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Editorial

Computer aided applications for early detection and diagnosis, histopathological image
analysis, treatment planning and monitoring, as well as robotised and guided surgery will
positively impact health care during the new few years. The scientific community needs
of prepared entrepreneurships with a proper ground to tackle these topics. The Joint
Master Degree in Medical Imaging and Applications (MAIA) was born with the aim to
fill this gap, offering highly skilled professionals with a depth knowledge on computer
science, artificial intelligence, computer vision, medical robotics, and transversal topics.

The MATA master is a two-years joint master degree (120 ECTS) between the Uni-
versité de Bourgogne (uB, France), the Universita degli studi di Cassino e del Lazio
Meridionale (UNICLAM, Italy), and the Universitat de Girona (UdG, Spain), being the
latter the coordinating institution. The program is supported by associate partners,
that help in the sustainability of the program, not necessarily in economical terms, but
in contributing in the design of the master, offering master thesis or internships, and
expanding the visibility of the master. Moreover, the program is recognised by the Eu-
ropean Commission for its academic excellence and is included in the list of Erasmus
Mundus Joint Master Degrees under the Erasmus+ programme.

This document shows the outcome of the master tesis research developed by the
MATA students during the last semester, where they put their learnt knowledge in prac-
tice for solving different problems related with medical imaging. This include fully
automatic anatomical structures segmentation, abnormality detection algorithms in dif-
ferent imaging modalities, biomechanical modelling, development of applications to be
clinically usable, or practical components for integration into clinical workflows. We
sincerely think that this document aims at further enhancing the dissemination of infor-
mation about the quality of the master and may be of interest to the scientific community
and foster networking opportunities amongst MAIA partners.

We finally want to thank and congratulate all the students for their effort done during
this last semester of the Joint Master Degree in Medical Imaging and Applications.

MATIA Master Academic and Administrative Board
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Temporal Image Registration using deep learning for 3D Fetal Echocardiography

Kazi Saeed Alam, Md Kamrul Hasan, Dr Choon Hwai Yap

Department of Bioengineering, Imperial College London, UK

Abstract

The fetal heart can experience congenital heart malformation and functional abnormalities. Ultrasound imaging
plays a vital role in assessing the heart structure and function of the developing fetus due to its non-incisive nature.
However, the detection of such abnormalities via mass screening is only 50%, suggesting a need for further improve-
ment. Many researchers have been working in order to detect abnormalities in the heart from ultrasound imaging
through segmenting cardiac chambers, valves, and blood flow patterns but most of the works are based on adult
hearts. This motivates us to explore fetal echocardiographic images for which we collected 4D volume fetal heart
images to perform temporal registration to segment the myocardium and left ventricle chamber from these images.
Having a deep learning-enabled standardized approach to evaluation can improve precision and accuracy. Thus, in
this project, we propose to develop methods for automatic 3D segmentation based on temporal registration from 4D
fetal echo images. The 4D fetal echo images were collected and properly annotated with the help of an existing
cardiac motion estimation algorithm. Our proposed model is built upon UNET based image registration model as a
baseline with the residual branch, which is guided by a variational autoencoder to enforce structural features of the
heart via latent space training and adversarial learning. We also plan to make the proposed model perform multi-scale
registration. We have developed and tested our proposed network for both 2D (Adult images from CAMUS Dataset)
and 3D (Fetal Data) segmentation which showed significant performance in both cases. As evaluation metrics, Mean
squared error, and Dice Metric were computed both before and after the registration process.

Keywords: Fetal Echocardiography, Ultrasound, Image Registration, Variational Autoencoder, Adversarial Learning

1. Introduction Valvular heart diseases, Cardiomyopathies, etc. Re-
search works from Green et al. (2023), Ong et al. (2020)

Ultrasound is one of the major imaging techniques shows that the information gained from the shape of the

that play a vital role to monitor cardiac functions and
abnormalities. Due to its non-invasive nature ultrasound
imaging has gained much popularity and has been used
to assess heart structure and function by monitoring car-
diac chambers, valves, and blood flow patterns. This
imaging modality enables clinicians to diagnose and
monitor congenital heart defects, providing valuable in-
formation for early intervention and management. Cian-
carella et al. (2020), Sachdeva and Gupta (2020) showed
the significance of the use of ultrasound in the field of
cardiac imaging.

Heart structure and shapes such as Cardiac chambers,
valves, blood flow patterns, etc can be used as good
identifiers to detect and evaluate several cardiac diseases
like Congenital heart defects, Coronary artery disease,
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myocardium and heart chambers can give valuable in-
sight which can detect and evaluate various Congenital
heart defects. Researchers have been working to im-
prove the detection of these diseases by employing au-
tomatic detection of heart structures and shapes. Having
a deep learning-enabled standardized approach to auto-
matically segment and detect can improve precision and
accuracy.

Although most of the works are based on assessing
the adult heart, the fetal heart also can experience con-
genital heart malformation and functional abnormali-
ties. However, the detection of such problems via mass
screening is only around 50%, suggesting a need for
improvement. Being surprised at birth with fetal heart
abnormalities instead of detecting them during mid-



Temporal Image Registration using deep learning for 3D Fetal Echocardiography 2

gestation reduces the time available for planning and
executing surgical treatment, and leads to poorer out-
comes. Further, the evaluation approach of evaluating
fetal heart health via fetal echo depends on many man-
ual processes and involves subjective interpretation.

In our work, we are proposing a 3D temporal image
registration-based segmentation technique to automat-
ically detect and assess the left ventricle heart cham-
ber and myocardium. The novelty of this research is
mainly:

e A whole new 4D fetal echocardiography dataset
with annotated 3D LV and myocardium masks for
each 3D volume image. There is less research on
fetal heart echocardiography due to the scarcity of
well-produced datasets. We proposed an efficient
workflow to manually segment the heart chamber
and myocardium with temporal registration. An
existing cardiac motion estimation algorithm has
been used to assist the algorithm development. We
hope that the publication of this new dataset will
create a benchmark for further fetal heart echocar-
diography analysis and assessment.

e As the estimation of the deformation field by regis-
tration between two time points can help share the
information between two segmentation branches,
we are proposing a robust and efficient tech-
nique for temporal image registration for 4D fetal
echocardiogram image volume.

We have proposed a Multi-class Anatomically Con-
strained and Multi-scale Registration (MACMR) frame-
work in our research. The proposed registration method
has the following integral parts:

e Vanilla-DLIR: The baseline architecture of the
temporal registration is based on the typical
UNET-like structure for performing image seg-
mentation. The use of residual blocks helps to
avoid the degradation of the features’ quality as a
non-zero regularizing path will skip over them. We
are calling this baseline model Vanilla DLIR (Deep
learning based image registration) as here the en-
coders of UNET try to extract features from lower
to higher space and pass to the bottleneck whereas
the task of the decoder is to produce the deforma-
tion field for the moving image so that it can be
warped to match as much as possible as the target
image.

o AC-DLIR: We have proposed to include a Vari-
ational encoder to enforce structural features of
the heart via latent space training. The local
segmentation-aware loss (fixed and moved labels)
uses pixel-level predictions and may not ensure
a satisfactory global match between the warped

source and target anatomical masks. For this rea-
son, the global latent space features can be benefi-
cial for the network to perform better.

e AdvAC-DLIR: Moreover, we also propose to in-
clude adversarial learning as like zero-sum game
theory (one agent’s gain is another agent’s loss),
where the discriminator is used to classify moved
and fixed images.

Still, there is room for performance improvement.
Hence, we proposed Multi-class Anatomically Con-
strained and Multi-scale Registration (MACMR) frame-
work. Additionally, we need a registration framework
that can provide a suitable deformation field for all the
scales of decoders in the proposed segmentation net-
work to share the motion information. We have eval-
uated our proposed model for 2D as well as 3D volume
datasets. For 2D data, the CAMUS 2D adult Echocar-
diography data were used from Leclerc et al. (2019)
whereas for 3D data, the proposed fetal dataset. In order
to validate our proposed framework, we have conducted
several experiments on the existing DL-based registra-
tion pipeline.

2. Literature Review

Researchers have worked in the field of medical im-
age registration in various directions. A broad topic like
image registration can be classified into various objec-
tives. The methods can be interpatient or intra-patient
(same patient at different time points), and the images
can be from one single imaging technique (unimodal) or
can be of multimodal techniques. The registration meth-
ods can be deformable, affine, or simply rigid. Also
based on the organ of interest, it can be the brain, lungs,
heart, or even tumors and so on. Input images can be of
different types of dimensions or combinations of them.
In our work, we have tried to cover the unimodal, in-
trapatient fetal echocardiographic registration based on
4D volume images. In the following sections, the recent
trends in image registration as well as focus based on
ultrasound techniques will be explored.

2.1. Deep learning based Image Registration

We will restrict the discussion of trends in medical
image registration in deep learning-based (DL) tech-
niques as the recent works have shown an upward trend
in the domain of image registration yielding state-of-
the-art for various applications. The use of conven-
tional similarity-based metrics such as mean-squared er-
ror, structural similarity, cross-correlation, mutual infor-
mation, etc work well for unimodal image registration
in the case of CT or MRI images, as shown in Gong
et al. (2017), Heinrich et al. (2012). But the presence
of noise such as in ultrasound images or in the case
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of multi-modal registration they failed to perform sat-
isfactorily (Rivaz et al. (2014)). Many researchers have
replaced these conventional methods with CNN-based
deep-learning image registration and achieved success.

Cheng et al. (2018) proposed an unsupervised
learning-based registration method to train a classifier
to learn the deformation field using continuous proba-
bilistic values for similarity measures. In their work,
they have claimed the learned deep similarity metric
outperforms MI as in conventional methods in brain T1-
T2 registration. The challenge was to have a smooth
first-order derivative to have a better overlap between
the fixed and moving images. Other works from Si-
monovsky et al. (2016), Ferrante et al. (2018) also ex-
plored the use of deep similarity metrics with unsuper-
vised or weakly supervised training. The challenge of
these works was to acquire an accurately aligned im-
age. Images with noise such as ultrasound or in the case
of multi-modal image pairs, the same performance will
be difficult to achieve.

Compared to other modalities, ultrasound images are
a bit challenging due to the image acquisition technique
and also due to the presence of artifacts such as speckle
noise. Haskins et al. (2018) in their work showed the
comparison of multimodal image registration based on
deep learning similarities. They have shown the CT-
MRI pairs have better registration than the MRI-US pair
in the case of the use of single similarity metrics. Fer-
rante et al. (2018) proposed the use of multiple met-
rics instead of single ones and showed improved per-
formance for ultrasound image registration.

Wu et al. (2016) have introduced the use of vari-
ational autoencoders to perform latent space training,
they have shown the use of both local and global fea-
tures improved the performance of training with only
local features. They have used the segmented masks as
well as intensity images of brain MRI to perform the
latent space training for image registration. They used
a stack of autoencoders for the model to learn the la-
tent space features and compared the result with Dice
Similarity Coefficient (DSC). Although the dice simi-
larity between the masks improves the smoothness of
the shapes of the human organ, the intensity similarity
between fixed and moving image still needs further im-
provement.

To provide better regularization which was lacking in
the works discussed by VAs, some researchers proposed
the use of adversarial learning or GAN-based models.
As human organs are highly regular, better regulariza-
tion is needed to have plausible shapes in the produced
output. Yan et al. (2018) in their work have trained
GAN-based networks to discriminate between ground
truth-based and prediction-based transform to deform
images. In their work, they have used the adversarial
loss to optimize the accurate transform to deform the
fixed image. Fu et al. (2020) also showed similar im-
provement in registration performance by introducing
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adversarial loss. GAN-based models helped to gener-
ate more plausible and medically acceptable structures
and shapes after registration in these research works.
However, the similarity in intensity matching for GANs
still needs to be investigated thoroughly. Some re-
cent advances also show the use of transfer learning,
LSTMs, one-shot predictions, Faster RCNN, etc in Xie
et al. (2022), Fechter and Baltas (2019), Jaderberg et al.
(2015). However, all these have been applied to mostly
CT and MRI images. While applying ultrasound im-
ages, most of them do not show any satisfactory im-
provement.

