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Editorial

Computer aided applications for early detection and diagnosis, histopathological image
analysis, treatment planning and monitoring, as well as robotised and guided surgery will
positively impact health care during the new few years. The scientific community needs
of prepared entrepreneurships with a proper ground to tackle these topics. The Joint
Master Degree in Medical Imaging and Applications (MAIA) was born with the aim to
fill this gap, offering highly skilled professionals with a depth knowledge on computer
science, artificial intelligence, computer vision, medical robotics, and transversal topics.

The MATA master is a two-years joint master degree (120 ECTS) between the Uni-
versité de Bourgogne (uB, France), the Universita degli studi di Cassino e del Lazio
Meridionale (UNICLAM, Italy), and the Universitat de Girona (UdG, Spain), being the
latter the coordinating institution. The program is supported by associate partners,
that help in the sustainability of the program, not necessarily in economical terms, but
in contributing in the design of the master, offering master thesis or internships, and
expanding the visibility of the master. Moreover, the program is recognised by the Eu-
ropean Commission for its academic excellence and is included in the list of Erasmus
Mundus Joint Master Degrees under the Erasmus+ programme.

This document shows the outcome of the master tesis research developed by the
MATA students during the last semester, where they put their learnt knowledge in prac-
tice for solving different problems related with medical imaging. This include fully
automatic anatomical structures segmentation, abnormality detection algorithms in dif-
ferent imaging modalities, biomechanical modelling, development of applications to be
clinically usable, or practical components for integration into clinical workflows. We
sincerely think that this document aims at further enhancing the dissemination of infor-
mation about the quality of the master and may be of interest to the scientific community
and foster networking opportunities amongst MAIA partners.

We finally want to thank and congratulate all the students for their effort done during
this last semester of the Joint Master Degree in Medical Imaging and Applications.

MATIA Master Academic and Administrative Board
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Hemorrhagic stroke lesion segmentation using a 3D U-Net with
squeeze-and-excitation blocks

Valeriia Abramova, Albert Clerigues, Arnau Oliver, Xavier Llad6

Computer Vision and Robotics Group, University of Girona, Catalonia, Spain

Abstract

Hemorrhagic stroke is the condition involving the rupture of the vessel inside the brain. It is characterized with high
mortality rates, so it is important to act fast to prevent irreversible consequences. In this master thesis, a deep learning-
based approach to segment hemorrhagic stroke lesions in CT scans is proposed. Our proposal is based on a 3D U-Net
architecture which incorporates the recently proposed squeeze-and-excitation blocks. Restrictive patch sampling is
proposed to alleviate the class imbalance problem and also the issue of intraventricular hemorrhage, which is a specific
subtype of stroke located inside brain ventricles that has not been included as a lesion in our study. Moreover, we also
studied the effect of patch size, the use of different modalities, data augmentation and the incorporation of different
loss functions on the segmentation results. All analysis have been performed using a five fold crossvalidation strategy
on a private dataset composed of 76 cases, which was provided by the collaborating Hospital Dr. Josep Trueta,
Girona, Spain. Obtained results demonstrate that the introduction of squeeze-and-excitation blocks, together with
the restrictive patch sampling and symmetric modality augmentation provide the highest mean DSC of 0.862+0.074,
showing promising automated segmentation results.

Keywords: Hemorrhagic stroke, Squeeze-and-Excitation, Intraventricular hemorrhage, U-Net, Balanced sampling

1. Introduction

Nowadays stroke is one of the most common causes
of death, holding the third position after an ischemic
heart disease and neonatal disorders (Roth et al. (2018)).
It is a medical condition in which the brain tissues lose
the ability to get oxygen due to reduced or fully cut
blood flow. This rapidly leads to the death of brain
cells. There are two types of stroke: ischemic and hem-
orrhagic. Ischemic stroke is the most common type of
stroke (around 87% of all strokes (Mozaffarian et al.
(2016))) and it is caused by reduction of blood supply
to the brain tissues; the rest of strokes are hemorrhagic
ones and they involve the rupture of a vessel inside the
brain. In this case, brain cells get damaged because of
the pressure of the leaked blood. Even though hemor-
rhagic stroke is a less common condition, it is character-
ized with high mortality rates (Kidwell and Wintermark
(2008)).

The stroke lesion consists of two parts: the core,
which is basically the irreversibly injured tissue or the
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hematoma in the case of hemorrhagic stroke, and the
edema around the core, which is caused by the brain tis-
sues swelling. Time is the key factor of successful treat-
ment of stroke, since early stroke diagnosis and treat-
ment are related to positive patient outcome (Matsuo
et al. (2017)). Therefore, fast clinical actions are re-
quired in order to give the patient the most appropriate
treatment.

Stroke can be diagnosed through different techniques,
including imaging, which is a key assistance to define
the type of stroke. The most common imaging modali-
ties for stroke diagnosis are Magnetic Resonance Imag-
ing (MRI) and Computed Tomography (CT). It was
shown that Gradient Echo (GRE) MRI sequences are
as accurate as CT in detecting hematoma (Kidwell and
Wintermark (2008)). Moreover, they can be better than
CT in detecting chronic hemorrhages and sometimes
can detect lesions which were missed in CT. However,
CT is the dominant modality for diagnosing hemor-
rhagic stroke, as it is clearly seen there. In addition,
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(a) Hemorrhagic stroke in non-
contrast CT

(b) Hemorrhagic stroke in Gradient
Echo (GRE) MRI

(c) Ischemic stroke in non-
contrast CT

(d) Ischemic stroke in Diffusion-
Weighted Imaging (DWI) MRI

Figure 1: Appearance of hemorrhagic and ischemic stroke (orange ar-
rows) on CT and MRI sequences (Muir and Santosh (2005), Siddiqui
etal. (2011)).

CT imaging is widely available, it is rapid, which is a
key factor in stroke, inexpensive, and suitable for all the
patients, unlike MRI. An example of hemorrhagic and
ischemic stroke imaging in CT and MRI is shown in
Figure 1.

Image segmentation is an important part in diagno-
sis and management of the disease. In clinical prac-
tice the standard approach nowadays is manual delin-
eation of the stroke lesion. However, this approach has
disadvantages; it is both time-consuming and operator-
dependent, which leads to subjective and not repro-
ducible results. To address these issues, automated
segmentation algorithms have been suggested during
the past years (e.g. Forbes et al. (2010), Shahangian
and Pourghassem (2015)). Research on automated ap-
proaches can also help to better understand pathologies
of the brain and construct statistical patterns to gener-
alize the results across the population. Moreover, they
can offer objective, accurate and reproducible methods
to quantitatively assess stroke lesions and help doctors
to evaluate all the risks.

The initial attempts to segment hemorrhagic stroke
lesions mostly relied on processing of CT images. They
involved approaches based on different image analy-
sis techniques, their variations and hybrid strategies
(Pérez et al. (2008)). For example, such methods in-

volved clustering (Loncari¢ et al. (1995), Cosi¢ and
Loncari¢ (1997)), morphological operations (Loncarié¢
et al. (1995), Perez et al. (2007)), region growing or
level sets (Bardera et al. (2009)).

The recent breakthrough and popularity of deep
learning techniques increased the research interest and
the number of proposed algorithms to segment brain
lesions and, specifically, stroke lesions. In particular,
Convolutional Neural Networks (CNNs) (Lecun et al.
(1998)) have shown big potential in different biomedical
imaging tasks including medical image segmentation.
One of the CNNs, which has shown great performance
in biomedical segmentation tasks is the U-Net architec-
ture (Ronneberger et al. (2015)). This architecture in-
spired and served as a base for a big number of different
segmentation approaches (Piantadosi et al. (2018), Li
et al. (2019), Alom et al. (2019)), including the ones in
the field of neuroimaging (Guerrero et al. (2017), Dong
et al. (2017)).

In this work, a deep learning approach for segmenta-
tion of hemorrhagic stroke lesions in non-contrast CT is
proposed. Similarly to Woo et al. (2019), we introduce
squeeze-and-excitation blocks to a U-Net architecture,
but in our case we do it in a 3D U-Net implementation.
A balanced sampling technique is introduced for patch
extraction, restricting this patch sampling spatially and
quantitatively to address the problem of intraventricu-
lar hemorrhage. In addition to standard data augmen-
tation techniques, symmetric modality augmentation is
also performed to benefit from the brain hemispheres
symmetry property to find more robust image features,
as done in Clerigues et al. (2019). The segmentation
algorithm proposed is evaluated with a crossvalidation
strategy over a dataset of 76 cases, analyzing the im-
pact of the different contributions introduced in our ap-
proach.

2. State of the art

Segmentation of stroke lesions is important in the
field of diagnosis and treatment. It is the first step to do
the research related to lesion outcome prediction, and to
establish correlations to use later in the clinical practice.
Hematoma segmentation helps to evaluate if the lesion
will grow, which is important clinically.

Intracranial hemorrhage (ICH) is not such a common
type of stroke as an ischemic one, therefore its auto-
mated segmentation has not been the main research fo-
cus in the community. Traditional semi-automated ap-
proaches had been developed, but, during the last two
years, automated approaches for hematoma segmenta-
tion have started to appear.

2.1. Segmentation of ischemic stroke

The early works in segmentation of ischemic stroke
core were focused on CT images and consisted of ap-
plying traditional approaches. For instance, the work of

1.2
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Matesin et al. (2001) was composed of techniques, such
as region growing and also different image features, e.g.
related to symmetry, brightness or area. In the works
of Usinskas et al. (2004) and Tang et al. (2011) textu-
ral features were utilized to deal with the segmentation
problem.

Regarding the ischemic stroke segmentation in MRI,
different approaches have been proposed. For example,
the work of Wanida Charoensuk and Likitjaroen (2015)
was based on applying an active contour algorithm to
Diffusion Weighted Imaging (DWI) MRI modality. The
approaches of Hevia et al. (2007) and Li et al. (2009)
suggested to apply mean shift algorithm for the purpose
of stroke segmentation.

The launch of the Ischemic Stroke Lesion Seg-
mentation (ISLES) challenge (http://www.isles-
challenge.org/) in 2015 increased the interest to the
topic and initiated a burst of automated ischemic
stroke segmentation methods. The challenge was held
until 2018. The first three years it was focused on
lesion segmentation in different MRI modalities, while
in the 2018 the dataset provided to the participants
for development of their algorithms consisted of CT
perfusion scans. A lot of participants of the challenge
took advantage of deep learning techniques, because
of their recent advance. For instance, in 2015 the
winning method was an 11-layer 3D CNN from Kam-
nitsas et al. (2015) and was later extended to create
the well-known DeepMedic architecture (Kamnitsas
et al. (2016)). In the work of Choi et al. (2016), 3D
multi-scale residual U-Net was utilized for stroke core
segmentation. In 2017, Lucas et al. (2018) proposed a
fully-convolutional network based on 2D U-Net with
additional short skip connections. In 2018, four out
of five presented algorithms were based on a U-Net
architecture. Despite the fact that the challenge finished
in 2018, new approaches based and evaluated on the
ISLES dataset are currently being developed. As an
example, the work of Clerigues et al. (2019) proposed a
2D patch-based residual encoder—decoder architecture
to segment stroke core lesions from CT perfusion scans.

2.2. Segmentation of hemorrhagic stroke on MRI im-
ages

In terms of hemorrhagic stroke segmentation, nowa-
days the number of works developed on MR sequences
is increasing, because of its superior sensitivity for de-
tecting brain pathologies compared to CT. For instance,
in the work of Roy et al. (2015) gamma transforma-
tion together with an expectation-maximization algo-
rithm was used to segment hemorrhages. The work of
Pszczolkowski et al. (2019) proposed a method based
on shape and intensity analysis of both T2* GRE and
FLAIR sequences for hematoma segmentation. The
properties of lesion intensities in these MRI sequences
were used together with masks of brain tissues to detect
hemorrhage voxels.

1.3

2.3. Segmentation of hemorrhagic stroke on CT images
In general, research on hemorrhagic stroke segmen-
tation started from segmenting CT images. One of the
earliest works by Loncari¢ et al. (1995) presented a
semi-automated method based on k-means histogram-
based clustering. Cosi¢ and Loncari¢ (1997) proposed
an approach consisting of unsupervised fuzzy cluster-
ing and expert system-based labeling. In the paper of
Majceni¢ and Loncari¢ (1998) the implementation of
simulated annealing, which is a function optimization
method, was applied to perform the segmentation. The
images used for these works were digitized CT films and
the presented methods were computationally complex.
Later, Perez et al. (2007) presented a set of three
methods for hematoma segmentation, where two meth-
ods were carried out in a semi-automatic way and
the remaining one was performed in a manual way.
They were using 3D mathematical morphology opera-
tions and live wire technique for object contour extrac-
tion. In the work of Bardera et al. (2009) the semi-
automated method for hematoma segmentation was de-
veloped based on a region growing algorithm.
Automatic methods for hemorrhage segmentation
had also been proposed recently. Sharma and Venu-
gopalan (2012) proposed a method based on k-means
clustering with automatic initialization of cluster cen-
ters. The approach of Bhadauria and Dewal (2014)
combined fuzzy c-means clustering and region-based
active contour method. It was evaluated on 2D CT scans
of 20 patients. The work of Shahangian and Pourghas-
sem (2013) suggested using thresholding for the seg-
mentation step. This approach demonstrated good re-
sults with evaluation on 2D 128 x 128 CT scans. The
method of Gillebert et al. (2014) was developed for seg-
menting images with both ischemic and hemorrhagic
stroke and consisted of normalizing CT scans to a tem-
plate space and applying subsequent voxelwise compar-
ison with a group of control CT scans in order to define
areas with hypo- or hyper-intense signals. The method
was evaluated on scans with both simulated and real
stroke lesions.
With the recent rise of deep learning techniques, they
started to be used for the hemorrhagic stroke segmen-
tation problem, even though there are yet not so many
proposed approaches. For example, Wang et al. (2018)
used a 3D U-Net in their work for brain hemorrhage
segmentation. As the groundtruth in this study was pre-
sented in .csv files, the masks were obtained using this
information and using morphological operations. The
size of image patch used was 64 X 64 x 64 and data aug-
mentation was also applied. Chang et al. (2018) pro-
posed a mask R-CNN algorithm, which used a custom
hybrid 3D/2D variant of the feature pyramid network as
a backbone to generate a shared set of image features for
segmentation of different types of hemorrhagic stroke.
Singh et al. (2019) presented a 3D CNN to segment sev-
eral hematoma types and also they use a novel thresh-
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olding method, which improved their results. Hssayeni
et al. (2020) used 2D U-Net for segmenting intracranial
hemorrhage. In their work, CT scans from 82 patients
were used without any image preprocessing. Further-
more, there are two works that have recently been pro-
posed. One of them by Kuang et al. (2020) used a novel
network named -Net, where two attention blocks were
used to suppress the irrelevant information, and capture
the spatial contextual information to refine the border
areas of the stroke lesion. The dataset used in this paper
consisted of 150 CT scans and the method was evalu-
ated on 2D slices with different hematoma types. The
other work proposed by Yao et al. (2020) proposed to
use multi-view CNN with a mixed loss function. The
architecture share some similarities with U-Net, and the
mixed loss function was proposed to make the system
robust to CT scans acquired in different medical centers
using different protocols.

