for each metric, and the next query sam-
ple is picked based on the best combined rank.

The proposed strategy was tested on an MR dataset of
36 patients diagnosed with rotator cuff tear, where the
goal was to segment bones and groups of muscles. Be-
ing initially trained on 64 slices the Dice score reached
the upper bound (that is a result of training on 100% of
the data Dpool) by using 27% of the Dpool .

3. Material and methods

In order to empirically examine behaviour of differ-
ent active learning strategies we have created a syn-
thetic dataset (See section 3.1), which served as a toy
test problem during the algorithm development. Later
we evaluate the methods on a lung nodule segmentation
task using the publicly available LIDC dataset (See sec-
tion 3.2).

3.1. Synthetic data
There exist different publicly available datasets that

are used for deep learning experiments. MNIST by
LeCun and Cortes (2010) is a well-known dataset that
is used for handwritten digit classification, ImageNet
by Russakovsky et al. (2015) is widely used for image
classification. However, when it comes to segmentation
task there is no one particular dataset that can be used
for validation of different techniques. Therefore, we
propose to create a synthetic dataset that can be used
for segmentation and active learning experiments.

For an individual image the idea was to simulate a
lung, nodules and other anatomical structures of dif-
ferent shades. To make the task more complicated for

Elliptic structure Segmentation GT

Elliptic and rectangular structures Segmentation GT

Structure outside the ”lung” Segmentation GT

Figure 2: Examples of synthetic data

the network, samples with structures of the same shape
as nodules but located outside the lung were generated.
Examples of images are given in Figure 2.

The distribution of types of generated images is given
in Table 1.

Table 1: Types of synthetic data

Type of structure Location relative to the ”lung”
Inside Outside

Round shaped 50 50
Elliptic shaped 50 50
Circles and ellipses
with rectangles 50 50

Squares only 25 25

All of these 350 images were put into a training set.
The task for the network is to correctly segment 150
round and elliptic structures inside the ”lung” and not to
segment the same kind of structures if they are located
outside. Bright squares and rectangles were added in or-
der to add confusing elements that the network should
learn as structures which must not be segmented. Addi-
tional 30 representative images were generated for the
test set.

3.2. Medical data

In order to evaluate active learning strategies on
computed tomography (CT) data we used scans from
the Lung Image Database Consortium image collection
(Armato III et al. (2011)). The database consists of 1018
cases including a clinical thoracic CT scan and an asso-
ciated file with records of the results. The subset of the
LIDC-IDRI with 483 patients formed a dataset for our
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experiments. For every patient we have different num-
ber of slices. For each patient we extract all slices that
have nodules (at least one per patient) and one random
slice without any pathologies 2. Additionally, we had
information for 58 patients about their diagnosis, and
we assigned part of those patients into a test set so we
can analyze if active learning shows different results de-
pending on the patient condition. Diagnosis distribution
for all 58 patients and for a test set are given in Figure
3.

Diagnosis distribution for all available patients

Diagnosis distribution for the test set

Figure 3: Patients diagnosis. 0 - unknown, 1 - benign or non-
malignant, 2 - malignant metastatic, 3 - malignant, primary lung can-
cer.

Details about the sets are given in Table 2.

Table 2:

Set Number of
patients

Number
of slices

Number
of nodules

Train 262 3 000 2 973
Validation 101 1 000 991

Test 20 246 239

3.3. Data pre-processing
For the synthetic data, pre-processing steps were sim-

ple: we resize images to 224x224 and normalize the val-

2We did not used all the available image slices for each patient as
the number of the pixels that are non-nodule are an in overwhelming
majority. By considering mostly nodule slices we force the model to
be more sensitive than specific.

ues between 0 and 1.
When it comes to medical images at the pre-processing
step we would like to enhance the contrast of nodules
and clamp intensities of other anatomical structures.
For this purpose HU values of the area inside the pro-
vided masks were extracted, and histograms of mini-
mum and maximum values for all available data were
created (Figure 4).

Figure 4: Histograms of maximum and minimum values of nodule
areas

The windowing range was defined as a mean value
+/− one standard deviation and was set as [−882; 431].
After windowing all values were normalized and re-
sized to 320x320. Examples of images before and after
preprocessing are given in Figure 5.