2.1.1. Image Registration in EchoCardiography

For cardiac chamber segmentation, ultrasound im-
ages can be acquired in two chambers (A2C) or four
chambers (A4C) view. An optical flow estimation-
based technique for deep, fully convolutional networks
was suggested by Jafari et al. (2018). Jafari et al.
(2019) also proposed the use of semi-supervised learn-
ing where they have incorporated inverse mapping with
the use of adversarial learning and inverse mapping of
the moved and target masks for LV segmentation. Yoon
et al. (2021) in their work showed the use of Regional-
CNN to extract geometrical attributes to perform LV
segmentation. Variational autoencoders as discussed
before have been also used for cardiac chamber seg-
mentation tasks in cardiac ultrasounds. Painchaud et al.
(2019) used VAs to represent the latent space training.

Some works have been also done in fetal echocar-
diography. Yang et al. (2020) in their work have used
DeeplabV3 with UNET to segment the left ventricle
chambers for the fetus’s heart. Dong et al. (2019)
also worked with A4C view for residual visual block
network-based segmentation of the fetal heart chamber.
But as the dataset is very limited for fetal echocardiog-
raphy, still the performance of these models needs to be
investigated further.

3. Dataset Description

4D echocardiography dicom images were acquired
for studying out of which 4 were healthy fetuses and
the rest were diseased cases. The fetuses were of mixed
gender and different ethnic groups (Chinese, Indian,
Malay). Most of the cases had a gestation age between
22 to 32 weeks. The images were obtained in accor-
dance with protocol 2014/00056 from Domain Specific
Review Board and with the consent of all the partici-
pants. The 4D echo images were carried out with GE
Voluson 730 ultrasound connected to the RAB 4-8L
transducer (GE Healthcare Inc., Chicago, Illinois, USA)
which has approximated 154 pm axial resolution and
around 219 um lateral resolution along with a trans-
ducer of 5 MHz.
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Figure 1: Visualization of intensity image slices (Patient001).
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Figure 2: Visualization of annotated masks (Patient001).

3.1. Data Preparation

As the ultrasound raw images acquired were in 4D
dicom format, they needed to be transformed to 3D for-
mat. This will help to extract the time points for each
patient’s case. To do so, a special software named “4D
View” developed by GE Healthcare was used. This step
will generate a cine sequence or cine loop video which
will hold the information of desired slices for each time
point. The inputs for each dicom series image were the
cine length which means the number of cine sequences
to be stored in the cine loop, start and end slices consid-
ering the proper visualization of the region of interest
which is the left ventricle in this case, and the step size
which means the distance (in millimeters) between each
slice in the cine loop sequence. After that, the dicom se-
ries 4D images will be transformed into a series of cine
sequence videos which will hold the temporal informa-
tion for all the slices. After extracting time points for
each case, the next step is to extract slices for each time
point for all the patient cases. A Matlab script was writ-
ten to extract the video frames from each video setting
the distance between the vertical slices. The start and
end slices were chosen and then the picture frame was

cropped so that each slice will hold the region of inter-
est and not contain unnecessary pixels. After extracting
the slices from each time point they are ready for image
registration to get the deformation field. A set of slices
as an example after the data preparation step is demon-
strated in Figure 1.

3.2. Registration

The target of this step is to register the slices with re-
spect to each time point to derive the deformation field.
Each slice image at a particular time point (f,,) will be
registered with respect to the initial time point (#y) and
the previous time point image (#,-;). For performing
image registration, SimpleElastix by Lowekamp et al.
(2016) and Cardiac motion estimation library by Wipu-
tra et al. (2020) were used. Here, the cardiac motion
tracking uses the Fourier b-splines spatiotemporal mo-
tion model to fit the deformation fields. It requires the
initial and final time points with the number of slices to
be specified. After setting up the paths and initializing
the bspline-solver, it performs the pairwise registration
and stores the displacement fields for each pair with the
scaling and transformation parameters. For each single

14
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Figure 3: Sample intensity image slice and mask pairs.

image slice at (¢,), there will be two displacement fields
which will be later combined using a weighted average
to transform and derive the mask for that time point (z,,).

3.3. Segmentation

The next step after registration is manual segmenta-
tion or annotation. For this, two specific time points
(preferably end-systolic/initial and end-diastolic/final)
were chosen for each case. After that, all the slices
for those time points were manually annotated. For
performing the annotation, a quick and interactive seg-
mentation technique called “Lazy Snapping” by Li et al.
(2004) was chosen. It helps to choose the foreground
and background by using a marker and based on that
it generates the mask for each particular slice. The
greater number of slices, the more robust data but also
the number of slices might make the process a bit time-
consuming as manual segmentation takes a consider-
able amount of time. After generating the segmenta-
tion mask, they were also checked and assessed by ex-
perts and their feedback was received. The generated
segmentation masks would be irregular or not smooth
enough as they might have staircase effects or holes.
These will be corrected and smoothed in the later steps
before generating the masks for other time points. A
set of segmented masks as an example after the manual
annotation using lazy snapping can be seen in Figure 2.

3.4. 3D Reconstruction

After generating the left ventricle masks for end-
systolic/initial and end-diastolic/final time points, the
next step is to combine these 2D slices to reconstruct
the 3D mask for those points. For 3D reconstruction,
“VMTK (Vascular Modeling Toolkit)” by lzzo et al.
(2018) has been used which is a popular software for
vascular image reconstruction and geometric analysis.
The paths for all the slices were given as inputs and the
result was the 3D reconstructed mask for the left ven-
tricle at a given time point. As the results from the lazy
snap step were not smooth and contained some artifacts,
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these 3D masks were corrected and smoothed with the
help of an expert using “Geomagic Wrap” Software.
This reverse engineering software helped to smoothen
and regularize the mask by removing the artifacts. Af-
ter the 3D mask was approved by the expert, later it was
used to generate the other time point masks. To gener-
ate the 3D masks for other time points, the deformation
fields obtained in the image registration step were used.
Finally, for all the patient cases, 3D masks were gen-
erated for all the time points which were later used for
training and testing the deep learning models. An ex-
ample of the 3D mask can be seen in Figure 4.

3.5. Image Preprocessing

The intensity images acquired through the ultrasound
scanner generated some artifacts like constant white
boxes or arrows in the image which can be seen in
Figure 5. For better performance during train, these
constant regions should be removed or replaced by the
neighboring pixel intensities as they might generate un-
desired results during training. As these artifacts were
common and at the same position for all the images over
slice and time for any cases, the same step for remov-
ing these artifacts from one image has been applied for
all. To remove, the constant regions from the image,
a simple linear interpolation method was used. In this
method, an interpolation line was drawn between the
left and the right pixel of the defected area, and then the
defected area was interpolated using the intensity val-
ues from the interpolation line. The sample results can
be seen in the same Figure 5.

3.6. Image-Mask Pair Generation

In the last step, the inner wall of the reconstructed
masks was filled and reconstructed masks were bina-
rised where (class O represents the background, 1 for the
cavity of the left ventricle, and 2 for the myocardium.
Later 3D masks were paired with the corresponding
3D intensity images for each time point to finalize the
dataset for training. In the end, 14 4D echocardiography
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Figure 4: Example 3D Mask for Patient001 (Time014).

Figure 5: Intensity image artifact removal example.

images were transformed into a total of 518 3D images
where each of the 3D images holds around 40 2D slices.
As the nifty formatted files are hard to visualize in the
report, a sample of slices for image and mask pairs are
shown in Figure 3.

4. Experimental Methods

Let’s assume f and m are two volume images that
can be referred to as target/fixed image and moving im-
age. The goal is to deform the moving image so that
the anatomical location for all the voxels in fixed and
moved images will be the same. Deep learning-based
image registration (DLIR) neural networks will be used
to model the displacement field which will transform
all the voxels in the moving image so that they can be
aligned with the fixed image. Let’s say, the displace-
ment field u will be modeled by CNN as the function
go(f,m) = d, where d is the displacement field and 6 is
the set of parameters learned by the CNN network. The
main aim is to optimize the set of parameters so that the

expected loss function can be minimized using Stochas-
tic Gradient descent. Several approaches and experi-
ments have been conducted to perform optimal image
registration. The approaches will be discussed as fol-
lows.

4.1. Approach 1: Vanilla-DLIR

The underlying architecture of Vanilla DLIR is based
on the traditional UNET architecture by Chen et al.
(2021); Ronneberger et al. (2015) used for segmenta-
tion. The UNET consists of encoding and decoding lay-
ers with residual skip connections. This can be seen in
Figure 6. The network used receives input fixed and
moving images both of 256 * 256 = 32 sizes which are
concatenated to 2-channel 3D images. The 3D convolu-
tion is applied both in the encoding and decoding layers
with a kernel size of 3, the stride is kept as 2 which
is followed by Batch Normalization and ReLU layers.
Max pooling is applied for downsampling in the encod-
ing layers to reduce the spatial dimension of the image
by half. The number of channels increases where the
image size is reduced for the coarser representation of
the input in the pyramid hierarchy. The bottleneck layer
after the encoding layers captures the most abstract fea-
ture of the input image volume.

Then, the decoding layers perform the upsampling
and convolutional operations to generate the displace-
ment field. The convolutional layers consist of trans-
posed 3D convolutions followed by batch normaliza-
tion and ReLU layers. Skip connections from the en-
coding layers directly applied by concatenating. The
conventional path cannot degrade the features’ quality
as a non-zero regularizing path will skip over them. On
the other hand, the direct skipping of the non-zero reg-
ularizing path cannot hamper the performance as it has
been added to the conventional path’s learned features.
Each layer of the decoding stage generates a finer spa-
tial scaled image for generating the deformation field as
an output of the final convolutional layer containing a
1*1 image filter and a softmax activation function.

1.6
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4.1.1. Vanilla-DLIR Loss Functions

For vanilla-DLIR, unsupervised loss functions have
been incorporated which consists of two components
mainly. The first component is the similarity loss for
having a better approximation of the fixed image in ap-
pearance for the moved image. Whereas, a regulariza-
tion loss function called binding energy loss is used to
penalize the non-regular spatial differences in order to
have a smoother and more plausible displacement field.
The equation for the total unsupervised loss is as follows
where A is a regularization parameter.

Lus(fim,d) = Lm (f,mod) + ALsmoomn (d) (1)

There are a couple of similarity loss functions that
can be used such as mean squared error(MSE), cross-
correlation(CC), etc but for this work, Global Mutual
Information(GMI) loss has been used. The statistical
dependency or mutual information between two random
variables, generally the fixed and the deformed moving
image using the displacement field, is measured by the
GMI loss. GMI loss seeks to maximize the similarity in
appearance between the fixed image and the produced
output. The model is compelled to acquire meaningful
and instructive representations by maximizing mutual
information. Firstly, the mutual information between
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the local patches is calculated and then the local patches
MIs are aggregated to get the global mutual information.
To calculate the mutual information for the patches in f
and m, the following equation can be used,

I(fmy) = )" )" P(fe,my)log,

xeX yeY

P(f,my)
(P(fx)P(my)) @

Higher mutual information yields a better alignment, so
minimizing the negative GMI loss, the model tries to
maximize the MI between the fixed and moved images.

GMI loss enforces the model to approximate the fixed
image but the produced output may not be as smooth as
desired. To have a smooth and more physically realis-
tic deformed moving image, binding energy loss is also
used in addition to GMI loss. Using a diffusion regular-
izer can leverage the spatial gradients of the deforma-
tion, u.

Lamoots (@) = ) [Vu@)| 3)

deD

The differences between neighboring pixels in the 3D
image are used to approximate the spatial gradient.
The resulting architecture of Vanilla-DLIR with its loss
function can be seen in Figure 7.
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4.2. Approach 2: Anatomically Constrained DLIR

Anatomical masks of the Myocardium and left ven-
tricle cavity are available from the data annotation part,
the vanilla-DLIR can leverage from it. Balakrishnan
et al. (2018) and Hu et al. (2017) in their respective
research works showed that, the use of deformed seg-
mentation masks during training enhances the perfor-
mance of image registration in Vanilla-DLIR. In order
to leverage the segmentation masks, first the registra-
tion field d, derived from the model network was used
to deform the fixed image mask. After that, the seg-
mented mask of the deformed image became available
during training. As the segmented masks assign labels
to the specific regions in the image, the same specific re-
gion in the fixed mask and deformed mask should also
overlap. That was the key idea of getting the use of
supervised loss in addition to the unsupervised loss for
Vanilla-DLIR. Dice (1945) shows to quantify this vol-
ume overlap, Dice Score can be used. For example, the
regions of either myocardium or left ventricle cavity, in
this case, can be expressed in terms of the fixed and
moved image can be expressed as r}andr,ﬁl od. The dice
score can be computed to quantify the overlap of both
regions as follows.

