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Editorial

Computer aided applications for early detection and diagnosis, histopathological image
analysis, treatment planning and monitoring, as well as robotised and guided surgery will
positively impact health care during the new few years. The scientific community needs
of prepared entrepreneurships with a proper ground to tackle these topics. The Joint
Master Degree in Medical Imaging and Applications (MAIA) was born with the aim to
fill this gap, offering highly skilled professionals with a depth knowledge on computer
science, artificial intelligence, computer vision, medical robotics, and transversal topics.

The MAIA master is a two-years joint master degree (120 ECTS) between the Uni-
versité de Bourgogne (uB, France), the Università degli studi di Cassino e del Lazio
Meridionale (UNICLAM, Italy), and the Universitat de Girona (UdG, Spain), being the
latter the coordinating institution. The program is supported by associate partners,
that help in the sustainability of the program, not necessarily in economical terms, but
in contributing in the design of the master, offering master thesis or internships, and
expanding the visibility of the master. Moreover, the program is recognised by the Eu-
ropean Commission for its academic excellence and is included in the list of Erasmus
Mundus Joint Master Degrees under the Erasmus+ programme.

This document shows the outcome of the master tesis research developed by the
MAIA students during the last semester, where they put their learnt knowledge in prac-
tice for solving different problems related with medical imaging. This include fully
automatic anatomical structures segmentation, abnormality detection algorithms in dif-
ferent imaging modalities, biomechanical modelling, development of applications to be
clinically usable, or practical components for integration into clinical workflows. We
sincerely think that this document aims at further enhancing the dissemination of infor-
mation about the quality of the master and may be of interest to the scientific community
and foster networking opportunities amongst MAIA partners.

We finally want to thank and congratulate all the students for their effort done during
this last semester of the Joint Master Degree in Medical Imaging and Applications.

MAIA Master Academic and Administrative Board
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Abstract

The fetal heart can experience congenital heart malformation and functional abnormalities. Ultrasound imaging
plays a vital role in assessing the heart structure and function of the developing fetus due to its non-incisive nature.
However, the detection of such abnormalities via mass screening is only 50%, suggesting a need for further improve-
ment. Many researchers have been working in order to detect abnormalities in the heart from ultrasound imaging
through segmenting cardiac chambers, valves, and blood flow patterns but most of the works are based on adult
hearts. This motivates us to explore fetal echocardiographic images for which we collected 4D volume fetal heart
images to perform temporal registration to segment the myocardium and left ventricle chamber from these images.
Having a deep learning-enabled standardized approach to evaluation can improve precision and accuracy. Thus, in
this project, we propose to develop methods for automatic 3D segmentation based on temporal registration from 4D
fetal echo images. The 4D fetal echo images were collected and properly annotated with the help of an existing
cardiac motion estimation algorithm. Our proposed model is built upon UNET based image registration model as a
baseline with the residual branch, which is guided by a variational autoencoder to enforce structural features of the
heart via latent space training and adversarial learning. We also plan to make the proposed model perform multi-scale
registration. We have developed and tested our proposed network for both 2D (Adult images from CAMUS Dataset)
and 3D (Fetal Data) segmentation which showed significant performance in both cases. As evaluation metrics, Mean
squared error, and Dice Metric were computed both before and after the registration process.

Keywords: Fetal Echocardiography, Ultrasound, Image Registration, Variational Autoencoder, Adversarial Learning

1. Introduction

Ultrasound is one of the major imaging techniques
that play a vital role to monitor cardiac functions and
abnormalities. Due to its non-invasive nature ultrasound
imaging has gained much popularity and has been used
to assess heart structure and function by monitoring car-
diac chambers, valves, and blood flow patterns. This
imaging modality enables clinicians to diagnose and
monitor congenital heart defects, providing valuable in-
formation for early intervention and management. Cian-
carella et al. (2020), Sachdeva and Gupta (2020) showed
the significance of the use of ultrasound in the field of
cardiac imaging.

Heart structure and shapes such as Cardiac chambers,
valves, blood flow patterns, etc can be used as good
identifiers to detect and evaluate several cardiac diseases
like Congenital heart defects, Coronary artery disease,

Valvular heart diseases, Cardiomyopathies, etc. Re-
search works from Green et al. (2023), Ong et al. (2020)
shows that the information gained from the shape of the
myocardium and heart chambers can give valuable in-
sight which can detect and evaluate various Congenital
heart defects. Researchers have been working to im-
prove the detection of these diseases by employing au-
tomatic detection of heart structures and shapes. Having
a deep learning-enabled standardized approach to auto-
matically segment and detect can improve precision and
accuracy.

Although most of the works are based on assessing
the adult heart, the fetal heart also can experience con-
genital heart malformation and functional abnormali-
ties. However, the detection of such problems via mass
screening is only around 50%, suggesting a need for
improvement. Being surprised at birth with fetal heart
abnormalities instead of detecting them during mid-
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gestation reduces the time available for planning and
executing surgical treatment, and leads to poorer out-
comes. Further, the evaluation approach of evaluating
fetal heart health via fetal echo depends on many man-
ual processes and involves subjective interpretation.

In our work, we are proposing a 3D temporal image
registration-based segmentation technique to automat-
ically detect and assess the left ventricle heart cham-
ber and myocardium. The novelty of this research is
mainly:

• A whole new 4D fetal echocardiography dataset
with annotated 3D LV and myocardium masks for
each 3D volume image. There is less research on
fetal heart echocardiography due to the scarcity of
well-produced datasets. We proposed an efficient
workflow to manually segment the heart chamber
and myocardium with temporal registration. An
existing cardiac motion estimation algorithm has
been used to assist the algorithm development. We
hope that the publication of this new dataset will
create a benchmark for further fetal heart echocar-
diography analysis and assessment.

• As the estimation of the deformation field by regis-
tration between two time points can help share the
information between two segmentation branches,
we are proposing a robust and efficient tech-
nique for temporal image registration for 4D fetal
echocardiogram image volume.

We have proposed a Multi-class Anatomically Con-
strained and Multi-scale Registration (MACMR) frame-
work in our research. The proposed registration method
has the following integral parts:

• Vanilla-DLIR: The baseline architecture of the
temporal registration is based on the typical
UNET-like structure for performing image seg-
mentation. The use of residual blocks helps to
avoid the degradation of the features’ quality as a
non-zero regularizing path will skip over them. We
are calling this baseline model Vanilla DLIR (Deep
learning based image registration) as here the en-
coders of UNET try to extract features from lower
to higher space and pass to the bottleneck whereas
the task of the decoder is to produce the deforma-
tion field for the moving image so that it can be
warped to match as much as possible as the target
image.

• AC-DLIR: We have proposed to include a Vari-
ational encoder to enforce structural features of
the heart via latent space training. The local
segmentation-aware loss (fixed and moved labels)
uses pixel-level predictions and may not ensure
a satisfactory global match between the warped

source and target anatomical masks. For this rea-
son, the global latent space features can be benefi-
cial for the network to perform better.

• AdvAC-DLIR: Moreover, we also propose to in-
clude adversarial learning as like zero-sum game
theory (one agent’s gain is another agent’s loss),
where the discriminator is used to classify moved
and fixed images.

Still, there is room for performance improvement.
Hence, we proposed Multi-class Anatomically Con-
strained and Multi-scale Registration (MACMR) frame-
work. Additionally, we need a registration framework
that can provide a suitable deformation field for all the
scales of decoders in the proposed segmentation net-
work to share the motion information. We have eval-
uated our proposed model for 2D as well as 3D volume
datasets. For 2D data, the CAMUS 2D adult Echocar-
diography data were used from Leclerc et al. (2019)
whereas for 3D data, the proposed fetal dataset. In order
to validate our proposed framework, we have conducted
several experiments on the existing DL-based registra-
tion pipeline.

2. Literature Review

Researchers have worked in the field of medical im-
age registration in various directions. A broad topic like
image registration can be classified into various objec-
tives. The methods can be interpatient or intra-patient
(same patient at different time points), and the images
can be from one single imaging technique (unimodal) or
can be of multimodal techniques. The registration meth-
ods can be deformable, affine, or simply rigid. Also
based on the organ of interest, it can be the brain, lungs,
heart, or even tumors and so on. Input images can be of
different types of dimensions or combinations of them.
In our work, we have tried to cover the unimodal, in-
trapatient fetal echocardiographic registration based on
4D volume images. In the following sections, the recent
trends in image registration as well as focus based on
ultrasound techniques will be explored.

2.1. Deep learning based Image Registration

We will restrict the discussion of trends in medical
image registration in deep learning-based (DL) tech-
niques as the recent works have shown an upward trend
in the domain of image registration yielding state-of-
the-art for various applications. The use of conven-
tional similarity-based metrics such as mean-squared er-
ror, structural similarity, cross-correlation, mutual infor-
mation, etc work well for unimodal image registration
in the case of CT or MRI images, as shown in Gong
et al. (2017), Heinrich et al. (2012). But the presence
of noise such as in ultrasound images or in the case
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of multi-modal registration they failed to perform sat-
isfactorily (Rivaz et al. (2014)). Many researchers have
replaced these conventional methods with CNN-based
deep-learning image registration and achieved success.

Cheng et al. (2018) proposed an unsupervised
learning-based registration method to train a classifier
to learn the deformation field using continuous proba-
bilistic values for similarity measures. In their work,
they have claimed the learned deep similarity metric
outperforms MI as in conventional methods in brain T1-
T2 registration. The challenge was to have a smooth
first-order derivative to have a better overlap between
the fixed and moving images. Other works from Si-
monovsky et al. (2016), Ferrante et al. (2018) also ex-
plored the use of deep similarity metrics with unsuper-
vised or weakly supervised training. The challenge of
these works was to acquire an accurately aligned im-
age. Images with noise such as ultrasound or in the case
of multi-modal image pairs, the same performance will
be difficult to achieve.

Compared to other modalities, ultrasound images are
a bit challenging due to the image acquisition technique
and also due to the presence of artifacts such as speckle
noise. Haskins et al. (2018) in their work showed the
comparison of multimodal image registration based on
deep learning similarities. They have shown the CT-
MRI pairs have better registration than the MRI-US pair
in the case of the use of single similarity metrics. Fer-
rante et al. (2018) proposed the use of multiple met-
rics instead of single ones and showed improved per-
formance for ultrasound image registration.

Wu et al. (2016) have introduced the use of vari-
ational autoencoders to perform latent space training,
they have shown the use of both local and global fea-
tures improved the performance of training with only
local features. They have used the segmented masks as
well as intensity images of brain MRI to perform the
latent space training for image registration. They used
a stack of autoencoders for the model to learn the la-
tent space features and compared the result with Dice
Similarity Coefficient (DSC). Although the dice simi-
larity between the masks improves the smoothness of
the shapes of the human organ, the intensity similarity
between fixed and moving image still needs further im-
provement.

To provide better regularization which was lacking in
the works discussed by VAs, some researchers proposed
the use of adversarial learning or GAN-based models.
As human organs are highly regular, better regulariza-
tion is needed to have plausible shapes in the produced
output. Yan et al. (2018) in their work have trained
GAN-based networks to discriminate between ground
truth-based and prediction-based transform to deform
images. In their work, they have used the adversarial
loss to optimize the accurate transform to deform the
fixed image. Fu et al. (2020) also showed similar im-
provement in registration performance by introducing

adversarial loss. GAN-based models helped to gener-
ate more plausible and medically acceptable structures
and shapes after registration in these research works.
However, the similarity in intensity matching for GANs
still needs to be investigated thoroughly. Some re-
cent advances also show the use of transfer learning,
LSTMs, one-shot predictions, Faster RCNN, etc in Xie
et al. (2022), Fechter and Baltas (2019), Jaderberg et al.
(2015). However, all these have been applied to mostly
CT and MRI images. While applying ultrasound im-
ages, most of them do not show any satisfactory im-
provement.

2.1.1. Image Registration in EchoCardiography
For cardiac chamber segmentation, ultrasound im-

ages can be acquired in two chambers (A2C) or four
chambers (A4C) view. An optical flow estimation-
based technique for deep, fully convolutional networks
was suggested by Jafari et al. (2018). Jafari et al.
(2019) also proposed the use of semi-supervised learn-
ing where they have incorporated inverse mapping with
the use of adversarial learning and inverse mapping of
the moved and target masks for LV segmentation. Yoon
et al. (2021) in their work showed the use of Regional-
CNN to extract geometrical attributes to perform LV
segmentation. Variational autoencoders as discussed
before have been also used for cardiac chamber seg-
mentation tasks in cardiac ultrasounds. Painchaud et al.
(2019) used VAs to represent the latent space training.

Some works have been also done in fetal echocar-
diography. Yang et al. (2020) in their work have used
DeeplabV3 with UNET to segment the left ventricle
chambers for the fetus’s heart. Dong et al. (2019)
also worked with A4C view for residual visual block
network-based segmentation of the fetal heart chamber.
But as the dataset is very limited for fetal echocardiog-
raphy, still the performance of these models needs to be
investigated further.

3. Dataset Description

4D echocardiography dicom images were acquired
for studying out of which 4 were healthy fetuses and
the rest were diseased cases. The fetuses were of mixed
gender and different ethnic groups (Chinese, Indian,
Malay). Most of the cases had a gestation age between
22 to 32 weeks. The images were obtained in accor-
dance with protocol 2014/00056 from Domain Specific
Review Board and with the consent of all the partici-
pants. The 4D echo images were carried out with GE
Voluson 730 ultrasound connected to the RAB 4-8L
transducer (GE Healthcare Inc., Chicago, Illinois, USA)
which has approximated 154 µm axial resolution and
around 219 µm lateral resolution along with a trans-
ducer of 5 MHz.
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Figure 1: Visualization of intensity image slices (Patient001).

Figure 2: Visualization of annotated masks (Patient001).

3.1. Data Preparation
As the ultrasound raw images acquired were in 4D

dicom format, they needed to be transformed to 3D for-
mat. This will help to extract the time points for each
patient’s case. To do so, a special software named “4D
View” developed by GE Healthcare was used. This step
will generate a cine sequence or cine loop video which
will hold the information of desired slices for each time
point. The inputs for each dicom series image were the
cine length which means the number of cine sequences
to be stored in the cine loop, start and end slices consid-
ering the proper visualization of the region of interest
which is the left ventricle in this case, and the step size
which means the distance (in millimeters) between each
slice in the cine loop sequence. After that, the dicom se-
ries 4D images will be transformed into a series of cine
sequence videos which will hold the temporal informa-
tion for all the slices. After extracting time points for
each case, the next step is to extract slices for each time
point for all the patient cases. A Matlab script was writ-
ten to extract the video frames from each video setting
the distance between the vertical slices. The start and
end slices were chosen and then the picture frame was

cropped so that each slice will hold the region of inter-
est and not contain unnecessary pixels. After extracting
the slices from each time point they are ready for image
registration to get the deformation field. A set of slices
as an example after the data preparation step is demon-
strated in Figure 1.

3.2. Registration
The target of this step is to register the slices with re-

spect to each time point to derive the deformation field.
Each slice image at a particular time point (tn) will be
registered with respect to the initial time point (t0) and
the previous time point image (tn−1). For performing
image registration, SimpleElastix by Lowekamp et al.
(2016) and Cardiac motion estimation library by Wipu-
tra et al. (2020) were used. Here, the cardiac motion
tracking uses the Fourier b-splines spatiotemporal mo-
tion model to fit the deformation fields. It requires the
initial and final time points with the number of slices to
be specified. After setting up the paths and initializing
the bspline-solver, it performs the pairwise registration
and stores the displacement fields for each pair with the
scaling and transformation parameters. For each single
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Figure 3: Sample intensity image slice and mask pairs.

image slice at (tn), there will be two displacement fields
which will be later combined using a weighted average
to transform and derive the mask for that time point (tn).

3.3. Segmentation

The next step after registration is manual segmenta-
tion or annotation. For this, two specific time points
(preferably end-systolic/initial and end-diastolic/final)
were chosen for each case. After that, all the slices
for those time points were manually annotated. For
performing the annotation, a quick and interactive seg-
mentation technique called “Lazy Snapping” by Li et al.
(2004) was chosen. It helps to choose the foreground
and background by using a marker and based on that
it generates the mask for each particular slice. The
greater number of slices, the more robust data but also
the number of slices might make the process a bit time-
consuming as manual segmentation takes a consider-
able amount of time. After generating the segmenta-
tion mask, they were also checked and assessed by ex-
perts and their feedback was received. The generated
segmentation masks would be irregular or not smooth
enough as they might have staircase effects or holes.
These will be corrected and smoothed in the later steps
before generating the masks for other time points. A
set of segmented masks as an example after the manual
annotation using lazy snapping can be seen in Figure 2.

3.4. 3D Reconstruction

After generating the left ventricle masks for end-
systolic/initial and end-diastolic/final time points, the
next step is to combine these 2D slices to reconstruct
the 3D mask for those points. For 3D reconstruction,
“VMTK (Vascular Modeling Toolkit)” by Izzo et al.
(2018) has been used which is a popular software for
vascular image reconstruction and geometric analysis.
The paths for all the slices were given as inputs and the
result was the 3D reconstructed mask for the left ven-
tricle at a given time point. As the results from the lazy
snap step were not smooth and contained some artifacts,

these 3D masks were corrected and smoothed with the
help of an expert using “Geomagic Wrap” Software.
This reverse engineering software helped to smoothen
and regularize the mask by removing the artifacts. Af-
ter the 3D mask was approved by the expert, later it was
used to generate the other time point masks. To gener-
ate the 3D masks for other time points, the deformation
fields obtained in the image registration step were used.
Finally, for all the patient cases, 3D masks were gen-
erated for all the time points which were later used for
training and testing the deep learning models. An ex-
ample of the 3D mask can be seen in Figure 4.