3.4. Network architecture

For experiments with both synthetic and real data U-
Net like architecture was used. One of the biggest ad-
vantages of the network is that it proved to work well
even with relatively small number of images.
In order to perform segmentation on synthetic data we
do not need that much filter maps, and we propose
the simplified shallow version of the original U-Net by
Ronneberger et al. (2015) at Figure 6. The task for the
synthetic data is not complex, and we expect the net-
work to learn mostly intensity-based features, corners,
lines.

In the work of Iglovikov and Shvets (2018) it has
been demonstrated that U-Net performance could be
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Slice of a patient LIDC-IDRI-0175 with a nodule

Slice of a patient LIDC-IDRI-0175 without nodules

Figure 5: From left to right: CT scan before preprocessing, CT scan
after preprocessing, ground truth mask

improved by using pre-trained weights. Usually net-
works use weights trained on ImageNet as an initial-
ization for other tasks. The modified version of U-Net
has a VGG11 neural network (VGGU-net) without fully
connected layers as an encoder. The VGG part contains
seven convolutional layers with 3x3 kernels, each fol-
lowed by a ReLu activation function, five max-pooling
layers with a 2x2 pooling window. The last convolu-
tional layer has 512 channels and serves as a bottleneck
central part. For the decoding part, transposed convolu-
tional layers that double the size of a feature map were
used while reducing the number of channels by half.
The output of a transposed convolution is then concate-
nated with the output of the corresponding encoder part.
At the final layer a 1x1 convolution is used followed by
a sigmoid activation function so we can get a probability
of a pixel to be one of the two classes. The architecture
of the network is given in Figure 7.

Since there are five max-pooling operations the input
data should be divisible by 25, which is why we resize
the images to 320x320. In the original paper the net-
work was tested on RGB images (an input image con-
sequently had 3 channels). We keep the same shape of
input data, providing not only the slice containing nod-
ules, but also slices before and after that one to give
additional context.

3.5. Network parameters for training
It is important to apply a correct loss function for the

most effective training. In case of large class imbalance
focal loss proposed by Lin et al. (2017) (a modification
of a standard cross entropy loss that down-weights the
loss assigned to well-classified examples) maintains
manageable balance between foreground and back-
ground. The focal loss is defined as:

FL(pt) = −αt(1 − pt)γlog(pt) (7)

where

pt =

{
p, i f y = 1

1 − p, otherwise (8)

with p being the model’s estimated probability; αt ∈
[0, 1] is a weighting factor defined analogously to the
pt; γ is a tunable focusing parameter. We set α = 0.75
giving more weight to a positive class and γ = 2 as sug-
gested in the original paper for the experiments.
For both the shallow U-net and the VGGU-net the
Adam optimizer with a learning rate of 10−3, a batch
size of 16 were used.

3.6. Metrics

For the evaluation on synthetic data we use a Dice
score - a popular evaluation metric to quantify the
performance of image segmentation.
Dice =

2|X∩Y |
|X|+|Y | , where X is the obtained segmentation

and Y is the ground truth.

When we deal with very imbalanced classes3

Precision-Recall might be a useful metric for evalua-
tion. Precision is defined as P =

Tp

Tp+Fp
and recall is

defined as R =
Tp

Tp+Fn
, where Tp, Fp and Fn are true pos-

itives, false positives and false negatives respectively. In
the case of an ideal classifier, it would return all results
labeled correctly. The relationship between recall and
precision can be observed in the area under the curve
for different probability thresholds. Average precision
(AP) summarizes such a precision-recall curve and is
defined as:

AP =
∑

n

(Rn − Rn−1)Pn (9)

where Pn and Rn are the precision and recall at the
nth threshold. Further we refer to this metric as the PR
score.

3.7. Active learning experiments with synthetic data

Based on the literature review, we would like to
implement and compare active learning strategies de-
scribed in the related work section. Despite Learning
Active Learning being a promising technique, we did
not include it in the comparison as it was implemented
to work with random forest classifiers and has not been
tested with neural networks.