P00 d)

Dice (r; y, © d) =2 4)

r; + |y, o d|

The dice score lies between O to 1, from no overlap to
complete overlap. The dice score loss was defined Lgice
over the whole segmented regions v € [1, V] as:

\%4
Laice (rformod) = —% > Dice(r). 1} 0d)  (5)
v=1

4.2.1. Latent Space Consideration

In addition to dice score loss, the global anatomical
constraint was also considered to compute the global
loss. The local segmentation-aware loss computed by
dice loss (fixed and moved labels) uses pixel-level pre-
dictions and may not ensure a satisfactory global match
between the warped source and target anatomical masks
shown by Oktay et al. (2017). Here, the segmenta-
tion masks for the fetal echo image volumes, represent
the myocardium and left ventricle cavity. Segmentation
masks represent pathological entities like brain tumors
or skin lesions, which are very irregular in shape and
topology. Whereas, Human organs like this scenario
are highly regular, and are used to constrain registra-
tion. So, the plausibility of the shape is very impor-
tant to get the correct registered images. For this rea-
son, the latent space of the both target and the moved
mask was considered to compute the global loss func-
tion. The global loss function considers the anatomical

plausibility of the deformed source mask when compar-
ing it to the target mask. Moreover, Oktay et al. (2017)
also shows that, local dice loss acts at the pixel level,
and back-propagated gradients are parametrized exclu-
sively by pixel-wise individual probability components
and provide little global context. To put global context
in the loss computation, variational encoders were used
to transform the target and moved masks to latent space,
and compute global loss. The idea of a variational au-
toencoder can be understood in the next section and vi-
sualized in Figure 8.

Latemt
Space

Input Encoder Decoder Ouiput

Figure 8: Learning global anatomical features.

4.2.2. Variational Autoencoder

To compute the global loss from the observations, the
segmented masks needed to be transformed into latent
space. A Variational autoencoder exactly does the same
as shown by Oktay et al. (2017). Variational autoen-
coders(VAE) provide a probabilistic manner to describe
the observations in latent space. In this work, the idea
of VAE was adapted with a little bit of change in the ar-
chitecture can be seen in Figure 9 to make it work for
fetal echo masks for the myocardium and left ventricle.
VAE contains two parts, encoders and decoders with a
bottleneck layer. Encoders learn effective data encod-
ing from datasets and pass it into bottleneck architec-
tures. The autoencoder’s decoder employs latent space
in the bottleneck layer to generate dataset-like images.
These results backpropagate from the neural network in
the form of the loss function. For this work, the encoder
part had 4 hierarchical stages each containing a block
of convolutional neural network having kernel size=3
layer followed by batch normalization and ReLU lay-
ers. The downsampling was done by max pooling hav-
ing kernel size=3, stride=2, and pooling=1. Residual
connections were introduced at each stage to improve
the flow of gradients during training. The inputs of the
encoder were the single channel mask volumes of size
256 % 256 = 32 which were halved at later stages. The
bottleneck layer was a linear network transforming the
output from the encoder to the latent space and passing
it to the decoder. The decoder has the same 4 stages as
the encoder where each stage has 3 blocks of convolu-
tional neural network followed by batch normalization
and ReLU.The upsampling was done with a scale factor

1.8
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of 2 using trilinear interpolation. Finally, after the last
stage, the top input-like images were reconstructed.

The loss functions for the variational autoencoders
were a combination of 4 loss functions.

e Dice Score loss

e Euclidean L2 norm loss

e Structural Similarity loss

e Kullback-Leibler(KL) Loss

The dice score loss is computed between the input and
reconstructed image using the equation 5.

The Euclidean L2 norm loss computes the Euclidean
distance between the input images and the reconstructed
ones. Let’s say, if i and r are the input and reconstructed
masks respectively, the L2 loss was computed by the
following equation:

1 N
Liaior) = 5 > (in =12’ (©)
n=1

L2 norm penalizes the larger distances between the vox-
els in input and reconstructed masks more than the
smaller distances.

To assess the quality of the image reconstruction by
guiding the image generation, the structural similarity
measure index was also computed as shown by Wang
et al. (2004). Structural similarity loss can be computed
to penalize the dissimilarity between the input and the
reconstructed masks. The following equation was used
to compute the SSIM loss:

Quipr + C1) Qo + C2)

Lssim (i,r) =1~ (ﬂ§+#g+cl)(a$+a%+C2)

(7

where y; and u, are the average pixel intensities of i and
1, o; and o, are the standard deviations of pixel inten-
sities. Finally, o, is the covariance between the pixel
intensities of the two images. C1 and C2 are small con-
stants added to stabilize the division when the denomi-
nator approaches zero.

The regularization loss named Kullback-Leibler (KL)
divergence in Kingma and Welling (2014) forces the
distributions returned by the encoder to be close to a
standard normal distribution. KL loss will be a good
representative to assess the discrepancy between the
latent and desired distribution, and thus in generative
models like VAEs, the KL divergence can be often
used as a regularization term. The goal is to penalize
the discrepancy between the learned latent distribution
and a prior standard normal distribution. Let’s say, for
the standard normal distribution prior is P(z), and the
learned approximate posterior Q(z|x), KL loss will be:

1
Lxu(PQ).QGEN) = 5 3 (1 + 0% = log(@®) - 1)
(8)
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where p and o are the mean and standard deviation of
the approximate posterior distribution Q(z|x) for each
latent variable z and will be summed for all latent vari-
ables. Finally, the variational autoencoder is trained to
optimize the total loss function which can be described
as:

La(i, 1, P(2), 0zlx)) = Laice(i, 1) + L2, 1)
+ Lssim(i,r) + Lxr(P(2), Qzl))
©))
For training and validating the variational autoen-
coder, out of 518 3D annotated volume masks discussed
in the dataset description section, 452 volume masks
were used for training and the rest for validation. To
improve the generalization of VAE, some data augmen-
tation techniques like flipping and center-cropping were
also used. An example of the results after the training
of VAE can be seen in Figure 11.

I I
1 1]

Bottleneck

Encoder Decoder

Figure 9: Variational Autoencoder Architecture.

4.2.3. AC-DLIR Loss Functions

The unsupervised loss introduced for vanilla-DLIR
and the dice score loss from equation 5 are combined.
In addition to that, image global loss is computed too.
For computing global loss, the latent space considera-
tion from VAE is used. Both the input and predicted
mask are passed by the variational autoencoder model
to generate the reconstructed masks. The global loss is
computed between these two reconstructed masks both
for the myocardium and left ventricle and added to-
gether. The global loss is the computation of the L2
norm which is discussed in equation 6. The total loss
with anatomical constraint consideration for AC-DLIR
is:

Lo (fom. . rmrd) = Lus(f,m, d)
+BLice (rf’ T'm © d) +yLra(rs, 1)

where, both 8 and y are regularization parameters. Fi-

10)
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Figure 10: Proposed Adversarial Anatomically Constrained (AdvAC) DLIR architecture.

Figure 11: Original and reconstructed masks by VAE (top: left ventricle, bottom: myocardium).

nally, the architecture used for AC-DLIR can be visual-
ized in Figure 10 excluding the highlighted part.

4.3. Approach 3: Adversarial AC-DLIR

The next addition to the network proposed is the in-
clusion of adversarial learning. As shown by Mahapatra
et al. (2018), the use of the GAN network as a zero-sum
game theory could be beneficial for learning deformable
fields in image registration. In the proposed network,
the part of AC-DLIR for generating the deformable im-
ages with the produced deformation field was treated as

a generator for the adversarial network. In addition to
that, a discriminator was also created which was able
to classify the fixed and moved images. The architec-
ture of the discriminator consists of 5 layers each con-
taining convolutional blocks with 2 residual units out-
putting 8,16,32,64 and single channels respectively. The
input was the single channel input image volume. Ker-
nel size was kept at 3 with strides 2,2,2,2 and 1 at the
respective layers and with LeakyReLU activation. The
dropout layer was also used with a probability of 0.10.
For the loss function of both the generator and discrim-
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Figure 12: Proposed MACMR architecture.
Dice Score .
Models MSE BG Myo v Mean Dice + std
Without Registration  0.00972  0.96678 0.69391 0.76046 0.80235+0.05491
Vanilla-DLIR 0.0042 0.97352 0.74977 0.87523 0.88487+0.03261
AC-DLIR 0.00598 0.97972 0.81437 0.91935 0.90303+0.03447
Adv-DLIR 0.00533 0.97429 0.79278 0.86842 0.85733+0.04129
AdvAC-DLIR 0.00589 0.98742 0.82751 0.93573 0.91689+0.02596
MACMR 0.00489 0.98779 0.84871 0.95423 0.94245+0.02474

Table 1: Comparison of proposed registration models on CAMUS 2D Dataset.

Models MSE BG che;;core Myo Mean Dice + std
Without Registration  0.00377  0.99093  0.78917 0.72605 0.83539+0.12798
Vanilla-DLIR 0.00296 0.98699 0.70087 0.58543 0.75776+0.04036
AC-DLIR 0.00251 0.98959 0.73347 0.64435 0.80013+0.05401
Adv-DLIR 0.00339 0.99031 0.73836 0.67389 0.80989+0.05142
AdvAC-DLIR 0.00258 0.99089 0.79884 0.73482 0.84668+0.04586

Table 2: Comparison of proposed registration models on Fetal 3D Dataset.

inator, the binary cross-entropy loss was used. While
training, the generator, and discriminator will fight o
gain over each other as the task of the generator would
be creating as much as plausible images as the fixed im-
age whereas the discriminator would try to discriminate
them. The loss from the generator was added to the
L(f,m,rs, 1y, d) from equation 10 as the deformable
field generated by training would be capable of better
generalization if the loss of the generator was being op-
timized.

-Eadac (fa m, re, Iy, da Sm) = Lus(f’ m, d)
+ﬁ£dice (rf, I'm © d) + ')’LLZ(rfv Tm) + ¢£g(ma Sm)

In this loss function, equation, ¢ is a regularization
parameter set as 0.0001, m and s,, are the moved image
and assigned real labels to the moved image. The final

1)
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architecture after adding the adversarial network to the
AC-DLIR can be seen in figure 10.

4.4. Approach 4: Multi-Scale Registration (MACMR)

The final proposal to improve the performance of im-
age registration is Multi-scale (multi-resolution) train-
ing, where trained parameters on the lower scale will
be used to initialize the higher-scale training. As the
features learned at the lower scales can guide the train-
ing for the higher scale, the network at a higher scale
will have a better initialization. Better initialization of
the network should result help the network converge
faster to achieve better performance. Moreover, it can
be shown that Multi-resolution training helps the net-
work to learn both local and global information. It
can improve the performance of the model with various
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scales and enhance its overall performance. The pro-
posed MACMR architecture is demonstrated in Figure
12.

5. Results

We have implemented all the methods discussed
above in Pytorch. The experiments were performed
on NVIDIA GeForce RTX 3090 Ti. The inputs were
kept as 256%256*32 resolution for the fetal dataset. We
have performed an analysis of the performance of the
model for both 2D Camus and 3D Fetal datasets. During
the experiments, the Adam optimization technique was
used and the learning rate was kept at 0.001 with the use
of a learning rate scheduler. We have trained the model
with 100 epochs. For the training of variational autoen-
coders, the same hyperparameters were used with 200
epochs. For evaluation and comparison of the results,
we have used mean squared error from equation 6 and
Dice Score Coeflicient from equation 5 were used.