3.5. Image Preprocessing

The intensity images acquired through the ultrasound
scanner generated some artifacts like constant white
boxes or arrows in the image which can be seen in
Figure 5. For better performance during train, these
constant regions should be removed or replaced by the
neighboring pixel intensities as they might generate un-
desired results during training. As these artifacts were
common and at the same position for all the images over
slice and time for any cases, the same step for remov-
ing these artifacts from one image has been applied for
all. To remove, the constant regions from the image,
a simple linear interpolation method was used. In this
method, an interpolation line was drawn between the
left and the right pixel of the defected area, and then the
defected area was interpolated using the intensity val-
ues from the interpolation line. The sample results can
be seen in the same Figure 5.

3.6. Image-Mask Pair Generation

In the last step, the inner wall of the reconstructed
masks was filled and reconstructed masks were bina-
rised where (class 0 represents the background, 1 for the
cavity of the left ventricle, and 2 for the myocardium.
Later 3D masks were paired with the corresponding
3D intensity images for each time point to finalize the
dataset for training. In the end, 14 4D echocardiography
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Figure 4: Example 3D Mask for Patient001 (Time014).

Figure 5: Intensity image artifact removal example.

images were transformed into a total of 518 3D images
where each of the 3D images holds around 40 2D slices.
As the nifty formatted files are hard to visualize in the
report, a sample of slices for image and mask pairs are
shown in Figure 3.

4. Experimental Methods

Let’s assume f and m are two volume images that
can be referred to as target/fixed image and moving im-
age. The goal is to deform the moving image so that
the anatomical location for all the voxels in fixed and
moved images will be the same. Deep learning-based
image registration (DLIR) neural networks will be used
to model the displacement field which will transform
all the voxels in the moving image so that they can be
aligned with the fixed image. Let’s say, the displace-
ment field u will be modeled by CNN as the function
gθ( f ,m) = d, where d is the displacement field and θ is
the set of parameters learned by the CNN network. The
main aim is to optimize the set of parameters so that the

expected loss function can be minimized using Stochas-
tic Gradient descent. Several approaches and experi-
ments have been conducted to perform optimal image
registration. The approaches will be discussed as fol-
lows.

4.1. Approach 1: Vanilla-DLIR

The underlying architecture of Vanilla DLIR is based
on the traditional UNET architecture by Chen et al.
(2021); Ronneberger et al. (2015) used for segmenta-
tion. The UNET consists of encoding and decoding lay-
ers with residual skip connections. This can be seen in
Figure 6. The network used receives input fixed and
moving images both of 256 ∗ 256 ∗ 32 sizes which are
concatenated to 2-channel 3D images. The 3D convolu-
tion is applied both in the encoding and decoding layers
with a kernel size of 3, the stride is kept as 2 which
is followed by Batch Normalization and ReLU layers.
Max pooling is applied for downsampling in the encod-
ing layers to reduce the spatial dimension of the image
by half. The number of channels increases where the
image size is reduced for the coarser representation of
the input in the pyramid hierarchy. The bottleneck layer
after the encoding layers captures the most abstract fea-
ture of the input image volume.

Then, the decoding layers perform the upsampling
and convolutional operations to generate the displace-
ment field. The convolutional layers consist of trans-
posed 3D convolutions followed by batch normaliza-
tion and ReLU layers. Skip connections from the en-
coding layers directly applied by concatenating. The
conventional path cannot degrade the features’ quality
as a non-zero regularizing path will skip over them. On
the other hand, the direct skipping of the non-zero reg-
ularizing path cannot hamper the performance as it has
been added to the conventional path’s learned features.
Each layer of the decoding stage generates a finer spa-
tial scaled image for generating the deformation field as
an output of the final convolutional layer containing a
1*1 image filter and a softmax activation function.
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Figure 6: UNET for Image Registration with Skip connection.

Figure 7: Vanilla-DLIR architecture.

4.1.1. Vanilla-DLIR Loss Functions
For vanilla-DLIR, unsupervised loss functions have

been incorporated which consists of two components
mainly. The first component is the similarity loss for
having a better approximation of the fixed image in ap-
pearance for the moved image. Whereas, a regulariza-
tion loss function called binding energy loss is used to
penalize the non-regular spatial differences in order to
have a smoother and more plausible displacement field.
The equation for the total unsupervised loss is as follows
where λ is a regularization parameter.

Lus( f ,m, d) = Lsim ( f ,m ◦ d) + λLsmooth (d) (1)

There are a couple of similarity loss functions that
can be used such as mean squared error(MSE), cross-
correlation(CC), etc but for this work, Global Mutual
Information(GMI) loss has been used. The statistical
dependency or mutual information between two random
variables, generally the fixed and the deformed moving
image using the displacement field, is measured by the
GMI loss. GMI loss seeks to maximize the similarity in
appearance between the fixed image and the produced
output. The model is compelled to acquire meaningful
and instructive representations by maximizing mutual
information. Firstly, the mutual information between

the local patches is calculated and then the local patches
MIs are aggregated to get the global mutual information.
To calculate the mutual information for the patches in f
and m, the following equation can be used,

I( fx; my) =
∑

x∈X

∑

y∈Y
P( fx,my) log2

(
P( fx,my)

P( fx)P(my)

)
(2)

Higher mutual information yields a better alignment, so
minimizing the negative GMI loss, the model tries to
maximize the MI between the fixed and moved images.

GMI loss enforces the model to approximate the fixed
image but the produced output may not be as smooth as
desired. To have a smooth and more physically realis-
tic deformed moving image, binding energy loss is also
used in addition to GMI loss. Using a diffusion regular-
izer can leverage the spatial gradients of the deforma-
tion, u.

Lsmooth (d) =
∑

d∈D

∥∇u(p)∥2 (3)

The differences between neighboring pixels in the 3D
image are used to approximate the spatial gradient.
The resulting architecture of Vanilla-DLIR with its loss
function can be seen in Figure 7.
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4.2. Approach 2: Anatomically Constrained DLIR

Anatomical masks of the Myocardium and left ven-
tricle cavity are available from the data annotation part,
the vanilla-DLIR can leverage from it. Balakrishnan
et al. (2018) and Hu et al. (2017) in their respective
research works showed that, the use of deformed seg-
mentation masks during training enhances the perfor-
mance of image registration in Vanilla-DLIR. In order
to leverage the segmentation masks, first the registra-
tion field d, derived from the model network was used
to deform the fixed image mask. After that, the seg-
mented mask of the deformed image became available
during training. As the segmented masks assign labels
to the specific regions in the image, the same specific re-
gion in the fixed mask and deformed mask should also
overlap. That was the key idea of getting the use of
supervised loss in addition to the unsupervised loss for
Vanilla-DLIR. Dice (1945) shows to quantify this vol-
ume overlap, Dice Score can be used. For example, the
regions of either myocardium or left ventricle cavity, in
this case, can be expressed in terms of the fixed and
moved image can be expressed as rv

f andrv
m ◦d. The dice

score can be computed to quantify the overlap of both
regions as follows.

Dice
(
rv

f , r
v
m ◦ d

)
= 2 ·

∣∣∣∣rv
f ∩

(
rv

m ◦ d
)∣∣∣∣

∣∣∣∣rv
f

∣∣∣∣ + |rv
m ◦ d|

(4)

The dice score lies between 0 to 1, from no overlap to
complete overlap. The dice score loss was definedLdice
over the whole segmented regions v ∈ [1,V] as:

Ldice

(
r f , rm ◦ d

)
= − 1

K

V∑

v=1

Dice
(
rv

f , r
v
m ◦ d

)
(5)

4.2.1. Latent Space Consideration
In addition to dice score loss, the global anatomical

constraint was also considered to compute the global
loss. The local segmentation-aware loss computed by
dice loss (fixed and moved labels) uses pixel-level pre-
dictions and may not ensure a satisfactory global match
between the warped source and target anatomical masks
shown by Oktay et al. (2017). Here, the segmenta-
tion masks for the fetal echo image volumes, represent
the myocardium and left ventricle cavity. Segmentation
masks represent pathological entities like brain tumors
or skin lesions, which are very irregular in shape and
topology. Whereas, Human organs like this scenario
are highly regular, and are used to constrain registra-
tion. So, the plausibility of the shape is very impor-
tant to get the correct registered images. For this rea-
son, the latent space of the both target and the moved
mask was considered to compute the global loss func-
tion. The global loss function considers the anatomical

plausibility of the deformed source mask when compar-
ing it to the target mask. Moreover, Oktay et al. (2017)
also shows that, local dice loss acts at the pixel level,
and back-propagated gradients are parametrized exclu-
sively by pixel-wise individual probability components
and provide little global context. To put global context
in the loss computation, variational encoders were used
to transform the target and moved masks to latent space,
and compute global loss. The idea of a variational au-
toencoder can be understood in the next section and vi-
sualized in Figure 8.

Figure 8: Learning global anatomical features.

4.2.2. Variational Autoencoder
To compute the global loss from the observations, the

segmented masks needed to be transformed into latent
space. A Variational autoencoder exactly does the same
as shown by Oktay et al. (2017). Variational autoen-
coders(VAE) provide a probabilistic manner to describe
the observations in latent space. In this work, the idea
of VAE was adapted with a little bit of change in the ar-
chitecture can be seen in Figure 9 to make it work for
fetal echo masks for the myocardium and left ventricle.
VAE contains two parts, encoders and decoders with a
bottleneck layer. Encoders learn effective data encod-
ing from datasets and pass it into bottleneck architec-
tures. The autoencoder’s decoder employs latent space
in the bottleneck layer to generate dataset-like images.
These results backpropagate from the neural network in
the form of the loss function. For this work, the encoder
part had 4 hierarchical stages each containing a block
of convolutional neural network having kernel size=3
layer followed by batch normalization and ReLU lay-
ers. The downsampling was done by max pooling hav-
ing kernel size=3, stride=2, and pooling=1. Residual
connections were introduced at each stage to improve
the flow of gradients during training. The inputs of the
encoder were the single channel mask volumes of size
256 ∗ 256 ∗ 32 which were halved at later stages. The
bottleneck layer was a linear network transforming the
output from the encoder to the latent space and passing
it to the decoder. The decoder has the same 4 stages as
the encoder where each stage has 3 blocks of convolu-
tional neural network followed by batch normalization
and ReLU.The upsampling was done with a scale factor
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of 2 using trilinear interpolation. Finally, after the last
stage, the top input-like images were reconstructed.

The loss functions for the variational autoencoders
were a combination of 4 loss functions.

• Dice Score loss

• Euclidean L2 norm loss

• Structural Similarity loss

• Kullback-Leibler(KL) Loss

The dice score loss is computed between the input and
reconstructed image using the equation 5.

The Euclidean L2 norm loss computes the Euclidean
distance between the input images and the reconstructed
ones. Let’s say, if i and r are the input and reconstructed
masks respectively, the L2 loss was computed by the
following equation:

LL2(i, r) =
1
N

N∑

n=1

(in − rn)2 (6)

L2 norm penalizes the larger distances between the vox-
els in input and reconstructed masks more than the
smaller distances.

To assess the quality of the image reconstruction by
guiding the image generation, the structural similarity
measure index was also computed as shown by Wang
et al. (2004). Structural similarity loss can be computed
to penalize the dissimilarity between the input and the
reconstructed masks. The following equation was used
to compute the SSIM loss:

LS S IM (i, r) = 1 − (2µiµr +C1) (2σir +C2)(
µ2

i + µ
2
r +C1

) (
σ2

i + σ
2
r +C2

) (7)

where µi and µr are the average pixel intensities of i and
r, σi and σr are the standard deviations of pixel inten-
sities. Finally, σir is the covariance between the pixel
intensities of the two images. C1 and C2 are small con-
stants added to stabilize the division when the denomi-
nator approaches zero.

The regularization loss named Kullback-Leibler (KL)
divergence in Kingma and Welling (2014) forces the
distributions returned by the encoder to be close to a
standard normal distribution. KL loss will be a good
representative to assess the discrepancy between the
latent and desired distribution, and thus in generative
models like VAEs, the KL divergence can be often
used as a regularization term. The goal is to penalize
the discrepancy between the learned latent distribution
and a prior standard normal distribution. Let’s say, for
the standard normal distribution prior is P(z), and the
learned approximate posterior Q(z|x), KL loss will be:

LKL(P(z),Q(z|x)) =
1
2

∑(
µ2 + σ2 − log(σ2) − 1

)

(8)

where µ and σ are the mean and standard deviation of
the approximate posterior distribution Q(z|x) for each
latent variable z and will be summed for all latent vari-
ables. Finally, the variational autoencoder is trained to
optimize the total loss function which can be described
as:

Lva(i, r, P(z),Q(z|x)) = Ldice(i, r) +LL2(i, r)
+LS S IM(i, r) +LKL(P(z),Q(z|x))

(9)
For training and validating the variational autoen-

coder, out of 518 3D annotated volume masks discussed
in the dataset description section, 452 volume masks
were used for training and the rest for validation. To
improve the generalization of VAE, some data augmen-
tation techniques like flipping and center-cropping were
also used. An example of the results after the training
of VAE can be seen in Figure 11.

Figure 9: Variational Autoencoder Architecture.

4.2.3. AC-DLIR Loss Functions
The unsupervised loss introduced for vanilla-DLIR

and the dice score loss from equation 5 are combined.
In addition to that, image global loss is computed too.
For computing global loss, the latent space considera-
tion from VAE is used. Both the input and predicted
mask are passed by the variational autoencoder model
to generate the reconstructed masks. The global loss is
computed between these two reconstructed masks both
for the myocardium and left ventricle and added to-
gether. The global loss is the computation of the L2
norm which is discussed in equation 6. The total loss
with anatomical constraint consideration for AC-DLIR
is:

La

(
f ,m, r f , rm, d

)
= Lus( f ,m, d)

+βLdice

(
r f , rm ◦ d

)
+ γLL2(r f , rm)

(10)

where, both β and γ are regularization parameters. Fi-
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Figure 10: Proposed Adversarial Anatomically Constrained (AdvAC) DLIR architecture.

Figure 11: Original and reconstructed masks by VAE (top: left ventricle, bottom: myocardium).

nally, the architecture used for AC-DLIR can be visual-
ized in Figure 10 excluding the highlighted part.

4.3. Approach 3: Adversarial AC-DLIR
The next addition to the network proposed is the in-

clusion of adversarial learning. As shown by Mahapatra
et al. (2018), the use of the GAN network as a zero-sum
game theory could be beneficial for learning deformable
fields in image registration. In the proposed network,
the part of AC-DLIR for generating the deformable im-
ages with the produced deformation field was treated as

a generator for the adversarial network. In addition to
that, a discriminator was also created which was able
to classify the fixed and moved images. The architec-
ture of the discriminator consists of 5 layers each con-
taining convolutional blocks with 2 residual units out-
putting 8,16,32,64 and single channels respectively. The
input was the single channel input image volume. Ker-
nel size was kept at 3 with strides 2,2,2,2 and 1 at the
respective layers and with LeakyReLU activation. The
dropout layer was also used with a probability of 0.10.
For the loss function of both the generator and discrim-
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Figure 12: Proposed MACMR architecture.

Models MSE Dice Score Mean Dice ± stdBG Myo LV

Without Registration 0.00972 0.96678 0.69391 0.76046 0.80235±0.05491
Vanilla-DLIR 0.0042 0.97352 0.74977 0.87523 0.88487±0.03261

AC-DLIR 0.00598 0.97972 0.81437 0.91935 0.90303±0.03447
Adv-DLIR 0.00533 0.97429 0.79278 0.86842 0.85733±0.04129

AdvAC-DLIR 0.00589 0.98742 0.82751 0.93573 0.91689±0.02596
MACMR 0.00489 0.98779 0.84871 0.95423 0.94245±0.02474

Table 1: Comparison of proposed registration models on CAMUS 2D Dataset.

Models MSE Dice Score Mean Dice ± stdBG LV Myo
Without Registration 0.00377 0.99093 0.78917 0.72605 0.83539±0.12798

Vanilla-DLIR 0.00296 0.98699 0.70087 0.58543 0.75776±0.04036
AC-DLIR 0.00251 0.98959 0.73347 0.64435 0.80013±0.05401
Adv-DLIR 0.00339 0.99031 0.73836 0.67389 0.80989±0.05142

AdvAC-DLIR 0.00258 0.99089 0.79884 0.73482 0.84668±0.04586

Table 2: Comparison of proposed registration models on Fetal 3D Dataset.

inator, the binary cross-entropy loss was used. While
training, the generator, and discriminator will fight o
gain over each other as the task of the generator would
be creating as much as plausible images as the fixed im-
age whereas the discriminator would try to discriminate
them. The loss from the generator was added to the
La( f ,m, r f , rm, d) from equation 10 as the deformable
field generated by training would be capable of better
generalization if the loss of the generator was being op-
timized.

Ladac

(
f ,m, r f , rm, d, sm

)
= Lus( f ,m, d)

+βLdice

(
r f , rm ◦ d

)
+ γLL2(r f , rm) + ϕLg(m, sm)

(11)

In this loss function, equation, ϕ is a regularization
parameter set as 0.0001, m and sm are the moved image
and assigned real labels to the moved image. The final

architecture after adding the adversarial network to the
AC-DLIR can be seen in figure 10.