3. Materials and methods

3.1. Dataset

The dataset used in this project was acquired in the
Hospital Dr. Josep Trueta, Girona, Spain. It consists
of 76 cases, each of them with non-contrast head CT
together with CT angiography images (provided not for
all the cases) and CT perfusion images. Some examples
of the Trueta dataset can be seen in Figure 2.

The image acquisition protocol was the following.
All the examinations were performed on 128-slice CT
scanner (Ingenuity; Philips Healthcare). Some image
characteristics for each modality were different, as pre-
sented in Table 1: for non-contrast CT (CT NC) the
slice thickness was 3 mm and the gap was of 1.5 mm,
whereas for CT angiography (CT Angio) the slice thick-
ness was 0.9 mm with the gap of 0.45 mm. The CT
perfusion (CTP) images consisted of 4 slices of 10 mm
(Puig et al. (2017)).

The scans were acquired for research, which goal was
to investigate the relationship between perfusion charac-
teristics of the lesion and its evolution. The gold stan-
dard, manual stroke lesion segmentations, were delin-
eated by expert radiologists on non-contrast CTs.

Table 1: Image characteristics of all presented in dataset modalities:
non-contrast CT (CT NC), CT angiography (CT Angio), CT Perfusion
(CTP).

Image . Slice
modality Matrix Thickness, mm Gap, mm
CTNC 512x512 3 1.5
CT Angio 512 x512 10 10
CTP 512 %512 0.9 0.45

(a) Original images.

(b) Non-contrast CT (c) Symmetric version

of non-contrast CT

(d) CT angiography

Figure 2: Top row: original image modalities. Bottom row: Prepro-
cessed modalities used in the approach as input.

3.1.1. Intraventricular hemorrhage

Intraventricular hemorrhage (IVH) or intraventricu-
lar bleeding is an extension of hemorrhage, which oc-
curs within brain parenchyma, inside brain ventricles,
where the cerebrospinal fluid is produced. One of its
sources can be the hemorrhagic stroke lesion adjacent to
the ventricles. Such pathology is a bad prognosis sign,
as expected mortality from it is between 50% and 80%
(Hinson et al. (2010)). Usually, IVH can be clearly con-
firmed from CT imaging from the presence of the blood
inside the ventricles. Therefore, the problem of seg-
menting intraparenchymal hemorrhage (IPH) from IVH
arises (Figure 3).

Almost 15% of the cases in the Trueta dataset have
IVH together with the stroke lesion. As the research ob-
jective of this dataset was stroke, which is located within
brain tissues only, the intraventricular hemorrhage was
not delineated as a stroke class and, therefore, it was
not segmented on the provided groundtruth. However,
as the source of signal in both pathologies is the same
(blood leakage), the intensities of both regions on non-
contrast CTs are also similar (Figure 3). Thus, the de-
veloped algorithm should also learn to differentiate be-
tween IPH and IVH, as we will see in the following sec-
tions.

3.1.2. Data preparation

The initial preparation of non-contrast CT head scans
require removal of the coil and skull stripping (see
Figure 2) as those regions can confuse the algorithm
and lead to undesired results. To remove the coil, the
original image was binarized and the biggest connected
component, which is the head, was kept. The skull re-
moval process is similar, it utilizes morphological oper-
ations to remove the borders of the skull and the final

1.4
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Figure 3: Dataset examples. The top row corresponds to IPH case.
The bottom row is an example of intraventricular hemorrhage. Both
IPH and IVH have similar intensities, even though the groundtruth
provided only has IPH. Moreover, IVH deforms brain ventricles.

brain extraction is also based on extracting the biggest
connected component.

As stroke can appear in one of the hemispheres of the
brain, it could be useful to utilize features based on mid-
sagittal symmetry of those hemispheres, as proposed in
Clerigues et al. (2019). Therefore, a symmetric image
of the brain was created (Figure 2c). We firstly flipped
the brain CT and secondly the flipped image was regis-
tered to the initial one. For the registration purposes the
FLIRT tool from FSL was used (Jenkinson and Smith
(2001), Jenkinson et al. (2002)). This tool provided fast
and accurate registrations and is well-known in the re-
search community.

Furthermore, CT angiography can be used addition-
ally as another input channel for the segmentation.
However, they have to be preprocessed before apply-
ing an automated segmentation algorithm. The provided
dataset was acquired within everyday clinical practice
so it was not prepared to be analysed automatically.
Hence, additional preparation of the angiography scans
was necessary. From the whole dataset, CT angiogra-
phy scans of 18 patients were containing not only the
head, but also the upper body, so these scans had to
be cropped according to the corresponding non-contrast
CTs. Moreover, as the voxel spacing of non-contrast
and angiography CTs was different, the cropped angiog-
raphy image had to be registered to the space of non-
contrast CT (Figure 2d).

1.5

3.2. Proposed Method

The proposed approach is a 3D patch based deep
learning method based on a U-Net architecture for seg-
mentation of the hemorrhagic stroke lesion core from
non-contrast CT scans. As the lesion mostly occupies
only a small volume inside the brain, class imbalance
is a problem that has to be taken into account. To train
the network, this should be necessarily done in order
to avoid overfitting to the negative class, which will in-
fluence the segmentation results. Moreover, the dataset
used has another type of hemorrhage presented - the in-
traventricular one, which is not assigned to lesion class,
and this also has to be considered in the algorithm devel-
oped. In this work the main contributions are presented
to address both issues: balanced sampling technique to
ensure equally distribution of both classes in the train-
ing set and restrictions in regions to extract patches to
distinguish between intraparenchymal and intraventric-
ular hemorrhages. At the training stage, to tackle these
problems, regularization techniques were also applied,
such as: (a) dropout, (b) data augmentation, and (c)
early stopping. During testing, high overlap between
extracted patches was used to improve the segmentation
results.

3.2.1. Patch sampling

The proposed approach is a patch based CNN ar-
chitecture, which prevents from computationally heavy
load of large input images and also offers reduced train-
ing time (Long et al. (2015)).

For patch based methods, class imbalance can be
an issue. So, it is important to control the process of
patches extraction, otherwise only a minor number of
patches will be taken from the lesion class. In such a
case, such data imbalance can lead to poor performance
of the network and misclassification of lesion voxels.

To address this problem, researchers proposed differ-
ent methods. For instance, in the work of Guerrero et al.
(2017) training patches were sampled so that they al-
ways contain lesion voxels. Moreover, they were ran-
domly shifted so that the center of the patch does not
necessarily include the lesion voxel. Another example
can be the work of Clerigues et al. (2019), which used a
balanced sampling strategy so that the equal number of
patches representing both classes were extracted from
each image.

In our work, the balanced sampling technique was
used together with other ways of controlling the patch
extraction, like in the work of Kushibar et al. (2018) and
Clerigues et al. (2019). The same number of patches
were extracted from background and lesion. At the ini-
tial step, the region for extracting negative patches was
restricted. To avoid extracting a lot of patches from
background and take more advantage of the dataset, the
area to extract non-lesion patches was limited with the
brain mask; this way the negative patches were uni-
formly extracted only from the region inside the brain.
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To improve the segmentation results on the lesion
borders, we selected the region around hematoma’s bor-
ders in order to extract additional negative samples from
the area just around the lesion. Thus, we make the net-
work learn more from the boundaries of the hematoma,
like done in work of Kushibar et al. (2018) for MRI seg-
mentation of brain subcortical structures.

Data augmentation is another popular technique to ar-
tificially expand the dataset. In our approach, the rea-
sonable transformations we applied in terms of brain
anatomy were: horizontal and vertical flip, patch rota-
tions at 90°, 180°, 270°. Therefore, in the training set,
one patch was used six times, each time transformed
with a different augmentation type.

The patches were extracted from non-contrast CT
scans, which in some experiments, as we will see in the
Section 4, were supplemented with their symmetric ver-
sions or angiography CT as additional input channels to
the network.

3.2.2. Intraventricular hemorrhage problem

As mentioned before, some images of the dataset
contain intraventricular hemorrhage, which is not delin-
eated as the groundtruth. As this type of stroke has the
same appearance as intraparenchymal one, we should
find a way to segment IPH from IVH.

The initial steps to resolve this issue can be taken
at the data preparation step, while sampling training
patches. This can be done, as the voxels of IVH belong
to the negative class, whereas the voxels of IPH belong
to the lesion class. To make the network learn this de-
pendence, more patches from the IVH area should be
represented in the training set.

This hypothesis leads us to make additional restric-
tions to negative patch sampling. As this abnormality
occurs inside the brain ventricles, it would be essential
to use the spatial information related to brain anatomy
and extract more patches from the area of CSF ventri-
cles. Unfortunately, methods for brain tissue segmen-
tation cannot be applied in this case as in the ventricles
we can have both hypointense regions related to normal
ventricles and hyperintense regions related to IVH. One
way to overcome this obstacle could be defining a re-
gion of interest around the center of the brain volume, as
shown in Figure 4. In our approach, the coordinates of
brain center were calculated for each image separately.
For each dimension we defined the first and last slice
where the brain appears and took the coordinate of the
middle slice. Such choice of ROI comes from the obser-
vation that the brain ventricles are located in the medial
area of the brain.

Another way to solve the IVH issue we studied was
to put more attention on the IVH voxels in the train-
ing stage. In our case, we considered intraventricular
hemorrhage as hyperintense volume inside the brain,
which does not belong to IPH. Therefore, we could
extract more patches from this area. To define it, we

Figure 4: The region of interest (red cube) defined around the point of
the brain center

tried thresholding the whole image using an empirically
found threshold that represented intensity of the blood
signal and then we excluded those pixels, which belong
to the lesion, using the provided groundtruth. Moreover,
some other hyperintense structures as brain borders and
midline were excluded by utilizing the fact that IVH has
bigger volume.

When the desired ROI was defined, we could restrict
the training patch sampling by assigning the fraction of
negative patches which can be forcibly extracted from
this region. As the fraction of the scans with IVH is not
that huge, we can extract even more training patches
from this region by extracting the background patches
only from the defined ROI, but only if the image has the
ROLI.

In the overall patch extraction pipeline, firstly, the tar-
get number of patches was set for each patient. 50%
of patches were extracted uniformly from the whole
volume of the brain, yet some predefined fraction of
them was forcibly extracted from the area around lesion
boundary and the area related to the brain ventricles.
Here, uniform sampling was done in order to make sure
that all the parts of the brain are equally represented.
In addition, 50% of patches were extracted from the le-
sion voxels. If the lesion is small and the number of
its voxels is smaller than the desired number of patches,
the voxels were repeated until that number is reached.
But, if the number of lesion voxels is bigger, then they
were regularly resampled, so that all the parts of the le-
sion were presented homogeneously. Then, those vox-
els serve as centers for patch extraction. Furthermore,
one or several types of data augmentation can be applied
to the extracted patches, as presented in Section 4.5, in-
creasing the size of the patch dataset proportionally to
the number of patches specified in the beginning.

3.3. Deep learning approach

U-Net architecture was firstly proposed by Ron-
neberger et al. (2015) for the task of cell segmentation.
Rapidly, it earned the recognition in the community and
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Figure 5: The architecture used in the proposed approach. The network is inspired by 3D U-Net with incorporation of squeeze-and-excitation

blocks.

inspired a lot of image segmentation approaches, espe-
cially in the field of biomedical imaging, as mentioned
in Section 1. Also, it was extended for 3D segmenta-
tion in the work of Cicek et al. (2016) and in this way
it was also used for different image segmentation tasks,
particularly for stroke lesion segmentation, as we saw in
Section 2. This master thesis work is also based on 3D
U-Net, considering its prevalence and the fact that 3D
patches may provide more information of surroundings
for the voxel that is being classified. In addition, U-Net
has proven itself to work well with small datasets. Sim-
ilarly to what was done in the work of Woo et al. (2019)
for ischemic stroke segmentation problem, we propose
to incorporate squeeze-and-excitation blocks to the 3D
U-Net architecture, as it showed improved performance
for the segmentation task.

3.3.1. Squeeze-and-Excitation

The squeeze-and-excitation (SE) blocks were firstly
introduced by Hu et al. (2018). They can be used as
building blocks for existing CNNs at slight additional
computational cost and their goal is to improve the qual-
ity of representations produced by a network by explic-
itly modelling the interdependencies between the chan-
nels. Structurally, this computational unit consist of: (a)
a squeeze operator, which produces a channel descriptor
by aggregating feature maps across their spatial dimen-
sions so that each learned filter can exploit contextual
information from the global receptive field of the net-
work; and (b) an excitation operator, which aims to fully
capture channel-wise dependencies. All this is done to
boost informative features and suppress the weak ones.