The detailed comparison between the proposed mod-
els can be seen in Table 1 and 2. We have also visual-
ized the results for 2D slices which can be seen in the
appendix from figure 13, 14, 15, 16. In the figure, the
masks were colored according to the overlapping of the
pixels where green means true positive, and yellow and
red define pixels which are false positive and false nega-
tive. The fifth column indicates the overlap of fixed and
moving images whereas the sixth column indicates the
overlap of the fixed and moved image slices.

6. Discussion

The results are presented for two datasets: 2D CA-
MUS and 3D Fetal in 1 and 2 respectively. The com-
putation of evaluation metrics between fixed and mov-
ing images is referred to as without registration. Af-
ter registration, evaluation metrics are again computed
between fixed and deformed images. The first experi-
ment was done using the baseline model Vanilla-DLIR.
We can see that the mean-squared error decreases after
registration which indicates that in the case of vanilla-
DLIR, the unsupervised registration without consider-
ing the anatomy, the similarity between two intensity
images increases, but the similarity between fixed and
moved masks does not improve satisfactorily or fail in
some cases. For that reason, the DSC of the left ven-
tricle and myocardium does not improve much. Figure
13 also shows that the overlapping of the fixed and de-
formed images is highly irregular containing false posi-
tive and negative cases.

Next, we tried to add latent space training to extract
the global features using variational autoencoders. In
this experiment, we can see the MSE metric decreases
as well as the DSC improves than Vanilla-DLIR. Figure
14 also indicates a better overlapping. As VAEs add

global context to the learning, model, the results also
prove that adding global latent space learning can be
beneficial to perform better registration.

The overlapping in the images shows that the bound-
aries of the regions segmented are irregular or not very
smooth. In the third experiment, we tried to add ad-
versarial learning to provide better regularization of the
model. From the results both from the table and the im-
ages, it can be seen that adversarial learning provides a
better regularization and thus also improves the result of
vanilla-DLIR.

So, we decided to keep them both in the model and
apply them to perform the registration. The results of
the proposed AdvAC model outperforms all the previ-
ous experiments and thus proved to be the best model
working in both the 2D and 3D dataset. Still, there
is room for performance improvement. Still, there is
room for performance improvement. Hence, we pro-
posed Multi-class Anatomically Constrained and Multi-
scale Registration (MACMR) framework which is the
best-performing model for the 2D Camus dataset. Al-
though the results on 2D dataset is higher but both 2D
and 3D data have the same upward improvement with
the proposed models. The fact is that the volume images
are low in number for training and also take longer time
than 2D for training for each epoch, the result is lower
but still satisfactory as this will be the first time tempo-
ral registration was done on 3D fetal echocardiography
images. In our future plan, we want to add even more
3D data volume to have a better training of the model
and also want to apply the multi-resolution framework
in case of 3D.

7. Conclusions

The clinical use of echo is still stuck with 2D, likely
because doctors can not visualize 3D, but for machine
learning it makes more sense to go 3D, for real-time de-
tection with improved accuracy and precision. Existing
DLIR or DL echo image processing are all 2D, and so
the need for 3D temporal registration for echo images
is clearly visible. Also there is less research work done
for fetal hearts although the fetal heart can experience
congenital heart malformation and functional abnormal-
ities. This thesis focuses on the development of meth-
ods for automatic 3D temporal registration for 3D fetal
echocardiographic images. The aim was to improve the
detection of congenital heart malformations and func-
tional abnormalities in the developing fetus.

One of the two most important aspects of this the-
sis was to propose a new dataset for fetal echocardiog-
raphy. 4D volume echocardiography images were col-
lected and annotated with the use of a cardiac motion es-
timation algorithm. We have conducted several experi-
ments starting with UNET-based DLIR to adding global
latent space training with variational autoencoders and
adversarial learning to have a better regularization loss.

1.12
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We have compared the results for both 2D and 3D
datasets. The results have shown significant improve-
ments in temporal registration accuracy using evalua-
tion metrics such as Mean Squared Error, and Dice Met-
ric. As the data annotation takes a considerable amount
of time, we started the work with a few number of vol-
ume images which hindered the overall performance of
the 3D dataset. So, we are planning to add more anno-
tated data as well as to evaluate the 3D model in multi-
resolution framework.
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Figure 13: Segmentation Results for Vanilla-DLIR.
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Figure 14: Segmentation Results for AC-DLIR.
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Figure 15: Segmentation Results for Adv-DLIR.
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Abstract

Introduction - Lung cancer screening using computed tomography (CT) scans plays a crucial role in early detection.
This paper addresses challenges in using deep learning models for lung lesion detection, including limited annotated
data and algorithm interpretability. Those models tend to be “black boxes” that often fail to generalize. Failures
can be caused by many factors, including sub-optimal model development, differences in imaging technologies, or
domain shifts in the patient population. As a result of these uncertainties, researchers struggle to improve model
performance, and radiologists cannot trust their recommendations. Methods - This study analyzes out-of-distribution
factors that can influence the model performance in two levels: organ and patient. The impact of OOD factors on
the model’s performance is assessed by comparing confidence and the rate of considered lesions. That will improve
the model’s robustness providing explainable insights into how our data is affecting the model. Additionally, we will
employ Active Learning techniques, using pseudo-labeling, to enhance the model’s generability and performance,
further augmenting its capabilities alongside its improved robustness. Results - The new included dataset presents
similar levels of noise and texture. Regarding the OOD analysis, we spot different data shifts at different levels.
OOD distance-based methods present higher accuracy than reconstruction-based ones for our configuration. The
uncertainties associated with each OOD factor are mostly similar. The highest difference is found in the OOD organ-
level, indicating that those cases confuse our model the most. Active Learning’s weak labels improve the model’s
performance (Average Precision 0.923 with vs 0.8331 without). Conclusions - We propose a useful pipeline that
ensures good model performance and increases the model robustness by understanding how data shifts can confuse
our model. The pipeline is versatile and can be employed to incorporate a new dataset into a study.

Keywords: Lung Cancer, Explainability, Interpretability, Active Learning, Transfer Learning, Out-of-distribution

1. Introduction Detecting tiny pulmonary nodules is a significant
challenge. Differentiating them and excluding uncor-
related tissues like bronchi and blood vessels to identify
the nodules accurately is hard. Computer-Aided Detec-
tion (CAD) system employs a highly sensitive approach
to identify nodules. This high sensitivity often results in
the formation of candidate nodules with numerous false
positives, which presents a major difficulty in the detec-
tion process (Setio et al., 2016).

Lung cancer, a prevalent form of cancer world-
wide, demonstrated the highest percentage of new cases
(11.6%) and accounted for the greatest number of
deaths (18.4%) among all cancers in 2018 (Bray et al.,
2018). Promoting early screening diagnosis is a primary
focus in preventing and controlling this disease.

Lesion detection in CT lungs is a critical task that

can help to identify and treat lung cancer at an early
stage. Deep Learning (DL) has shown great promise in
improving the accuracy and efficiency of lung lesion de-
tection (Gu et al., 2021) (Makaju et al., 2018). However,
using DL raises concerns about the algorithms’ trans-
parency and interpretability (von Eschenbach, 2021).

2.1

Supervised Deep Learning (DL) requires many la-
beled training data to make predictions by finding in-
put and corresponding output data patterns. The more
labeled training data is available, the more patterns the
algorithm can learn and the better it can generalize to
new, unseen data.
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Medical imaging data is constrained by the limited
availability of annotations due to the time-consuming
and expensive nature of annotating 3D medical data.
Moreover, while medical experts are highly sensitive to
the specific condition in question, they are susceptible to
inattentional blindness, resulting in elevated miss-rates
of unanticipated anomalies and medical conditions.

However, some techniques can be used to reduce the
amount of labeled data needed for training, such as
transfer learning or active learning (AL). The first in-
volves using a pre-trained model already trained on a
large dataset and then fine-tuning it on a smaller, la-
beled dataset. Nevertheless, it can encounter problems,
including dataset bias, domain shift, or model capacity
limitations when applied to different data. Active learn-
ing proactively selects the subset of examples to be la-
beled next from the pool of unlabeled data.

Having a model that can effectively adapt to new
datasets while maintaining control and comprehending
the decision-making process is of utmost importance.
Moreover, assessing how potential perturbations in the
data may impact the model’s performance is crucial.
By addressing these factors, we can ensure the develop-
ment of a robust and reliable model capable of making
accurate predictions and facilitating informed decision-
making. Our methodology aims to explain the limita-
tions of any model when including a new dataset.

In an ideal scenario, these methods should not rely
on domain-specific knowledge or annotated validation
sets that are specific to certain cases for optimization.
Such reliance could be considered an unwanted form
of implicit supervision inherent in the method’s de-
sign. Therefore, we need to propose a methodology that
could be universally applied to different datasets. Con-
cretely, our work will be developed to include Duke’s
private Data in the multi-center National Lung Study
Trial (NLST) (Team, 2011) but could be used for any
configuration.

This paper presents a significant contribution,
which can be summarized as follows: a pipeline
to ensure the robust performance of models when
applied to new datasets by identifying the data
shifts that can affect the model’s confidence. This
approach can be applicable to any type of unla-
beled data, including signals or videos. The pa-
per’s sub-contributions include: (a) the introduction
of a methodology that effectively addresses out-of-
distribution (OOD) detection in 3D medical images
at both organ and patient levels, (b) comparing dif-
ferent datasets in terms of noise and textures to un-
derstand the effect on the OOD problem, and (c)
the utilization of an active-learning method based
on informativeness and representativeness propos-
ing pseudo-label instances to improve model’s per-
formance and generalization capability.

2. State of the art

2.1. Out-of-distribution analysis

Modern neural networks have achieved great success,
but they are also known to be overconfident even when
they encounter inputs with unusual conditions. Find-
ing these inputs is critical to stop models from making
uninformed predictions that could endanger neural net-
work applications in the real world. Out-of-distribution
(OOD) detection helps to identify differences among
data samples, increasing the reliability and safety of
a DL model. In an unsupervised manner, its primary
objective is to pinpoint unexpected and abnormal data
points by learning normal tissue appearance.

Although 2D-OO0D is well developed (Berger et al.,
2021) (Pacheco et al.,, 2020), we find few 3D ap-
proaches due to increased computational complexity.
3D detection algorithms can be categorized as fol-
lows. Density-based methods use an estimation tech-
nique to predict probability distribution, distance-based
methods measure the proximity among data features,
and reconstruction-based techniques calculate the re-
construction error to spot data dissimilarities. To our
knowledge, purely density-based methods have not
been explicitly utilized in medical imaging, presumably
because they do not provide an anomaly score at the
pixel level. We, therefore, focus on reconstruction- and
distance-based methods below.

2.1.1. Reconstruction-based methods

Several methods have been proposed to address the
issue at hand. (Shyu et al., 2003) presented a novel ap-
proach utilizing Principal Component Analysis (PCA)-
based reconstruction. Using DL, (Schlegl et al., 2017)
employed an iterative back-propagation method within
a Generative Adversarial Network (GAN) framework.
It is worth noting that autoencoders (AE) reconstruction
methods offer notable advantages in handling non-linear
data relationships and enabling pixel-wise detection.

A study conducted by (Chen and Konukoglu, 2018)
demonstrated the effectiveness of combining a Varia-
tional Auto-Encoder (VAE) with an adversarial loss ap-
plied to the latent variables. This approach resulted in
improved performance by leveraging a pixel-wise re-
construction error. Building upon this notion of error,
(Zimmerer et al., 2019) utilized various Auto-Encoders
(AEs) specifically designed for brain computed tomog-
raphy (CT) scans. In related work, (Alain and Ben-
gio, 2014) provided evidence that AEs have a tendency
to learn a condensed representation of the underlying
data distribution by capturing the derivative of the log-
density with respect to the input.

Nevertheless, using only the reconstruction error for
scoring overlooks the reconstruction model’s internal
representation and lacks formal claims and compara-
bility between samples. To address this, (Zimmerer

2.2
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et al., 2018) combined reconstruction with density-
based scoring on the Context-encoding Variational Au-
toencoder (ceVAE). It utilizes a context-encoding mech-
anism to encode contextual information of input data
and a VAE to learn the underlying data distribution.