4.4. Approach 4: Multi-Scale Registration (MACMR)

The final proposal to improve the performance of im-
age registration is Multi-scale (multi-resolution) train-
ing, where trained parameters on the lower scale will
be used to initialize the higher-scale training. As the
features learned at the lower scales can guide the train-
ing for the higher scale, the network at a higher scale
will have a better initialization. Better initialization of
the network should result help the network converge
faster to achieve better performance. Moreover, it can
be shown that Multi-resolution training helps the net-
work to learn both local and global information. It
can improve the performance of the model with various
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scales and enhance its overall performance. The pro-
posed MACMR architecture is demonstrated in Figure
12.

5. Results

We have implemented all the methods discussed
above in Pytorch. The experiments were performed
on NVIDIA GeForce RTX 3090 Ti. The inputs were
kept as 256*256*32 resolution for the fetal dataset. We
have performed an analysis of the performance of the
model for both 2D Camus and 3D Fetal datasets. During
the experiments, the Adam optimization technique was
used and the learning rate was kept at 0.001 with the use
of a learning rate scheduler. We have trained the model
with 100 epochs. For the training of variational autoen-
coders, the same hyperparameters were used with 200
epochs. For evaluation and comparison of the results,
we have used mean squared error from equation 6 and
Dice Score Coefficient from equation 5 were used.

The detailed comparison between the proposed mod-
els can be seen in Table 1 and 2. We have also visual-
ized the results for 2D slices which can be seen in the
appendix from figure 13, 14, 15, 16. In the figure, the
masks were colored according to the overlapping of the
pixels where green means true positive, and yellow and
red define pixels which are false positive and false nega-
tive. The fifth column indicates the overlap of fixed and
moving images whereas the sixth column indicates the
overlap of the fixed and moved image slices.

6. Discussion

The results are presented for two datasets: 2D CA-
MUS and 3D Fetal in 1 and 2 respectively. The com-
putation of evaluation metrics between fixed and mov-
ing images is referred to as without registration. Af-
ter registration, evaluation metrics are again computed
between fixed and deformed images. The first experi-
ment was done using the baseline model Vanilla-DLIR.
We can see that the mean-squared error decreases after
registration which indicates that in the case of vanilla-
DLIR, the unsupervised registration without consider-
ing the anatomy, the similarity between two intensity
images increases, but the similarity between fixed and
moved masks does not improve satisfactorily or fail in
some cases. For that reason, the DSC of the left ven-
tricle and myocardium does not improve much. Figure
13 also shows that the overlapping of the fixed and de-
formed images is highly irregular containing false posi-
tive and negative cases.

Next, we tried to add latent space training to extract
the global features using variational autoencoders. In
this experiment, we can see the MSE metric decreases
as well as the DSC improves than Vanilla-DLIR. Figure
14 also indicates a better overlapping. As VAEs add

global context to the learning, model, the results also
prove that adding global latent space learning can be
beneficial to perform better registration.

The overlapping in the images shows that the bound-
aries of the regions segmented are irregular or not very
smooth. In the third experiment, we tried to add ad-
versarial learning to provide better regularization of the
model. From the results both from the table and the im-
ages, it can be seen that adversarial learning provides a
better regularization and thus also improves the result of
vanilla-DLIR.

So, we decided to keep them both in the model and
apply them to perform the registration. The results of
the proposed AdvAC model outperforms all the previ-
ous experiments and thus proved to be the best model
working in both the 2D and 3D dataset. Still, there
is room for performance improvement. Still, there is
room for performance improvement. Hence, we pro-
posed Multi-class Anatomically Constrained and Multi-
scale Registration (MACMR) framework which is the
best-performing model for the 2D Camus dataset. Al-
though the results on 2D dataset is higher but both 2D
and 3D data have the same upward improvement with
the proposed models. The fact is that the volume images
are low in number for training and also take longer time
than 2D for training for each epoch, the result is lower
but still satisfactory as this will be the first time tempo-
ral registration was done on 3D fetal echocardiography
images. In our future plan, we want to add even more
3D data volume to have a better training of the model
and also want to apply the multi-resolution framework
in case of 3D.

7. Conclusions

The clinical use of echo is still stuck with 2D, likely
because doctors can not visualize 3D, but for machine
learning it makes more sense to go 3D, for real-time de-
tection with improved accuracy and precision. Existing
DLIR or DL echo image processing are all 2D, and so
the need for 3D temporal registration for echo images
is clearly visible. Also there is less research work done
for fetal hearts although the fetal heart can experience
congenital heart malformation and functional abnormal-
ities. This thesis focuses on the development of meth-
ods for automatic 3D temporal registration for 3D fetal
echocardiographic images. The aim was to improve the
detection of congenital heart malformations and func-
tional abnormalities in the developing fetus.

One of the two most important aspects of this the-
sis was to propose a new dataset for fetal echocardiog-
raphy. 4D volume echocardiography images were col-
lected and annotated with the use of a cardiac motion es-
timation algorithm. We have conducted several experi-
ments starting with UNET-based DLIR to adding global
latent space training with variational autoencoders and
adversarial learning to have a better regularization loss.
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We have compared the results for both 2D and 3D
datasets. The results have shown significant improve-
ments in temporal registration accuracy using evalua-
tion metrics such as Mean Squared Error, and Dice Met-
ric. As the data annotation takes a considerable amount
of time, we started the work with a few number of vol-
ume images which hindered the overall performance of
the 3D dataset. So, we are planning to add more anno-
tated data as well as to evaluate the 3D model in multi-
resolution framework.
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Figure 13: Segmentation Results for Vanilla-DLIR.

Figure 14: Segmentation Results for AC-DLIR.
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Figure 15: Segmentation Results for Adv-DLIR.

Figure 16: Segmentation Results for AdvAC-DLIR.
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Abstract

Introduction - Lung cancer screening using computed tomography (CT) scans plays a crucial role in early detection.
This paper addresses challenges in using deep learning models for lung lesion detection, including limited annotated
data and algorithm interpretability. Those models tend to be “black boxes” that often fail to generalize. Failures
can be caused by many factors, including sub-optimal model development, differences in imaging technologies, or
domain shifts in the patient population. As a result of these uncertainties, researchers struggle to improve model
performance, and radiologists cannot trust their recommendations. Methods - This study analyzes out-of-distribution
factors that can influence the model performance in two levels: organ and patient. The impact of OOD factors on
the model’s performance is assessed by comparing confidence and the rate of considered lesions. That will improve
the model’s robustness providing explainable insights into how our data is affecting the model. Additionally, we will
employ Active Learning techniques, using pseudo-labeling, to enhance the model’s generability and performance,
further augmenting its capabilities alongside its improved robustness. Results - The new included dataset presents
similar levels of noise and texture. Regarding the OOD analysis, we spot different data shifts at different levels.
OOD distance-based methods present higher accuracy than reconstruction-based ones for our configuration. The
uncertainties associated with each OOD factor are mostly similar. The highest difference is found in the OOD organ-
level, indicating that those cases confuse our model the most. Active Learning’s weak labels improve the model’s
performance (Average Precision 0.923 with vs 0.8331 without). Conclusions - We propose a useful pipeline that
ensures good model performance and increases the model robustness by understanding how data shifts can confuse
our model. The pipeline is versatile and can be employed to incorporate a new dataset into a study.

Keywords: Lung Cancer, Explainability, Interpretability, Active Learning, Transfer Learning, Out-of-distribution

1. Introduction

Lung cancer, a prevalent form of cancer world-
wide, demonstrated the highest percentage of new cases
(11.6%) and accounted for the greatest number of
deaths (18.4%) among all cancers in 2018 (Bray et al.,
2018). Promoting early screening diagnosis is a primary
focus in preventing and controlling this disease.

Lesion detection in CT lungs is a critical task that
can help to identify and treat lung cancer at an early
stage. Deep Learning (DL) has shown great promise in
improving the accuracy and efficiency of lung lesion de-
tection (Gu et al., 2021) (Makaju et al., 2018). However,
using DL raises concerns about the algorithms’ trans-
parency and interpretability (von Eschenbach, 2021).

Detecting tiny pulmonary nodules is a significant
challenge. Differentiating them and excluding uncor-
related tissues like bronchi and blood vessels to identify
the nodules accurately is hard. Computer-Aided Detec-
tion (CAD) system employs a highly sensitive approach
to identify nodules. This high sensitivity often results in
the formation of candidate nodules with numerous false
positives, which presents a major difficulty in the detec-
tion process (Setio et al., 2016).

Supervised Deep Learning (DL) requires many la-
beled training data to make predictions by finding in-
put and corresponding output data patterns. The more
labeled training data is available, the more patterns the
algorithm can learn and the better it can generalize to
new, unseen data.

2.1



X-OOD: How does my model see my data? 2

Medical imaging data is constrained by the limited
availability of annotations due to the time-consuming
and expensive nature of annotating 3D medical data.
Moreover, while medical experts are highly sensitive to
the specific condition in question, they are susceptible to
inattentional blindness, resulting in elevated miss-rates
of unanticipated anomalies and medical conditions.

However, some techniques can be used to reduce the
amount of labeled data needed for training, such as
transfer learning or active learning (AL). The first in-
volves using a pre-trained model already trained on a
large dataset and then fine-tuning it on a smaller, la-
beled dataset. Nevertheless, it can encounter problems,
including dataset bias, domain shift, or model capacity
limitations when applied to different data. Active learn-
ing proactively selects the subset of examples to be la-
beled next from the pool of unlabeled data.

Having a model that can effectively adapt to new
datasets while maintaining control and comprehending
the decision-making process is of utmost importance.
Moreover, assessing how potential perturbations in the
data may impact the model’s performance is crucial.
By addressing these factors, we can ensure the develop-
ment of a robust and reliable model capable of making
accurate predictions and facilitating informed decision-
making. Our methodology aims to explain the limita-
tions of any model when including a new dataset.

In an ideal scenario, these methods should not rely
on domain-specific knowledge or annotated validation
sets that are specific to certain cases for optimization.
Such reliance could be considered an unwanted form
of implicit supervision inherent in the method’s de-
sign. Therefore, we need to propose a methodology that
could be universally applied to different datasets. Con-
cretely, our work will be developed to include Duke’s
private Data in the multi-center National Lung Study
Trial (NLST) (Team, 2011) but could be used for any
configuration.

This paper presents a significant contribution,
which can be summarized as follows: a pipeline
to ensure the robust performance of models when
applied to new datasets by identifying the data
shifts that can affect the model’s confidence. This
approach can be applicable to any type of unla-
beled data, including signals or videos. The pa-
per’s sub-contributions include: (a) the introduction
of a methodology that effectively addresses out-of-
distribution (OOD) detection in 3D medical images
at both organ and patient levels, (b) comparing dif-
ferent datasets in terms of noise and textures to un-
derstand the effect on the OOD problem, and (c)
the utilization of an active-learning method based
on informativeness and representativeness propos-
ing pseudo-label instances to improve model’s per-
formance and generalization capability.

2. State of the art

2.1. Out-of-distribution analysis

Modern neural networks have achieved great success,
but they are also known to be overconfident even when
they encounter inputs with unusual conditions. Find-
ing these inputs is critical to stop models from making
uninformed predictions that could endanger neural net-
work applications in the real world. Out-of-distribution
(OOD) detection helps to identify differences among
data samples, increasing the reliability and safety of
a DL model. In an unsupervised manner, its primary
objective is to pinpoint unexpected and abnormal data
points by learning normal tissue appearance.

Although 2D-OOD is well developed (Berger et al.,
2021) (Pacheco et al., 2020), we find few 3D ap-
proaches due to increased computational complexity.
3D detection algorithms can be categorized as fol-
lows. Density-based methods use an estimation tech-
nique to predict probability distribution, distance-based
methods measure the proximity among data features,
and reconstruction-based techniques calculate the re-
construction error to spot data dissimilarities. To our
knowledge, purely density-based methods have not
been explicitly utilized in medical imaging, presumably
because they do not provide an anomaly score at the
pixel level. We, therefore, focus on reconstruction- and
distance-based methods below.

2.1.1. Reconstruction-based methods
Several methods have been proposed to address the

issue at hand. (Shyu et al., 2003) presented a novel ap-
proach utilizing Principal Component Analysis (PCA)-
based reconstruction. Using DL, (Schlegl et al., 2017)
employed an iterative back-propagation method within
a Generative Adversarial Network (GAN) framework.
It is worth noting that autoencoders (AE) reconstruction
methods offer notable advantages in handling non-linear
data relationships and enabling pixel-wise detection.

A study conducted by (Chen and Konukoglu, 2018)
demonstrated the effectiveness of combining a Varia-
tional Auto-Encoder (VAE) with an adversarial loss ap-
plied to the latent variables. This approach resulted in
improved performance by leveraging a pixel-wise re-
construction error. Building upon this notion of error,
(Zimmerer et al., 2019) utilized various Auto-Encoders
(AEs) specifically designed for brain computed tomog-
raphy (CT) scans. In related work, (Alain and Ben-
gio, 2014) provided evidence that AEs have a tendency
to learn a condensed representation of the underlying
data distribution by capturing the derivative of the log-
density with respect to the input.

Nevertheless, using only the reconstruction error for
scoring overlooks the reconstruction model’s internal
representation and lacks formal claims and compara-
bility between samples. To address this, (Zimmerer
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et al., 2018) combined reconstruction with density-
based scoring on the Context-encoding Variational Au-
toencoder (ceVAE). It utilizes a context-encoding mech-
anism to encode contextual information of input data
and a VAE to learn the underlying data distribution.

2.1.2. Distance-based methods
Various methods have been employed to evaluate the

similarity between a test instance and the distribution of
training instances. Among them, the most commonly
employed scoring metric is the Mahalanobis distance.
This distance measure considers the covariance struc-
ture of the training instances, providing a comprehen-
sive evaluation. In a study by (Karimi and Gholipour,
2022), singular value decomposition (SVD) was em-
ployed on the network features. By extracting singular
values, an image embedding was generated. The OOD
score was then determined as the distance between a test
sample and its nearest neighbor in the training set.

Other groups, such as (Hendrycks and Gimpel, 2016),
pointed to using the maximum softmax probability
(MSP) for the detection. ODIN (Liang et al., 2017)
achieved further improvement over MSP by incorporat-
ing temperature scaling of softmax outputs and input
perturbations. However, a major limitation of ODIN
is that it requires the availability of samples to select
the temperature scaling factor and the magnitude of the
input perturbations. This issue was addressed by (Hsu
et al., 2020) by proposing a generalized, G-ODIN, elim-
inating the fine-tuning necessity.

2.2. Active Learning

By explaining the impact of new data on the model,
we can enhance its resilience. Furthermore, incorporat-
ing new data into the training process not only enhances
the model’s generalizability but also boosts its overall
effectiveness.

Active learning endeavors to streamline the data col-
lection by automatically discerning the instances that
necessitate expert annotation for efficient and effective
model training. Its objective is to minimize labeling ef-
fort while maximizing the performance achieved by the
machine learning algorithm.

It has demonstrated success in various domains, in-
cluding image classification (Beluch et al., 2018) (Sener
and Savarese, 2017), object detection (Bengar et al.,
2019), regression (Käding et al., 2018), and seman-
tic segmentation (Golestaneh and Kitani, 2020) (Wang
et al., 2020).

AL strategies can be categorized into three main
groups: informativeness (Bengar et al., 2021) (Cai et al.,
2014) (Gal et al., 2017) (Guo, 2010) (Yang et al.,
2015), representativeness (Saito et al., 2015) (Sener
and Savarese, 2017), and hybrid approaches (Yang and
Loog, 2018) (Huang et al., 2010). The informativeness
criterion selects samples that exhibit high uncertainty,

thereby impacting the model’s generalization capability
(confusing the classifier). Representativeness ensures
the inclusion of diverse samples that align with the un-
derlying data distribution.

Although active learning has been extensively inves-
tigated in the field of classification tasks, it has garnered
comparatively less attention in the domain of deep ob-
ject detection (Brust et al., 2018). With that purpose,
(Kao et al., 2019) introduced a ranking approach for
images based on the localization tightness and stabil-
ity criteria. Localization tightness measures the com-
pactness of detected bounding boxes, while stability es-
timates their robustness in both the original image and
a noisy version of it. Additionally, (Brust et al., 2018)
employed the computation of marginal scores (Ronald
J. Brachman) for candidate bounding boxes and incor-
porated them using various merging functions.

We propose a method based on informativeness
and representativeness combined with pseudo-labels.
Pseudo-labeling based on the AL results is not novel.
For instance, in the context of image classification, the
definition of pseudo-labels varied across studies. In
(Lee et al., 2013), the pseudo-label was defined as the
class with the highest probability. Conversely, (Bank
et al., 2018) introduced multiple techniques to derive the
confidence measure for pseudo-labels. (Zotova et al.,
2019) showed that pseudo-labeling gives small further
improvements for a segmentation task. But no one pro-
posed an AL algorithm using pseudo-labels for detec-
tion.

2.3. Explainable AI

The incorporation of explainability into deep learn-
ing models serves as a means to tackle various obsta-
cles, including the issues arising from data shift. Data
shifts can result in diminished performance and untrust-
worthy predictions. Through the comprehension of the
decision-making process facilitated by explainability,
data scientists can pinpoint the specific features, pat-
terns, or data attributes that the model depends

Explainable AI, XAI, focuses on creating artificial in-
telligence (AI) systems that provide transparent and in-
terpretable explanations for their decisions. Its goal is to
enhance AI models’ understanding, trust, and account-
ability by providing insights into the underlying factors,
logic, and reasoning behind their outputs.