In the original paper, these blocks were evaluated
on different image classification tasks and have been
shown to improve the network’s performance. In med-
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ical imaging tasks this technique has also been incor-
porated. Namely, the work of Rundo et al. (2019) in-
corporates squeeze-and-excitation blocks into U-Net to
tackle the prostate zonal segmentation task in MR im-
ages. The approach showed high performance in com-
parison to other state-of-the-art methods. In the field
of neuroimaging, the work of Woo et al. (2019) pro-
poses the combination of squeeze-and-excitation blocks
with U-Net and DenseNet for segmentation of acute is-
chemic lesions on Diffusion-Weighted Imaging. Their
approach showed results superior to conventional algo-
rithms and they concluded that squeeze-and-excitation
operations may help improve segmentation for discon-
tinuous or small lesions.

Our work utilizes an architecture, inspired by 3D
U-Net with incorporation of squeeze-and-excitation
blocks, as shown in Figure 5. In the contracting path,
each 3x3x3 convolution is followed by a rectifed linear
unit, dropout and a 2x2X2 max pooling with stride 2 for
downsampling. In the expansive path, each layer con-
sists of an upconvolution of 2x2x2 with stride of two,
followed by dropout and 3x3x3 convolution followed
by a rectifed linear unit. Squeeze-and-excitation oper-
ations are introduced after encoder and decoder. The
effect of including these blocks will be evaluated in the
experimental results section.

3.3.2. Training/testing pipeline

In this section we describe how training and testing
was done in order to obtain and evaluate the segmenta-
tion results.

For the training stage, we composed the training
and validation set from the provided scans to train the
weights of the network. The effect of different number
of patches and different patch sizes was analyzed. At the
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(a) Training patch sampling. Negative patches (red contour) are extracted uniformly
from the whole volume of the brain, and some fraction of them is extracted from the
area around lesion boundary and area related to the brain ventricles. Positive patches

(green contour) are centered on lesion voxels.

(b) Testing patch sampling. The patches are extracted uniformly from the whole

volume, preserving some degree of overlap.

Figure 6: Implemented patch sampling for training and testing stages.

end, from each image in the training set 3000 patches of
size 32 X 32 x 16 were extracted following the patch
sampling technique introduced before, as presented in
Figure 6a. Notice that the positive patches, shown with
green contour, are centered on lesion voxels, while neg-
ative patches with red contour are centered on the vox-
els, not related to IPH.

To take advantage of symmetry features, the symmet-
ric image was added as another channel to each training
image, therefore building each training image as Chan-
nels, Height, Width, Depth. Data augmentation was per-
formed to increase the number of patches per image to
18000, and its effect will be also analyzed in Section 4.

Considering the approaches of ISLES participants,
the two most common loss functions were tried for
hematoma segmentation task: Focal loss and combined
Dice loss and Crossentropy loss. Focal loss was intro-
duced in the work of Lin et al. (2017) as an extension
of the crossentropy loss. It gives less weight to easily
classified examples and more weight to hard to clas-
sify examples, therefore it can be useful for the tasks
with class imbalance. On the other hand, combination
of Dice loss and Crossentropy loss was also popular for
ischemic stroke segmentation tasks (e.g. the work of
Clerigues et al. (2019)). While the crossentropy loss
is minimized with correct confident predictions, the DL
is minimized when the relative overlap between predic-

tion and ground truth is maximizing. Adadelta was used
as an optimizer since it did not require manual tuning
of the learning rate (Zeiler (2012)). To prevent overfit-
ting, early stopping technique with patience of 15 was
utilized when reaching the minimal loss on validation
set. In our approach, the maximum number of epochs to
train was set to 100 or the training was performed until it
meets the early stopping condition, therefore the model
with the best validation metrics was saved. In practice,
the number of epochs to train was between 20-50.

For the testing stage, firstly we selected the scans for
the test sets. In order to evaluate the algorithm on all
the available scans, a 5-fold crossvalidation was done.
Therefore, for each fold 20% of the data was separated
for testing. In this stage, for each voxel we predict its
probability to belong to particular class using the trained
model. Given an image to segment, patches of the same
size as in the training step were extracted uniformly
from the whole image volume, as shown in Figure 6b.
We can also notice that the extracted patches preserve
predefined degree of overlap, which in our experiments
was more than 50%, which was done to improve seg-
mentation results. Every patch was passed through the
network, resulting in a predicted probability for each
voxel. The output binary segmentation was produced
by assigning the class label according to the maximum
probability for each voxel.

3.3.3. Implementation details

The proposed approach was implemented in Python
using the Pytorch machine learning framework (Paszke
etal. (2017)). Our work was developed using mainly the
baseline niclib' library, which was developed within the
VICOROB research group in the University of Girona.
This library offers variety of utilities for developing neu-
roimaging pipelines with deep learning. All experi-
ments were running on Ubuntu with 256GB RAM, the
network training was done on TITAN V GPU with 12
GB memory.

4. Results

Different experiments were performed to show the
improvement of the pipeline through the development
process. We analyzed the influence of different steps
in the pipeline on the segmentation results: (a) incor-
poration of squeeze-and-excitation blocks to the U-Net
architecture, (b) loss functions, (c) restrictive patch ex-
traction to improve segmentations and to solve the prob-
lem of intraventricular hemorrhage, (d) usage of differ-
ent modalities and (e) data augmentation.

All the experiments were performed with the
5-fold crossvalidation across all 76 cases of the provided

Thttps://nic.udg.edu/niclib/
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Table 2: DSC obtained in the dataset in crossvalidation experiment
with and without incorporation of squeeze-and-excitation blocks (SE)
into 3D U-Net. Introduction of these blocks significantly improved
the segmentation result.

DSC of DSC of
DSC IVH samples samples
P with no IVH

3D U-Net 0.765+0.217 0.640+0.217 0.787+0.212
3D SE U-Net 0.828+0.127 0.683+0.118 0.852+0.112

dataset, having 61 image in the training set and 15 im-
age in the testing set. In each fold, a network was trained
on the training patches and then, at the testing stage, the
voxels of testing scans were predicted. After finishing
all the folds, we got one resulting segmentation for each
image of the dataset.

Dice similarity coefficient (DSC) was used as evalu-
ation metric, as it is widely used to assess segmentation
tasks as a measure of overlap between output segmenta-
tion and groundtruth:

2TP
DSC=—F——— .,
2TP+ FP+FN

where TP, FP and FN refer to true positive, false pos-
itive and false negative voxels respectively. To evalu-
ate the statistical significance of differences between the
obtained results, we consider dependent t-test for paired
samples.

4.1. Squeeze-and-Excitation blocks

The first experiment was performed in order to un-
derstand if the changes, which were introduced to the
standard 3D U-Net architecture, improved the perfor-
mance of the network or not. For this experiment bal-
anced patch sampling technique was used with target
number of patches of 3000 per patient, which was found
empirically and provided the best trade-off between per-
formance and computational cost. The negative patches
were extracted from the brain area only. From the re-
sults presented in Table 2 we can see that incorporat-
ing of squeeze-and-excitation blocks into standard U-
Net architecture significantly improved the overall seg-
mentation results of the dataset, increasing the average
DSC and reducing standard deviation (p<0.01).

Qualitatively, the improvement can be observed in
Figure 7. However, the introduction of squeeze-and-
excitation blocks could not help to break through the
maximum segmentation DSC, obtained for one case - it
changed only from 0.967 to 0.968.

4.2. Loss functions

The loss functions we tried were Focal loss and com-
bined Dice loss and Crossentropy loss as they are one
of the most commonly used and majority of participants
of ISLES challenge used them for the task of ischemic

1.9

(a) The example of better segmentation of irregular lesion while introducing
squeeze-and-excitation operations. The image on the left is segmented us-
ing the model without squeeze-and-excitation blocks, while the improved seg-
mentations on the right are made using the model with squeeze-and-excitation
blocks. Yellow arrow shows the area of improvement.

(b) The example of better segmentation of small lesion while introducing
squeeze-and-excitation operations. Yellow arrows show missegmentation done
without squeeze-and-excitation blocks applied.

Figure 7: The qualitative evaluation of segmentation with the incor-
poration of squeeze-and-excitation blocks into baseline architecture.

stroke segmentation. The initial conditions for the ex-
periment consisted of extracting 3000 patches of size
(32, 32, 16) per image, as it was the best size observed
empirically (Section 4.3), and using brain mask and ROI
around hematoma as restrictive conditions. The result-
ing segmentations of the model trained with the Fo-
cal loss as a loss function showed the average DSC of
0.796+0.158. An experiment with the combination of
Crossentropy and Dice loss significantly improved the
segmentation result (p<0.01) with the average DSC of
0.841+0.108.

4.3. Restrictive patch extraction

To improve segmentation results, several considera-
tions were taken into account. Firstly, the optimal patch
size had to be chosen. The studies of Farabet et al.
(2013), Liet al. (2014) showed that using bigger patches
in CNNs may improve segmentation results, as the net-
work can capture more contextual information, which
in our case can be also beneficial to differentiate IPH
and IVH. Therefore, an experiment was performed to
study the effect of different patch sizes. Considering the
architecture used (with squeeze-and-excitation blocks
incorporated) and the computational load, three patch
sizes were tested: (24, 24, 8), (32, 32, 16), (48, 48,
24). The results are presented in Figure 8. On the one
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Table 3: The resulting DSC for the whole dataset and its parts with and without hemorrhage using different patch restriction steps

DSC of samples DSC of samples .

DSC with IVHp without IVpH max DSC - min DSC
no restrictions 0.599+0.284 0.546+0.239 0.608+0.291 0.946 0.028
brain mask 0.807+0.159 0.664+0.188 0.831+0.141 0.959 0.183
brain mask + 0.841+0.108  0.692+0.128 0.866::0.081 0.964 0.530
ROI around hematoma
brain mask +
ROI around hematoma +  0.842+0.115 0.699+0.126 0.867+0.094 0.968 0.435
ROI around brain center
brain mask +
ROI around hematoma + 0.823+0.136 0.687+0.124 0.846+0.125 0.963 0.306

hyperintense ROI

Figure 8: DSC values obtained within three experiments with different
patch sizes: (24, 24, 8), (32, 32, 16), (48, 48, 24)

hand, increasing patch size to (32, 32, 16) significantly
improved mean DSC (p < 0.001) from 0.759+0.183 to
0.842+0.115, but, on the other hand, when the patch
size was enlarged more to (48, 48, 24), the average DSC
was significantly decreased (p<0.01) to 0.805+0.156.
Moreover, none of the patch sizes helped to overcome
the upper boundary of DSC (maximum DSC achieved
are 0.958, 0.968 and 0.963, respectively). From the Fig-
ure 8 we noticed that the results obtained with patches
of the size (32, 32, 16) were within the smaller range,
which states lower dispersion. For the later experiments
we opted the medium patch size of (32, 32, 16).

Next, the area to extract negative patches from was re-
stricted by applying the brain mask, so that the patches
were extracted only from the brain volume. This way
we avoided extracting completely black patches from
the image background. Table 3 shows that this con-
straint helped to significantly improve segmentation re-
sults by 11.7% (p < 0.001).

To refine the lesion contours, the region of interest
was defined around the hematoma and a fraction of
patches, which we defined empirically to be 30%, was

Figure 9: Example of producing more refined contours after the ROI
around hematoma was fixed. Yellow arrows emphasize the particular
parts of the lesion contour, that improved

extracted from this region. This ROI was represented
as cubic volume 25 pixels away from hematoma bor-
ders. Defining this region made it possible to focus the
network more on the area near the lesion borders and it
helped to significantly improve resulting segmentations
(p < 0.01), as can be observed from the average DSC
from Table 3 and qualitatively from Figure 9. In ad-
dition, the minimal DSC in this experiment is notably
improved, going from 0.183 to 0.530.

To solve the problem of intraventricular hemorrhage
segmentation, we wanted to make the network learn
more from IVH areas to distinguish IVH from IPH and
from CSF ventricles areas. Firstly, the cubic region of
interest was defined around central point of brain. This
way we could extract more patches from the area related
to CSF ventricles. In the experiment we compared the
influence of forcibly extracting patches from this ROI
on the final results. The patch extraction pipeline con-
sisted of restrictions on the negative patch sampling ap-
plied by the brain mask and the region of interest around
hematoma. The results of this experiment, presented in
Table 3, showed that introducing this condition could
increase the resulting DSC only a little, but the stan-
dard deviation rises, which means that more variability
is added. However, these changes were not considered
as significant (p>0.05).

To improve the results of the previous experiment, the
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Table 4: The evaluation metrics of the experiment with and without symmetric modality as an additional input channel. Different patch restriction

cases are compared.

Input DSC of samples DSC of samples .
modalities DSC with IVH without vH ~ M@ DSC - min DSC
ROIaround  original image  0.841+0.108  0.692+0.128 0.866+0.081 0.964 0.530
hematoma withsymmetric o 0106009 0.72040.116  0.87140.078 0964 0.530
modality
ROI around original image  0.842+0.115 0.699+0.126 0.867+0.094 0.968 0.435
hematoma +  with symmetric o0 00 (72840.112  0.878+0.061 0.956 0.553
brain center modality
ROl around  original image  0.823+0.136  0.687+0.124 0.846x0.125 0.963 0.306
hematoma + - with symmetric oo, () 0e5(728+0.107 0.879+0.057 0.964 0.581
IVH area modality
ROT around ith symmetric
hematoma OR " >V " 0.862+0.074  0.777+0.101 0.876+0.059 0.957 0.632
IVH area modality

cubic ROI was replaced by a ROI, representing IVH - a
hyperintense volume in the image excluding IPH. The
results of new test, shown in Table 3, indicate that the
resulting segmentation DSC significantly decreased (p
< 0.01) for all the dataset and for groups with and with-
out IPH.