2.1.2. Distance-based methods

Various methods have been employed to evaluate the
similarity between a test instance and the distribution of
training instances. Among them, the most commonly
employed scoring metric is the Mahalanobis distance.
This distance measure considers the covariance struc-
ture of the training instances, providing a comprehen-
sive evaluation. In a study by (Karimi and Gholipour,
2022), singular value decomposition (SVD) was em-
ployed on the network features. By extracting singular
values, an image embedding was generated. The OOD
score was then determined as the distance between a test
sample and its nearest neighbor in the training set.

Other groups, such as (Hendrycks and Gimpel, 2016),
pointed to using the maximum softmax probability
(MSP) for the detection. ODIN (Liang et al., 2017)
achieved further improvement over MSP by incorporat-
ing temperature scaling of softmax outputs and input
perturbations. However, a major limitation of ODIN
is that it requires the availability of samples to select
the temperature scaling factor and the magnitude of the
input perturbations. This issue was addressed by (Hsu
et al., 2020) by proposing a generalized, G-ODIN, elim-
inating the fine-tuning necessity.

2.2. Active Learning

By explaining the impact of new data on the model,
we can enhance its resilience. Furthermore, incorporat-
ing new data into the training process not only enhances
the model’s generalizability but also boosts its overall
effectiveness.

Active learning endeavors to streamline the data col-
lection by automatically discerning the instances that
necessitate expert annotation for efficient and effective
model training. Its objective is to minimize labeling ef-
fort while maximizing the performance achieved by the
machine learning algorithm.

It has demonstrated success in various domains, in-
cluding image classification (Beluch et al., 2018) (Sener
and Savarese, 2017), object detection (Bengar et al.,
2019), regression (Kiding et al., 2018), and seman-
tic segmentation (Golestaneh and Kitani, 2020) (Wang
et al., 2020).

AL strategies can be categorized into three main
groups: informativeness (Bengar et al., 2021) (Cai et al.,
2014) (Gal et al., 2017) (Guo, 2010) (Yang et al.,
2015), representativeness (Saito et al., 2015) (Sener
and Savarese, 2017), and hybrid approaches (Yang and
Loog, 2018) (Huang et al., 2010). The informativeness
criterion selects samples that exhibit high uncertainty,
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thereby impacting the model’s generalization capability
(confusing the classifier). Representativeness ensures
the inclusion of diverse samples that align with the un-
derlying data distribution.

Although active learning has been extensively inves-
tigated in the field of classification tasks, it has garnered
comparatively less attention in the domain of deep ob-
ject detection (Brust et al., 2018). With that purpose,
(Kao et al., 2019) introduced a ranking approach for
images based on the localization tightness and stabil-
ity criteria. Localization tightness measures the com-
pactness of detected bounding boxes, while stability es-
timates their robustness in both the original image and
a noisy version of it. Additionally, (Brust et al., 2018)
employed the computation of marginal scores (Ronald
J. Brachman) for candidate bounding boxes and incor-
porated them using various merging functions.

We propose a method based on informativeness
and representativeness combined with pseudo-labels.
Pseudo-labeling based on the AL results is not novel.
For instance, in the context of image classification, the
definition of pseudo-labels varied across studies. In
(Lee et al., 2013), the pseudo-label was defined as the
class with the highest probability. Conversely, (Bank
et al., 2018) introduced multiple techniques to derive the
confidence measure for pseudo-labels. (Zotova et al.,
2019) showed that pseudo-labeling gives small further
improvements for a segmentation task. But no one pro-
posed an AL algorithm using pseudo-labels for detec-
tion.

2.3. Explainable Al

The incorporation of explainability into deep learn-
ing models serves as a means to tackle various obsta-
cles, including the issues arising from data shift. Data
shifts can result in diminished performance and untrust-
worthy predictions. Through the comprehension of the
decision-making process facilitated by explainability,
data scientists can pinpoint the specific features, pat-
terns, or data attributes that the model depends

Explainable Al, XAI, focuses on creating artificial in-
telligence (AI) systems that provide transparent and in-
terpretable explanations for their decisions. Its goal is to
enhance Al models’ understanding, trust, and account-
ability by providing insights into the underlying factors,
logic, and reasoning behind their outputs.

Most of the existing research in the field of explain-
able AI (XAI) has heavily relied on using Saliency
Maps as a common method for providing explanations.
However, emerging studies have demonstrated that they
may lack stability, meaning they can vary significantly
in their output and may not consistently highlight the
most relevant features or areas of importance in the in-
put data. This instability raises concerns about their re-
liability and robustness of them as the sole method for
explainability.
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(Arun et al., 2021) analyzed the performance of eight
commonly used saliency map techniques regarding (a)
localization utility (segmentation and detection), (b)
sensitivity to model weight randomization, (c) repeata-
bility, and (d) reproducibility. They proved that all eight
saliency map techniques failed at least one of the crite-
ria and were inferior in performance compared with lo-
calization networks. Figure 2 shows the results of each
saliency method for the detection task and the predicted
output of RetinaNet (RNET).

Figure 1: Example saliency maps for RSNA pneumonia dataset with
corresponding utility scores. GBP = guided backpropagation, GCAM
= gradient-weighted class activation mapping, GGCAM = guided
GCAM, GRAD = gradient explanation, IG = integrated gradients, SG
= Smoothgrad, SIG = smooth IG (Arun et al., 2021)

Consequently, researchers are actively exploring al-
ternative approaches and techniques within XAl to ad-
dress these limitations. We hypothesize that OOD de-
tection could be used for the model’s explainability
by providing insights into how a deep learning model
makes predictions and how data shifts affect the model’s
performance. We can better understand the model’s
decision-making process and assess its reliability.

For example, if the model is presented with input out-
side the distribution it was trained on and provides a
high-confidence prediction, this could indicate that the
model is overconfident and may be making unreliable
predictions. Conversely, if the model identifies OOD
inputs and produces lower confidence predictions, this
could be a sign that the model is aware of its limitations
and is cautious in its predictions.

Utilizing the principle of explainability, our approach
aims to establish a heightened sense of trustworthiness
in the context of federated learning relating OOD fac-
tors with each associated performance. In a clinical
study with multi-center data, trustworthiness assumes
utmost significance.

2.4. Explainable OOD Analysis

By understanding the reasons behind OOD data, re-
searchers can identify data issues, improve models,
build trust, and promote equitable decision-making. Ex-
plaining OOD data is essential for reliable predictions
and accurate assessments in various fields.

(Hendrycks and Gimpel, 2016) utilizes confidence
scores, maximum predicted probability, from the soft-
max layer to identify misclassified OOD cases. Re-
cently, (Xu-Darme et al., 2023) proposed method em-
phasizes interpretability, aiming to provide insights into
why certain samples are identified as OOD. The authors
introduce an auxiliary network that learns to identify
the patterns contributing to the OOD detection decision.
Other authors used OOD cases to interpret the model
using saliency maps (Fong and Vedaldi, 2017).

But all of them have focused on understanding how
the OOD cases are classified. We propose an explain-
able OOD analysis aimed at identifying which OOD
cases exert the most negative influence on our model.

3. Material

3.1. Dataset

e LIDC/IDRI dataset: It is a publicly available tho-
racic standard and low-dose computed tomogra-
phy (CT) dataset. It consists of 601 labeled cases,
each including a set of CT images and annota-
tions of lung nodules by four experienced radiol-
ogists. They include information on nodules’ lo-
cation, size and shape. The dataset also includes
assessments of the probability of malignancy and
radiologists’ confidence level in nodule detection.

e Duke private dataset: It includes 7345 lung low-
dose CT, but only 1.55% are labelled. They in-
cluded a radiologist inform with patient informa-
tion. They have been resampled to match LIDC’s
shape.

3.2. LUNAI16 Model

In our study, we have utilised the MONAI model
for the LUNA16 Challenge, specifically the model that
achieved the second position in the challenge ranking.
The chosen model has been made publicly available and
is built upon the RetinaNet network architecture. Utiliz-
ing the MONAI model aligns with our research objec-
tives and allows us to benefit from the model’s strengths
and advancements.

RetinaNet is a prominent object detection frame-
work widely employed for accurately detecting objects
in images. It tackles the challenge of detecting ob-
jects at multiple scales by introducing a novel compo-
nent termed Focal Loss, which effectively prioritizes the
training of challenging samples. In Figure 2, we can see
RetinaNet network architecture.
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3D CT Scan
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Figure 2: RetinaNet utilizes a ResNet backbone (a) in conjunction with a Feature Pyramid Network (FPN) (b) (Lin et al., 2017). Two subnetworks
are attached to this backbone: one for classifying anchor boxes (c) and another for regressing from anchor boxes to ground-truth object boxes (d).

(Lin et al., 2018)

The fundamental concept underlying RetinaNet re-
volves around utilizing a single deep neural network to
concurrently predict object bounding boxes and classify
their corresponding object categories. This enables effi-
cient and accurate object detection.

At its core, RetinaNet builds upon a feature pyramid
network (FPN) architecture (Lin et al., 2017). FPN cap-
italizes on the multi-scale features extracted from vari-
ous levels of a backbone network, ResNet, to achieve ro-
bust object detection across different object scales. (He
et al., 2016)

RetinaNet presents a novel mechanism called an-
chors, which generate a set of fixed-size bounding boxes
at each spatial location in the feature map. These an-
chors serve as reference points for the network to pre-
dict object bounding boxes. It enables the detection of
objects with varying sizes and shapes by employing an-
chors with diverse scales and aspect ratios. (Lin et al.,
2018)

To predict object presence and its corresponding
class, RetinaNet employs two parallel sub-networks:
the classification subnet and the regression subnet. The
classification subnet estimates the probability of an an-
chor containing an object of a specific class, while the
regression subnet computes refined bounding box coor-
dinates for each anchor.

One of the primary challenges in object detection
is the significant imbalance between background and
foreground samples. Most anchors do not encapsulate
any objects of interest, resulting in many easily clas-
sified negative samples during training. This imbalance
causes the network to be biased toward background pre-
dictions, leading to suboptimal performance.

To address this issue, RetinaNet introduces the con-
cept of focal loss, which mitigates the contribution of
easily classified samples and emphasizes challenging
ones. It accomplishes this by assigning higher weights
to misclassified examples and reducing the weight for
well-classified ones. This mechanism enables the net-
work to prioritize learning difficult samples, which is
crucial for achieving accurate object detection.

Focal loss (Lin et al., 2018) is formulated as a modifi-
cation of the standard cross-entropy loss function. It in-
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troduces a tunable parameter known as the focusing pa-
rameter, which governs the degree of emphasis placed
on hard examples. By appropriately adjusting this pa-
rameter, the loss function can be tailored to balance false
positives and false negatives, depending on the applica-
tion’s specific requirements.

RetinaNet minimizes the combined loss from the
classification and regression subnets during the training
phase. This joint optimization enables the network to
simultaneously learn accurate object detection and pre-
cise object localization through bounding boxes.

In our implementation, we perform inference on
patches if the input image exceeds GPU memory ca-
pacity. Data-loader retrieves boxes, and data augmen-
tation is applied to these boxes. We use a batch size of
1, shuffle the data, and employ 7 workers. The model
is trained for 300 epochs to facilitate convergence and
optimal performance. We use 0.01 as the learning rate
until epoch 160, which is reduced to 0.001.

4. Methods

The proposed pipeline is shown in Figure 3.

We will conduct an out-of-distribution study and
dataset profiling using the Duke Dataset to identify po-
tential factors influencing our model’s performance.
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Figure 3: Proposed pipeline to improve model’s robustness. As the
DL model is a black box, we are going to spot, on the left side of it,
potential data factors that may confuse the model. We are going to
follow up on those cases through the model, and on the other side of
it, we will interpret how the model sees our data.
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For the out-of-distribution study, we will utilize the
LIDC-IDR data as the reference distribution, which was
used to train the model. Our study tries to identify
Duke cases demonstrating deviations from the train-
ing distribution in two levels. In parallel, we will uti-
lize an Active Learning approach to propose a subset
of Duke cases to be labeled, maximizing the model’s
performance. Previously, transfer learning was applied
to predict Duke cases with the model trained on LIDC
cases. Moreover, the AL algorithm will provide us with
certainty-case-level scores. The scores and the cases
spotted in each OOD factor are used to find the factor-
level certainty scores. The intersection of these two
lines of investigation represents a crucial point.