Most of the existing research in the field of explain-
able AI (XAI) has heavily relied on using Saliency
Maps as a common method for providing explanations.
However, emerging studies have demonstrated that they
may lack stability, meaning they can vary significantly
in their output and may not consistently highlight the
most relevant features or areas of importance in the in-
put data. This instability raises concerns about their re-
liability and robustness of them as the sole method for
explainability.
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(Arun et al., 2021) analyzed the performance of eight
commonly used saliency map techniques regarding (a)
localization utility (segmentation and detection), (b)
sensitivity to model weight randomization, (c) repeata-
bility, and (d) reproducibility. They proved that all eight
saliency map techniques failed at least one of the crite-
ria and were inferior in performance compared with lo-
calization networks. Figure 2 shows the results of each
saliency method for the detection task and the predicted
output of RetinaNet (RNET).

Figure 1: Example saliency maps for RSNA pneumonia dataset with
corresponding utility scores. GBP = guided backpropagation, GCAM
= gradient-weighted class activation mapping, GGCAM = guided
GCAM, GRAD = gradient explanation, IG = integrated gradients, SG
= Smoothgrad, SIG = smooth IG (Arun et al., 2021)

Consequently, researchers are actively exploring al-
ternative approaches and techniques within XAI to ad-
dress these limitations. We hypothesize that OOD de-
tection could be used for the model’s explainability
by providing insights into how a deep learning model
makes predictions and how data shifts affect the model’s
performance. We can better understand the model’s
decision-making process and assess its reliability.

For example, if the model is presented with input out-
side the distribution it was trained on and provides a
high-confidence prediction, this could indicate that the
model is overconfident and may be making unreliable
predictions. Conversely, if the model identifies OOD
inputs and produces lower confidence predictions, this
could be a sign that the model is aware of its limitations
and is cautious in its predictions.

Utilizing the principle of explainability, our approach
aims to establish a heightened sense of trustworthiness
in the context of federated learning relating OOD fac-
tors with each associated performance. In a clinical
study with multi-center data, trustworthiness assumes
utmost significance.

2.4. Explainable OOD Analysis

By understanding the reasons behind OOD data, re-
searchers can identify data issues, improve models,
build trust, and promote equitable decision-making. Ex-
plaining OOD data is essential for reliable predictions
and accurate assessments in various fields.

(Hendrycks and Gimpel, 2016) utilizes confidence
scores, maximum predicted probability, from the soft-
max layer to identify misclassified OOD cases. Re-
cently, (Xu-Darme et al., 2023) proposed method em-
phasizes interpretability, aiming to provide insights into
why certain samples are identified as OOD. The authors
introduce an auxiliary network that learns to identify
the patterns contributing to the OOD detection decision.
Other authors used OOD cases to interpret the model
using saliency maps (Fong and Vedaldi, 2017).

But all of them have focused on understanding how
the OOD cases are classified. We propose an explain-
able OOD analysis aimed at identifying which OOD
cases exert the most negative influence on our model.

3. Material

3.1. Dataset

• LIDC/IDRI dataset: It is a publicly available tho-
racic standard and low-dose computed tomogra-
phy (CT) dataset. It consists of 601 labeled cases,
each including a set of CT images and annota-
tions of lung nodules by four experienced radiol-
ogists. They include information on nodules’ lo-
cation, size and shape. The dataset also includes
assessments of the probability of malignancy and
radiologists’ confidence level in nodule detection.

• Duke private dataset: It includes 7345 lung low-
dose CT, but only 1.55% are labelled. They in-
cluded a radiologist inform with patient informa-
tion. They have been resampled to match LIDC’s
shape.

3.2. LUNA16 Model

In our study, we have utilised the MONAI model
for the LUNA16 Challenge, specifically the model that
achieved the second position in the challenge ranking.
The chosen model has been made publicly available and
is built upon the RetinaNet network architecture. Utiliz-
ing the MONAI model aligns with our research objec-
tives and allows us to benefit from the model’s strengths
and advancements.

RetinaNet is a prominent object detection frame-
work widely employed for accurately detecting objects
in images. It tackles the challenge of detecting ob-
jects at multiple scales by introducing a novel compo-
nent termed Focal Loss, which effectively prioritizes the
training of challenging samples. In Figure 2, we can see
RetinaNet network architecture.
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Figure 2: RetinaNet utilizes a ResNet backbone (a) in conjunction with a Feature Pyramid Network (FPN) (b) (Lin et al., 2017). Two subnetworks
are attached to this backbone: one for classifying anchor boxes (c) and another for regressing from anchor boxes to ground-truth object boxes (d).
(Lin et al., 2018)

The fundamental concept underlying RetinaNet re-
volves around utilizing a single deep neural network to
concurrently predict object bounding boxes and classify
their corresponding object categories. This enables effi-
cient and accurate object detection.

At its core, RetinaNet builds upon a feature pyramid
network (FPN) architecture (Lin et al., 2017). FPN cap-
italizes on the multi-scale features extracted from vari-
ous levels of a backbone network, ResNet, to achieve ro-
bust object detection across different object scales. (He
et al., 2016)

RetinaNet presents a novel mechanism called an-
chors, which generate a set of fixed-size bounding boxes
at each spatial location in the feature map. These an-
chors serve as reference points for the network to pre-
dict object bounding boxes. It enables the detection of
objects with varying sizes and shapes by employing an-
chors with diverse scales and aspect ratios. (Lin et al.,
2018)

To predict object presence and its corresponding
class, RetinaNet employs two parallel sub-networks:
the classification subnet and the regression subnet. The
classification subnet estimates the probability of an an-
chor containing an object of a specific class, while the
regression subnet computes refined bounding box coor-
dinates for each anchor.

One of the primary challenges in object detection
is the significant imbalance between background and
foreground samples. Most anchors do not encapsulate
any objects of interest, resulting in many easily clas-
sified negative samples during training. This imbalance
causes the network to be biased toward background pre-
dictions, leading to suboptimal performance.

To address this issue, RetinaNet introduces the con-
cept of focal loss, which mitigates the contribution of
easily classified samples and emphasizes challenging
ones. It accomplishes this by assigning higher weights
to misclassified examples and reducing the weight for
well-classified ones. This mechanism enables the net-
work to prioritize learning difficult samples, which is
crucial for achieving accurate object detection.

Focal loss (Lin et al., 2018) is formulated as a modifi-
cation of the standard cross-entropy loss function. It in-

troduces a tunable parameter known as the focusing pa-
rameter, which governs the degree of emphasis placed
on hard examples. By appropriately adjusting this pa-
rameter, the loss function can be tailored to balance false
positives and false negatives, depending on the applica-
tion’s specific requirements.

RetinaNet minimizes the combined loss from the
classification and regression subnets during the training
phase. This joint optimization enables the network to
simultaneously learn accurate object detection and pre-
cise object localization through bounding boxes.

In our implementation, we perform inference on
patches if the input image exceeds GPU memory ca-
pacity. Data-loader retrieves boxes, and data augmen-
tation is applied to these boxes. We use a batch size of
1, shuffle the data, and employ 7 workers. The model
is trained for 300 epochs to facilitate convergence and
optimal performance. We use 0.01 as the learning rate
until epoch 160, which is reduced to 0.001.

4. Methods

The proposed pipeline is shown in Figure 3.
We will conduct an out-of-distribution study and

dataset profiling using the Duke Dataset to identify po-
tential factors influencing our model’s performance.

Figure 3: Proposed pipeline to improve model’s robustness. As the
DL model is a black box, we are going to spot, on the left side of it,
potential data factors that may confuse the model. We are going to
follow up on those cases through the model, and on the other side of
it, we will interpret how the model sees our data.
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For the out-of-distribution study, we will utilize the
LIDC-IDR data as the reference distribution, which was
used to train the model. Our study tries to identify
Duke cases demonstrating deviations from the train-
ing distribution in two levels. In parallel, we will uti-
lize an Active Learning approach to propose a subset
of Duke cases to be labeled, maximizing the model’s
performance. Previously, transfer learning was applied
to predict Duke cases with the model trained on LIDC
cases. Moreover, the AL algorithm will provide us with
certainty-case-level scores. The scores and the cases
spotted in each OOD factor are used to find the factor-
level certainty scores. The intersection of these two
lines of investigation represents a crucial point.

This analysis allows us to understand the impact
of different data abnormalities on the model’s perfor-
mance, increasing the robustness. Additionally, AL-
labeled and pseudo-labeled cases improved model gen-
eralization capabilities because the RetinaNet model
will be trained with more data. Afterward, we will pro-
ceed to elucidate the pipeline methodology in stages.

4.1. Data Study
This section will analyze the data independent of its

ground truth or predicted labels through two distinct
studies. While the first study (section 4.1.1) focuses on
studying each dataset individually in terms of texture
and noise levels. The second one (section 4.1.2) studies
Duke’s distribution in relation to LIDC’s distribution.

4.1.1. Dataset Profiling
Noise estimation. Ideally, training and test data should
have the same noise level. If the level of noise in the test
data is different, the model may not be able to generalize
well and may fail to classify or predict new data points
accurately. A common definition of image noise is
the standard deviation (SD) of the measured Hounsfield
units (HU) in a physically homogeneous volume (Bon-
gartz, 1999). In chest CT, optimal representation of
image noise may be obtained by segmenting the entire
tracheo-bronchial tree lumen and measuring the SD of
this air (Wisselink et al., 2021). As the trachea is a ho-
mogeneous volume, if the deviation is low, there is less
presence of random fluctuations or variations in the sig-
nal due to noise.

We used TotalSegmentator (Wasserthal et al., 2022)
to segment the trachea volumes from both datasets. This
nnU-Net model was pretrained in 1204 CT scans and
segments 104 structures. Once we obtained the masked
volumes, we operated the coefficient of variation of the
trachea volume (Equation 1). In order to mitigate the in-
fluence of the trachea contour on the noise measure, we
applied a 3D-erosion operation to the trachea volumes
using a disk with a radius of 5 pixels.

CV(%) =

√∑n
i=1(xi−x̄)2

n−1

x̄
× 100 (1)

Texture analysis. When comparing image datasets, the
common practice is to evaluate metrics like the total
number of images, the number of images in each class,
or class distributions in the dataset. However, all these
metrics are defined by humans and do not provide in-
sights about the underlying data distribution. We want
to analyze whether this aspect of complexity impacts the
ability of a neural network to learn from that dataset.
With that purpose in mind, we will use a similar ap-
proach to (Rahane and Subramanian, 2020) to analyze
the texture complexity. They used quantitative metrics
to identify which dataset is more complex or harder
to “learn” concerning a deep-learning-based network.
They studied four video datasets from the autonomous
driving research community; we will adapt the algo-
rithm to CT volumes. Definition of the used-study met-
rics:

• Shannon Entropy: The higher the entropy value
is, the more information is required to describe or
transmit it. It entirely relies on individual pixel val-
ues

H(X) = −
n∑

i=1

pi log2(pi) (2)

In this equation, X is a discrete random variable
with n possible values, and pi is the probability that
X takes on the value xi.

• GLCM: Statistical method used to describe the
spatial relationship between pairs of pixels in an
image.

GLCM = −
n−1∑

i=0

n−1∑

j=0

p(i, j) log p(i − j) (3)

where n is the number of gray levels, and p(i − j)
is the probability of two pixels having intensities i
and j, separated by the specifies offset.

• Delentropy: It is based on the probability den-
sity function deldensity (Larkin, 2016). This den-
sity distribution uses spatial image and pixel co-
occurrence. The usage of gradient vectors in this
entropy allows for global image features to be con-
sidered and capture non-local information.

• UMAP: We use this dimensionality reduction tech-
nique to represent the GLCM matrix visually. The
first phase consists of constructing a fuzzy topolog-
ical representation by using simplices. Then, we
optimize our embedding (by using stochastic gra-
dient descent) to have as close a fuzzy topological
representation as possible (measured by cross en-
tropy). We use additional parameters like the num-
ber of nearest neighbors in UMAP to show how
local and global structures change/shift differently
in different datasets.
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4.1.2. Out-of-distribution detection
To address the ambiguity surrounding ”data outside

the distribution”, which relies on the definition of a
”normal” patient, we conducted a comprehensive anal-
ysis at both the patient-level and organ-level. At the
patient-level, we examined the entire CT scan to iden-
tify potential shifts caused by protocol variations and
noise/artifacts. At the organ-level, our focus was on pri-
oritizing anatomical differences. We expected to find
different distribution shifts at both stages. But, we hy-
pothesized that the classified organ-level OOD cases
would affect the model’s performance more. Never-
theless, patient-level ones can also affect it because the
model’s input is the unmasked CT volumes.

4.1.2.1. Patient-level-out-of-distribution.
As detailed in section 2.1, we discussed different

categories of out-of-distribution (OOD) methods. We
proposed a distance-based and a reconstruction-based
method to determine the superior option for our config-
uration.

Distance-based algorithm: Histogram features
As in many medical imaging tasks, our training data
presents semantic homogeneity as it consists of chest
CT scans. As a result, the intensity histograms of two
images with different semantic meanings can be eas-
ily differentiated. Since the primary sources of out-
of-distribution (OOD) data stem from semantic and co-
variate shifts, histograms provide a robust alternative to
deep learning (DL) methods in this particular task (Frol-
ova et al., 2022). Semantic data shift refers to a change
in the meaning or interpretation of the data, such as CT
scans of other body parts. Covariate shifts refer to a
change in the distribution of the input features, includ-
ing variations in imaging equipment, imaging protocols,
patient demographics, or pathologies. Moreover, as our
study task of nodule detection represents a focal disease
that occupies only a very small portion of the volume,
patients with the pathology would not be categorized as
OOD. However, if they exhibit more diffuse pathologies
like pneumonia, they may be classified as OOD.

We proposed a straightforward approach based on
image histogram features comprising two steps. Firstly,
we compute the histogram features for the LIDC dataset
and identify its distribution center. Secondly, we cal-
culate the histogram features for the Duke Dataset and
utilize the Mahalanobis distance to measure the devia-
tion from the center of the LIDC distribution (Figure 7).
Mahalanobis distance is defined as:

DM(x) =
√

(x − µ)TΣ−1(x − µ)
Where x is the test instance, µ is the mean of the train-

ing instances, Σ is the covariance matrix of the training
instances, and DM(x) is the Mahalanobis distance be-
tween x and the training distribution.

Figure 4: Starting from both datasets, we resample them and get
the histograms normalized in intensities and size. After we find the
Duke’s instance distances to the LIDC distribution center.

The primary objective of this methodology is to iden-
tify distribution outliers without explicitly categoriz-
ing their underlying causes. However, by determining
which region of bins is the most disparate between the
center training data histogram and validation cases’ his-
tograms, we can cluster certain reasons. That can be
done using weighting techniques such as multiplying
ramps or exponential curves to the histograms. As an
example, we have proposed a modification specifically
targeted at detecting the presence of prostheses and arti-
facts within the Duke Dataset, as illustrated in Figure 5.
For that, we first subtracted the center LIDC histogram
from each case in the Duke Dataset. If a CT scan con-
tains a metallic prosthesis or a white artifact, there will
be pixels at the latest bins of the histogram. To empha-
size the contribution of the brightest pixels, we multiply
by an exponential function with an empirically chosen
function, in our case e8(x−1), to assign greater impor-
tance to the brightest region. This way, the algorithm
classifies based on the prosthesis’s area and brightness.

Figure 5: Pipeline for the prostheses/artifacts detection algorithm.

2.7



X-OOD: How does my model see my data? 8

Reconstruction-based algorithm: Variational
Auto-Encoder

A Variational Auto-Encoder (VAE) is a generative
model that combines ideas from auto-encoders and vari-
ational inference. It learns a latent representation of
the input data by jointly training an encoder and a de-
coder neural network. The encoder network maps an
input data point to a probability distribution in the la-
tent space. This distribution is typically assumed to fol-
low a multivariate Gaussian distribution, with the mean
and variance parameters predicted by the encoder net-
work. The decoder network takes a sample from the la-
tent space and reconstructs the input data point. The ob-
jective of the VAE is to maximize the reconstruction ac-
curacy while also encouraging the learned latent space
to follow a desired prior distribution, often a standard
Gaussian distribution.

In our configuration, the VAE employs a combina-
tion of a reconstruction loss and a regularization term
known as the Kullback-Leibler (KL) divergence during
training. The KL divergence measures the difference
between the predicted latent distribution and the desired
prior distribution. By jointly optimizing the reconstruc-
tion loss and the KL divergence, the VAE learns to en-
code the input data into a meaningful latent space and
generate reconstructions that closely resemble the orig-
inal input.

L(θ, ϕ; x) = −Eqϕ(z|x)
[
log pθ(x|z)

]
+ KL

[
qϕ(z|x)||p(z)

]

(4)
In this equation, L represents the objective function

of the VAE, θ and ϕ are the model parameters, x is the
input data, z is the latent variable, qϕ(z|x) is the ap-
proximate posterior, pθ(x|z) is the likelihood, and p(z)
is the prior. The term KL

[
qϕ(z|x)||p(z)

]
represents the

Kullback-Leibler divergence between the approximate
posterior and the prior. The model’s architecture can be
found in figure 6.

Figure 6: VAE generation model consisting of an encoder network
Qϕ(Z|X) and a decoder network Pθ(X|Z).

We trained the VAE using the LUNA16 cases as our
training dataset. Once the VAE had been trained, we
utilized it to reconstruct Duke cases. The reconstruc-
tion error was then calculated by comparing the recon-
structed Duke cases to their original counterparts. That
error serves as the out-of-distribution score, indicating
how well the VAE can reconstruct the Duke cases com-
pared to the training data. A higher reconstruction er-

ror suggests a larger deviation from the training distri-
bution, implying a higher likelihood of the Duke cases
being out-of-distribution, unseen, or anomalous. The
training process will be carried out with a batch size
of 6, utilizing a learning rate of 0.01 for a total of 200
epochs. Additionally, weight decay regularization will
be applied with a value of 5e-7.