4.4. Usage of different modalities

As stroke appears in one hemisphere of the brain,
symmetric non-contrast CT image was added to the
original one as another input channel to exploit the prop-
erty of brain symmetry. The experiment was performed,
holding the same training parameters and patch sam-
pling strategy, defined in Section 3.2. The results are
presented in Table 4. Adding the symmetric modality
to a segmentation pipeline with the fixed ROI around
the lesion made segmentations better, with mean DSC
improvement from 0.841+0.108 to 0.849+0.099, being
statistically significant (p<0.01). We can also see in this
experiment the improvement in segmentation of images
with IVH by 2.8%, and generally, symmetric modality
augmentation reduced standard deviation. Qualitatively,
it can be observed in Figure 10, where yellow arrows
indicate the areas, which were correctly segmented as
background after introducing the symmetric input.

Even though defining a cubic ROI around the brain
center and using symmetric image as additional input
channel improved segmentation results, these improve-
ments were not significant (p>0.05). However, if sym-
metric modality augmentation is used when patches are
forcibly extracted from IVH volumes, the DSC of re-
sulting segmentations, especially for the images with
IVH, as can be noticed from Table 4, significantly im-
proved (p<0.01) by 4.9%.

Angiography CT was also used as an additional in-
put channel together with original non-contrast CT. Not
all the cases from the provided dataset included this
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modality, so for a fair comparison, these cases were ex-
cluded (totally 10 cases). We observed that when intro-
ducing angiography image segmentation DSC signifi-
cantly decreased (p<0.001), leading average DSC from
0.834+0.120 with no additional modality augmentation
to 0.795+0.156.

4.5. Data augmentation

The influence of data augmentation techniques was
studied by applying the previously mentioned transfor-
mations to all the patches extracted within the experi-
ment. Moreover, we also analyzed the effect of the num-
ber of patches used into the segmentation result.

Firstly, the target number of patches was set to 500,
so that they can be augmented up to 3000. Compared
to the baseline approach (Table 5), the segmentation re-
sults with a new patch dataset composition significantly
decreased (p<0.05). The following data augmentations
implied to increase the number of patches. As we in-
creased the initial number of extracted patches, the re-
sulting DSC slightly improved, only decreasing when
the initial number of patches was 1500. These changes
from one number of patches to another were statistically
significant (p<0.01, p<0.01 and p<0.005, respectively).
However, the difference between the results obtained
with 3000 patches and with 3000 patches augmented to
18000 was not statistically significant (p>0.05).

4.6. Final configuration

Taking into account all these previous experiments,
the final configuration of the proposed method was cho-
sen. The network architecture included squeeze-and-
excitation blocks and was trained with 3000 patches of
size (32, 32, 16) with combination of Dice and Crossen-
tropy losses as a loss function. Even though results
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(a) Examples of images segmented with only CT NC as an input

(b) Examples of images segmented with symmetric CT NC as an additional
input

Figure 10: Results of hematoma segmentation with and without using
symmetric CT NC as an additional input. Yellow arrows show the
changes in the results achieved by incorporating symmetric modalities
as another input channel.

Table 5: The evaluation metrics of experiments checking the influence
of data augmentation and its size on the segmentation results

number
of patches DSC std
3000 0.862 0.074
& 500 — 3000  0.845 0.092
g g 1000 — 6000 0.866 0.078
%0 g 1500 — 9000 0.846  0.092
3000 — 18000 0.868 0.076

with data augmentation improved the mean DSC, con-
sidering computational cost versus amount of improve-
ment, data augmentation was not considered in the fi-
nal method. Original image together with its symmetric
modality were used as input, and patches were extracted
from them restrictively, limiting the area to extract
patches from with brain mask, ROI around hematoma
and IVH volume. With this final design, we could
achieve a DSC of 0.862 with processing segmentation
time of 17.15 seconds per patient. The qualitative ex-
ample of one of the best segmentation results is shown
on Figure 11.

Comparison with state-of-the-art approaches was dif-
ficult, since all methods used different datasets, which
may include different levels of severity. Our goal was
to segment intraparenchymal hemorrhage only, exclud-
ing intraventricular hemorrhage regions. However, in

Figure 11: Example of a good segmentation result. The red over-
lay represents resulting segmentation, while the white one represents
groundtruth.

other state-of-the-art approaches IVH cases were not
presented, therefore these works could train specifi-
cally IPH regions, providing higher overall DSC values.
Moreover, these methods used datasets with more scans
than in our case, which could also influence the resulting
segmentations. For instance, the work of Chang et al.
(2018), reported an average DSC of 0.931 with a dataset
of 10159 CT scans where 8.9% of scans had ICH, while
the approaches of Singh et al. (2019) and Kuang et al.
(2020) provided DSC values of 0.932 and 0.864, with
datasets composed of 399 and 150 scans, respectively.
The approach of Yao et al. (2020) reported an average
DSC of 0.697 with a dataset of 120 CT scans from dif-
ferent centers. Nevertheless, the overall results obtained
for IPH with our approach (DSC of 0.879) should be
considered as very satisfactory, specially taking into ac-
count the challenges presented in our dataset, both the
consideration of not including the intraventricular hem-
orrhage as a lesion, and the number of such cases in the
whole dataset, being almost 15%.

5. Discussion

This study presented a deep learning approach for
hemorrhagic stroke lesions segmentation. Despite the
fact that two subtypes of hemorrhagic stroke lesions are
presented in the dataset, only one of them, namely intra-
parenchymal hemorrhage, is considered as lesion to be
delineated, as the other subtype, intraventricular hem-
orrhage, is mostly secondary, resulting from existing
IPH. Hence, the issue of differentiating it from the re-
maining subtype of stroke, intraventricular one, has to
be taken into account within the segmentation frame-
work. In this task, the IVH problem was the main one
to worsen the segmentation results, so mostly the steps
we took were attempting to reduce the number of seg-
mented IVH voxels. However, some options were tried
to generally improve the obtained segmentations and re-
fine the contours of the stroke lesion.

1.12
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Hemorrhagic stroke appears hyperintense on CT im-
ages, therefore, as previous studies show, promising per-
formance could be achieved. The simple patch-based
3D U-Net architecture with the only restriction of a
brain mask for negative class already achieved a mean
DSC of 0.765+0.217, as shown in Table 2. Notice that
this result is better than the one reported by the approach
of Yao et al. (2020) who achieved an average DSC of
0.697 for IPH segmentation against our result of 0.765.
Their approach was also inspired with U-Net, yet their
dataset is heterogeneous, acquired in different medical
centers, unlike ours, which may be the reason of such
increase in performance.

Incorporation of squeeze-and-excitation blocks were
performed similarly to the approach of Woo et al. (2019)
for segmentation of ischemic stroke lesions. Results
showed that it helped to significantly improve the av-
erage segmentation DSC by 6.3%, as well as to reduce
variability by decreasing the standard deviation from
0.217 to 0.127 (Table 2). Likewise the results of Woo
et al. (2019), squeeze-and-excitation operations helped
to better segment small and irregular lesions, as can be
seen in Figure 7. While segmenting small lesions, mis-
segmentations were reduced; for the discontinued le-
sions, which have more variability in intensities through
single lesion, squeeze-and-excitation blocks helped to
detect more hematoma voxels.

Regarding loss functions, we expected to observe
comparatively similar performance of Focal loss and the
combination of Dice loss and Crossentropy loss. How-
ever, the combination of DL and Crossentropy loss sig-
nificantly outperformed the Focal loss, increasing the
average DSC by 4.5% and reducing standard deviation
by 5%. In most cases, the model trained with Focal loss
undersegmented the borders of small lesions, as shown
by yellow arrows on Figure 12a. Also, it wrongly seg-
mented the voxels near the brain stem areas in some im-
ages, as can be seen in Figure 12b. It might be because
the beam hardening effect artifact is possible in these ar-
eas, as they were located within big volume of dense tis-
sues, like bone and teeth, which may contain some ex-
ternal materials. This artifact is due to scattering of the
X-ray beam and to alteration of the average power of the
X-ray beam as it passes through relatively dense struc-
tures, producing bright streaks on the image. Therefore,
these streaks were misclassified by model trained with
Focal loss.

The experiments with different patch sizes showed
unexpected behavior. As mentioned before, enlarge-
ment of patch size should have helped the network to
capture more contextual information. However, our ex-
periments showed, that increasing of the patch size up
to (48, 48, 24) worsened the mean DSC and introduces
more variability to the samples, as shown in Figure 8.
Moreover, the larger patch size could not help to capture
dependencies between IPH and IVH. Individually, the
most significant decrease of DSC was happening with
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(a) The example of small lesions segmentation when the model is trained with
Focal loss (on the left) and with Crossentropy+Dice loss (on the right). Yellow
arrows show undersegmentation of lesion border.

(b) The example of missegmentation of areas affected by beam-hardening arti-
fact. The result on the left image is obtained with the model trained with Focal
loss, whereas the segmentation on the right is produced by model trained with
Crossentropy+Dice loss.

Figure 12: The qualitative results obtained by models, trained with
Focal loss and Crossentropy+Dice loss.

small lesions, which states that for this particular dataset
the patch size of (48, 48, 24) was too big to capture the
small hematoma volumes. A similar behavior was ob-
served in the work of Bernal et al. (2019) for tissues
segmentation in MRI in some of the studied approaches.
Increasing patch size from (24, 24, 8) to (32, 32, 16) led
to better segmentations, as expected initially. Therefore,
with regard to the results of the experiments, the patch
size of (32, 32, 16) was chosen as the optimal one.

The restrictive patch sampling was mostly performed
to solve the problem of intraventricular hemorrhage.
Nevertheless, the initial constraint of extracting patches
only from the brain volume was performed in order to
generally make the segmentations better. Obtained re-
sults proved that sampling patch centers only from brain
voxels greatly increased the DSC over all cases of the
dataset. Consequently, the training patch set never in-
cludes empty patches of the image background, so the
network receives more valuable information as input.

The significant rise of the DSC in the case of fixing
the region of interest around the lesion was expected, as
it was also having a big impact on the work presented
by Kushibar et al. (2018). In most cases introducing this
condition helped to refine the lesion contours, as can be
observed in qualitative examples provided in Figure 9.
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Figure 13: Example of missegmentation. Even though ROI helped
to refine contours (green arrow), voxels not related to the lesion were
also segmented (yellow arrows).

However, for some images improper outputs were pro-
duced. Notice that less patches are extracted from over-
all brain volume, therefore some voxels in unseen areas
of the background were mistaken for lesion. See for
instance the qualitative examples shown in Figure 13,
where the part indicated by the brain middle line seg-
mented as lesion.

The attempts to solve the issue of intraventricular
hemorrhage by establishing another regions of interest
around CSF ventricles did not significantly change hem-
orrhage segmentation, introducing more variability to
the data (Table 3). This was possibly due to the fact
that in this case the network received more patches with
IVH and parts of CSF ventricles, and overall distribu-
tion of patches therefore was not enough to successfully
distinguish IPH and IVH.

Symmetric modality augmentation showed an inter-
esting behavior. Even without extra guidance to ventri-
cle areas it could improve segmentations of both groups
of scans with and without IVH, exploiting the fact, that
hemorrhage occurs in one of the brain hemispheres.

Even though fixing the ROIs related to brain ventri-
cles did not help to achieve better results, they were suc-
cessfully used together with symmetric modality aug-
mentation. We can observe from Table 4, that fix-
ing these ROIs improved more the segmentations, com-
pared to fixing only ROI around hematoma. This hap-
pened due to the fact that these two novelties together
guide where the ventricles and normal tissues are, ex-
ploiting the information about ventricles shape and their
deformation in the presence of intraventricular hemor-
rhage. Moreover, this answers the question, why the
symmetry of a healthy ventricle cannot be utilized to re-
duce the affected area of the opposite ventricle - a ventri-
cle with IVH deforms in a way, so that this assumption
can cut the correctly segmented IPH.

Qualitatively, Figure 10 shows that incorporation
of symmetric modality as an additional input channel
could reduce segmentation of voxels which are located
in the other hemisphere of the brain than the one dam-
aged by stroke. Moreover, segmentation of voxels of the
same hemisphere, but related to intraventricular hem-

Figure 14: The left image shows the example of ventricle deforma-
tion in the presence of IVH. The image on the right shows the incor-
poration of symmetric ventricle to cut off ventricular voxels, though
mostly it cuts the IPH voxels.

orrhage, was also reduced. However, brain ventricles
can be malformed because of the intraventricular hem-
orrhage, as shown in Figure 14. If the symmetric ver-
sion of the normal ventricle was applied as a mask, it
would cut the large part of IPH.

Reduction in segmentation results after introducing
CT angiography as additional input channel was ex-
pected, as these images are more noisy, than non-
contrast CT scans. However, CT angiography is widely
spread as a gold standard in the imaging of cerebral
parenchymal hemorrhage to assess the spot sign - an
indicator of ongoing bleeding. Therefore, it can be as-
sumed that this modality can be helpful for stroke seg-
mentation, adding additional information for the net-
work to learn. However, it was shown by Koculym et al.
(2013), that the spot sign detection on CT angiogra-
phy images demonstrates low sensitivity of 44%, which
can be the reason of poor performance of angiography
modality augmentation.

Artificially expanding the dataset using data aug-
mentation techniques did not make a breakthrough in
the segmentation results. Moreover, augmenting the
patches from 3000 to 18000 did not introduce much
improvement improvement compared to the results ob-
tained with the patch dataset of only 3000 without any
augmentation (Table 5). The overall difference in the re-
sults was not significant (p>0.05). Indeed, considering
the mean DSC and standard deviation values from Ta-
ble 5, one can see that the general behavior of the DSC
distribution was similar.

5.1. Perihematomal edema segmentation

Apart from all the analyses presented in this work,
we also studied the segmentation of the perihematomal
edema, which is a brain swelling region around the hem-
orrhagic stroke lesion. It is an inflammatory response
to the hematoma and it causes further damage to the
brain tissues within some time period after stroke on-
set. Therefore, detecting and segmenting this region can
help to predict clinical outcome of a stroke patient. In
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(a) The original CT images. Perihematomal edema has poor contrast with sur-
rounding healthy tissue.