This analysis allows us to understand the impact
of different data abnormalities on the model’s perfor-
mance, increasing the robustness. Additionally, AL-
labeled and pseudo-labeled cases improved model gen-
eralization capabilities because the RetinaNet model
will be trained with more data. Afterward, we will pro-
ceed to elucidate the pipeline methodology in stages.

4.1. Data Study

This section will analyze the data independent of its
ground truth or predicted labels through two distinct
studies. While the first study (section 4.1.1) focuses on
studying each dataset individually in terms of texture
and noise levels. The second one (section 4.1.2) studies
Duke’s distribution in relation to LIDC’s distribution.

4.1.1. Dataset Profiling

Noise estimation. ldeally, training and test data should
have the same noise level. If the level of noise in the test
data is different, the model may not be able to generalize
well and may fail to classify or predict new data points
accurately. A common definition of image noise is
the standard deviation (SD) of the measured Hounsfield
units (HU) in a physically homogeneous volume (Bon-
gartz, 1999). In chest CT, optimal representation of
image noise may be obtained by segmenting the entire
tracheo-bronchial tree lumen and measuring the SD of
this air (Wisselink et al., 2021). As the trachea is a ho-
mogeneous volume, if the deviation is low, there is less
presence of random fluctuations or variations in the sig-
nal due to noise.

We used TotalSegmentator (Wasserthal et al., 2022)
to segment the trachea volumes from both datasets. This
nnU-Net model was pretrained in 1204 CT scans and
segments 104 structures. Once we obtained the masked
volumes, we operated the coefficient of variation of the
trachea volume (Equation 1). In order to mitigate the in-
fluence of the trachea contour on the noise measure, we
applied a 3D-erosion operation to the trachea volumes
using a disk with a radius of 5 pixels.

i (—%)?
n—-1

CV(%) = ————— x 100 (1

Texture analysis. When comparing image datasets, the
common practice is to evaluate metrics like the total
number of images, the number of images in each class,
or class distributions in the dataset. However, all these
metrics are defined by humans and do not provide in-
sights about the underlying data distribution. We want
to analyze whether this aspect of complexity impacts the
ability of a neural network to learn from that dataset.
With that purpose in mind, we will use a similar ap-
proach to (Rahane and Subramanian, 2020) to analyze
the texture complexity. They used quantitative metrics
to identify which dataset is more complex or harder
to “learn” concerning a deep-learning-based network.
They studied four video datasets from the autonomous
driving research community; we will adapt the algo-
rithm to CT volumes. Definition of the used-study met-
rics:

e Shannon Entropy: The higher the entropy value
is, the more information is required to describe or
transmit it. It entirely relies on individual pixel val-
ues

HX) = = ) pilogy(p) @)
i=1

In this equation, X is a discrete random variable
with n possible values, and p; is the probability that
X takes on the value x;.

o GLCM: Statistical method used to describe the
spatial relationship between pairs of pixels in an
image.

n—
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where 7 is the number of gray levels, and p(i — j)
is the probability of two pixels having intensities i
and j, separated by the specifies offset.

e Delentropy: It is based on the probability den-
sity function deldensity (Larkin, 2016). This den-
sity distribution uses spatial image and pixel co-
occurrence. The usage of gradient vectors in this
entropy allows for global image features to be con-
sidered and capture non-local information.

o UMAP: We use this dimensionality reduction tech-
nique to represent the GLCM matrix visually. The
first phase consists of constructing a fuzzy topolog-
ical representation by using simplices. Then, we
optimize our embedding (by using stochastic gra-
dient descent) to have as close a fuzzy topological
representation as possible (measured by cross en-
tropy). We use additional parameters like the num-
ber of nearest neighbors in UMAP to show how
local and global structures change/shift differently
in different datasets.
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4.1.2. Out-of-distribution detection

To address the ambiguity surrounding data outside
the distribution”, which relies on the definition of a
“normal” patient, we conducted a comprehensive anal-
ysis at both the patient-level and organ-level. At the
patient-level, we examined the entire CT scan to iden-
tify potential shifts caused by protocol variations and
noise/artifacts. At the organ-level, our focus was on pri-
oritizing anatomical differences. We expected to find
different distribution shifts at both stages. But, we hy-
pothesized that the classified organ-level OOD cases
would affect the model’s performance more. Never-
theless, patient-level ones can also affect it because the
model’s input is the unmasked CT volumes.

4.1.2.1. Patient-level-out-of-distribution.

As detailed in section 2.1, we discussed different
categories of out-of-distribution (OOD) methods. We
proposed a distance-based and a reconstruction-based
method to determine the superior option for our config-
uration.

Distance-based algorithm: Histogram features
As in many medical imaging tasks, our training data
presents semantic homogeneity as it consists of chest
CT scans. As a result, the intensity histograms of two
images with different semantic meanings can be eas-
ily differentiated. Since the primary sources of out-
of-distribution (OOD) data stem from semantic and co-
variate shifts, histograms provide a robust alternative to
deep learning (DL) methods in this particular task (Frol-
ova et al., 2022). Semantic data shift refers to a change
in the meaning or interpretation of the data, such as CT
scans of other body parts. Covariate shifts refer to a
change in the distribution of the input features, includ-
ing variations in imaging equipment, imaging protocols,
patient demographics, or pathologies. Moreover, as our
study task of nodule detection represents a focal disease
that occupies only a very small portion of the volume,
patients with the pathology would not be categorized as
OOD. However, if they exhibit more diffuse pathologies
like pneumonia, they may be classified as OOD.

We proposed a straightforward approach based on
image histogram features comprising two steps. Firstly,
we compute the histogram features for the LIDC dataset
and identify its distribution center. Secondly, we cal-
culate the histogram features for the Duke Dataset and
utilize the Mahalanobis distance to measure the devia-
tion from the center of the LIDC distribution (Figure 7).
Mahalanobis distance is defined as:

Dy(x) = (x =T (x - )

Where x is the test instance, u is the mean of the train-
ing instances, X is the covariance matrix of the training
instances, and Dy, (x) is the Mahalanobis distance be-
tween x and the training distribution.
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Figure 4: Starting from both datasets, we resample them and get
the histograms normalized in intensities and size. After we find the
Duke’s instance distances to the LIDC distribution center.

The primary objective of this methodology is to iden-
tify distribution outliers without explicitly categoriz-
ing their underlying causes. However, by determining
which region of bins is the most disparate between the
center training data histogram and validation cases’ his-
tograms, we can cluster certain reasons. That can be
done using weighting techniques such as multiplying
ramps or exponential curves to the histograms. As an
example, we have proposed a modification specifically
targeted at detecting the presence of prostheses and arti-
facts within the Duke Dataset, as illustrated in Figure 5.
For that, we first subtracted the center LIDC histogram
from each case in the Duke Dataset. If a CT scan con-
tains a metallic prosthesis or a white artifact, there will
be pixels at the latest bins of the histogram. To empha-
size the contribution of the brightest pixels, we multiply
by an exponential function with an empirically chosen
function, in our case ¥~V to assign greater impor-
tance to the brightest region. This way, the algorithm
classifies based on the prosthesis’s area and brightness.

fx)= e®(x1

Figure 5: Pipeline for the prostheses/artifacts detection algorithm.
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Reconstruction-based algorithm:  Variational
Auto-Encoder

A Variational Auto-Encoder (VAE) is a generative
model that combines ideas from auto-encoders and vari-
ational inference. It learns a latent representation of
the input data by jointly training an encoder and a de-
coder neural network. The encoder network maps an
input data point to a probability distribution in the la-
tent space. This distribution is typically assumed to fol-
low a multivariate Gaussian distribution, with the mean
and variance parameters predicted by the encoder net-
work. The decoder network takes a sample from the la-
tent space and reconstructs the input data point. The ob-
jective of the VAE is to maximize the reconstruction ac-
curacy while also encouraging the learned latent space
to follow a desired prior distribution, often a standard
Gaussian distribution.

In our configuration, the VAE employs a combina-
tion of a reconstruction loss and a regularization term
known as the Kullback-Leibler (KL) divergence during
training. The KL divergence measures the difference
between the predicted latent distribution and the desired
prior distribution. By jointly optimizing the reconstruc-
tion loss and the KL divergence, the VAE learns to en-
code the input data into a meaningful latent space and
generate reconstructions that closely resemble the orig-
inal input.

L0,¢:%) = ~Ey 0 [l0g po(xi2)] + KL [ g4zlx)l|p(z)]
“)
In this equation, £ represents the objective function
of the VAE, 6 and ¢ are the model parameters, x is the
input data, z is the latent variable, g,(z|x) is the ap-
proximate posterior, py(x|z) is the likelihood, and p(z)
is the prior. The term KL [q¢(zlx)|| p(z)] represents the
Kullback-Leibler divergence between the approximate
posterior and the prior. The model’s architecture can be
found in figure 6.

ize
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Figure 6: VAE generation model consisting of an encoder network
04(Z|X) and a decoder network Py(X|Z).

We trained the VAE using the LUNA16 cases as our
training dataset. Once the VAE had been trained, we
utilized it to reconstruct Duke cases. The reconstruc-
tion error was then calculated by comparing the recon-
structed Duke cases to their original counterparts. That
error serves as the out-of-distribution score, indicating
how well the VAE can reconstruct the Duke cases com-
pared to the training data. A higher reconstruction er-

ror suggests a larger deviation from the training distri-
bution, implying a higher likelihood of the Duke cases
being out-of-distribution, unseen, or anomalous. The
training process will be carried out with a batch size
of 6, utilizing a learning rate of 0.01 for a total of 200
epochs. Additionally, weight decay regularization will
be applied with a value of Se-7.

4.1.2.2. Organ-level-out-of-distribution.

To specifically analyze data shifts in the studied
anatomy, we performed lung volume segmentation us-
ing the TotalSegmentator model (Wasserthal et al.,
2022). This model segments lung volumes into five dis-
tinct structures: the two superior lung lobes, the two
inferior lobes, and the middle right lobe.

We merged the 5 lung lobes and applied the masks
to the original CT volumes. By reducing the influence
of extraneous factors, we enable a more precise exami-
nation of the underlying anatomical characteristics and
reduce medical imaging acquisition shifts.

In addition to utilizing histograms to capture
intensity-based information, we introduced a novel ap-
proach to incorporate anatomical information through
histograms of oriented gradients (HOG), computed by:

Visg-srat. = \[SE(V. 02 + SE(V.y? + SE(V, ) (5)

HOGfeatures = hiszogram(vmag—grad.s nbins) (6)

Let SF represent the Sobel filter applied to a 3D CT
volume to extract information in a specific direction.
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segment segment
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histogram norm-HOG histogram norm-HOG
. sor ’ T '
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ec? |dl = |(dpist)® + (dpoc)?
Hist distance

Figure 7: Pipeline for organ-level out-of-distribution analysis incor-
porating histogram and HOG features. The bottom box recaps the
distinction between qualitative and quantitative methods.
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HOG integration also provides valuable insights into
the signal’s energy. However, using HOG features for
the complete CT volume doesn’t improve the classifi-
cation because it is very sensitive to variations in the
patient’s body morphology. We use the Mahalanobis
metric between LIDC’s center and Duke’s instances for
both histogram features and HOG features. The pro-
posed pipeline is shown in Figure 7

The patient-level analysis differs primarily in the uti-
lization of 2D information. In this regard, we proposed
a qualitative analysis employing density-based spatial
clustering of applications with noise (DBSCAN), which
utilizes distance measurement, typically Euclidean dis-
tance, and a minimum number of points to group data
points. A notable feature of this algorithm is its abil-
ity to identify outliers, as it effectively captures points
residing in low-density regions. We will identify the in-
stances of those regions as OOD cases. Additionally,
we also introduced a quantitative method that involved
calculating the Euclidean distance between the center of
the LIDC dataset and the Duke samples.

4.2. Active Learning

Figure 8 shows the implemented AL strategies.