4.1.2.2. Organ-level-out-of-distribution.
To specifically analyze data shifts in the studied

anatomy, we performed lung volume segmentation us-
ing the TotalSegmentator model (Wasserthal et al.,
2022). This model segments lung volumes into five dis-
tinct structures: the two superior lung lobes, the two
inferior lobes, and the middle right lobe.

We merged the 5 lung lobes and applied the masks
to the original CT volumes. By reducing the influence
of extraneous factors, we enable a more precise exami-
nation of the underlying anatomical characteristics and
reduce medical imaging acquisition shifts.

In addition to utilizing histograms to capture
intensity-based information, we introduced a novel ap-
proach to incorporate anatomical information through
histograms of oriented gradients (HOG), computed by:

Vmag−grad. =

√
SF(V, x)2 + SF(V, y)2 + SF(V, z)2) (5)

HOG f eatures = histogram(Vmag−grad., nbins) (6)

Let SF represent the Sobel filter applied to a 3D CT
volume to extract information in a specific direction.

Figure 7: Pipeline for organ-level out-of-distribution analysis incor-
porating histogram and HOG features. The bottom box recaps the
distinction between qualitative and quantitative methods.
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HOG integration also provides valuable insights into
the signal’s energy. However, using HOG features for
the complete CT volume doesn’t improve the classifi-
cation because it is very sensitive to variations in the
patient’s body morphology. We use the Mahalanobis
metric between LIDC’s center and Duke’s instances for
both histogram features and HOG features. The pro-
posed pipeline is shown in Figure 7

The patient-level analysis differs primarily in the uti-
lization of 2D information. In this regard, we proposed
a qualitative analysis employing density-based spatial
clustering of applications with noise (DBSCAN), which
utilizes distance measurement, typically Euclidean dis-
tance, and a minimum number of points to group data
points. A notable feature of this algorithm is its abil-
ity to identify outliers, as it effectively captures points
residing in low-density regions. We will identify the in-
stances of those regions as OOD cases. Additionally,
we also introduced a quantitative method that involved
calculating the Euclidean distance between the center of
the LIDC dataset and the Duke samples.

4.2. Active Learning
Figure 8 shows the implemented AL strategies.
Baseline: Random Sampling: From the 7231 unla-

beled Duke scans, 16 cases are randomly selected and
added to the pipeline during each iteration.

AL Strategy 1: Uncertainty Sampling: We utilize the
model trained on LIDC cases to make predictions for
the 16 unlabelled cases in each iteration. The model
provides certainty scores at the lesion level. However,
in order to rank the scans based on certainty, we need
to calculate a patient-level score. The most challenging
aspect is transitioning from lesion-level to patient-level
uncertainties. This is achieved by computing the mean
of all lesion certainties per scan prior to filtering them
to exclude potential false-positive detections. The fil-
tering criteria include (1) size, where lesions with no
axis exceeding 3 mm (as determined by radiologists)
are discarded; (2) certainty score, with a threshold of
0.1; and (3) mask, where lesions whose predicted center
falls outside the lung volume are considered. A cautious
approach is taken to prevent false-negative lesions near
the lung boundaries or pleura by dilating the lung masks

using a 15-pixel radius disk element. At every itera-
tion, the two scans with the highest confidence score are
added to the “certain” label pool, while the two scans
with the weakest certainty are added to the “uncertain”
pool.

AL Strategy 2: Representativeness: The manual la-
beling process is also leveraged by introducing a re-
cency condition. Only the most recent cases per patient
in the uncertain cases pool are added to the annotated
pool. To identify the most recent scans per patient, we
thoroughly examined patients’ information.

AL Strategy 3: Pseudo-Labelling: To define the
pseudo-labels, from the certain pool, we re-filter the
lesions with more stringent criteria. Each lesion must
be inside the dilated lung lesion, have all axes greater
than 3 mm, and have an associated certainty score
higher than 0.3. Additionally, non-maximum suppres-
sion (NMS) is applied to reduce overlaps in bound-
ing boxes and eliminate redundancy in object detection.
Those labels will be used to retrain the model.

5. Results

5.1. Dataset characterization

Similar entropy values were observed among the
datasets in the texture analyses. Table 1 presents the
average values for each dataset and corresponding en-
tropy type. GLCM reveals a prominent distinction, with
Duke Data standing out by showcasing a higher value.

Dataset Shannon Delentropy GLCM
LUNA16 8.505 (0.205) 3.550 (0.627) 2.967 (1.151)

Duke 8.501 (0.110) 3.412 (0.736) 3.034 (1.300)

Table 1: Analysis of entropy measures across datasets and metrics

We employed GLCM and UMAP visualization plots
to provide a more intuitive image space representation
(Figure 9). “Difficult” datasets are more densely dis-
tributed. By utilizing this feature space, we reduced
dimensionality based on the topology of texture-based
features. Varying numbers of nearest neighbors were
utilized to capture different complexity levels. Our find-
ings align with the metrics presented in Table 1, indi-

Figure 8: Active learning setup showing uncertainty sampling, representativeness filtering, and automated pseudo-labeling.
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cating that the Duke Dataset demonstrates greater com-
plexity in higher orders (global information).

(a) Neighbors: 20 (b) Neighbors: 500

Figure 9: Two-dimensional projection of each dataset using UMAP.
The plots show embedding with the distribution of each dimension on
each axis. Duke Dataset (blue) and LUNA16 (red).

Noise estimation was conducted by applying the co-
efficient variation to the segmented trachea volumes
(Figure 12 highlights the regions represented by the
color red). Duke Dataset exhibits a coefficient variation
of 43.37 ± 14.08, while the LUNA16 dataset shows a
value of 42.16 ± 13.39. Although both datasets demon-
strate comparable noise levels, Duke data exhibits a
slightly higher level.

5.2. Out-of-distribution analysis

The graphical representation, denoted as Figure 10,
illustrates the distinct classifications of shifts among the
data samples derived from the Duke dataset. These
shifts have been identified using histogram features,
specifically employed on the entire CT volume.

(a) Patient population (b) Contrast shift
(c) Reconstruction
method

(d) Another body-part (e) Artifact presence (f) Prosthesis presence

Figure 10: Classification of shifts in Duke Data Samples using His-
togram Features on total CT volumes.

For our prosthesis/artifact detection approach using
weighted histogram features, out of the total 7345 scans,
338 scans (4.6% of the dataset) are identified as belong-
ing to the prosthesis group. To assess the accuracy of
our approach, we conducted a thorough manual verifi-
cation process on 50 randomly selected cases from the

prosthesis group. It confirms the presence of a pros-
thesis or artifact in 47 instances, providing strong evi-
dence for our method’s efficacy. Most of the prosthe-
ses detected are Posterior Spinal Fusion (PSF), but we
also found reverse shoulder prostheses and cardiac pros-
thetic valves.

Regarding the reconstruction-based method, VAE’s
training is stopped once the validation loss does not de-
crease for more than 3 epochs. Fig 11 presents a selec-
tion of reconstructed volumes during this training pro-
cess.

Figure 11: Original CT (top row) and VAE reconstructed volumes
(bottom row). (a) Shows the entire volume, (b-d) zoom in on nodules.

Due to the unavailability of OOD ground truth (each
scan has a label in/out distribution), we adopt a method-
ology to determine the correctness of their classifica-
tion wherein we select the 100 instances farthest away
from each method’s training distribution and manually
examine if they are OOD. Our evaluation process entails
categorizing these instances into three distinct groups.
The first group is labeled as outside training distribution
and comprises instances with explicit reasons for not be-
longing to the training distribution. These instances ex-
hibit significant dissimilarities and discernible patterns
that distinguish them from the training data. The sec-
ond group, termed partially outside training distribu-
tion, consists of cases that exhibit certain peculiarities,
yet there exists a plausible explanation as to why our al-
gorithm classified them as non-conforming to the train-
ing distribution. Although these instances deviate some-
what, their dissimilarities are insufficient to categorize
them as distinctly different. The third group, denoted
as inside training distribution, encompasses instances
that demonstrate no apparent reasons for being classi-
fied as outside the training distribution. These instances
exhibit consistency with the patterns and characteristics
observed within the training data. Results are shown
in Table 2. We can observe that the proposed distance-
based algorithm works better for our configuration.

Labels HIST VAE
Outside training distribution 0.85 0.71

Partially outside training distribution 0.08 0.17
Inside training distribution 0.07 0.12

Table 2: Comparative Classification Accuracy of Out-of-Distribution
Patient-Level Methods: distance-based (Histogram Features, HIST)
vs. reconstruction-based (Variational Autoencoders, VAE).
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Descending on the organ level, Figure 12 shows the
segmented volumes (5 lung lobes and trachea).

Figure 12: TotalSegmentator’s segmentation in coronal, axial, and 3D
view. Both superior lobes, both inferior lobes, and the right middle
lobe are represented in blue scale. The trachea structure shown in red.

Before applying the DBSCAN model, it is necessary
to determine two parameters:

• Minimum number of points needed to consider a
new cluster: 6. It is 2 times the data dimension.

• Epsilon (least distance required for two points to
be termed a neighbor): 0.046. To determine it, the
distance between each data point and its nearest
neighbor is calculated using the Nearest Neighbors
method. Subsequently, the distances are sorted and
plotted (Figure 13a). Epsilon is defined as the max-
imum curvature value of the resulting graph.

The clustering result for a 10% subset of Duke cases
is illustrated in Figure 13b. Out of the total Duke data,
the algorithm classified 510 cases, which corresponds to
6.59% of the dataset, as out-of-distribution (OOD).

(a) (b)

Figure 13: (a) Data probability curve employed to determine epsilon
value. The most significant deviation is observed at approximately
0.046. (b) DBSCAN clustering technique’s outcome yielded a dis-
tinction between in-distribution cases (blue) and OOD cases (red).

Figure 14 highlights several cases classified as out-of-
distribution (OOD). Upon conducting a manual inspec-
tion of 50 of those cases, it was found that 38 of them
exhibited clear reasons for belonging to this group.

Figure 14: Left image depicts the center case of the training distribu-
tion. The middle image shows a case classified as OOD due to a differ-
ence in the reconstruction method. Finally, the right image represents
an OOD case attributed to variations in patient anatomy/pathology.

(a) Cert: 0.999, size: 6.5 (b) Cert: 0.990, size: 8.8

(c) Cert: 0.748, size: 5.6 (d) Cert: 0.137, size: 6.4

Figure 15: Detected nodules in a Duke case with certainty scores and
the length in mm of the largest bounding box axis. Each detection is
presented in its corresponding center slice.

5.3. Transfer Learning

Using transfer learning, we incorporate Duke Data
into the model trained on LIDC data. In Appendix 8,
detailed information about the training and validation
pipeline can be found in Figure 19. During training, the
model learns to classify the anchor boxes into object or
non-object and predict accurate bounding box coordi-
nates for the objects. Once the model is trained, it can
be used for inference. The model predicts the probabili-
ties of each anchor box containing an object and refines
the bounding box coordinates if an object is detected.

The model is trained and validated on the
LIDC/IDLR dataset using K-fold cross-validation.
The validation results demonstrate an average recall
(AR) of 0.99 and an average precision (AP) of 0.858
using an Intersection over Union (IoU) threshold of
0.1. Using different IoU values (0.01, 0.1, and 0.5),
we obtain a mean average recall (mAR) of 0.998 and a
mean average precision (mAP) of 0.852.

Figure 15 displays several identified nodules within a
single Duke case.

In order to investigate the distribution characteristics
of the detected nodules, a comprehensive analysis was
conducted by constructing cumulative histograms for
the bounding box scores and major axis lengths. This
analytical approach, depicted in Figure 16, serves as a
crucial visual tool for understanding the underlying pat-
terns and tendencies within the dataset and detection al-
gorithm.

By examining the cumulative histograms, it is ob-
served that approximately 75% of the lesions exhibit
significant uncertainties, falling within the (0-0.2) and
(0.9-1) ranges. Furthermore, approximately 50% of the
detected lesions have a major axis length of less than 5
mm. Additionally, a substantial majority of 90% pos-
sess a major axis length below the 10 mm threshold.
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Figure 16: Cumulative Step Histograms of detected nodule probabil-
ity based on uncertainty score and major axis length. The red curve
represents the probability, while the blue one shows its first derivative.

5.4. Active Learning

Bellow, we analyze the results for each AL strategy.
AL Strategy 1: Uncertainty Sampling: For every

epoch, we calculate the patient-level certainty for those
cases. This is done by filtering and averaging the con-
sidered lesions’ certainties. Among the total of 95,556
lesion candidates detected in Duke Data, 46% of them
were excluded based on the low-score criteria, 17%
were discarded due to their localization outside the lung
region, and 1.96% were eliminated based on their size.
906 scans were pushed to the certain pool (weak labels)
and 906 to the uncertain pool.

AL Strategy 2: Representativeness: From 906 uncer-
tain scans using our previously defined representative-
ness (recency) criteria, we reduced them to 517 cases.
Those are the ones that will finally be labeled.

AL Strategy 3: Pseudo-Labelling: Among the 906
scans within the certain pool, the average pre-filtered
patient-level certainty was determined to be 0.386 ±
0.395. However, the subsequent application of more
stringent filtering measures resulted in an increased
mean score of 0.815 ± 0.207.

In conjunction with the LIDC cases, the acquired
pseudo-labels were utilized for training the model. The
results of the training and validation procedures are pre-
sented in Figure 17 and Table 3, respectively. We can
observe how the use of pseudo-labeling considerably
increases the model’s performance. Furthermore, in-
corporating two weak labels per active learning epoch
yields better results compared to using only one weak
label.

AP AR mAP mAR
Weak labels 0.9234 0.9969 0.9161 0.9934

½ weak labels 0.8898 0.9989 0.8844 0.9987
No weak labels 0.8331 0.9836 0.8329 0.9836

Table 3: Validation metrics using the three data configurations. ”AP”
(Average Precision) quantifies detection model quality by calculating
the area under the precision-recall curve. ”AR” (Average Recall) mea-
sures the true positive rate. Both metrics are computed at IoU=0.1, de-
termining the required overlap for valid detection. Varying IoU pro-
vides insights into localization accuracy at different levels. ”mAP”
and ”mAR” denote mean values across 0.01, 0.1, and 0.5 IoU.

Figure 17: Training and validation curves for three distinct data con-
figurations: (grey) ”No weak labels” - LIDC cases exclusively, (pink)
”Weak Labels” - LIDC cases combined with 906 Duke pseudo-labels,
2 pseudo-labels per AL epoch. (Blue) ”½ Weak Labels” - LIDC
cases combined with 453 Duke pseudo-labels, 1 pseudo-labels per
AL epoch. The training loss depicted represents the average of cross
entropy and focal loss. The validation metric displayed is COCO val.

5.5. The impact of factors on performance

Figure 18 illustrates the relationship between the an-
alyzed factors and the study metrics. We can see that
for most of the studied factors, the top and bottom
groups overlap, showing that the model is robust to
those factors. Nevertheless, we can find differences be-
tween groups, indicating worse model performance at
the OOD organ level. Table 4 displays the mean per-
centage differences between the top and bottom mean
for each factor. The top group for entropy, delentropy,
GLCM, and noise corresponds to the 5% of the scans
with the highest metric values. Conversely, for OOD,
the top cases indicate that 5% of the data that is farthest
from the training distribution. Regarding recency, the
top cases represent the most recent instances, while the
top previous cancer refers to patients that had it before.

Factor Detection score Included lesions
Entropy 2.04 3.88

Delentropy 2.65 0.39
GLCM 1.36 0.67
Noise 2.59 2.27

OOD Organ 5.68 4.16
OOD Patient 4.70 3.14

Prosthesis 0.46 1.92
Recency 1.39 0.85

Previous cancer 3.49 4.61

Table 4: Significant variations across factors observed between the
highest and lowest groups.
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Figure 18: Box-and-whisker plots illustrating the relationship between uncertainty and the rate of included lesions across different factors. The
median value is displayed in each plot, and the mean is represented with a green triangle. Sub-figure (a) depicts the uncertainty for the top and
bottom cases per analyzed factor. The case-level uncertainty is derived by averaging the filtered lesion-level uncertainties, utilizing the criteria
elucidated in Section 4.2. While, (b) illustrates the rate of included lesions for the top and bottom cases per analyzed factor. The filtering process
excludes detections that are unlikely to be nodules. To calculate this rate, we divide the number of lesions considered after filtering by the total
number of lesions detected by the algorithm in each scan.

6. Discussion and Interpretation

6.1. Dataset characterization

Noise levels in both datasets, Duke Dataset and
LIDC, are quite similar. Several factors, including
acquisition/reconstruction parameters, total attenuation,
and tissue density, may contribute to image noise. Duke
Dataset has higher noise. That could be because all its
cases are low-dose CT, whereas LIDC encompasses a
mixture of standard and low-dose cases. On the other
hand, Duke cases are newer and are mostly iterative re-
constructed that would apply nonlinear noise reduction.
This may be why the 2 datasets seem similar. Further-
more, the increased standard deviation observed in the
Duke data likely stems from its broader range of images
collected over an extended timeframe.

In terms of texture complexity, LUNA16 is consid-
ered the most challenging dataset for classification al-
gorithms. It has the highest values for Shannon Entropy
and Delentropy. Shannon Entropy focuses on individual
pixel values, while Delentropy captures non-local in-
formation and represents higher-order image structures.
However, the most significant difference between the
datasets is observed at the global level. Duke Dataset

has higher GLCM-based entropy, indicating that its vol-
umes contain more diverse texture patterns due to the
use of various detectors and protocols. This results in a
greater disparity in entropy values for global measures.