(b) The examples of edema segmentation using deep learning and previously
produced edema masks. The left image shows the segmented voxels around
damaged brain ventricle.

Figure 15: Original images together with edema segmentation results.

our work, we analyzed the application of our approach
to this problem.

In stroke imaging, T2-weighted MRI helps to
effectively delineate edema from the surrounding
parenchyma (Ironside et al. (2019)). However, in hem-
orrhagic stroke patients magnetic resonance imaging is
not routinely used as a neuroimaging modality. In this
case, CT may be a more suitable modality, but segmen-
tation of edema from a CT image is a very challenging
task due to its poor contrast with surrounding tissues
(Urday et al. (2015), Ironside et al. (2019)). We can
visually observe this from Figure 15a.

In literature, few attempts were taken to segment peri-
hematomal edema from CT images. For instance, Cosi¢
and Loncari¢ (1997) used expert-system based label-
ing for both hematoma and edema segmentation. Chen
et al. (2013) proposed a method based on region grow-
ing with seeds obtained from expectation-maximisation
algorithm. The method was evaluated on a dataset of
36 patients. Volbers et al. (2011) suggested a thresh-
old based edema segmentation. Their proposed thresh-
olds were identified to provide the best correlation be-
tween the resulting segmentations in CT and manual de-
lineations in MRIL

As the dataset we used was acquired for the clin-
ical study of Hospital Dr. Josep Trueta, the perihe-
matomal edema segmentation was also proposed as a
task. The main problem to overcome was the absence
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of the groundtruth segmentations of edema. At initial
step, the edema masks based on distance transform were
generated within the VICOROB group. The same deep
learning approach, as for hematoma, was also tried for
edema segmentation, with restrictive patch sampling,
where patches were extracted from the brain volume
and region around hematoma. The previously intro-
duced masks were provided as groundtruth. Moreover,
the previously obtained stroke core segmentations were
provided as additional input channel to the network to
guide the location of lesion borders. As no groundtruth
was provided, we could not perform a quantitative anal-
ysis of these experiments. Qualitatively, from Figure 15
we can observe visually tolerable edema segmentations.
However, the problem of intraventricular hemorrhages
arises here as well, as edema can be segmented around
brain ventricle, which can be noticed in the left example
of Figure 15b.

The limitation for solving this task is that there are no
datasets available with groundtruth of the edema. Hav-
ing available groundtruth could help to adapt our current
proposal for this problem or even to refine the results of
previous approaches, which could be a good line to ex-
plore as a future work.

6. Conclusions

In this master thesis we proposed a deep learning
method for hemorrhagic stroke lesions segmentation.
The proposed approach, based on 3D U-Net with inte-
gration of squeeze-and-excitation blocks, was tested on
the clinical dataset of 76 cases, provided by a local col-
laborating hospital (Hospital Dr. Josep Trueta). All the
obtained results were qualitatively and quantitatively
evaluated on the whole dataset using a 5-fold crossvali-
dation strategy. Our approach was inspired by the work
of Woo et al. (2019), who incorporated squeeze-and-
excitation blocks into different architectures to solve the
ischemic stroke segmentation task. We could show that
such architecture significantly improved segmentation
results (p<0.01).

Moreover, we showed that data preparation step is
very important to obtain a good segmentation method.
By using restrictive balanced sampling technique, we
could tackle the class imbalance problem as well as the
problem of intraventricular hemorrhage. When apply-
ing different constraints on the patch extraction pipeline,
we quantitatively showed the statistical significant im-
provements. In addition, we were able to study the in-
fluence of using different modalities as input to the net-
work and we could show the improvements achieved by
the introduction of symmetric modality as additional in-
put channel. Different patch characteristics were also
studied, allowing us to choose the optimal patch size
(32, 32, 16) as well as show the influence of number
of patches and data augmentation on the obtained final
results.



Hemorrhagic stroke lesion segmentation using a 3D U-Net with squeeze-and-excitation blocks 16

Two loss functions, Focal loss and combined
Crossentropy and Dice loss, which are commonly used
for ischemic stroke segmentation problem, were also
examined. Our results showed the superior performance
of the model trained with the combination of Crossen-
tropy and Dice loss.

Having DSC as main evaluation metric, we could
achieve a mean segmentation result of 0.862 + 0.074 for
all cases and 0.879 + 0.057 for cases without intraven-
tricular hemorrhage. The task of perihematomal edema
was also approached and qualitatively evaluated.

Finally, although our dataset and provided
groundtruth annotations (without considering the
IVH regions) did not allow a direct comparison with
state-of-the-art approaches, our proposal showed, that
incorporation of squeeze-and-excitation blocks to the
3D U-Net together with symmetric modality as addi-
tional input channel provides promising results with
accurate automated segmentations of the hemorrhagic
stroke lesions.
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Abstract

Myocardial infarction, commonly known as a heart attack, is the irreversible death of heart muscle (myocardium) due
to lack of oxygen supply (ischemia). In a clinical routine, the infarcted myocardium is often segmented manually.
Since manual segmentation is time consuming and suffers from intra- and inter-observer variability, it is of great
interest to develop an automatic and accurate myocardial scar segmentation. However, the automatic method is also
difficult due to the presence of motion artifact and low contrast between scar and its surrounding in the cardiac
magnetic resonance (CMR) images. In this paper, we proposed a fully-automatic scar segmentation method using a
cascaded segmentation networks of three Fully Convolutional Densenet (FC-Densenet) with Inception and Squeeze-
Excitation module. It is called Cascaded FCDISE. The first FCDISE is used to extract the region of interest and the
second FCDISE to segment myocardium and the last one to segment scar from the pre-segmented myocardial region.
In the proposed segmentation network, the inception module is incorporated at the beginning of the network to extract
multi-scale features from the input image, whereas the squeeze-excitation blocks are placed in the skip connections
of the network to transfer recalibrated feature maps from the encoder to the decoder. To encourage higher order
similarities between predicted image and ground truth, we adopted a dual loss function composed of logarithmic
Dice loss and region mutual information (RMI) loss. Our method is evaluated on the Multi-sequence CMR based
Myocardial Pathology Segmentation challenge (MyoPS 2020) dataset. On the test set, our fully-automatic approach
achieved an average Dice score of 0.590 for scar and 0.686 for scar+edema. This is higher than the inter-observer
variation of manual scar segmentation. The proposed method outperformed similar methods and showed that adding
the two modules to FC-Densenet improves the segmentation result with little computational overhead.

Keywords: Multi-sequence cardiac MRI, MyoPS, Myocardial scar, Segmentation, Deep Learning, CNN,
Fully-automatic

1. Introduction This happens when there is plaque or blood clot in the
coronary artery which is responsible for supply of blood
and oxygen to heart muscles. As the cells are deprived
of oxygen, cellular injury occurs which leads to the in-

farction or death of the cells (Belleza, 2017).

Cardiovascular diseases (CVDs) are the number one
cause of death globally. More people die annually from
CVDs than from any other cause according to World
Health Organization (WHO). An estimated 17.9 million
people died from CVDs in 2016, representing 31% of
all global deaths. Of these deaths, 85% are due to heart

Edema is the excess accumulation of fluid in the my-
ocardial interstitium which develops as a result of im-

attack and stroke (Organization, 2017). Cardiovascular
disease (CVD) is a general term for conditions affecting
the heart or blood vessels.

Myocardial infarction (MI), commonly known as a
heart attack, is the irreversible death of heart muscle
(myocardium) due to lack of oxygen supply (ischemia).

2.1

balance between filtration from the coronary microvas-
culature and removal of interstitial fluid via lymphatic
vessels and epicardial transudation. This can create with
acute conditions like myocardial infarction and with
chronic conditions like pulmonary hypertension (Don-
gaonkar et al., 2012).
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Cardiac magnetic resonance (CMR) is a set of mag-
netic resonance imaging (MRI) used to provide anatom-
ical and functional information of the heart. There
are many types of CMR sequences. To mention
some: Late Gadolinium Enhancement (LGE), balanced
Steady State Free Precession (bSSFP) cine sequence
and T2-weighted MR. These sequences bring compli-
mentary information to each other (Hammer-Hansen
et al., 2016).

Late Gadolinium Enhancement (LGE), sometimes
called delayed-enhancement MRI, is a gold standard for
the quantification of myocardial infarction. It shows
an optimum contrast between normal and infarcted my-
ocardium (Fig. 1). This is done first by administering
intravenously gadolinium-based contrast agents (GB-
CAs) and then performing a delayed imaging at least
10-15 minutes later. A T1-weighted inversion recovery
(IR) sequence is used to null the signal from normal my-
ocardium (Zhuang, 2018).

T2-weighted CMR is mostly used to visualize my-
ocardial edema (Fig. 1). T2-weighted cardiac MRI
of edema is acquired by combining different imaging
techniques which are used to freeze the cardiac and
respiratory motions giving high contrast among blood,
fat, normal myocardium, and myocardial edema. T2-
weighted sequence provides a complementary informa-
tion to LGE (Amano et al., 2012).

The bSSFP cine sequence captures cardiac motion
and has clear myocardial boundaries (Fig. 1). Itis a
modification of gradient echo imaging which consists
of a train of rapidly acquired RF-pulses with echoes
formed by balanced imaging gradients. It is relatively
fast acquisition which produces bright blood images
with excellent contrast between myocardium and blood
pool. It has also high temporal resolution (Norton,
2013).

Cardiac image segmentation involves the delineation
of left ventricular myocardium, blood pool, right ven-
tricle in addition to scar, edema and no-reflow seg-
mentation. Most of the researches conducted in car-
diac images segmentation uses single modality input
image. For left ventricular myocardium and blood pool
segmentation the most common modalities are bSSFP
CMR, LGE and T1-map (Fahmy et al., 2019; Isensee
et al., 2017; Kurzendorfer et al., 2018). While for scar
segmentation, majority of them use LGE (Amado et al.,
2004; Dikici et al., 2004; Moccia et al., 2019; Positano
et al., 2005; de la Rosa et al., 2019; Zabihollahy et al.,
2018).

Myocardial scar is often segmented manually in a
clinical routine. However, manual segmentation is very
exhausting and suffers from intra- and inter-observer
variability. This problem can be addressed by devel-
oping an automatic segmentation method. Having said
that, automatic segmentation also comes with its own
challenges. Large shape and size variation of the heart
and infarcted myocardium, heterogeneous intensity dis-

tributions of myocardium, motion artifact, low contrast
between scar and blood pool in LGE as well as low
contrast between edema and healthy myocardium in T2
make developing automatic segmentation methods dif-
ficult.

In this paper, we proposed a fully-automatic
scar segmentation method using a cascaded Fully
Convolutional-Densenet (FC-Densenet) (Jégou et al.,
2017) with Inception (Szegedy et al., 2016) and
Squeeze-Excitation (SE) modules (Hu et al., 2018). The
input to our method was a multi-modal image which
consists of LGE, T2 and bSSFP CMR sequences.

Our work has the following main contributions: 1)
We proposed three cascaded segmentation networks that
extract the region of interest then segment myocardium
and finally segment scar from pre-segmented myocar-
dial region. This resulted in higher Dice score and lower
false positives compared to the one that uses 2 cascaded
networks. 2) We demonstrated that combining multi-
ple cardiac MR images can improve the cardiac seg-
mentation result. 3) We showed that incorporating SE
blocks and inception module to FC-Densenet improves
the segmentation performance with little computational
overhead. SE blocks are incorporated in the skip con-
nections of the network to transfer a recalibrated feature
maps from encoder to decoder and inception module is
added at the beginning of the network to extract multi-
scale features from the input image. 4) We proposed a
novel loss function that combines the conventional loga-
rithmic Dice loss with region mutual information (RMI)
loss (Zhao et al., 2019). This objective function can be
useful to segment small structures and pixels with weak
visual evidence such as myocardial scar and edema. 5)
Our fully-automatic approach showed a promising re-
sult on Multi-sequence CMR based Myocardial Pathol-
ogy Segmentation (MyoPS 2020) challenge dataset by
achieving a higher Dice score for scar than the inter-
observer variation of manual scar segmentation.

2. State of the art

2.1. Left Ventricular Blood Pool and Myocardium Seg-
mentation

Segmenting blood pool and myocardium is important
to accurately identify the extent of infarcted tissue and
quantify it. Several deep learning methods have been
proposed to segment ventricles and myocardium. Some
of these studies used only cine MR sequence. For in-
stance, Isensee et al. (2017) tackled the segmentation
problem using an ensemble of 2D and 3D Unet trained
on cine MR dataset called Automated Cardiac Diag-
nosis Challenge (ACDC) dataset !. Using the same
dataset, Khened et al. (2019) used 2D Dense-Unet with
inception module to aggregate the features extracted

"https://www.creatis.insa-1lyon.fr/Challenge/acdc/
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Figure 1: Illustrative example showing the three cardiac MR sequences. The red arrow in (a) LGE CMR and (b) T2 CMR indicate the presence of
scar and edema respectively. The red circles in (c) bSSFP CMR shows myocardial boundaries.

by different kernel sizes from the input image for ro-
bust segmentation in images with variable sized heart
shapes. To localize region of interest (ROI), Khened
et al. (2019) used basic image processing techniques
like Circular Hough Transform and Fourier analysis.
While a method proposed by Li et al. (2019) used 2D
FCN for ROI localization and another 2D FCN for seg-
mentation which is a multi-stage network. These meth-
ods achieved very high segmentation accuracy on ven-
tricles and myocardium. Despite the fact that bSSFP
CMR has clear myocardial boundaries, it is difficult
to get myocardial pathology information from it unlike
LGE CMR.