The following active learning strategies were imple-
mented:

1. Random sampling.

3there are way fewer nodule pixels than normal or background pix-
els in patients CT scans.
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Figure 6: Shallow U-Net

Figure 7: U-Net with VGG11 Encoder

2. Uncertainty sampling.
One of the successful and simple strategies that fo-
cuses on selecting samples which the current net-
work is the least certain about. The level of un-
certainty is estimated based on using the effect of
dropout. We propose two ways of computing the
uncertainty level:

• uncertainty-sum: sums up variances of predic-
tions for each pixel

• uncertainty-topmean: takes mean of 10% top
most varying pixels

3. Uncertainty sampling + representativeness.
With this strategy we estimate the similarity of the
most uncertain samples with the unlabeled pool of
data using cosine similarity.

4. Uncertainty sampling + pseudo-labeling.
Since at the beginning when trained on very small
amounts of data the network cannot produce cor-
rect segmentation masks, we add a condition that

the average Dice score (measured on test data
for active learning evaluation after each iteration)
should be more than 0.8.

5. Uncertainty sampling + representative pseudo-
labeling.
Here we add an additional condition for assign-
ing pseudo-labels. We compute cosine similarity
between the most certain samples and samples in
a training set, and choose those certain samples
which are very close to what the network has seen
before.

With two options for uncertainty estimation and two
implementations of assigning pseudo-labels we have 9
strategies for active learning.
Each experiment has a pipeline as described below:

1. Randomly select 10 images as the training set and
35 images for validation.

2. Train a network with 10 images (for 1000 epochs
using early stopping).
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3. Based on a strategy choose two most uncertain im-
ages (and two most certain if the conditions are met
for pseudo-labeling), add them into a training pool.

4. Continue training a network with images added us-
ing the same parameters as for initial training.

5. If mean Dice score for test images < 0.98 repeat
steps 3 & 4 until the performance reaches or beat
the upper bound.

For the first experiment we would like to prove the
concept of applying a dropout layer at the end of the en-
coder part as an efficient way to estimate the level of un-
certainty. We assume that if the network is trained only
with images of a certain type, then during active learn-
ing iterations it should be very uncertain about images
it has not seen before and therefore the most uncertain
cases should be picked up for labeling and added into
the labeled pool.
The sanity check experiment includes the next steps:

• Form a training data set with images that have
rounded and elliptic shapes of ”nodules” inside the
”lung”, as well as images with additional bright
rectangular elements at random locations

• Train the shallow U-Net with all available data for
receiving an upper bound, get mean Dice score for
every type of image

• For the active learning experiment add a small
amount of data with ”nodules” of a circular shape
to the initial training set

• At every active learning iteration choose two most
uncertain images from the unlabeled pool of data,
add them into the training set and continue training
the network

• Analyze type of chosen data as the most uncertain,
and track the number of samples in a training set
when it reaches the upper bound

For that experiment we enlarged the data set to clearly
see that it is possible to reach the highest performance
with less data. In total 420 images were generated with
equal distribution in types, then 281 images (67%) were
put into the training and the rest into the validation set.
30 representative images were put into the test set that
help track changes in the Dice score after every active
learning iteration.

3.8. Active learning experiments with medical data
In this section we are providing implementation de-

tails of active learning strategies for the real data since
they are slightly different.
For the upper bound, the network was trained several
times with all 262 patients, and demonstrated an aver-
age PR score in a range of 0.69 − 0.72.
For the AL experiments initially the VGGUnet was
trained on ten randomly chosen patients, and the re-
maining 252 patients were put into the unlabeled pool
of data.
Four main active learning strategies were implemented.

1. Random sampling.
At every active learning iteration four random pa-
tients are chosen from the unlabeled pool and put
into a training set.

2. Uncertainty sampling.
For every image pixel Ix we compute the variance
of T different predictions Iy on the same pixel. For
every patient there is a different number of sam-
ples, and in our implementation we propose the
following algorithm:
• For every sample from a patient compute pre-

dictions three times
• Compute variance for every pixel and com-

pute mean of all variances to obtain a numer-
ical score of the uncertainty level per sample

• Take mean value of all scores in order to get
the level of uncertainty for a patient

Once the levels of uncertainty have been computed
for all patients from an unlabeled pool, we take
four the most uncertain patients and add them to
the training set.