For a deep learning network, higher pixel entropy
suggests that the initial layers, which interpret pixel dis-
tributions, will struggle to learn. This can lead to issues
such as biased weights and longer convergence times.
On the other hand, higher delentropy and GLCM values
imply that the network will face challenges in learning
higher-order features in the middle or later layers.

Our analysis reveals minimal disparities in noise and
textures across the datasets, thus substantiating the ho-
mogeneity of semantic data.

6.2. Out-of-distribution analysis

Focusing on the patient level, for our configuration,
the proposed distance-based method (histogram fea-
tures) works better than the reconstructed one (VAE).
However, this first approach is dependent on the as-
sumption of semantic homogeneity within the data,
which cannot be assumed across all scenarios. (Frolova
et al., 2022) also reports better results using histogram
features than other deep learning approaches.
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On the other hand, VAE can handle nonlinearities
in data and doesn’t require semantic homogeneities.
Nevertheless, an evident limitation lies in their inher-
ent dependence on the expressive capacity, i.e., the size
and configuration of the latent space for effectively re-
constructing anomalies. Consequently, reconstruction-
based techniques continue to yield notable performance
scores in unsupervised tasks, primarily due to their abil-
ity to compensate for deficiencies to some extent by
fine-tuning the model architecture specifically tailored
to the given task. However, it is important to note
that task-specific hyperparameter optimization deviates
from the principle of assumption-free anomaly detec-
tion, which prioritizes a more agnostic approach.

Focusing on the organ’s distribution, we can find
anatomy shifts and also different image reconstruction
protocols. Although the accuracy at this level is lower,
the classification becomes more challenging due to data
shifts limited to within the organ.

The results prove the importance of making the
OOD analysis into different levels since anatomical and
pathological shifts are not detected at the patient level.

6.3. Active Learning

Going from the lesion-certainties to the patient-
certainties is dependent on the filtering criteria chosen.
17% of the detected lesions are outside the dilated lung
mask. To avoid that and consequently decrease the false
positive rate (FPR), the input of the network could be
the masked volumes. Future work could include this
experiment to ensure there are no contextual misunder-
standings, broken spatial relationships, or incomplete
information that worsen the model training. The higher
rate of discarded lesions is due to the detection scores.

We cannot evaluate the proposed AL method com-
pletely until the data is manually labeled. But regarding
the pseudo-labeling, we can conclude that is a promis-
ing strategy in the realm of active learning, although its
added benefits compared to uncertainty sampling should
be lower because the model already knows how to de-
tect those cases. Adding more data from another dataset
will increase the model’s generalization capability.

As inspired by (Gorriz et al., 2017), the approach
presented here entails a straightforward strategy that
could be further refined by updating pseudo-labels as
the model improves during training or returning sam-
ples to the unlabelled pool when they become uncer-
tain. Recent advancements in this field have introduced
intriguing alternative approaches, such as the reinforce-
ment learning method proposed by (Park et al., 2018).
This particular approach claims significant reductions in
annotation efforts for the challenging task of lung nod-
ule detection in chest X-rays. These novel techniques
hold great potential for enhancing the efficiency and ef-
fectiveness of annotation processes in various domains.

6.4. How does my model see my data?

Beginning with the examination of textures, there are
no significant differences observed between the groups.
When we shift our focus to the detection scores, we find
that higher levels of detail (indicated by larger entropy
values) result in lower scores across all three metrics.
As mentioned earlier, these high-detail cases are more
challenging for the model to learn from since it has pri-
marily been trained on cases with lower levels of detail
(LIDC cases). In terms of the rate of included lesions,
the Shannon Entropy metric shows the most notable dif-
ference. We notice that as the SE value increases, the
rate of included lesions also increases. This can be at-
tributed to the fact that SE relies on individual pixels,
and when the data contains more localized information,
the model tends to detect fewer false positives.

Studying the noise, we consider as top group the
cases with higher noise levels. These cases lead to de-
creased model confidence and an increase in the false
positive rate (FPR). Furthermore, the detection scores
exhibit a greater dispersion within this group. Noise
negatively impacts our specific configuration.

Moving on to OOD organ detection cases, we de-
fine the top cases as those that deviate the most from
the training distribution based solely on lung volumes.
These cases display the lowest detection scores, mean-
ing that those cases confuse our model the most. Addi-
tionally, the rate of included lesions shows the most sig-
nificant difference between top-bottom groups. Some
cases in this group exhibit additional pathologies, such
as pneumonia, which further complicates accurate pre-
diction and contributes to an increased FPR.

When considering patient-level analysis, we arrive
at similar conclusions but with smaller differences be-
tween groups. This indicates that the deviation in data
within the lungs has a more pronounced impact on our
model compared to deviations outside of the lungs. As
previously mentioned, the accuracy of OOD organ anal-
ysis is lower than that of patient-level analysis. How-
ever, the ones spotted at the organ level present a higher
impact. That means that even if there is no prior reason
for considering a case out-of-distribution, our method is
finding data shifts that deteriorate the predictions.

Patients with prostheses introduce some level of un-
certainty, although not as much as observed in any OOD
analysis. This suggests that prostheses do not signifi-
cantly affect our model.

Regarding the recency factor, we consider the top
group the most recent scans per patient. We find that
the model is more confident with the last scans. Risk
patients are usually followed-up, where the lesions may
increase their size. As it varies the model performance,
it supposes a good criterion for representativeness filter-
ing in the AL approach.

Previously cancer-treated patients confuse the model.
Nevertheless, as the group of patients with previous
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surgeries is less populated, these conclusions are not
representative. A bigger cohort should be studied.

Despite the model’s susceptibility to the OOD fac-
tors, the differences between groups are not significantly
pronounced for the majority of them. This observation
demonstrates the considerable robustness of the studied
model. However, it is crucial to acknowledge that al-
ternative models or datasets could display less overlap
between groups, resulting in more discernible perfor-
mance differences.

The robustness of our model can be attributed to sev-
eral factors. Firstly, RetinaNet adopts a two-stage archi-
tecture consisting of a Region Proposal Network (RPN)
and a classification subnet. This design enhances ro-
bustness by improving localization accuracy. Addition-
ally, by integrating features extracted at different lev-
els of the multi-scale feature pyramid, RetinaNet ef-
fectively captures both fine-grained details and high-
level semantic information, thereby handling variations
more effectively and increasing the model’s resistance
to noise and texture shifts. Another key aspect con-
tributing to the model’s robustness is the consideration
of multiple anchor boxes for each object instance. Even
if noise affects some of the anchor boxes, the model
can still rely on others to accurately detect the object.
Furthermore, the incorporation of trained techniques
such as dropout, weight decay, and batch normaliza-
tion aids in reducing the model’s dependence on specific
training samples and enhances its resilience to out-of-
distribution cases, promoting generalization.

Future work could analyze which labeling subset im-
proves more the model performance, whether the one
proposed by an Active Learning algorithm or the one
identified through OOD organ-level analysis. Further-
more, considering that organ-level OOD cases can cause
confusion for our model, we have two options to ensure
reliable outcomes: either manually label these cases to
train the model on accurate detection or exclude them
from the study altogether.

7. Conclusions

In this study, we have successfully demonstrated the
efficacy of OOD analysis in providing valuable insights
into the underlying mechanisms by which a model per-
ceives and interprets data. Furthermore, we have intro-
duced a novel approach wherein OOD factors are em-
ployed as a means of explainability, a concept that has
not been previously proposed in the existing literature.
Additionally, we have devised a comprehensive pipeline
highly recommended to follow when incorporating new
unlabelled datasets into a study, as doing so ensures the
model’s ability to make robust and trustworthy predic-
tions. Due to the absence of ground truth in the data,
which hinders the evaluation of the model’s data affec-
tion, we propose an evaluation methodology grounded

in filtering techniques and detection scores. Further-
more, our pipeline incorporates an Active Learning
(AL) approach that employs a dual-criteria framework
and integrates weak labels, presenting novel strategies
for detection to minimize the amount of labeled data
needed. The utilization of this pipeline and the inte-
gration of OOD factors as an explainability approach
hold significant implications for advancing the field of
machine learning interpretability. By providing a com-
prehensive framework for identifying and understand-
ing data abnormalities, enhancing model transparency
and robustness.

Acknowledgments

I would like to express my deepest appreciation to Dr.
Joseph Y. Lo for his exceptional supervision and sup-
port throughout this research project. His expertise and
guidance have been invaluable in shaping the study and
pushing it toward excellence. I am also grateful to the
Duke CVIT lab for hosting my project and providing the
necessary resources. Additionally, I extend my heartfelt
thanks to my family for their unwavering support and to
MaIA Master program for equipping me with the tools
necessary to excel in this endeavor.

References

Alain, G., Bengio, Y., 2014. What regularized auto-encoders learn
from the data generating distribution. arXiv:1211.4246.

Arun, N., Gaw, N., Singh, P., Chang, K., Aggarwal, M., Chen, B.,
Hoebel, K., Gupta, S., Patel, J., Gidwani, M., et al., 2021. As-
sessing the trustworthiness of saliency maps for localizing abnor-
malities in medical imaging. Radiology: Artificial Intelligence 3,
e200267.

Bank, D., Greenfeld, D., Hyams, G., 2018. Improved training for
self training by confidence assessments, in: Intelligent Comput-
ing: Proceedings of the 2018 Computing Conference, Volume 1,
Springer. pp. 163–173.

Beluch, W.H., Genewein, T., Nürnberger, A., Köhler, J.M., 2018. The
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8. Appendix

Figure 19 shows the training and inference of the
model. The anchor generator is responsible for generat-
ing a set of anchor boxes at different scales and aspect
ratios across the image. These anchor boxes act as ref-
erence bounding boxes that the model will use to make
predictions. The anchor generator typically generates
anchor boxes at multiple spatial locations across differ-
ent feature levels in the FPN.

The vanilla/ATSS matcher is used during training to
assign positive and negative samples to each anchor
box. It helps to determine which anchor boxes are
considered positives (containing objects of interest) and
which are considered negatives (background or non-
object regions). The ATSS matcher adapts the assign-
ment strategy based on the distribution of object sizes
within the dataset, which helps handle imbalanced data.

RetinaNet’s training involves the following steps:

• Anchor Generation: The anchor generator gener-
ates a set of anchor boxes across the feature pyra-
mid. Each anchor box is associated with a specific
spatial location and aspect ratio.

• Matching Anchors: The vanilla ATSS matcher
assigns positive and negative labels to anchor
boxes by evaluating their overlap with ground truth
bounding boxes. The ATSS matcher adapts the
matching threshold dynamically, taking into con-
sideration the distribution of object sizes in the
dataset.

• Loss Calculation: The focal loss down-weights
the loss contribution from easy negative samples,
which helps in handling the imbalance between
background and foreground regions. Loss is calcu-
lated for both the classification (object/non-object)
and bounding box regression tasks.

• Training: The total focal loss of an image is cal-
culated by summing the focal loss over all approx-
imately 100,000 anchors. This sum is then nor-
malized by the number of anchors that have been
assigned to a ground-truth box. Network initializa-
tion is very important. A prior probability of 0.01
is assumed for all anchor boxes and assigned that
bias to the last Conv. Classification subnet layers.

• Inference: The network limits the decoding of box
predictions to a maximum of 1,000 top-scoring
predictions per Feature Pyramid Network (FPN)
level. This is done after setting a threshold of 0.05
for the detector confidence. Afterward, the top pre-
dictions from all levels are combined, and a tech-
nique called non-maximum suppression (NMS) is
applied with a threshold of 0.5. This process re-
sults in the final detections.

Figure 19: Pipeline for training and inference using MONAI’s model.
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Abstract

Introduction: Understanding the vascular and neuronal components of the retinal nerve fibre layer around the optic
disc is crucial in understanding eye diseases such as Glaucoma. Previous work (Yow et al., 2021) established a
pipeline for optic disc segmentation, layer segmentation and vessel extraction using manual annotation, traditional
image processing as well as deep learning steps. Objective: The goal of this work is to automate the optic disc
segmentation. A manually annotated source-domain dataset is available, while the target-domain dataset is unlabelled.

Methods: The semi-supervised approach ”Mean Teacher” was used in order to learn from both labelled and unla-
belled data. Results: We implement three experiments, a baseline mean teacher pipeline, a mean teacher with Fourier
domain adaptation image-to-image translation, and a third pipeline, using a mean teacher, Fourier domain adaptation,
with an additional focus on uncertainty, where we introduce both, cleaning the teacher mask as well as using entropy
of a test-time augmentation setup as a loss term. We achieve 90% f-score on our final pipeline. Additionally, our
method has low computational cost, applying an Efficientnet B0, training for 5.6 hours.

Conclusion: Fourier domain adaptation (FDA) works decent accross all domains. For multi-modal unsupervised
image-to-image translation (MUNIT), we need to do further investigation.

Keywords: Domain Adaptation, Semantic Segmentation, Optical Coherence Tomography

1. Introduction

1.1. Towards understanding the circumpapillary retinal
nerve fibre layer

Glaucoma is a leading cause of irreversible blindness
worldwide (Pascolini and Mariotti, 2012). It is a group
of diseases characterised by the progressive loss of reti-
nal ganglion cells (RGC) which causes changes in the
optic nerve head (ONH) and retinal nerve fibre layer
(RNFL) (Sharma et al., 2008).

Once the vision is compromised, it cannot be re-
stored, but it is possible to control and prevent further
deterioration of vision. If identified early, the disease
progression can significantly be slowed down with med-
ical and surgical therapy (Senjam, 2020). If left un-
treated, eventually, glaucoma leads to visual dysfunc-
tion and blindness.

Many people who have glaucoma are unaware of it
because symptoms do not usually occur during the early

stage of the disease (Chua et al., 2015). By the time, pa-
tients notice some signs and symptoms, the disease has
already caused irreparable damage. It is estimated that
about 70-75% of glaucoma patients are undiagnosed
(Heijl et al.; Weih et al., 2001). Without some form of
screening, most patients with glaucoma remain undiag-
nosed until an advanced disease stage is reached (Tan
et al., 2020).

Unfortunately, the pathogenesis of glaucoma is not
fully understood (Weinreb et al., 2014). Proposed risk
factors are an increased intraocular pressure (IOP), ag-
ing, and family history, however, vision loss can occur
with normal pressure or even lower. Reduction of in-
traocular pressure is the only proven method to treat the
disease.

Guo et al. (2005) found that there is a relation be-
tween retinal ganglion cell death, intraocular pressure
and IOP-induced effects on the extracellular matrix.
This is confirmed by Weinreb et al. (2014) in their re-
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view study, stating, that the level of intraocular pressure
is related to retinal ganglion cell death.

Retinal ganglion cells die when their axons, that form
the optic nerve, are injured (Sánchez-Migallón et al.,
2016). Those axons of the retinal ganglion cells are
the primary component of the retinal nerve fiber layer
(RNFL). Due to their progressive degeneration in glau-
coma, the layer becomes thinner. Additionally, vessels
are present in this layer, that influence the thickness
measurement (Yow et al., 2021).

In order to diagnose Glaucoma, the imaging tech-
nique optical coherence tomography (OCT) can be ap-
plied (Sharma et al., 2008). OCT devices are able to im-
age the RNFL around the optic nerve head, also known
as circumpapillary retinal nerve fiber layer (cpRNFL).
However, OCT scans alone do not clearly distinguish
between the neuronal and vascular components within
the RNFL.

Fortunately, Optical Coherence Tomography Angiog-
raphy (OCTA) (Spaide et al., 2018) was introduced, a
non-invasive imaging modality building on OCT that is
able to provide depth-resolved images of blood flow in
the retina and choroid.

Previous work by Yow et al. (2021) focused on com-
bining both OCT and OCTA image pairs in order to
understand the vascular and nerve components of the
cpRNFL. Their study relies on the OCTA scanner CIR-
RUS, a research imaging device by ZEISS.

In our current study, we aim to bridge this gap by
translating the approach of segregating the vascular and
nerve components of the RNFL from the prototype
OCTA system PLEX ELITE to the commercially avail-
able OCTA system CIRRUS. By adapting the method-
ology to a widely used OCTA system, we can enhance
its clinical applicability and enable healthcare profes-
sionals to obtain valuable information about glaucoma’s
vascular and neuronal aspects. This translation will
facilitate the integration of this technique into routine
glaucoma diagnostics, enabling more accurate and com-
prehensive assessments of the disease.

1.2. Current pipeline
This work is a follow-up project of ”Segregation of

neuronal-vascular components in a retinal nerve fiber
layer for thickness measurement using OCT and OCT
angiography”, (Yow et al., 2021). Yow et al. (2021) fo-
cus on the understanding of the circumpapillary retinal
nerve fibre layer (cpRNFL) of healthy eyes imaged by a
ZEISS PLEX OCTA device.

In order to extract the thickness of the circumpapil-
lary retinal nerve fibre layer (cpRNFL) while excluding
vessels and only focusing on the neuronal components,
a range of steps are applied. The current pipeline con-
sists of a range of manual and/or computational steps.

First, bscans are extracted from both the OCT and
OCTA volumes, meaning we can see the different layers
of the eye.

In the next step, we generate an enface image by aver-
aging each volume from the top view. The enface image
shows the optic nerve head and vessels similar to a fun-
dus image.

Now, a medical expert needs to segment the optic disc
which is subsequently used to extract the centre point of
the optic disc.