Using LGE CMR, Kurzendorfer et al. (2019) imple-
mented a multiscale fully convolutional neural network
with residual units and weighted cross-entropy loss
function to segment the left ventricles’s endocardium
and epicardium. As a post-processing technique, they
selected the largest connected component and estimated
a convex hull for the component in order to remove
small wholes. The myocardium segmentation result,
however, was relatively lower than the one that used
cine CMR. To take advantage of cine MRI, Wei et al.
(2011) and Tao et al. (2015) proposed to segment first
cine CMR images and then propagated the obtained
contours to LGE MRI through image registration. How-
ever, these methods require accurate registration be-
tween cine CMR and LGE CMR which can be chal-
lenging due to variation in image contrast and imaging
field-of-view between them.

There are also other methods which incorporate
shape prior and spatial prior. Oktay et al. (2018) pro-
posed a method to segment cardiac MR images us-
ing anatomically constrained neural networks (ACNN).
ACNN is a Unet based segmentation model which in-
corporates shape prior as regularization term. An au-
toencoder is trained first using ground truth images.
Then loss is calculated as a distance between the la-
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tent space features generated from ground truth and pre-
dicted image. Similarly, Yue et al. (2019) proposed
a deep learning method which incorporates shape and
spatial priors. The main segmentation network was
similar to Unet. The network included shape prior by
adding a pretrained shape reconstruction neural network
as a constraint to regularize a segmentation result into
plausible shape. While the spatial constraint module
is added to bottleneck of segmentation network to pre-
dict the position of LGE MRI slice. This spatial prior is
added as a penalization of wrongly predicted spatial po-
sitions. Zotti et al. (2018)’s approach embedded cardiac
shape prior by concatenating the shape prior probability
map to the feature map located before the last convolu-
tion layer of the segmentation model. These approaches
improved myocardium segmentation result. However,
the addition of shape prior is computationally expen-
sive because the approaches require separately training
autoencoders and the segmentation networks.

2.2. Infarcted Myocardium Segmentation

Most scar segmentation studies can be categorized
into two main groups: non-deep learning based and
deep learning based methods. The non-deep learn-
ing based approaches are mainly focused on threshold-
ing and clustering. The threshold based approaches
exploit the enhanced intensity of the infarcted my-
ocardium compared with the healthy myocardium. The
threshodling method proposed by Amado et al. (2004)
is called full width at half maximum (FHFW). As its
name suggested, the threshold value is defined as the
half value of the infarcted myocardium’s maximum in-
tensity. Kim et al. (1999)’s method defined the threshold
as an intensity value n standard deviations higher than
the mean intensity of the healthy myocardium (nSD)
where n can be between 2 and 6. Both methods were
simple, however, they required manual interaction of
a user to determine region of interest that defines the
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threshold values. In clustering based approach, Hen-
nemuth et al. (2012) utilized a Gaussian mixture model
analysis of the myocardial intensities and used the inten-
sity threshold information for watershed segmentation.
Baron et al. (2013) adopted Fuzzy C-means Clustering
to segment scar by classifying the cluster probability of
myocardial intensities using fuzzy inference.

Recently, few studies have been proposed to seg-
ment scar using semi-automatic and fully-automatic
deep learning methods. Zabihollahy et al. (2018)
used manual segmentation for myocardium and then
2D Fully Convolutional Network to segment scar from
the myocardium. Moccia et al. (2019) proposed
semi-automatic and fully-automatic scar segmentation
method. Their semi-automatic approach, which man-
ually segments the myocardial region, performed bet-
ter than the one that uses automatic approach due to
the mediocre segmentation performance of the net-
work on myocardium. Another fully-automatic ap-
proach by de la Rosa et al. (2019) used a 2D Unet
based myocardium segmentation followed by a top-
hat transforms based coarse scar segmentation and fi-
nally a voxel classification of healthy and infarcted my-
ocardium. However, using morphological operation to
segment a scar can be unreliable particularly when the
images have heterogeneous intensity distribution and
motion artifact.

3. Material and methods

3.1. Dataset

The dataset used in this paper was Multi-sequence
CMR based Myocardial Pathology Segmentation Chal-
lenge (MyoPS 2020)%. It is part of Statistical At-
lases and Computational Modeling of the Heart (STA-
COM) 2020 workshop and Medical Image Computing
and Computer Assisted Intervention (MICCAI) 2020.
The dataset consists of three sequence CMR of 45
subjects diagnosed with myocardial infarction. From
the 45 subjects, 25 of them are used for training and
the rest for testing. The sequences are LGE CMR,
T2-weighted CMR and bSSFP cine sequence. LGE
CMR is a T1-weighted, inversion-recovery, gradient-
echo sequence. The bSSFP CMR is a balanced steady-
state, free precession cine sequence and T2 CMR is
a T2-weighted, black blood Spectral Presaturation At-
tenuated Inversion-Recovery (SPAIR) sequence. The
three sequences were breath-hold and scanned at end-
diastolic phase. They were also acquired in the ven-
tricular short-axis views. The typical parameters of the
three sequences are summarized in Table 1.

According to the organizers of the challenge, the
dataset was manually annotated by three independent

*http://www.sdspeople.fudan.edu.cn/zhuangxiahai/
0/myops20/

observers and the final ground truth was achieved by av-
eraging the three manual delineations using shape based
approach (Zhuang, 2016, 2018). In addition, they regis-
tered the three CMR sequeces into a common space and
an average spatial resolution of 0.75 x 0.75mm using
multivariate mixture model (MvMM) method (Zhuang,
2018). MvMM is a method proposed by Zhuang (2018)
for simultaneous registration and segmentation of multi-
source images.

All images have annotation for right ventri-
cle, left ventricle, myocardium, scar, edema and
scar+edema. According to the organizers of the chal-
lenge, scar+edema is the infarcted myocardium which
considers scar and edema as one class. For this task, we
focused on segmentation of all except right ventricle be-
cause right ventricle does not have enough pathological
information about scar compared to left ventricle and
myocardium.

As a pre-processing step, the intensity of every pa-
tient image is normalized to have zero-mean and unit-
variance. The dataset is already registered, as men-
tioned before. However, there are slight variations of
spatial resolution among the patients (0.72 - 0.76 mm).
To account for this, all patients were re-sliced to have
the same spatial resolution of 1.0 x 1.0 mm. The z spac-
ing of the voxel spacing is not changed.

3.2. Proposed Pipeline

The proposed pipeline consists of data pre-processing
and deep learning based region of interest extrac-
tion, myocardium and scar segmentation (Fig. 2).
In our approach, a cascaded segmentation network
consisting of three FC-Densenet with Inception and
Squeeze-Excitation module (Cascaded FCDISE) were
used to extract the region of interest and then seg-
ment myocardium and finally segment scar from the
pre-segmented myocardial region. The segmentation
network architecture used for the three tasks are al-
most the same. The only differences are the number
of pooling/upsampling layers and their weights as they
are trained independently. The segmentation network is
based on 2D convolution operations.

3.2.1. Network Architecture

The proposed method is based on FC-Densenet
(Jégou et al., 2017). To enhance FC-Densenet’s per-
formance, we incorporated two important modules: SE
blocks and inception module. We named the proposed
segmentation network FCDISE.

One of the problems with very deep neural networks
is vanishing gradient. To alleviate this problem, many
novel architectures has been proposed. Densely Con-
nected Convolutional Network (DenseNet), which is
proposed by Huang et al. (2017), is one of them. This
network was designed to address the problem of vanish-
ing gradient by directly connecting each layer to every
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Table 1: MRI parameter setting for bSSFP, LGE and T2 CMR sequences

Parameter bSSFP LGE T2

TR/TE 2.7/1.4 ms 3.6/1.8 ms 2000/90 ms
Slice Thickness 8-13 mm 5 mm 12 - 20 mm
In-plane resolution 1.25x 1.25 mm 0.75x 0.75 mm 1.35x 1.35 mm

Figure 2: Proposed pipeline. FCDISE-ROI: segmentation network used for ROI extraction, FCDISE-MYO: segmentation network used for
myocardium segmentation, FCDISE-Scar: segmentation network used for scar segmentation.

other layer in a feed-forward fashion. For each layer,
the feature-maps of all preceding layers are used as in-
puts, and its own feature-maps are used as inputs into
all subsequent layers. Unlike residual neural networks
(ResNets), the feature maps received from previous lay-
ers are concatenated not summed. Densenet also has
other advantages like strong feature propagation, fea-
ture reuse and reduced number of parameters (Huang
etal., 2017).

Jégou et al. (2017) extended Densenets to deal with
semantic segmentation task. Densenets are good fit for
semantic segmentation because they have skip connec-
tions and multi-scale supervision by design. But di-
rectly extending Densenet as Fully Convolutional Net-
work (FCN) will lead to feature map explosion in the
decoder part. To mitigate this problem, only the features
maps created by the preceding dense block are upsam-
pled. Like FCN, skip connections are used to transfer
the higher resolution information from encoder to de-
coder (Jegou et al., 2017).

Similar to FC-Densenet, our network architecture
consists of downsampling path, upsampling path and
skip connections. The downsampling path is composed
of dense blocks and transition down layers as shown in
Fig. 3. The upsampling path also has dense blocks and
transition up layers. In the dense block, each layer re-
ceives feature maps from all preceding layers and for-
wards its feature map to all subsequent layers as shown
in Fig. 4 (a). Each dense block layers are made up of
Batch Normalization, rectified linear unit (ReLU) acti-
vation function, 3 X 3 convolution and drop out with
probability 0.2 as shown in Fig. 4 (b). Transition down
is composed of Batch Normalization, ReLU activation
function, 1x1 convolution, drop out with probability 0.2
and 2 X 2 max-pooling layer with stride 2 to downsam-
ple the feature maps into latent space (Fig. 6 (a)). From
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the latent space, transition up recovers the input spatial
resolution by upsampling the feature maps using 3 x 3
transposed convolution with stride 2 (Fig. 6 (b)). Skip
connections are used to concatenate the feature maps
from downsampling path to the corresponding feature
maps in the upsampling path.

SE block is used to model channel relationships and
channel inter-dependencies. It can also be regarded as
self-attention on the channels. SE block consists of
global average pooling and fully connected (FC) lay-
ers. It has ”squeeze” and “excitation” step. In ’squeeze”
step, it squeezes global spatial information into channel
descriptor (channel-wise statistics) using global average
pooling across the spatial dimension. The “excitation”
step is intended to fully capture channel-wise dependen-
cies. It maps the output of ’squeeze” step to a set of
channel weights using two FC layers and channel-wise
scaling (Hu et al., 2018).

There are different varieties of SE block. The most
common ones are SE-Inception module and SE-ResNet
module. In the latter one, the SE block’s output is taken
to be the non-identity branch of a residual module as de-
picted in Fig. 5 (a). For our model, SE-ResNet module
was used.

SE block can be integrated into network architecture
in several ways. We decided to incorporate SE blocks
only in the skip connections after experimenting SE
block usage at different positions of the network. As
shown in Fig. 3, the SE module in our network re-
ceives the feature maps from encoder and then recali-
brates the feature maps before concatenating them to the
corresponding feature maps in the decoder. The module
helps the decoder to receive refined feature maps.

The second module integrated to FC-densenet is in-
ception module (Szegedy et al., 2016). Inspired by
Khened et al. (2019), the inception module is incorpo-



Automatic Myocardial Scar Segmentation from Multi-Sequence Cardiac MRI using modified FC-Densenet with

Region Mutual Information Loss

Figure 3: Proposed network architecture (FCDISE)

rated at the beginning of the network. Inception mod-
ule similar to Densenets were introduced to mitigate
the vanishing gradient problem of bigger and wider net-
works. Szegedy et al. (2016) proposed a new approach
of creating deep networks which keeps the computa-
tional budget constant using a sparsely connected net-
work architecture.

Inception module has two common versions. The
naive version which is composed of multiple parallel
layers such as 1x1 Convolutional layer, 3x3 Convolu-
tional layer and 5x5 Convolutional layer with their out-
put filter maps concatenated into a single output vector.
The second version introduces a dimensionality reduc-
tion layer, 1x1 convolutional layer, before applying any
other layer. As can be seen from Fig. 5 (b), the incep-
tion module in our network is a bit modified from the
naive inception layer as it contains only three kernels
(3x3, 5x5 and 7x7 kernels) and their output is summed
instead of concatenated because summation yielded bet-
ter results.

The reason we used inception module as first layer of
the network is to extract multi-scale features simultane-
ously from the input image using different sized kernels
and to send the aggregated features to the next layer of
the network. This is helpful because heart size varies
from one patient to another and even in one patient there
is variation of size from apex to base. The different sized
kernels in the inception help to capture the relevant fea-
tures from the input image irrespective of the size of the
heart.

The segmentation network used to detect ROI is
called FCDISE-ROI. It has 5 pooling layers. For
myocardium and scar segmentation, we employed
FCDISE-MYO and FCDISE-Scar respectively. Both of
them have 3 pooling layers.

3.2.2. Region of Interest (ROI) Detection

The first stage in the proposed pipeline is ROI extrac-
tion. In the full size cardiac MR images, the heart covers
very small part of the image. Due to this, it is necessary
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Figure 4: Diagram of (a) dense block and (b) a layer in dense block
used in our proposed model

Figure 5: Diagram of (a) Squeeze-Excitation block and (b) Inception
module employed in our model

to extract a region of interest around the ventricles be-
fore proceeding to the next stages in the pipeline. Our
ROI extraction method is done by first segmenting the
epicardial region from the full-size cardiac MR using
FCDISE-ROI. Then the center of the segmented epi-
cardial region is calculated. Finally, we applied center
cropping from the computed center of epicardial region
with a patch size of 96 x 96. This particular size is cho-
sen after taking into consideration the largest diameter
of epicardium from the training set images.

This method places the ventricles in the center of the
cropped region. This has three advantages for the next
stages in the pipeline. It reduces the false positives
and alleviates the class imbalance between the back-
ground and the ventricles/scar classes. Furthermore, it
decreases the computation time as the size of input im-
ages are decreasing.