3. Uncertainty sampling + Representativeness.
In order to define the four most representative pa-
tients we follow the next steps:

• After estimating the level of uncertainty take
8 most uncertain patients as potential candi-
dates.

• Estimate how similar every most uncertain pa-
tient is with the rest of the patients from the
unlabelled pool: for every sample of the most
uncertain patient compute cosine similarity
with every sample of an unlabelled patient
(thus we estimate how similar two patients
are)

• Taking the mean value of all similarities per pa-
tient we measure the level of representative-
ness of a given patient to the unlabeled pool

Add the four most uncertain and representative pa-
tients to the training set.

4. Uncertainty + Pseudo-labeling.
In order to make sure that automatically computed
masks are close enough to the ground truth we add
two conditions that must be satisfied before assign-
ing pseudo-labels:

• The average PR score must be greater than 0.65

• Mean uncertainty level per patient must be
smaller than 0.01.
That level was empirically received by com-
puting the uncertainty level of patients from a
test set for which we observed high PR score
with the network fully trained on the whole
available training set (3 000 samples).

In order to estimate the network performance at
each active learning iteration, we compute the average
precision-recall score using the test set.
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Original image Feature maps

Figure 8: Example of extracted feature maps for synthetic data

4. Results

4.1. Proof of concept on synthetic data
For the first experiment we had to train the shallow U-

net with all labeled images to receive the upper bound.
The network managed to successfully extract expected
features of the image such as shape and intensities. In
Figure 8 you can see an example of 12 out of 28 feature
maps extracted at the bottom layer of a shallow U-Net.

The high Dice score was obtained for every type of
images (Table 3).

Table 3:

Type of images Mean Dice score

Round shaped 0.981
Elliptic shaped 0.979
Circles and ellipsis
with rectangulars 0.977

Mean Dice 0.979

Then for the active learning experiment initially the
network was trained with 50 images that contain only
”nodules” of a round shape. Our assumption was that
in this case even with an enabled dropout layer the net-
work should still be confident about predictions for sim-
ilar images and should demonstrate variant predictions
for images with squares and added noise. After the first
AL iteration we got three predictions with an enabled
dropout layer and results for an image similar to the
training set and an unseen image are shown in Figure
9.

After running an active learning experiment based on
estimation only of the level of uncertainty we noticed
gradual improvements in the Dice score for every type
of images as shown in Figure 10.

The graph at Figure 11 demonstrates the progress of
a mean Dice score showing the most uncertain images
that were added into the training set at iterations number
1, 10, 20, 30, 40 and 50.

4.2. Active learning experiments with synthetic data
Every active learning strategy was tested three times

with different samples being put into the initial train-

Similar to the initial training set image

Image that the network has not seen before

Figure 9: Predictions for similar and new images: left image - original
sample, three images next to it - predictions after 1 AL iteration with
enabled dropout layer

Figure 10: Mean Dice score per type of image at every AL iteration:
red - round nodules, green - elliptic nodules, blue - images with noise
and rectangular structures

ing set, but for every experiment the initial set was the
same. You can find results for every experiment in Fig-
ure 14 and the images that were randomly put to the
initial training sets in Figure 13. The mean Dice score
per strategy is summarized in Figure 12.

4.3. Active learning experiments with medical data

Results for the first active learning experiments with
LIDC-IDRD data set are given in Figure 15. The graph
was obtained only for one random split into initial train-
ing set and unlabeled pool of data. After few alterations
in the network parameters and AL algorithms that will
be explained in the next section, the new robust results
were obtained (Figure 16). The results of the winning
algorithm at patient level is given in Figure 18. We also
investigated what kind of samples had the highest im-
pact on the performance. Few CT scans of such helpful
patients with their masks are shown in Figure 17. Fig-
ures 19 - 22 demonstrate segmentations of the winning
strategy for patients with different diagnosis, and Fig-
ures 23 - 24 show examples of assigning pseudo-labels
at early iterations.