Baseline: Random Sampling: From the 7231 unla-
beled Duke scans, 16 cases are randomly selected and
added to the pipeline during each iteration.

AL Strategy 1: Uncertainty Sampling: We utilize the
model trained on LIDC cases to make predictions for
the 16 unlabelled cases in each iteration. The model
provides certainty scores at the lesion level. However,
in order to rank the scans based on certainty, we need
to calculate a patient-level score. The most challenging
aspect is transitioning from lesion-level to patient-level
uncertainties. This is achieved by computing the mean
of all lesion certainties per scan prior to filtering them
to exclude potential false-positive detections. The fil-
tering criteria include (1) size, where lesions with no
axis exceeding 3 mm (as determined by radiologists)
are discarded; (2) certainty score, with a threshold of
0.1; and (3) mask, where lesions whose predicted center
falls outside the lung volume are considered. A cautious
approach is taken to prevent false-negative lesions near
the lung boundaries or pleura by dilating the lung masks

using a 15-pixel radius disk element. At every itera-
tion, the two scans with the highest confidence score are
added to the “certain” label pool, while the two scans
with the weakest certainty are added to the “uncertain”
pool.

AL Strategy 2: Representativeness: The manual la-
beling process is also leveraged by introducing a re-
cency condition. Only the most recent cases per patient
in the uncertain cases pool are added to the annotated
pool. To identify the most recent scans per patient, we
thoroughly examined patients’ information.

AL Strategy 3: Pseudo-Labelling: To define the
pseudo-labels, from the certain pool, we re-filter the
lesions with more stringent criteria. Each lesion must
be inside the dilated lung lesion, have all axes greater
than 3 mm, and have an associated certainty score
higher than 0.3. Additionally, non-maximum suppres-
sion (NMS) is applied to reduce overlaps in bound-
ing boxes and eliminate redundancy in object detection.
Those labels will be used to retrain the model.

5. Results

5.1. Dataset characterization

Similar entropy values were observed among the
datasets in the texture analyses. Table 1 presents the
average values for each dataset and corresponding en-
tropy type. GLCM reveals a prominent distinction, with
Duke Data standing out by showcasing a higher value.

Dataset ‘ Shannon ‘ Delentropy ‘ GLCM
LUNA16 | 8.505 (0.205) | 3.550 (0.627) | 2.967 (1.151)
Duke 8.501 (0.110) | 3.412(0.736) | 3.034 (1.300)

Table 1: Analysis of entropy measures across datasets and metrics

We employed GLCM and UMAP visualization plots
to provide a more intuitive image space representation
(Figure 9). “Difficult” datasets are more densely dis-
tributed. By utilizing this feature space, we reduced
dimensionality based on the topology of texture-based
features. Varying numbers of nearest neighbors were
utilized to capture different complexity levels. Our find-
ings align with the metrics presented in Table 1, indi-

<906 weak labels (depends on the number of recent scans among them)

906 weak labels (re-train every 200 labels)

N
& & .
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e e o
Training pool W : *
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[ Initially 534 LIDC cases RetinaNET )
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Certain pool

N
Uncertain pool ]—'[ Annotate samples J|

Figure 8: Active learning setup showing uncertainty sampling, representativeness filtering, and automated pseudo-labeling.
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cating that the Duke Dataset demonstrates greater com-
plexity in higher orders (global information).

f’“\\gi:-,?
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(a) Neighbors: 20 (b) Neighbors: 500

Figure 9: Two-dimensional projection of each dataset using UMAP.
The plots show embedding with the distribution of each dimension on
each axis. Duke Dataset (blue) and LUNA16 (red).

Noise estimation was conducted by applying the co-
efficient variation to the segmented trachea volumes
(Figure 12 highlights the regions represented by the
color red). Duke Dataset exhibits a coefficient variation
of 43.37 + 14.08, while the LUNA16 dataset shows a
value of 42.16 + 13.39. Although both datasets demon-
strate comparable noise levels, Duke data exhibits a
slightly higher level.

5.2. Out-of-distribution analysis

The graphical representation, denoted as Figure 10,
illustrates the distinct classifications of shifts among the
data samples derived from the Duke dataset. These
shifts have been identified using histogram features,
specifically employed on the entire CT volume.

(c) Reconstruction
method

(a) Patient population (b) Contrast shift

(d) Another body-part (e) Artifact presence (f) Prosthesis presence

Figure 10: Classification of shifts in Duke Data Samples using His-
togram Features on total CT volumes.

For our prosthesis/artifact detection approach using
weighted histogram features, out of the total 7345 scans,
338 scans (4.6% of the dataset) are identified as belong-
ing to the prosthesis group. To assess the accuracy of
our approach, we conducted a thorough manual verifi-
cation process on 50 randomly selected cases from the

prosthesis group. It confirms the presence of a pros-
thesis or artifact in 47 instances, providing strong evi-
dence for our method’s efficacy. Most of the prosthe-
ses detected are Posterior Spinal Fusion (PSF), but we
also found reverse shoulder prostheses and cardiac pros-
thetic valves.

Regarding the reconstruction-based method, VAE’s
training is stopped once the validation loss does not de-
crease for more than 3 epochs. Fig 11 presents a selec-
tion of reconstructed volumes during this training pro-
cess.

Figure 11: Original CT (top row) and VAE reconstructed volumes
(bottom row). (a) Shows the entire volume, (b-d) zoom in on nodules.

Due to the unavailability of OOD ground truth (each
scan has a label in/out distribution), we adopt a method-
ology to determine the correctness of their classifica-
tion wherein we select the 100 instances farthest away
from each method’s training distribution and manually
examine if they are OOD. Our evaluation process entails
categorizing these instances into three distinct groups.
The first group is labeled as outside training distribution
and comprises instances with explicit reasons for not be-
longing to the training distribution. These instances ex-
hibit significant dissimilarities and discernible patterns
that distinguish them from the training data. The sec-
ond group, termed partially outside training distribu-
tion, consists of cases that exhibit certain peculiarities,
yet there exists a plausible explanation as to why our al-
gorithm classified them as non-conforming to the train-
ing distribution. Although these instances deviate some-
what, their dissimilarities are insufficient to categorize
them as distinctly different. The third group, denoted
as inside training distribution, encompasses instances
that demonstrate no apparent reasons for being classi-
fied as outside the training distribution. These instances
exhibit consistency with the patterns and characteristics
observed within the training data. Results are shown
in Table 2. We can observe that the proposed distance-
based algorithm works better for our configuration.

Labels | HIST | VAE

Outside training distribution 0.85 | 0.71
Partially outside training distribution | 0.08 | 0.17
Inside training distribution 0.07 | 0.12

Table 2: Comparative Classification Accuracy of Out-of-Distribution
Patient-Level Methods: distance-based (Histogram Features, HIST)
vs. reconstruction-based (Variational Autoencoders, VAE).
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Descending on the organ level, Figure 12 shows the
segmented volumes (5 lung lobes and trachea).

Figure 12: TotalSegmentator’s segmentation in coronal, axial, and 3D
view. Both superior lobes, both inferior lobes, and the right middle
lobe are represented in blue scale. The trachea structure shown in red.

Before applying the DBSCAN model, it is necessary
to determine two parameters:

e Minimum number of points needed to consider a
new cluster: 6. It is 2 times the data dimension.

e Epsilon (least distance required for two points to
be termed a neighbor): 0.046. To determine it, the
distance between each data point and its nearest
neighbor is calculated using the Nearest Neighbors
method. Subsequently, the distances are sorted and
plotted (Figure 13a). Epsilon is defined as the max-
imum curvature value of the resulting graph.

The clustering result for a 10% subset of Duke cases
is illustrated in Figure 13b. Out of the total Duke data,
the algorithm classified 510 cases, which corresponds to
6.59% of the dataset, as out-of-distribution (OOD).

Data proximity using Nearest Neighbors DBSCAN Clustering Organ-level 00D
a 1 I

o
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Distance closest neighbor
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HOG Score

o
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Figure 13: (a) Data probability curve employed to determine epsilon
value. The most significant deviation is observed at approximately
0.046. (b) DBSCAN clustering technique’s outcome yielded a dis-
tinction between in-distribution cases (blue) and OOD cases (red).

Figure 14 highlights several cases classified as out-of-
distribution (OOD). Upon conducting a manual inspec-
tion of 50 of those cases, it was found that 38 of them
exhibited clear reasons for belonging to this group.

Figure 14: Left image depicts the center case of the training distribu-
tion. The middle image shows a case classified as OOD due to a differ-
ence in the reconstruction method. Finally, the right image represents
an OOD case attributed to variations in patient anatomy/pathology.
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(c) Cert: 0.748, size: 5.6

(d) Cert: 0.137, size: 6.4

Figure 15: Detected nodules in a Duke case with certainty scores and
the length in mm of the largest bounding box axis. Each detection is
presented in its corresponding center slice.

5.3. Transfer Learning

Using transfer learning, we incorporate Duke Data
into the model trained on LIDC data. In Appendix 8,
detailed information about the training and validation
pipeline can be found in Figure 19. During training, the
model learns to classify the anchor boxes into object or
non-object and predict accurate bounding box coordi-
nates for the objects. Once the model is trained, it can
be used for inference. The model predicts the probabili-
ties of each anchor box containing an object and refines
the bounding box coordinates if an object is detected.

The model is trained and validated on the
LIDC/IDLR dataset using K-fold cross-validation.
The validation results demonstrate an average recall
(AR) of 0.99 and an average precision (AP) of 0.858
using an Intersection over Union (IoU) threshold of
0.1. Using different IoU values (0.01, 0.1, and 0.5),
we obtain a mean average recall (mAR) of 0.998 and a
mean average precision (mAP) of 0.852.

Figure 15 displays several identified nodules within a
single Duke case.

In order to investigate the distribution characteristics
of the detected nodules, a comprehensive analysis was
conducted by constructing cumulative histograms for
the bounding box scores and major axis lengths. This
analytical approach, depicted in Figure 16, serves as a
crucial visual tool for understanding the underlying pat-
terns and tendencies within the dataset and detection al-
gorithm.

By examining the cumulative histograms, it is ob-
served that approximately 75% of the lesions exhibit
significant uncertainties, falling within the (0-0.2) and
(0.9-1) ranges. Furthermore, approximately 50% of the
detected lesions have a major axis length of less than 5
mm. Additionally, a substantial majority of 90% pos-
sess a major axis length below the 10 mm threshold.
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Figure 16: Cumulative Step Histograms of detected nodule probabil-
ity based on uncertainty score and major axis length. The red curve
represents the probability, while the blue one shows its first derivative.

5.4. Active Learning

Bellow, we analyze the results for each AL strategy.

AL Strategy 1: Uncertainty Sampling: For every
epoch, we calculate the patient-level certainty for those
cases. This is done by filtering and averaging the con-
sidered lesions’ certainties. Among the total of 95,556
lesion candidates detected in Duke Data, 46% of them
were excluded based on the low-score criteria, 17%
were discarded due to their localization outside the lung
region, and 1.96% were eliminated based on their size.
906 scans were pushed to the certain pool (weak labels)
and 906 to the uncertain pool.

AL Strategy 2: Representativeness: From 906 uncer-
tain scans using our previously defined representative-
ness (recency) criteria, we reduced them to 517 cases.
Those are the ones that will finally be labeled.

AL Strategy 3: Pseudo-Labelling: Among the 906
scans within the certain pool, the average pre-filtered
patient-level certainty was determined to be 0.386 +
0.395. However, the subsequent application of more
stringent filtering measures resulted in an increased
mean score of 0.815 + 0.207.

In conjunction with the LIDC cases, the acquired
pseudo-labels were utilized for training the model. The
results of the training and validation procedures are pre-
sented in Figure 17 and Table 3, respectively. We can
observe how the use of pseudo-labeling considerably
increases the model’s performance. Furthermore, in-
corporating two weak labels per active learning epoch
yields better results compared to using only one weak
label.

| AP AR mAP  mAR

Weak labels | 09234 0.9969 0.9161 0.9934
Y2 weak labels | 0.8898 0.9989 0.8844  0.9987
No weak labels | 0.8331 0.9836 0.8329 0.9836

Table 3: Validation metrics using the three data configurations. "AP”
(Average Precision) quantifies detection model quality by calculating
the area under the precision-recall curve. ”AR” (Average Recall) mea-
sures the true positive rate. Both metrics are computed at IoU=0.1, de-
termining the required overlap for valid detection. Varying IoU pro-
vides insights into localization accuracy at different levels. “mAP”
and "mAR” denote mean values across 0.01, 0.1, and 0.5 IoU.