2.7

3.2.3. Myocardium and Left Ventricle Segmentation

The second stage in the proposed pipeline is my-
ocardium and left ventricular blood pool segmentation.
The inputs to FCDISE-MYO are output of ROI detec-
tion stage which are 2D slices of size 96 x 96. When we
used input size 96 x 96 with our segmentation network
which has 5 pooling layers, the latent space feature map
size becomes very small which makes reconstruction of
the segmentation map difficult. To avoid this problem,
we reduced the number of pooling layers in the network
from 5 to 3. That is why FCDISE-MYO has 3 pooling
layers.

3.2.4. Scar Segmentation

Scar segmentation stage is very similar to my-
ocardium segmentation stage except for the input im-
age. The input image here contains only the pre-
segmented epicardial region, the region which includes
left ventricular blood pool and myocardium. As my-
ocardium segmentation may not be perfect, we also in-
cluded the surrounding area near the epicardium border
by applying dilation on the pre-segmented epicardial re-
gion with a rectangular structuring element of size 5 x 5.
The input image size is 96 x 96 but contains only back-
ground pixels and the pre-segmented region. The seg-
mentation network used in this stage is FCDISE-Scar,
which is similar to the previous stage’s segmentation
network.

As a post-processing step, we applied 2D connected
component analysis and morphological operations like
dilation and erosion to the segmented image to further
improve the segmentation result and reduce outliers.

3.2.5. Loss Function

As an objective function, we proposed a dual loss
function which is a weighted combination of logarith-
mic Dice loss (Wong et al., 2018) and region mutual
information (RMI) loss (Zhao et al., 2019).

Logarithmic Dice loss (log Dice loss) is known for
its robust performance on small structures (Wong et al.,
2018). Compared to linear Dice loss, it focuses more on
less accurate classes. Log Dice loss is computed as the
mean value of the natural logarithm of the Dice coeffi-
cient as stated in Eq. 1. It also introduces an exponent
v that controls the non-linearity of the loss function.
When y > 1, the log Dice loss focuses even more on the
less accurate classes. If the non-linearity is 0 <y < 1,
the loss works better because it supports improvement
at both low and high accuracy. To improve the segmen-
tation of small structures like scar and edema, we chose
a logarithmic Dice loss.

The second loss function used is region mutual in-
formation loss. Unlike pixel-wise loss, RMI loss takes
into account the dependencies among the pixels. Each
pixel in an image is represented by the pixel itself and
its neighbouring pixels. In other words, the pixel will be
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Figure 6: Diagram of (a) transition down layer and (b) transition up
layer used in our proposed model

represented by multi-dimensional point and the image
will be a multi-dimensional distribution of these points.
Maximizing the mutual information between the multi-
dimensional distributions of the ground truth and pre-
dicted image will result in high order consistency be-
tween these two images. One of the metrics used for im-
age similarity is mutual information. However, analysis
of multi-dimensional distribution of an image is difficult
due to pixels dependence. This makes calculation of
mutual information complex. Instead, the authors used
a lower bound of MI because increasing this value re-
sults in increasing the real value of mutual information
(Zhao et al., 2019).

This loss function captures the structural differences
between the shapes of predictions and ground truth. It is
also helpful in identifying pixel whose visual evidence
is weak or when the pixel belongs to objects with small
spatial structures (Zhao et al., 2019). This makes it ideal
for myocardium and scar segmentation.

From Eq. 2, Y is multi-dimensional distribution of
the ground truth and P is multi-dimensional distribution
of the predicted image. Zy)p is the posterior covariance
matrix of Y given P and det() is determinant of the ma-
trix. I(Y; P) is a lower bound of the mutual information.
Then the total RMI loss is computed as a combination of
the pixel-wise cross entropy loss (L¢g) and lower bound
MI as stated in Eq. 3. In this equation, B and C repre-
sent mini-batch size and number of classes respectively.

To take advantage of both log Dice loss and RMI loss,
we used a weighted combination of these two losses as
our objective function as stated in Eq. 4, where Ap,., and

Army are the weighting factors for log Dice loss (Lpic.)
and RMI loss (Lgysy) respectively.

Lpice = E[(~In(Dice;)"] (1)
1
I(Y;P) = —Elog((zney’det(zm)) 2)
1 B C
Lewi = Leg + 5 > ) (FI0GP) - ()
b=1 c=1
Ltotal = ApiceLpice + ArRmiLrmi “)

3.2.6. Training

The three segmentation networks in the pipeline are
trained independently. The weights are initialized us-
ing He normal initialization method (He et al., 2015).
The optimization of the weights are done using Adam
optimizer with learning rate of 0.001. The mini-batch
size was 16. The model was trained for 80 epochs.
We empirically selected a weighting factor of 0.8 for
log Dice loss and 0.2 for RMI loss after experiment-
ing with different weighting factors. For log Dice loss,
a non-linearity of 0.3 was used. The frameworks used
to implement the model and the code are PyTorch and
Python.

In order to avoid over-fitting, we have adopted three
techniques: dropout, early stopping and weight regu-
larization. Dropout is a regularization technique where
randomly selected neurons are dropped during training.
The ignored neurons will not have contribution during
a forward and backward pass. Dropout reduces overfit-
ting by preventing complex co-adaptations on training
data. In our model, we used a dropout with probability
of 0.2.

When training the network, usually in the beginning
the training and validation loss decreases. After some
epochs, the training loss will still decrease but the val-
idation loss will eventually go up. This will result in
overfitting. To monitor this, we used early stopping. So
when the validation loss starts increasing the training
will be stopped after particular number of epochs (pa-
tience). In our experiments, the patience for the early
stopping was 10 epochs.

The third technique is weight regularization. This up-
dates the cost function by adding a regularization term.
In case of L2 regularization (weight decay), it is the sum
of the square of the weights. This regularization forces
the weights to decay towards zero but not zero. The reg-
ularization term has a hyper-parameter called lambda
which controls the relative contribution of the regular-
ization term to the cost function. We used L2 regular-
ization with lambda hyper-parameter set to le — 8.

4. Results

To evaluate the segmentation results, we used Dice
coefficient, Hausdorff distance (HD), sensitivity and
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specificity metrics. Dice coefficient measures the simi-
larity of two images. It is calculated as the size of the
overlap between segmented image and ground truth di-
vided by the total size of the two images as defined in
Eq. 5. In this equation, Y and P represent the ground
truth image and the predicted image respectively. This
measures the overall quality of a segmentation. Sen-
sitivity measures the percentage of pixels of pathology
area that are correctly segmented as pathology (Eq. 6).
While specificity measures the percentage of pixels of
non-pathology area that are truly segmented as non-
pathology (Eq. 7). In Eq. 6 and 7, TP is true positive
pixels, F'N is false negative pixels, TN is true negative
pixels and F'P is false positive pixels. Dice coefficient,
sensitivity and specificity are used to evaluate both scar
and myocardium segmentation results.

Hausdorff distance is the greatest of all distances
from a point in one set to the closest point in the other
set. This metrics focuses on outliers. Hausdorft distance
metric (2D) is used to evaluate myocardium segmenta-
tion result. Calculating Hausdorff distance for scar and
edema can be difficult because they are dispersed re-
gions.

. 2lY N P
Dice = ®))
Y]+ P
o TP
Sensitivity = ———— (6)
TP+ FN
TN
ity = 7
S pecificity TN+ FP @)

To evaluate our models, we employed a five fold
cross-validation as well as train-validation-test evalua-
tion methods. For the latter method, from a total of 25
subjects, 17 were used for training, 3 for validation and
5 for test.

4.1. Myocardium and Left Ventricle Segmentation

The proposed method yielded a Dice score of 0.872
and Hausdorff distance (2D) of 3.392 mm on my-
ocardium (MYO) segmentation and a Dice score of
0.921 and Hausdorff distance (2D) of 2.577 mm on left
ventricle (LV) segmentation (Table 2).

Table 2: Myocardium and left ventricle segmentation result of the
proposed method

Metrics LV MYO

Dice 0.921 £ 0.041 0.872 £ 0.041
HD(mm) 2.577 £0.578 3.392. £0.514
Specificity 0978 £0.016  0.949 +0.022
Sensitivity 0.939 £ 0.058  0.876 + 0.058
Accuracy 0.971 +0.013 0.931 +0.019
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The inter-observer variation of manual segmentation
of MYO are Dice scores of 0.757, 0.824 and 0.812
for LGE, T2 and bSSFP respectively. Comparing to
our model’s performance on each CMR separately, our
method yielded Dice scores of 0.771, 0.798 and 0.854
for MYO using LGE, T2 and bSSFP sequences respec-
tively. This result was on average better than the inter-
observer variation. Besides, the Dice score of MYO in-
creased to 0.872 when we combined the three modali-
ties as an input to our method.

To evaluate the effect ROI in our pipeline, we com-
pared the results with and without ROI. When we di-
rectly segment heart from the full-sized cardiac MR,
our method yielded Dice scores of 0.905 and 0.853 for
LV and MYO respectively. However, when we em-
ployed ROI, our method achieved an improved Dice
score of 0.921 for LV and 0.872 for MYO. Moreover,
the obtained Hausdorff distance was on average 0.22
mm lower than the one that did not use ROI.

Table 3 quantitatively compares the proposed loss
with the conventional loss functions such as cross-
entropy loss, Dice loss, logarithmic Dice loss. The
proposed loss outperformed the other loss functions by
achieving the highest Dice score in both LV and MYO.
To better investigate the qualitative performance of the
loss functions, we selected a typically challenging im-
age which has scar tissue, as depicted in Fig. 7. The
proposed loss produced robust segmentation result.

Table 3: Quantitative comparison of loss functions using Dice score

Loss Function LV (Dice) MYO (Dice)

Cross-entropy 0.905 = 0.067 0.849 = 0.086
Dice Loss 0.903 + 0.073 0.858 + 0.067
Log Dice Loss  0.909 + 0.056 0.865 + 0.054
Proposed Loss  0.921 + 0.041 0.872 + 0.041

4.2. Scar Segmentation

The performance of the proposed method in scar,
edema and scar+edema segmentation is presented in Ta-
ble 4. Note that scar+edema considers scar and edema
as one class. Having one class can be helpful to evalu-
ate the model’s performance on detecting the infarcted
myocardium in general instead of dividing the infarcted
region into scar and edema. Our method performed well
on infarcted myocardium (scar+edema) segmentation.
However, our model’s performance decreased a little bit
when separately segmenting scar and edema.

Similar to myocardium segmentation, we studied the
effect of using single modal CMR and multi-modal
CMR as shown in Fig. 8. Comparing the three modali-
ties, using only LGE CMR achieved the best Dice score
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Figure 7: Qualitative comparison of loss functions on a typically challenging image. Note that the results are before post-processing. Myocardium

(green) and left ventricle (yellow).

for scar (0.603) whereas using only T2 CMR yielded the
best result for scar+edema (0.644). When we combined
the three modalities, the Dice score of scar slightly in-
creased to 0.604 while that of scar+edema significantly
increased to 0.687.

Figure 8: Comparison of different cardiac MR sequences performance
on scar and scar+edema segmentation. Where LGE is late gadolinium
enhancement cardiac MR and T2 is T2-weighted cardiac MR. Cine is
bSSFP cine sequence and LGE-T2-Cine is multi-modal image con-
sisting of LGE, T2 and bSSFP sequences.

Comparing the performance of the loss functions on
the segmentation of scar and edema, the proposed loss
outperformed the conventional loss functions. Cross-
entropy loss yielded Dice scores of 0.527 for scar and
0.567 for scar+edema whereas Dice loss achieved Dice
scores of 0.543 for scar and 0.575 for scar+edema. Log
Dice loss, compared to the first two losses, provided bet-
ter result for both scar (0.588) and scar+edema (0.606).
When we combined RMI loss with log Dice loss, the
segmentation result of scar increased a little bit to 0.604
while the improvement for scar+edema was substantial
as it enhanced the Dice score from 0.606 to 0.687.

4.2.1. Ablation Study

To evaluate the effect of addition of inception and
SE module to FC-Densenet, we compared the proposed
method with FC-Densenet and FC-Densenet with only
SE module (FCDensenet_SE). As presented in Table 5,
the baseline model (FC-Densenet) achieved comparable
result in scar but failed in Edema. Adding SE blocks
to the baseline substantially improved the segmentation
accuracy (Dice score) for scar+edema by nearly 10%.
While the proposed method, which adds both SE block
and inception module to the baseline, improved the Dice
value for scar+edema achieving a 14% increase com-
pared to the baseline. The improvement is also demon-
strated in the qualitative result as can be seen from Fig.
9. Comparing their distribution in Fig. 10, the proposed
method has on average the lowest Dice variance among
the three methods.

4.2.2. Comparison with Alternative Methods

We compared our proposed method with three other
methods which employed the same pipeline that is a cas-
caded three networks. The segmentation networks used
in place of FCDISE are Unet (Ronneberger et al., 2015),
Attention-Unet (Oktay et al., 2018) and Res-Unet. Unet
is one of the most commonly used segmentation net-
works for medical images. Attention-Unet is a standard
Unet with attention gate which recalibrate feature maps
spatially. Res-Unet is also a Unet with residual encoder
and decoder.

The comparison was done both qualitatively and
quantitatively, as shown in Fig. 9 and Table 5 respec-
tively. Unet has good result on scar but its performance
decreased on edema. While Res-Unet did not perform
well on both scar and edema. Observing their distri-
bution on Fig. 10, Unet and Attention-Unet have sim-
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Table 4: Scar, edema and scar+edema segmentation result of the proposed method

Metrics Scar Edema Scar+Edema
Dice 0.604 = 0.167 0.488 £0.172 0.687 +0.072
Specificity 0.977 £ 0.092 0.967 £0.112 0.962 + 0.081
Sensitivity 0.627 +0.128 0.457 £0.125 0.739 + 0.094
Accuracy 0.959 +0.093 0.946 +0.113 0.941 +0.098
Table 5: Dice score comparison of various methods for scar and scar+edema segmentation
Methods Scar (Dice) Scar+Edema (Dice) No of Parameters
Unet 0.577 £ 0.095 0.558 £ 0.131 0.84 million
Attention-Unet 0.566 + 0.144 0.610+£0.118 2.6 million
Res-Unet 0.535+0.176 0.560 + 0.284 6.7 million
FCDensenet 0.579 + 0.148 0.540 + 0.229 0.65 million
FCDensenet_SE 0.584 +0.181 0.640 +0.134 0.68 million
Proposed method 0.604 + 0.167 0.687 + 0.072 0.69 million

ilar or lower variance in comparison with the proposed
method, while Res-Unet has the highest Dice score vari-
ance.