With the help of the centre point, a circumpapillary
scan is extracted at a radius of 3.46 mm, this scan shows
the layers similar to a bscan. Averaging over a range of
radii increases the robustness of the scan.

In the same step, we get additional information from
a superficial enface scan, which can be exported from
the CIRRUS device. The vessel information from the
same radius of 3.46 mm are stored in a vector. We refer
to this 2D vector as vessel information of the superficial
image.

Coming back to the circular scan, the next step is
the manual layer segmentation of the retinal nerve fi-
bre layer of the OCT image in order to extract the layer
of interest. We refer to this 2D image as layer mask.

The layer mask is used to also extract the layer in
the circular OCTA scan. By thresholding, we receive
vessel information. We refer to this 2D image as vessel
information derived from the OCTA image.

In the last step, we combine the layer mask with the
vessel information derived from the OCTA image and
the vessel information of the superficial image. From
this, measurements of the layer, with and without ves-
sels can be extracted.

1.3. Problem Statement

In this work, we will focus on the problem of find-
ing the centre point of the optic disc. This task is cur-
rently done manually, which has the disadvantage that
it is time-consuming. An alternative approach would be
image processing, with the disadvantage that it is not
robust against noise or illumination changes. A super-
vised deep learning approach would require a labelled
dataset, which is not available. Labels in other do-
mains are available, but come with a domain shift to
our dataset.

1.4. Proposed Solution

We introduce a pipeline (see Figure 1), using com-
mon domain adaptation techniques, as well as semi-
supervised learning for unsupervised domain adapta-
tion. We have three datasets available, one being the
target domain, and two different source domains. We
transform the images in order to match the style of the
target domain. We compare different approaches. A
mixed batch sampling strategy makes sure that there
is an equal amount of data from each dataset in each
batch. A modified mean teacher approach is used for
semi-supervised learning.
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Figure 1: Segmentation pipeline using domain adaptation approaches
combining labelled (source-domain) and unlabelled (target-domain)
data. A transform is applied in order to reduce the domain shift. A
sampling approach is applied in order to avoid an imbalance between
the datasets. A Mean Teacher, consisting of a student and teacher
model is used for temporal ensembling and pseudo label generation,
hence learning from the unlabelled data.

1.5. Important concepts

For better understanding, the following terms are de-
scribed.

Domain shift occurs if the distribution of images in
the source dataset is different to target dataset (Liu et al.,
2022).

Domain-specific representations describe the style of
an image. Precisely, this could be colour, intensities,
and noise. This information may be encoded as a vector
(Liu et al., 2022).

Domain-invariant representations describe the con-
tent of an image, hence the geometry. In order to pre-
serve spatial correlations, this can be encoded in a spa-
tial spatial (tensor) (Liu et al., 2022).

Unsupervised domain adaptation is an umberella
term for techniques that reduce the domain gap between
a source and a target domain. This can be on input-level,
on feature-level, or on output-level (Toldo et al., 2020).

Image-to-image (I2I) translation is a technique for
UDA and has the goal to translate one image represen-
tation into another where a specific factor differs (e.g.
style) while others are maintained (Liu et al., 2022).

Semi-supervised learning is a type of machine learn-
ing that combines both labelled and unlabelled data to
improve model performance. Semi-supervised learning
can be applied to unsupervised domain adaptation.

Semi-supervised learning for unsupervised domain
adaptation. To bring both parts into context, unsu-
pervised domain adaption can be considered as a vari-
ant of semi-supervised learning, but with a statisti-
cal shift of the unlabelled target data as additional
complexity. Pseudo-labels implicitly promote feature-
level cross-domain alignment, while still retaining the
task specificity (Yang and Soatto, 2020). However,
a common challenge in semi-supervised learning with
pseudo-label generation is the tendency to prioritise
more confident predictions. This becomes problematic
when dealing with domain shifts as high confidence can

be misleading due to the presence of out-of-distribution
data with low certainty. To address this issue, pseudo-
labelling approaches often employ techniques for clean-
ing the labels. This process may involve using uncer-
tainty, for example measured with entropy, to ensure
more reliable predictions (Toldo et al., 2020).

Semi-supervised domain adaptation (Toldo et al.,
2020) is a combination of unsupervised domain adap-
tation and semi-supervised learning. Here, the source
domain is fully labelled and the target domain is par-
tially labelled. We do not apply this in our work, but
want to mention it to avoid confusion due to the similar
sounding terms in literature.

2. State of the art

We analyse approaches that address the domain shift
and/or the unlabelled image problem for semantic seg-
mentation. Figure 2 visually puts the following ap-
proaches into context that we distinguish between:

• Approaches that are designed for multi-modality
or general robustness/domain invariance.

• Approaches that apply supervised or semi-
supervised learning.

• Approaches that are used standalone/pre-trained or
are learned.

Approaches may include generative and/or adversarial
techniques.

Figure 2: Overview of related work, including multi-modal or single-
modal data, noise for robustness, transforms (for instance image-to-
image translation or data augmentation), and learning approaches
such as supervised or semi-supervised learning. We limit our re-
lated work to pipelines that combine labelled and unlabelled images.
Dashed lines represent optional paths that vary between related work.

Generally said, an unlabelled image is transformed
based on noise and/or labelled images to reduce the do-
main shift and then used for training a segmentation net-
work. A combination of the transform and supervised
learning may use the content of a labelled (source) im-
age and the style of an unlabelled (target) image to pro-
duce synthecised labelled images in the target domain.
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Changing the supervised to a semi-supervised learning
approach, real unlabelled images in the target domain
can be additionally introduced.

2.1. Transforms

Transforms can be either standalone, including pre-
trained or trained in the final semi-(supervised) routine.

A rather simple approach is introducting noise for ro-
bustness.

Another approach that can be applied here carries
the name unsupervised image-to-image translation. The
goal here is to translate one image representation into
another where a specific factor differs (e.g. style) while
others are maintained.

2.1.1. Noise for adaptation robustness
Adding noise to make a domain adaptation pipeline

more robust can be as simple as applying a Gaussian
noise layer and can be as complex as applying adversar-
ial data augmentation.

Volpi et al. (2018) propose an adversarial data aug-
mentation technique.

Chen et al. (2022) developed a method for realistic
adversarial data augmentation framework ”AdvChain”
for medical image segmentation tasks. Their method
jointly optimises a dynamic data augmentation module
and a segmentation network in order to better leverage
labelled and unlabelled data. While not being designed
for multi-modal data, as there is no knowledge about
the target domain integrated, this work makes the model
generally more robust.

2.1.2. Fourier domain adaptation
(Learnable) Fourier domain adaptation (FDA) (Yang

and Soatto, 2020) is a simple type of unsupervised do-
main adaptation (UDA), using the Fourier domain for
swapping the low-frequency spectrum between two do-
mains.

2.1.3. Correlation alignment
CORrelation ALignment (CORAL) (Sun et al., 2017)

is a simple method for unsupervised domain adaptation.
Domain shifts are reduced by aligning the second-order
statistics of source and target distributions.

2.1.4. Generative adversarial networks
Generative adversarial networks (GANs) (Goodfel-

low et al., 2020) can be applied to reduce the domain
shift impact of a source and target domain. GANs typ-
ically employ a generator and a discriminator network.
The generator generates an image by sampling from a
Gaussian distribution, while the discriminator is given
the synthetic image and a real one, and tries to identify
which input is real and which is fake. Over the years
multiple versions for image-to-image translation estab-
lished, including Cycle-GAN (Zhu et al., 2017), Style

and Content disentangled GAN (SC-GAN) (Kazemi
et al., 2019), or the conditional generative adversarial
network (cGAN) based approach pix2pix (Isola et al.,
2017).

2.1.5. Unsupervised image-to-image translation net-
work

Unsupervised image-to-image translation networks
come in a range of versions. The basic version, the
unsupervised image-to-image translation (UNIT) net-
work (Liu et al., 2017) learns a one-to-one mapping
between two visual domains. The multi-modal un-
supervised image-to-image translation (MUNIT) net-
work (Huang et al., 2018) learns a many-to-many map-
ping between two visual domains. The few-shot un-
supervised image-to-image translation (FUNIT) net-
work (Liu et al., 2019) learns a style-guided image
translation model that can generate translations in un-
seen domains. The few-shot Unsupervised Image
Translation with a content conditioned style encoder
(COCO-FUNIT) network (Saito et al., 2020) is a FU-
NIT, introducing a content-conditioned style encoding
scheme.

2.2. Semi-supervised learning

Over the past decades, there were many approaches
introduced to tackle semi-supervised learning. Semi-
supervised learning (SSL) is halfway between super-
vised and unsupervised learning, using both, labelled
and unlabelled data for training.

We want to introduce three main concepts, entropy
minimisation, consistency regularisation and pseudo la-
belling. As well as multiple architectures that use these
strategies as a foundation.

Entropy minimisation (Grandvalet and Bengio, 2004)
incorporates uncertainty additionally to confidence into
the training routine to receive more certain predictions.
In its simplest way is performed at pixel-level, so that
each spatial unit of the prediction map brings an inde-
pendent contribution to the final objective.

Consistency regularisation follows the assumption,
that a perturbation, for instance, dropout, data augmen-
tation or multiple models trained together, should not
modify model predictions given the same input.

Pseudo-labelling methods use a model, trained on the
labelled set to produce additional training examples by
labelling images of the unlabelled set.

Self-training (which became popular in the 1970s
through the success of the expectation maximisation
algorithm), and later co-training (Blum and Mitchell,
1998) use pseudo labelling. Either a single or multi-
ple networks generate pseudo labels for further training
iterations.

Temporal ensembling (Laine and Aila, 2016) em-
ploys self-ensembling. This means that a prediction of
unlabelled images are derived using the outputs of the
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network-in-training on different epochs using different
regularisation and data augmentation techniques.

The Mean Teacher (Tarvainen and Valpola, 2017) al-
gorithm uses the strategy of temporal ensembling in
combination with an exponential moving average be-
tween two models. This can improve consistency reg-
ularisation and reduces overfitting. One of its draw-
backs is that given a large number of epochs, the teacher
model’s weights converge to those of the student model,
the result is that biased and unstable predictions are car-
ried over to the student.

Virtual Adversarial Training (VAT) (Miyato et al.,
2018) is a semi-supervised learning method based on
adversarial noise. Adversarial noise is injected into the
training data for consistency regularisation. Using a
confidence threshold, pseudo labels can be obtained. It
can improve the generalisation performance and reduce
the influence of noisy labels.

MixMatch (Berthelot et al., 2019) performs linear in-
terpolation to mix both labelled and unlabeled images
to get augmented image-label pairs.

FixMatch (Sohn et al., 2020) enforces the predic-
tion consistency between weakly augmented images
and strongly augmented images.

2.3. Domain-invariant learning

A very common approach to handle the domain adap-
tation problem is to apply adversarial learning. The the-
ory of using adversarial learning for domain adaptation
follows a simple approach: a model acts discriminative
for the main learning task, on the source domain and
indiscriminate with respect to the shift between the do-
mains.

Ganin et al. (2016) introduced the domain-adversarial
neural network (DANN). They combine a feature ex-
tractor and a label predictor to form a common feed-
forward architecture. An additional domain classifier is
connected to the feature extractor by a gradient reversal
layer, enabling domain-invariant feature learning.

2.4. Semgnetation Pipelines

Zhang et al. (2020) developed a semi-supervised
pipeline for unsupervised domain adaptation applying
label propagation with augmented anchors.

Choi et al. (2019) introduced target-guided and cycle-
free data augmentation (TGCF-DA), a GAN-based aug-
mentation method for domain alignment. The final aug-
mented image has the content of the labelled image,
adapted to the style of the unlabelled image. In the sec-
ond step, they use the labelled real data and augmented
data as well as the unlabelled data in a semi-supervised
semantic segmentation setup.

Wang et al. (2020) propose a fine-grained adversar-
ial learning framework for cross-domain semantic seg-
mentation. Their contribution is a ”fine-grained” dis-
criminator that can both, distinguish between domains

and capture class knowledge in order to support feature
alignment.

Chen et al. (2020) proposed a generative approach,
where a synthetic dataset is used for training an image
segmentation network. With the help of a MUNIT, they
translate images from the labelled source domain into
the unlabelled target domain. While their cascaded U-
Net setup has never seen real labelled images before, it
generalises well on the target domain.

Qin et al. (2023) proposed an unsupervised domain-
adaptation pipeline for semantic segmentation. The
approach makes use of the semi-supervised approach
”dual student”, as well as adversarial training.

Ouyang et al. (2019) proposed a pipeline that com-
bines VAE-based feature prior matching with domain
adversarial training. The goal is to learn a shared
domain-invariant latent space which is then used for
segmentation.

Zeng et al. (2021) proposed a pipeline that applies a
CycleGAN for image translation and a domain-specific
segmentation module.

Zhao et al. (2019) developed the Multi-source Ad-
versarial Domain Aggregation Network (MADAN), a
pipeline that combines dynamic adversarial image gen-
eration, adversarial domain aggregation, and feature-
aligned task learning.

Yang and Soatto (2020) proposed a pipeline that com-
bines a Fourier domain adaptation (FDA) module that
reduces the domain gap between source and target with-
out training required, and a segmentation network.

3. Material and methods

A general overview on how the datasets, transform,
data sampler and mean teacher are connected is visu-
ally presented in Figure 1. As part of the mean teacher
approach, the student model, trained through backprop-
agation, can be seen in Figure 7, and the teacher model,
updated through the exponential moving average, can
be seen in Figure 10.

3.1. Datasets and pre-processing
For the experiments, we use three different datasets.

Zeiss PLEX Elite OCT enface scans as the labelled
source domain, publicly available iChallenge datasets
with labelled fundus images as helper domain, and fi-
nally, the Zeiss CIRRUS AngioPLEX OCT enface scans
as the target domain.

The PLEX dataset (see Figure 3) consists of healthy
eyes (270 images). Pre-processing steps include extract-
ing the enface scan from the OCT volume. One vol-
ume has a size of 500x500x1536, covering the region of
6mm x 6mm. Binary masks with the optic disc as fore-
ground class were provided by the lab. The validation
set consists of 20% of the images.

The ADAM iChallenge (see Figure 4) dataset con-
sists of AMD/non-AMD fundus images (Fu et al.,
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2020). Pre-processing steps include cropping the fun-
dus images around the optic disc according to the mask.
Binary masks with the optic disc as foreground class
are part of the dataset. Images with empty masks are
excluded from training the pipeline, the final number of
images used is 270.

Figure 3: Example PLEX image.

Figure 4: Example fundus image of the ADAM dataset.

Figure 5: Example CIRRUS image.

The CIRRUS dataset (see Figure 5) consists of
Glaucoma/non-Glaucoma eyes (1347 images). Pre-
processing steps include extracting the enface scan
from the OCT volume. One volume has a size of
350x350x1024, covering the region of 6mm x 6mm. No
manually annotated masks are available for training and
validation. A testset of 50 images were manually anno-
tated.

3.2. Domain shift analysis
3.2.1. Visually

One way to understand the domain shift between
source and target domain(s) is by visualisation. We can

do this by applying the pixel-wise mean on all images
of a domain. Furthermore, information about the vari-
ance within one domain can be extracted by applying
standard deviation on a pixel basis.

3.2.2. Qualitative
In our qualitative analysis, we focus on domain shift

based on texture. The pipeline consists of feature ex-
traction and feature selection. The goal is to get two
significant, uncorrelated features.

Feature extraction. Feature types can be classi-
fied into colour, texture, statistical and geometry fea-
tures. We focus on texture, specifically grey level co-
occurrence Matrix (GLCM), and statistical features.

A grey-level co-occurrence matrix (GLCM) is a his-
togram of co-occurring greyscale values at a given off-
set over an image and serves as a compact summary
of the matrix. Features that are commonly extracted
from GLCM are contrast, dissimilarity, homogeneity,
ASM (ASM” value shows the strength of homogeneity,
namely the pair correlation ), energy, and correlation.

Statistical features are based on the whole image.
This includes the mean, which can be assumed to be
the mean brightness in a greyscale image.

Feature selection. Types of feature selection include
removing features with low variance, univariate feature
selection, recursive feature elimination, L1-based fea-
ture selection, tree-based feature selection and sequen-
tial feature selection.

In the related area of bioinformatics, where feature
analysis and determining the significance of a feature is
a common task, we can see the random forest classifier
being a popular choice (Qi, 2012).

Redundant feature removal with correlation matrix.
A correlation matrix helps in understanding which fea-
tures are redundant. We remove correlating features
in order to avoid overfitting, increase interpretability as
feature importance will be incorrect with redundant fea-
tures and reduce unnecessary dimensions.

The Pearson correlation measures the strength of the
linear relationship between two variables. It has a value
between -1 to 1, with a value of -1 meaning a negative
linear correlation, 0 being no correlation, and + 1 mean-
ing a positive correlation (Kotu and Deshpande, 2019).

Feature importance analysis with random rorest. In
order to understand the importance of a feature, we can
use a random forest classifier in combination with a
metric, such as the Gini impurity, also known as mean
decrease in impurity (MDI) or the permutation impor-
tance also known as mean decrease in accuracy (MDA).

A random forest classifier (Breiman, 2001) consists
of an ensemble of decision trees. It incorporates feature
selection and interactions naturally in the learning pro-
cess. By using the dataset name as a class label, we can
understand which features are most relevant for distin-
guishing between the datasets, hence, for which features
the distribution shift is highest.
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Gini impurity (Yuan et al., 2021) is useful in decision
trees for calculating the purity of the branches of our
tree. In an ideal case, each branch of the decision tree
will be homogenous in that it contains a single class. If
the branch is pure, this ideal case will be satisfied (Gini
impurity = 0). Any Gini impurity score above 0 can be
used to understand the homogeneity, or lack of, in the
data on the branches.