22.8



Active Learning: Smart Sample Selection for Efficient Medical Image Annotation 9

Figure 11: Mean Dice score at every AL iteration with chosen most uncertain images

Figure 12: Mean Dice score per strategy

Experiment 1 Experiment 2 Experiment 3

Figure 13: Initial training sets
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Experiment 1

Experiment 2

Experiment 3

Figure 14: Active Learning results for synthetic data
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Figure 15: First results. Mean PR score for every strategy per AL iteration

Figure 16: Final robust results. Mean PR score for every strategy per AL iteration
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Slices with ground truth masks of Patient LIDC-IDRI-0476

Slices with ground truth masks of Patient LIDC-IDRI-0398

Figure 17: Example of patients which significantly contributed to the boost of performance

Figure 18: Mean PR score for Uncertainty+Representativeness at patient level. 3(red) - malignant metastatic; 2(blue) - malignant, primary lung
cancer; 1(green) - benign or non-malignant; 0(grey) - unknown
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Figure 19: Segmentation results for malignant metastatic diagnosis. Poor result - on top, good - below

Figure 20: Segmentation results for lung cancer. Poor result - on top, good - below

Figure 21: Segmentation results for benign. Poor result - on top, good - below
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Figure 22: Segmentation results for unknown diagnosis. Poor result - on top, good - below

Figure 23: Most certain patients with correct pseudo-labels

Figure 24: Most certain patients with incorrectly assigned masks
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5. Discussion

5.1. Proof of concept on synthetic data

The first experiment with synthetic data showed
promising results and proved the concept of applying
the Dropout layer for the uncertainty estimation. Hav-
ing been trained with one type of image (”nodules” of
a round shape) the network successfully segmented a
”nodule” in the image that was similar to the initial
training set. After applying the dropout layer, U-net still
was confident and produced masks (Figure 9) which vi-
sually look very similar with minor differences at pixel
level. For the previously unseen sample we may ob-
serve variations of predictions around borders and for
structures inside a ”lung”.
Looking at Figure 11 we may conclude that estimating
uncertainty level is a smart strategy, at first iteration it
was choosing noisy images with rectangular structures
close to the ”nodules”, and the mean Dice score for
that type of image (blue line in Figure 10) was gradu-
ally increasing after adding two new samples. We can
observe a great improvement after 20 iterations for all
three types of images. The upper bound was reached
after 26 iterations (with 50 + 26*2 = 102 images that
is 36% of the available training data) and even outper-
formed the results, reaching a mean Dice score of 0.983
after 45 iterations (with 50 + 45*2 = 140 images that is
half of the training data).

5.2. Active learning experiments with synthetic data

Main experiments demonstrated different results de-
pending on what types of images we have in the initial
small training set. In experiment 1 we have all types
of images from the beginning, the initial set looks quite
representative showing high starting Dice score. During
the first iterations ”Uncertainty-topmean+PL (pseudo-
labeling)” shows the highest Dice score, however at the
fifth iteration we observe a great dip caused by assign-
ing pseudo-labels which were not correct, meaning that
only the condition for activation of pseudo-labeling was
not enough and the network still was not trained well.
Representative pseudo-labeling on the contrary man-
aged to correctly produce masks for samples that look
similar to the training set, and the overall performance
was increasing for the next iterations. Other techniques
showed small variations at the beginning in terms of per-
formance, but they all managed to converge at around
the 45th iteration.
For the second experiment negative samples (without
structures that should be segmented, an imitation of im-
ages without nodules) prevailed in the initial training
set. At first smart strategies tended to pick up sam-
ples with rectangular structures only inside the ”lung” as