As shown in Table 5, we also compared the number
of trainable parameters. The ones that use dense blocks
have the lowest number of parameters. FC-Densenet
has the fewest number of parameters which is 0.65 mil-
lion. The proposed method has 0.69 million parameters.
While Res-Unet has the highest number of parameters
which is 6.7 million.

5. Discussion

In this paper, we evaluated our proposed pipeline and
segmentation network on multi-sequence cardiac MR
dataset which has LGE, T2 and bSFFP CMR images.
The MyoPS 2020 challenge dataset is very small and
has poor quality (lots of motion artifact). This makes
deep learning based segmentation difficult. To solve the
problem, we proposed a method which cascaded three
segmentation networks. The first one is aimed at a ro-
bust ROI detection that reduces the false positives as
well as mitigates the class imbalance between the back-
ground and the ventricle classes. The second network
is focused on accurate segmentation of myocardium
which is important for the next stage in the pipeline. The
third network segments scar from the pre-segmented
myocardium. The segmentation network used is FC-
Densenet with Inception and Squeeze-Excitation mod-
ules.

2.11

As mentioned in Section 2.2, one of the main prob-
lems for fully-automatic scar segmentation was the
mediocre segmentation performance of the models on
myocardium. There are many reasons for this. The
main reason can be due to the fact that most of these
studies used only LGE CMR. LGE CMR can visual-
ize myocardial scar better than other CMR modalities
but the intensity range of myocardium in LGE CMR
overlaps with its surrounding resulting in blurry my-
ocardial boundaries. This makes myocardium segmen-
tation from LGE CMR a difficult task. The use of multi-
sequence CMR which includes LGE, T2 and bSSFP
CMR addresses this issue as bSSFP CMR has clear
myocardial boundaries resulting in higher segmentation
performance in myocardium.

Assessing the inter-observer variation of manual scar
segmentation, there was low agreement between the ob-
servers for scar in terms of Dice score showing the dif-
ficulty of the task and the discrepancy to identify the
infarcted myocardium. In spite of this, our method
achieved a higher Dice score on scar than the inter-
observer variation. There are many reasons for this.
One of them can be the high segmentation accuracy
of our method on myocardium and left ventricle which
leads to better segmentation performance on scar.

Comparing the CMR modalities, the multi-modal in-
put has better segmentation performance than single se-
quence inputs. The bSSFP CMR has accurate informa-
tion about the ventricles and myocardium compared to
the other two modalities. While LGE and T2 CMR
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Figure 9: Qualitative comparison of different models on scar (yellow) and edema (green) segmentation.

Figure 10: Dice score distributions of different models for scar and
scar+edema segmentation.

have superior results on scar and edema respectively.
The bSSFP sequence’s segmentation performance on
both scar and edema was inferior compared to the other
two CMR sequences. This can be due to the fact that
bSSFP CMR has less information about scar and edema.
Combining the three CMR modalities improved the seg-
mentation accuracy of the heart structures as well as
scar/edema. This was expected as the three sequences
(bSSFP, LGE and T2) have complementary informa-
tion.

Regarding the use of ROI, the pipeline with ROI
achieved better result in terms of Dice score and HD.
This shows how extracting ROI can improve the result
by reducing the false positives and mitigating the class
imbalance problem between the background and ventri-
cle classes. In addition, it decreased the training and in-
ference time due to the significantly reduced input sizes.

Experiments comparing the proposed loss with the
conventional loss functions indicated a superior seg-
mentation performance of the proposed loss in both LV
and MYO. The conventional loss functions particularly
failed because they segmented the scar as blood pool in-
stead of MYO (middle slice in Fig. 7). Here is when
the addition of RMI loss becomes very handy. Be-

cause RMI loss takes into account the pixel dependen-
cies unlike the pixel-wise losses. This helps the model
to achieve high order consistency between the predic-
tion and ground truth.

As in the case of MYO and LV segmentation, the
proposed loss also outperformed the conventional loss
functions in scar and edema segmentation. Log Dice
loss’s result on scar was good but its result on edema
was mediocre. Similarly, the addition of RMI loss to
log Dice loss improved the segmentation results partic-
ularly that of edema.

The proposed loss function’s robust segmentation
performance on scar/edema and myocardium verified
the benefit of combining log dice loss with a loss func-
tion that considers the dependencies among the pixels.
To the best of the authors’ knowledge, this is the first
time a region mutual information loss is being used in
medical image segmentation. Due to its promising seg-
mentation performance, it can be employed in the seg-
mentation of medical organs whose pixels have weak
visual evidence.

In the ablation study, the proposed model yielded
higher Dice coefficient than FC-Densenet and FC-
Densenet with only SE. From Fig. 9, it can be observed
that the proposed method has comparatively better per-
formance at detecting different sized scars. This showed
the benefit of the extracted multi-scale features from the
input image and confirmed the advantage of the incor-
porated SE block. Our method achieved this enhance-
ment with minimal computational overhead.

When comparing FCDISE with other similar seg-
mentation networks, Res-Unet had the worst segmen-
tation performance (Table 5). This is because it over-
fitted on the small dataset (25 cases). Both Attention-
Unet and FCDISE which use attention on feature maps
achieved better result on scar+edema than the ones that
did not use. This demonstrated the benefits of recali-
brating feature maps spatially or channel-wise on help-
ing the model to increase its focus on scar and edema.
However, when Attention-Unet is compared to the pro-
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posed method, our method achieved more accurate seg-
mentation performance in both scar and scar+edema.
Besides, the proposed method is robust at detecting scar
at different heart positions and has less false positive
cluster of scar compared to the other methods.

In Table 5, we also compared the number of train-
able parameters. The ones that use dense blocks have
the lowest number of parameters because Densenet en-
courages feature reuse which substantially reduces the
number of parameters. Besides, our method is ideal on
tasks with smaller training set sizes like MyoPS 2020
because the dense connections in the network have a
regularizing effect which reduces overfitting.

The proposed framework has some limitations. In-
accuracies in the ROI stage or in the myocardium seg-
mentation stage can adversely affect the segmentation
accuracy of scar because our proposed pipeline uses a
cascaded network to segment scar. Deep learning based
ROI extraction increases the detection accuracy, how-
ever, it can slows down the segmentation speed com-
pared to the one that employs conventional computer
vision techniques like Circular Hough Transform.

6. Conclusions

In this paper, we proposed a deep learning based
fully-automatic myocardial scar segmentation method
from multi-sequence cardiac MR images. Our method
employs three cascaded segmentation networks to first
extract ROI then segment myocardium and finally
use the pre-segmented myocardium to segment scar
and edema. FEach segmentation network used FC-
Densenet with Inception and Squeeze-Excitation mod-
ule (FCDISE). The SE blocks are incorporated in the
skip connections and the inception module is added in
the initial layer of the network to concatenate different
field-of-views of image features. We demonstrated that
adding these two modules to FC-Densenet substantially
improves the segmentation result with little computa-
tional overhead. Compared to other similar networks,
our method is better at locating different size scar and
edema, and performs well on small training set. Fur-
thermore, we showed that region mutual information
loss combined with logarithmic Dice loss achieves high
order consistency between the prediction and ground
truth. It can also be of great interest for segmentation
of medical organs whose pixels have weak visual evi-
dence.

Despite having a very challenging dataset, our ap-
proach yielded very good result on the test set achiev-
ing an average Dice score of 0.590 for scar and 0.686
for scar+edema which is higher than the inter-observer
variation of scar segmentation 0.524 (Dice score of
scar). Future work will aim in using multi-planar net-
work that will include sagittal, coronal and axial views
to further improve the segmentation result.

2.13

Finally, this paper has been accepted for publication
at Statistical Atlases and Computational Modeling of
the Heart (STACOM) workshop which is part of Medi-
cal Image Computing and Computer Assisted Interven-
tion (MICCALI) 2020.
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Abstract

In medical imaging, image registration is a crucial step for many clinical tasks. 2D-3D registration consists of aligning
a pre-operative 3D volume and live 2D X-ray images to the same coordinate frame. 2D-3D registration is used in
guiding minimally invasive interventions, quantitative measures of relevant anatomical parts or pre-processing for
segmentation. One of the main problems in image registration is the initial displacement position between the two
images to register. This work attempts to solve this initial alignment problem employing a state of the art Point-Of-
Interest network for tracking a set of matching points between a CT image and a X-ray image. The experiments
show the potential of the proposed method in finding the correspondence between 2D and 3D points (X-ray and CT
respectively), decreasing the target registration error from around 10 mm to 1.42 mm, when only a small dataset (one
patient) is used for training and validation. Yet the decrease in performance for more diverse data indicate that larger
training datasets are required for a more effective and robust registration approach.

Keywords: 2D/3D rigid registration, convolutional neural network, point tracker, image-guided intervention, CT,

fluoroscopy

1. Introduction

Convolutional Neural Networks (CNN) have shown
a huge success in different tasks such as medical image
segmentation and classification problems (Tajbakhsh
et al., 2020) (Litjens et al., 2017). However, compar-
atively less studies have been reported on their used for
medical image registration tasks until recent years (Fu
et al., 2020).

Image registration consists of aligning two or more
sources of data to the same coordinate frame. In medi-
cal imaging, image registration is crucial for many clin-
ical tasks, including guiding minimally invasive inter-
ventions, quantitative measures of relevant anatomical
parts or pre-processing for segmentation. Depending on
the dimension of the reference and target data, registra-
tion methods are divided into 3D to 3D, 2D to 2D and
2D to 3D (Fu et al., 2020). This work is focused on 2D
to 3D registration.

Registration of 2D-3D data is one of the key tech-
nologies for image-guided radiation therapy, radio-
surgery, minimally invasive surgery, endoscopy, and in-
terventional radiology (Markelj et al., 2012).

3.1

Generally, 3D modalities such a Magnetic Resonance
(MR) or Computed Tomography (CT) imaging are used
in clinical diagnosis and treatment planning, but their
use as intra-operative imaging modalities has been lim-
ited, meanwhile 2D data, such as ultrasound or X-ray
fluoroscopy, is mostly used for guiding interventions
(Penney et al., 1998). These 2D modalities are “real-
time”, but have limited spatial information and a num-
ber of important anatomical features can not be well vi-
sualized.

To solve this issue and take benefit of the spatial and
anatomical information of CT images during interven-
tional procedures, 2D/3D image registration methods
are used. The objective is to bring the pre-operative 3D
data and intra-operative 2D data into the same coordi-
nate system through a transformation, i.e., rigid, affine,
projective or non-rigid.

In 2D-3D registration, the use of CT images as pre-
operative data has an advantage when X-ray or fluoro-
scopic images are the target 2D modality, due to the
possibility of projecting them into a 2D image plane as
digitally reconstructed radiographs (DRRs) (Sherouse
et al., 1990). The DRRs are normally created by ray
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Figure 1: DRR generation by ray casting

casting, where the CT voxels intensities along each ray
are summed and projected onto a 2D image (Figure 1).
This projection has a similar appearance to X-ray im-
ages which facilitates solving the registration problem.

Before the appearance of deep neural networks, a
large number of papers in conventional 2D-3D regis-
tration have been published. A review of these different
methods can be found in Markelj et al. (2012). Regard-
ing the nature of registration basis, the approaches can
be divided along extrinsic or intrinsic methods. Extrin-
sic methods register artificial objects such as implants
or markers, which makes the registration a simpler task,
but is invasive and time-consuming to set-up. Intrin-
sic registration consists in the alignment of anatomical
structures, which is a challenging task for multi-modal
images due to the nonlinear pixel relation, the computa-
tional cost of generating the DRRs and the initial dis-
placement position between the images (Akter et al.,
2015).

Focusing on intrinsic registration, they can be classi-
fied in two main groups: intensity-based and feature-
based approaches. Intensity-based methods compare
the information contained in pixel and voxels, and
feature-based methods try to minimize the distance be-
tween salient features like surfaces, contours or points,
which have been previously selected (Penney et al.,
1998). The feature based methods can be chosen to deal
with the problem of high misalignment in a initial step
as described in Akter et al. (2015). This initial regis-
tration is needed to avoid the method converging to a
local minimum when the proximity between the correct
position and the initial one is not enough (Liao et al.,
2019).

This work will asses the use of Convolutional Neural
Networks for the extraction of features providing corre-
spondence between X-ray images and DRRs (CT pro-
jections). The corresponding features can be used for
the estimation of rigid motions. This thesis is struc-
tured as follow: Section 2 provides a review of the State
Of The Art in medical imaging registration; Section 3
describes the material and the method used; Section 4

shows the experiments proposed and their correspond-
ing results; Section 5 contains the discussion of the
work; And Section 6 and 7 provide the limitations and
future works, and the conclusions of this work, respec-
tively.

2. State of the art

The use of deep learning-based methods has recently
gained importance in 2D-3D registration tasks. The
learning-based approaches in 2D-3D registration have
the objective of predicting 3D deformation from a pair
of X-ray and DRR images. In Miao et al. (2016) is em-
ployed CNN regressors to directly estimate the transfor-
mation parameters.

Jaderberg et al. (2015) introduced a learnable module
called spatial transformer network (STN), which can be
inserted into existing convolutional networks, and per-
forms a spatial transformation of the features in a net-
work which computes a specific task. Inspired by STN,
de Vos et al. (2017) presents a deformable image reg-
istration (DIRNet). This network is an unsupervised
learning network that can perform the regist