Average Training Loss

@ No weak labels
¥ weak labels
@ Weak labels
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Figure 17: Training and validation curves for three distinct data con-
figurations: (grey) "No weak labels” - LIDC cases exclusively, (pink)
”Weak Labels” - LIDC cases combined with 906 Duke pseudo-labels,
2 pseudo-labels per AL epoch. (Blue) ”%2 Weak Labels” - LIDC
cases combined with 453 Duke pseudo-labels, 1 pseudo-labels per
AL epoch. The training loss depicted represents the average of cross
entropy and focal loss. The validation metric displayed is COCO val.

5.5. The impact of factors on performance

Figure 18 illustrates the relationship between the an-
alyzed factors and the study metrics. We can see that
for most of the studied factors, the top and bottom
groups overlap, showing that the model is robust to
those factors. Nevertheless, we can find differences be-
tween groups, indicating worse model performance at
the OOD organ level. Table 4 displays the mean per-
centage differences between the top and bottom mean
for each factor. The top group for entropy, delentropy,
GLCM, and noise corresponds to the 5% of the scans
with the highest metric values. Conversely, for OOD,
the top cases indicate that 5% of the data that is farthest
from the training distribution. Regarding recency, the
top cases represent the most recent instances, while the
top previous cancer refers to patients that had it before.

Factor Detection score  Included lesions
Entropy 2.04 3.88
Delentropy 2.65 0.39
GLCM 1.36 0.67
Noise 2.59 2.27
OOD Organ 5.68 4.16
OOD Patient 4.70 3.14
Prosthesis 0.46 1.92
Recency 1.39 0.85
Previous cancer 3.49 4.61

Table 4: Significant variations across factors observed between the
highest and lowest groups.
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Figure 18: Box-and-whisker plots illustrating the relationship between uncertainty and the rate of included lesions across different factors. The
median value is displayed in each plot, and the mean is represented with a green triangle. Sub-figure (a) depicts the uncertainty for the top and
bottom cases per analyzed factor. The case-level uncertainty is derived by averaging the filtered lesion-level uncertainties, utilizing the criteria
elucidated in Section 4.2. While, (b) illustrates the rate of included lesions for the top and bottom cases per analyzed factor. The filtering process
excludes detections that are unlikely to be nodules. To calculate this rate, we divide the number of lesions considered after filtering by the total

number of lesions detected by the algorithm in each scan.

6. Discussion and Interpretation

6.1. Dataset characterization

Noise levels in both datasets, Duke Dataset and
LIDC, are quite similar. Several factors, including
acquisition/reconstruction parameters, total attenuation,
and tissue density, may contribute to image noise. Duke
Dataset has higher noise. That could be because all its
cases are low-dose CT, whereas LIDC encompasses a
mixture of standard and low-dose cases. On the other
hand, Duke cases are newer and are mostly iterative re-
constructed that would apply nonlinear noise reduction.
This may be why the 2 datasets seem similar. Further-
more, the increased standard deviation observed in the
Duke data likely stems from its broader range of images
collected over an extended timeframe.

In terms of texture complexity, LUNA16 is consid-
ered the most challenging dataset for classification al-
gorithms. It has the highest values for Shannon Entropy
and Delentropy. Shannon Entropy focuses on individual
pixel values, while Delentropy captures non-local in-
formation and represents higher-order image structures.
However, the most significant difference between the
datasets is observed at the global level. Duke Dataset
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has higher GLCM-based entropy, indicating that its vol-
umes contain more diverse texture patterns due to the
use of various detectors and protocols. This results in a
greater disparity in entropy values for global measures.

For a deep learning network, higher pixel entropy
suggests that the initial layers, which interpret pixel dis-
tributions, will struggle to learn. This can lead to issues
such as biased weights and longer convergence times.
On the other hand, higher delentropy and GLCM values
imply that the network will face challenges in learning
higher-order features in the middle or later layers.

Our analysis reveals minimal disparities in noise and
textures across the datasets, thus substantiating the ho-
mogeneity of semantic data.

6.2. Out-of-distribution analysis

Focusing on the patient level, for our configuration,
the proposed distance-based method (histogram fea-
tures) works better than the reconstructed one (VAE).
However, this first approach is dependent on the as-
sumption of semantic homogeneity within the data,
which cannot be assumed across all scenarios. (Frolova
et al., 2022) also reports better results using histogram
features than other deep learning approaches.



X-O0D: How does my model see my data?

14

On the other hand, VAE can handle nonlinearities
in data and doesn’t require semantic homogeneities.
Nevertheless, an evident limitation lies in their inher-
ent dependence on the expressive capacity, i.e., the size
and configuration of the latent space for effectively re-
constructing anomalies. Consequently, reconstruction-
based techniques continue to yield notable performance
scores in unsupervised tasks, primarily due to their abil-
ity to compensate for deficiencies to some extent by
fine-tuning the model architecture specifically tailored
to the given task. However, it is important to note
that task-specific hyperparameter optimization deviates
from the principle of assumption-free anomaly detec-
tion, which prioritizes a more agnostic approach.

Focusing on the organ’s distribution, we can find
anatomy shifts and also different image reconstruction
protocols. Although the accuracy at this level is lower,
the classification becomes more challenging due to data
shifts limited to within the organ.

The results prove the importance of making the
OOD analysis into different levels since anatomical and
pathological shifts are not detected at the patient level.

6.3. Active Learning

Going from the lesion-certainties to the patient-
certainties is dependent on the filtering criteria chosen.
17% of the detected lesions are outside the dilated lung
mask. To avoid that and consequently decrease the false
positive rate (FPR), the input of the network could be
the masked volumes. Future work could include this
experiment to ensure there are no contextual misunder-
standings, broken spatial relationships, or incomplete
information that worsen the model training. The higher
rate of discarded lesions is due to the detection scores.

We cannot evaluate the proposed AL method com-
pletely until the data is manually labeled. But regarding
the pseudo-labeling, we can conclude that is a promis-
ing strategy in the realm of active learning, although its
added benefits compared to uncertainty sampling should
be lower because the model already knows how to de-
tect those cases. Adding more data from another dataset
will increase the model’s generalization capability.

As inspired by (Gorriz et al., 2017), the approach
presented here entails a straightforward strategy that
could be further refined by updating pseudo-labels as
the model improves during training or returning sam-
ples to the unlabelled pool when they become uncer-
tain. Recent advancements in this field have introduced
intriguing alternative approaches, such as the reinforce-
ment learning method proposed by (Park et al., 2018).
This particular approach claims significant reductions in
annotation efforts for the challenging task of lung nod-
ule detection in chest X-rays. These novel techniques
hold great potential for enhancing the efficiency and ef-
fectiveness of annotation processes in various domains.

6.4. How does my model see my data?

Beginning with the examination of textures, there are
no significant differences observed between the groups.
When we shift our focus to the detection scores, we find
that higher levels of detail (indicated by larger entropy
values) result in lower scores across all three metrics.
As mentioned earlier, these high-detail cases are more
challenging for the model to learn from since it has pri-
marily been trained on cases with lower levels of detail
(LIDC cases). In terms of the rate of included lesions,
the Shannon Entropy metric shows the most notable dif-
ference. We notice that as the SE value increases, the
rate of included lesions also increases. This can be at-
tributed to the fact that SE relies on individual pixels,
and when the data contains more localized information,
the model tends to detect fewer false positives.

Studying the noise, we consider as top group the
cases with higher noise levels. These cases lead to de-
creased model confidence and an increase in the false
positive rate (FPR). Furthermore, the detection scores
exhibit a greater dispersion within this group. Noise
negatively impacts our specific configuration.

Moving on to OOD organ detection cases, we de-
fine the top cases as those that deviate the most from
the training distribution based solely on lung volumes.
These cases display the lowest detection scores, mean-
ing that those cases confuse our model the most. Addi-
tionally, the rate of included lesions shows the most sig-
nificant difference between top-bottom groups. Some
cases in this group exhibit additional pathologies, such
as pneumonia, which further complicates accurate pre-
diction and contributes to an increased FPR.

When considering patient-level analysis, we arrive
at similar conclusions but with smaller differences be-
tween groups. This indicates that the deviation in data
within the lungs has a more pronounced impact on our
model compared to deviations outside of the lungs. As
previously mentioned, the accuracy of OOD organ anal-
ysis is lower than that of patient-level analysis. How-
ever, the ones spotted at the organ level present a higher
impact. That means that even if there is no prior reason
for considering a case out-of-distribution, our method is
finding data shifts that deteriorate the predictions.

Patients with prostheses introduce some level of un-
certainty, although not as much as observed in any OOD
analysis. This suggests that prostheses do not signifi-
cantly affect our model.

Regarding the recency factor, we consider the top
group the most recent scans per patient. We find that
the model is more confident with the last scans. Risk
patients are usually followed-up, where the lesions may
increase their size. As it varies the model performance,
it supposes a good criterion for representativeness filter-
ing in the AL approach.

Previously cancer-treated patients confuse the model.
Nevertheless, as the group of patients with previous
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surgeries is less populated, these conclusions are not
representative. A bigger cohort should be studied.

Despite the model’s susceptibility to the OOD fac-
tors, the differences between groups are not significantly
pronounced for the majority of them. This observation
demonstrates the considerable robustness of the studied
model. However, it is crucial to acknowledge that al-
ternative models or datasets could display less overlap
between groups, resulting in more discernible perfor-
mance differences.

The robustness of our model can be attributed to sev-
eral factors. Firstly, RetinaNet adopts a two-stage archi-
tecture consisting of a Region Proposal Network (RPN)
and a classification subnet. This design enhances ro-
bustness by improving localization accuracy. Addition-
ally, by integrating features extracted at different lev-
els of the multi-scale feature pyramid, RetinaNet ef-
fectively captures both fine-grained details and high-
level semantic information, thereby handling variations
more effectively and increasing the model’s resistance
to noise and texture shifts. Another key aspect con-
tributing to the model’s robustness is the consideration
of multiple anchor boxes for each object instance. Even
if noise affects some of the anchor boxes, the model
can still rely on others to accurately detect the object.
Furthermore, the incorporation of trained techniques
such as dropout, weight decay, and batch normaliza-
tion aids in reducing the model’s dependence on specific
training samples and enhances its resilience to out-of-
distribution cases, promoting generalization.

Future work could analyze which labeling subset im-
proves more the model performance, whether the one
proposed by an Active Learning algorithm or the one
identified through OOD organ-level analysis. Further-
more, considering that organ-level OOD cases can cause
confusion for our model, we have two options to ensure
reliable outcomes: either manually label these cases to
train the model on accurate detection or exclude them
from the study altogether.

7. Conclusions

In this study, we have successfully demonstrated the
efficacy of OOD analysis in providing valuable insights
into the underlying mechanisms by which a model per-
ceives and interprets data. Furthermore, we have intro-
duced a novel approach wherein OOD factors are em-
ployed as a means of explainability, a concept that has
not been previously proposed in the existing literature.
Additionally, we have devised a comprehensive pipeline
highly recommended to follow when incorporating new
unlabelled datasets into a study, as doing so ensures the
model’s ability to make robust and trustworthy predic-
tions. Due to the absence of ground truth in the data,
which hinders the evaluation of the model’s data affec-
tion, we propose an evaluation methodology grounded
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in filtering techniques and detection scores. Further-
more, our pipeline incorporates an Active Learning
(AL) approach that employs a dual-criteria framework
and integrates weak labels, presenting novel strategies
for detection to minimize the amount of labeled data
needed. The utilization of this pipeline and the inte-
gration of OOD factors as an explainability approach
hold significant implications for advancing the field of
machine learning interpretability. By providing a com-
prehensive framework for identifying and understand-
ing data abnormalities, enhancing model transparency
and robustness.
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