the most uncertain, they look similar to positive exam-
ples, but the shape is different and they are still belong
no negative group of pictures. Without adding positive
examples we obviously could not get improvement in
segmentation. But once negative samples were learned
by the network, smart strategies started to choose de-
sired images with ”nodules” inside the ”lung” and rect-
angular anatomies that led to noticeable improvements
after the 8th iteration for every strategy. Both pseudo-
labeling techniques showed two great dips at the begin-
ning, however the decrease in the mean Dice score was
not caused by wrongly assigned labels: the solid red
line which is related to representative PL at this iteration
does not include most certain samples with their auto-
matically produced masks and should behave as purely
uncertainty-based algorithms, and when we checked
samples that were added at iteration 12 for the dotted red
line, then we could see negative samples as most certain
with masks being correctly produced (without any pix-
els assigned to a class 1 as for nodules). We assume that
such instability could be caused by a high learning rate
of the network that stays unchanged while we are pro-
gressing with a training, by the time we noticed great
dips in the training set a lot of negative samples were
accumulated which probably made the network produce
false negative results. The rest of the techniques show
expected behaviour leaving random sampling a little be-
yond, all strategies managed to converge.
The worst starting point was for experiment 3: there
were no negative samples with rectangular bright struc-
tures inside the ”lung”, and probably the network mis-
takenly segmented them as true samples. For all strate-
gies but RS, images with round and elliptic structures
inside the ”lung” were chosen as the most uncertain.
After adding enough positive samples we may observe
a big improvement for every algorithm after the 10th it-
eration, even RS by luck chose missing from the initial
set types of images that led to increasing Dice score.
Not all of the algorithms, however, could reach the up-
per bound, and for many of them there were fluctuations
around a Dice score of 0.95, that again could be a result
of a high learning rate.
Results of all experiments were put together as mean
Dice score per algorithm in Figure 12, we were won-
dering if we may see a clear winning strategy. There
is no noticeable difference in the way we estimate the
level of uncertainty, so we stick with one way of defin-
ing uncertainty for the medical data. However, mean
results do not help us in defining the best algorithm that
reached the upper bound fastest, all strategies require a
few iterations at the beginning to collect valuable sam-
ples before the boost in performance. From iteration
20 to 25 all methods managed to get close to the upper
bound with 50-60 images in a training set which is only
15-20% of the whole available data for training.
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5.3. Active learning experiments with medical data
The first results we obtained for real data look quiet

noisy. Uncertainty and uncertainty+PL behave in
a similar way in the beginning as expected because
pseudo-labeling was not activated before reaching the
threshold of average PR score. At the 15th iteration
uncertainty+PL hits the upper bound first. It is inter-
esting to notice, that for those patients which were
defined as most certain, automatically produced masks
(Figure 24) were not always correct. However, adding
few samples with incorrect masks did not reduce the
overall performance of the network. They may serve as
regularization preventing the network from over-fitting.

Potentially adding not just uncertain but very rep-
resentative cases should lead to greater improvements,
and we would expect uncertain+representative to out-
perform pure uncertain methods which is not the case
in our experiment. That fact allowed us to conclude
that the way the representativeness was calculated was
not the best choice. It was also computationally costly
since every patient’s slice was represented as a vector of
51200 elements. The new proposal was to apply PCA
in order to project the huge feature vector to a lower
dimensional space. We applied kernel principal com-
ponent analysis for non-linear dimensionality reduction
with a cosine kernel and kept 10 main components.

Another concern was that only RS managed to con-
verge in the end, but smart strategies after reaching the
upper bound at early iterations, all started decreasing
gradually with adding more data. The problem might
be caused by over-fitting since in that experiment we
kept the learning rate fixed in the same way it was
done with synthetic data. Additionally, we noticed that
only model’s weights were saved after each iteration,
but it is important to save the optimizer’s state as well,
so for the new active learning iteration the loss starts
from its last position. We tried to use cycling learning
rate proposed by Smith (2017) instead of a fixed one.
The idea is that learning rate changes between a lower
bound and upper bound. Despite the common rule that
LR should decrease as training progresses, it might be
reasonable to give the model higher LR periodically so
that it helps to escape local minimas if it ever enters
into one.
The pseudo-labeling technique showed great results
in the first experiment, however at the beginning it
behaved like the uncertainty algorithm and we cannot
really say if assigning masks automatically led to the
boost in performance. In order to investigate the impact
of pseudo-labels we lowered the threshold for enabling
pseudo labeling and let the algorithm start assigning
masks almost at the beginning (the new threshold was
set at 0.1, for variance it stayed the same 0.01).
We managed to run experiments for every strategy
three times and Figure16 shows mean results. We
can clearly see that random sampling performs worse

than smart techniques and serves as a lower bound.
Combination of uncertainty estimation with represen-
tativeness slightly outperforms pure uncertainty and
first reached the upper bound at iteration 25. Pseudo-
labeling (PL) takes the leading position during the first
iterations which is caused by adding more patients
to the training data than for other algorithms (in best
case if all conditions are met, then additionally to the
four most uncertain patients it chooses the four most
certain patients with their predictions to be added to the
training pool), despite lowering the first threshold and
training the network only with few patients, it managed
to produce good masks for most certain patients (Figure
23). PL reaches the upper bound at the same iteration as
Uncertain+Representativeness (U+R), however during
the next iterations performance is declining slightly,
and such behaviour is predictable since we do not take
out those samples that were automatically annotated
and we keep their predictions (not always correct ones)
in the training data.

The way an active learning strategy should be evalu-
ated depends on how much data were required when the
performance of the model managed to reach an upper
bound. U+R and PL both reached upper bound at iter-
ation 25, however the first algorithm used less data at
the same iteration, and showed further improvements in
performance with more data added at iteration 36. The
best result was achieved by U+R with 58% of the avail-
able labeled data for the training. A summary is given
in Table 4.

For every strategy we noticed big improvements in
average PR score at early active learning iterations, we
checked for every strategy what patients were added and
found some overlapping patients for different AL algo-
rithms that led to increasing of PR score. For example,
patient LIDC-IDRI-0476 (Figure17) with 23 slices has
nodules of a very big size, and patient LIDC-IDRI-0398
with 28 slices has nodules of less diameter but their
number is high, they are located at different places, so
that patient gave a lot of useful information. It was a
general trend for all strategies that adding patients with
more slices and bigger nodules 4 resulted in better seg-
mentation.

Analyzing results for the U+R algorithm at a patient
level, we may conclude that the best segmentation was
achieved for patients with malignant metastatic diagno-
sis, but even for the patient that stands out on a graph
with a low average PR score with the same diagnosis
(0.47) we may see that nodules were detected but un-
dersegmented with a small false positive area (in Fig-
ure 19 we can compare good and poor segmentation re-

4Added samples with large nodules helped more at earlier itera-
tions of the active learning strategy and had less impact later on. This
resembles a curriculum learning strategy, learning to segment easy
cases first and gradually adding more challenging samples.
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Table 4:

AL
algorithm Iteration

Initial #
of annotated

patients

# of patients
annotated
by a specialist

# of auto-
matically
annotated
patients

Total #
of patients

% of used data from the
whole available labeled
data for training

U+R 25 10 25*4 = 100 n/a 110 42%
U+R 36 10 36*4 = 144 n/a 154 58%

U+PL 25 10 25*4 = 100 15*4 = 60 170 65%

sults for two patients with malignant metastatic diagno-
sis). Cancer (Figure 20) was also detected well since
nodules are mostly large in size. Patients with benign
tumors showed high stable PR score, despite the small
nodule size, the network managed to properly segment
tiny nodules failing only one case for few CT scans (Fig-
ure 21). Unknown diagnosis means that a biopsy was
not carried out and we do not know for sure the type of
nodules. That is the group of patients with the highest
variability in PR score with many false positive results.
Since AL algorithms were choosing patients with large
nodules to be put into the training set at the beginning,
the network learned faster how to properly segment ma-
lignant cases.

6. Conclusions

In this study, we compared results of different ac-
tive learning techniques. Based on existing works in
this field we implemented the most popular algorithms,
however, some changes in the implementations were re-
quired to adapt them to the problem of lung nodule seg-
mentation with VGGU-net. We proved the main con-
cept of AL with synthetic data and showed on real cases
that with less data it is possible to reach high network
performance.
For the future work it would be interesting to investi-
gate more about a pseudo-labeling technique. Better
segmentation results could be achieved if we took au-
tomatically annotated samples out of the training set
and clear their predictions after every AL iteration, then
with the progress of a network performance we could
get more accurate predictions for most certain patients
that potentially should lead to a boost of performance
at later iterations. Moreover, we restricted a maximum
number of the most certain patients to be added to four,
but we might get more samples with the mean variance
less than a threshold. Since a pseudo-labeling does not
require human labour, we may add all patients the net-
work is certain about and obtain boost in performance
at the beginning.
The training itself may be more efficient by learning
from unlabeled data. In the work of Jean et al. (2018)
additional unsupervised loss term is proposed that min-
imizes the posterior variance at unlabeled data points.

There is still a room for improvement in terms of seg-
mentation results, but we managed to reach satisfying

results with way less data (the range varies from 42% to
65% depending on the chosen strategy) than it was done
by using the whole available annotated set.
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