The feature importance based on feature permutation
can also be calculated, this being advantageous over
impurity-based feature importance measures as they are
not biased towards high-cardinality features. Cardinal-
ity refers to the number of distinct values that a feature
can have, so high-cardinality features are those that have
a large number of distinct values.

Feature significance analysis with univariate feature
selection. In order to understand the significance of a
feature, we can use univariate feature selection in com-
bination with a metric, such as the p-value or the chi-
squared score.

Univariate feature selection works by selecting the
best features based on univariate statistical tests by re-
moving all but the highest scoring features.

The p-value (Thiese et al., 2016) is a measure of the
relationship between two groups of data. A low p-value
means that there is likely a strong relationship between
the groups of data, and that the null hypothesis - the
statement that there is no association between groups -
should be rejected. Inversely, a high p-value suggests
there is likely no relationship between the groups of
data, and that the null hypothesis should be accepted.

The chi-squared statistic (Plackett, 1983) is a com-
mon statistical test used to determine the significance
of any association between two variables, doing so by
comparing the observed frequencies of the variables
with the frequencies which should be expected if they
were independent. The chi-squared score is computed
between each non-negative feature and class.

3.3. Transforms

All transforms used and compared in this work are
stand-alone. They may be trained in their own pipeline,
but do not get influenced by the final semi-supervised
loss.

3.3.1. Fourier domain adaptation
Frequency decomposition has shown to promote

content-style disentanglement where low frequencies
are an approximation for style and high frequency are
an estimate for the content.

With the help of the fast Fourier transform (FFT), the
amplitude can be extracted as an estimate of image style
(domain-specific) while the phase represents the image
content (domain-invariant) (Yang and Soatto, 2020).

3.3.2. Multi-modal unsupervised image-to-image
translation network

The multi-modal unsupervised image-to-image trans-
lation network (MUNIT) (Huang et al., 2018) is a neu-
ral network-based approach to disentangle content and
style of two datasets in order to perform image-to-image
translation. Given an image in the source domain, the
goal is to learn the conditional distribution of corre-
sponding images in the target domain, without having
access to any paired images. The MUNIT architec-
ture consists of two auto-encoders, one for each domain.
Each auto-encoder has a latent space for content and one
for style. Image-to-image translation is performed by
swapping encoder-decoder pairs. A simplified diagram
of a single content-style disentangled auto-encoder can
be seen in Figure 6. For training, an adversarial loss
(LGAN) ensures, that the translated images are not able
to be distinguished between the target and source do-
mains. Furthermore, bidirectional reconstruction losses
for image reconstruction (Lrec), content latent recon-
struction (Lc−rec) and style latent reconstruction (Ls−rec)
make sure that encoders and decoders are inverses.

The final loss function to be minimised is

L = LGAN + λ1Lrec + λ2Lc−rec + λ3Ls−rec (1)

3.4. Data Sampler
3.4.1. Mixed Batch Sampling

Due to the number of different datasets, a mixed batch
sampling (MBS) approach is used. Similar to the two-
stream batch sampling, the MBS approach samples n
images from each data source for each epoch. This also
helps with class imbalance as it naturally applies under-
sampling of all classes greater than the minority class
(Anand et al., 2010).

3.5. Mean Teacher
The Mean Teacher approach, introduced by Tar-

vainen and Valpola (2017), makes use of two equal

Figure 6: Auto-encoder of the MUNIT with a content and a style
encoder, feeding two disentangled latent spaces. z denotes the style
encoding, while C denotes the content encoding. IMG’ is the recon-
structed image. Y’ is an additional output that may be used for seg-
mentation purposes.
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models, a student model and a teacher model, which
are trained simultaneously. The student model is trained
with both labelled and unlabelled data, while the teacher
model is updated by the exponential moving average of
the student model’s parameters.

A very commonly used model for instance segmenta-
tion in the medical imaging domain is the U-Net (Ron-
neberger et al., 2015). It consists of an encoder-decoder
structure with skip connections. The encoder captures
hierarchical features, while the decoder recovers spatial
information. Skip connections help to preserve fine de-
tails and contextual information.

In order to construct a U-Net, a backbone is needed,
for instance, the EfficientNet b0 (Tan and Le, 2019). It
is designed to balance model depth, width, and resolu-
tion for optimal performance by following a compound
scaling method that uniformly scales these dimensions
to create a highly efficient and effective model.

3.6. Updating the student network

Figure 7: Updating the student network through backpropagation
which is part of the Mean Teacher. IMG are the labelled source and
unlabelled target images. MO are the model outputs. GT is the ground
truth of the source domain. Only the student model gets backpropa-
gated through.

The student network is updated using the standard
backpropagation algorithm on the labelled data. See
Figure 7.

3.6.1. Loss overview
For training the student network, we combine a su-

pervised loss term (Lseg) focusing on the labelled data
and a consistency loss term (Lcons ∗ λramp) focusing on
the unlabelled data.

L = Lseg + Lcons ∗ λramp (2)

Lseg is the dice loss between the student’s predictions
of all labelled images and their ground truth.

Lcons is the MSE/L2 loss between the student’s pre-
dictions and the cleaned teacher’s predictions. Here,
only unlabelled images are taken into account.

λramp is a weighting factor, that weights the consis-
tency higher the more the epochs progress.

An additional loss term Lcertain is introduced in the
last experiment.

3.6.2. Segmentation loss function
Dice loss, also known as the Sørensen-Dice coeffi-

cient or F1-score loss, is a commonly used loss func-
tion for segmentation tasks, including instance segmen-
tation. It measures the similarity or overlap between
the predicted segmentation masks and the ground truth
masks.

Dice loss is particularly useful in scenarios where the
foreground objects of interest are small in proportion to
the background. It helps address the class imbalance
issue that often arises in segmentation tasks, where the
background pixels heavily outnumber the object pixels.

Dice Loss:

Lseg(mos, gt) = 1 − 2 × |mos ∩ gt|
|mos| + |gt| (3)

|mo∩ gt| denotes the number of pixels in the intersec-
tion between the predicted ”model output” mask and the
ground truth mask, |mo| + |gt| represents the total num-
ber of pixels in the predicted and ground truth masks,
respectively.

3.6.3. Consistency loss function
The consistency loss can be defined as the discrep-

ancy between the model’s predictions on the original
and perturbed inputs. It can be formulated using various
metrics, such as mean squared error, Kullback-Leibler
divergence, or cosine similarity.

We calculat it as the mean squared error between the
predictions of the teacher and the student models on the
unlabeled data, and it serves as a regulariser to encour-
age the student model to produce similar predictions as
the teacher model. This helps to improve the generali-
sation performance of the model by reducing overfitting
to the labelled data.

MSE =
1
n
×

∑
(mo − gt)2 (4)

The final consistency loss function is defined as:

Lcons(mos,mot) =
1
n
×

∑
(mos − mot)2 (5)

For the last experiment, we use the Dice score in-
stead of the mean squared error in order to calculate the
loss between the student’s model output and the cleaned
pseudo label generated by the teacher model.

3.6.4. Accounting for uncertainty
Epistemic (systematic) uncertainty describes what

the model does not know because training data was not
appropriate. Epistemic uncertainty is due to limited data
and knowledge.
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Aleatoric (statistical) uncertainty is the uncertainty
arising from the natural stochasticity of observations.

We can quantify the amount of uncertainty in an en-
tire probability distribution using the Shannon entropy.
The entropy is used as an additional loss for the pipeline
accounting for uncertainty, which is the third approach.

Lcertain(motta) = −
∑

motta ∗ log(motta) (6)

In order to calculate entropy, we can use test-time
augmentation. An image is augmented with different
noise sources, and put through a model. The entropy
is calculated between the model outputs. See Figure 23.
Furthermore, we generate a combined mask for the con-
sistency term, where we use the mean of the model pre-
dictions, then take the biggest area and fit an ellipse on
it. In this way, we want to reduce artefacts as well as
push the network to make more circular predictions.

Figure 8: Certainty calculation, where img is one single image, n is
the noise source, and MO is the model output.

3.6.5. Epoch-based weighting
According to the temporal ensembling approach for

semi-supervised learning, proposed by (Laine and Aila,
2016), a ramp-up function for weighting the supervised
loss and the consistency loss component is needed.
They state, that we cannot rely on the consistency loss
from epoch zero, hence a way of performing a warm
start is needed. One way of achieving an increasingly
stronger weighted consistency loss term is introducing a
ramp-up function. At the beginning, the supervised loss
dominates, until the point of the ramp-up length (rmax)
is reached, then both losses contribute equally. Com-
monly, exponential ramp-up (see Figure 9), or a simple
linear function are applied.

The exponential ramp-up is defined as

λramp(t, rmax) = exp (−1
2
× (1 − t

rmax
)2) (7)

where t is the current epoch and rmax is the ramp-up
length.

3.6.6. Back-propagation
Only the student model backpropagates the error,

for which an optimiser and additionally a learning
rate scheduler are applied. For instance, Loshchilov
and Hutter (2016) introduced stochastic gradient de-
scent with warm restarts (SGDR) also known as cosine
annealing learning rate scheduler with warm restarts,

where warm restarts are simulated by scheduling the
learning rate. They state, that SGDR may also make
learning rate selection easier since the annealing and
restarts consider a range of learning rate values.

3.7. Updating the teacher network

3.7.1. Exponential Moving Average
Instead of averaging predictions as it is done in tem-

poral ensembling, the mean teacher approach averages
the models’ weights. Precisely, the teacher model’s
weights are updated using the Exponential Moving Av-
erage (EMA) of the student model’s weights. The
teacher model is updated at each iteration of the training
process (Tarvainen and Valpola, 2017).

The EMA is calculated as follows:

EMA(w, t) = (w × α) + (EMA(w, t − 1) × (1 − α)) (8)

where w is the weight of the student model at epoch t.
EMA(w, t-1) is the EMA of the weight at the previous
iteration. α is the decay factor.

3.8. Post-processing

Due to the anatomy of the human eye, which includes
a single optic disc, we filter the image using the largest
region. This approach enables us to effectively remove
artefacts and enhance the quality of the image.

3.9. Evaluation Matrices

Different scores are available for segmentation and
the medical field (Hicks et al., 2022).

Qualitative metrics include recall, precision and F1-
score.

Recall also referred to as the sensitivity or True Pos-
itive Rate (TPR), indicates the proportion of correctly
classified positive samples. It is computed as the ratio
of correctly classified negative samples to all samples
classified as negative.

Figure 9: Exponential ramp-up function, with an example ramp-up
length of 75.
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Figure 10: Updating the teacher network with exponential moving
average (EMA) which is part of the Mean Teacher.

Precision is calculated as the ratio of correctly classi-
fied samples to all samples from a specific class.

F1-score is a measure that combines precision and re-
call into a single metric. It ranges from 0 to 1, where 1
represents maximum precision and recall values and 0
represents zero precision and/or recall.

For quantitative analysis, we visualise masks.

4. Results

4.1. Domain shift analysis

4.1.1. Visually
In the mean image (Figure 11), we can see, that the

optic disc in the OCT images are dark generally with
vessels being darker on the top and the bottom of the
optic disc, this can be explained due to anatomy. The
translated fundus image shows artefacts caused by the
Fourier domain adaptation. The black circular border
around fundus images is the source of error.

For the standard deviation (Figure 12) the lighter area
indicates higher variability. We can see that CIRRUS
image has more variability within the image, the MU-
NIT was able to partially follow the pattern. This may
be due to the random styles applied to the PLEX con-
tent.

Figure 11: Mean within the domain. Image-to-image translation is
performed by MUNIT (M) or Fourier domain adaptation (F).

4.1.2. Qualitative
For the quantitative analysis, we use the CIRRUS and

PLEX data for feature selection. Using the correlation
matrix, we can see the following: The contrast and dis-
similarity are positively correlated, the homogeneity is
negatively correlated. Furthermore, there is a high cor-
relation between ASM and energy.

Figure 12: Standard deviation within the domain. Image-to-image
translation is performed by MUNIT (M) or Fourier domain adaptation
(F).

Figure 13: Correlation of features for PLEX and CIRRUS.

We choose four features, contrast, correlation, en-
ergy and the mean image. Out of these, contrast is the
strongest feature. This can be seen in both the random
forest feature analysis as well as the univariate feature
selection. See Figures 14 and 15.

The final features chosen in order to track the domain
shift are contrast as well as mean image.

We can see, that the CIRRUS Glaucoma and CIR-
RUS Normal have no domain shift. Between the CIR-
RUS and PLEX data, especially the contrast is varying.
PLEX images within the domain also show a great vari-
ety in contrast.

The transformed images can be interpreted as fol-
lows.

The MUNIT generally produces pictures with low
contrast, lower than both PLEX and CIRRUS. However,
the contrast ratio within the image domain is smaller.

FDA managed to account for the contrast shift.

Fundus images are generally darker, which can be in-
terpreted by the mean image value. Both, the fundus
and the MUNIT-translated PLEX images are rather low
in contrast.
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Figure 14: Feature importance using random forest.

Figure 15: Feature importance using p-value. As the p-value shows
significance with values towards zero, we use 1-p value. The bigger
the bar, the higher the significance.

4.2. Transforms

4.2.1. MUNIT: Fundus-to-CIRRUS
We chose the MUNIT due to the fact that we do not

need image pairs of the source and target domain. Aug-
mentations include cropping, flipping and normalisa-
tion. We chose an image size of 256x256, and a style
vector size of 8. The MUNIT was trained with 3 channel
images. The Fundus-to-CIRRUS MUNIT was trained
for 400 iterations with CIRRUS images as one domain
and fundus images as the other domain. Visually it can
be seen, that the generated images have artefacts. Fur-
thermore, the results are not useful for training, since
the optic disc of the newly generated images is not in
the centre. The results can be seen in Figures 17 and 18.
The progression of training the MUNIT can be seen in
the appendix.

4.2.2. MUNIT: PLEX-to-CIRRUS
The PLEX-to-CIRRUS MUNIT was trained for 200

iterations with CIRRUS images as one domain and

Figure 16: Overview of different datasets and their domain shift.

Figure 17: CIRRUS-to-fundus with the MUNIT. The first row shows
the CIRRUS samples from the testset. The second row shows the
reconstructed image. The two last rows show two sets of newly gen-
erated fundus images.

Figure 18: Fundus-to-CIRRUS with the MUNIT. The first row shows
the fundus samples from the testset. The second row shows the recon-
structed image. The two last rows show two sets of newly generated
CIRRUS images.

PLEX images as the other domain. The hyperparam-
eters are equal to the previous experiment. The results
can be seen in Figures 19 and 20.

4.2.3. FDA: Fundus/PLEX-to-CIRRUS
A hyperparameter for the Fourier domain adaptation

approach was chosen as beta=0.5. Visual results can be
seen in Figures 21 and 22.

4.3. Mean Teacher setup and hyperparameters

We want to give an overview of design choices and
hyperparameters across our experiments.

Augmentations include resizing and cropping the im-
age to 128x128, random vertical and horizontal flips,

4.11



Optic disc segmentation with Image-to-image translation for Domain Adaptation 12

Figure 19: CIRRUS-to-PLEX with the MUNIT. The first row shows
the CIRRUS samples from the testset. The second row shows the
reconstructed image. The two last rows show two sets of newly gen-
erated fundus images.

Figure 20: PLEX-to-CIRRUS with the MUNIT. The first row shows
the fundus samples from the testset. The second row shows the recon-
structed image. The two last rows show two sets of newly generated
CIRRUS images.

a random combination of brightness, contrast, gamma
and sharpness factors, random blurring, inversion, and
finally min-max normalisation. These transforms were
chosen due to the domain shift.

We use the Efficientnet b0 backbone, pre-trained on
imagenet for proof of concept as it is computationally
less expensive.

We use one input channel (greyscale) and two output
neurons.

We use a ramp-up length (rmax) of 300. Experiments
with a shorter ramp-up length resulted in unstable learn-
ing.

The network is training for 300 epochs, using early-
stopping based on the f-score. If there is no improve-
ment for 10 epochs, training is stopped.

In the context of this model, one epoch is defined as a
complete pass of the downsampled dataset through the
model. This means, that only n images are used from
each dataset, n being the size of the smallest dataset.
The batch size for each dataset is 4. Hence, the final
batch size is 12.

The learning rate is determined by the Cosine An-
nearling Learning Rate Scheduler with warm restarts.
The base learning rate is 0.001, with a minimum learn-
ing rate of 0.00001. The momentum is 0.9.

The ema decay value remains as the default value,
0.999.

4.4. Uncertainty

In order to account for uncertainty, which may be
linked to artefact segmentation, we change the pipeline

Figure 21: An example for fundus-to-CIRRUS translation using
Fourier domain adaptation.

Figure 22: An example for a PLEX-to-CIRRUS translation using
Fourier domain adaptation.

as follows. First, we add different noise to an image four
times in order to get 4 augmented versions of an image.
We put it through the network. Then we take the mean
of the outputs. In the last instance we use the biggest
area and fit an ellipse around it. The MSE loss in re-
placed by a Dice loss, and the combined and cleaned
prediction is used as a pseudo mask.

4.5. Segmentation Pipeline

We chose to proceed with the Fourier domain adapta-
tion as an image-to-image translation technique because
of two reasons. Firstly, FDA works well on both PLEX
and fundus data. Furthermore, the alignment according
to the contrast feature gave better results for FDA than
MUNIT.

The final model is chosen with the help of early stop-
ping, when there is no increase of f-score for 10 epochs,
the training is stopped. The f-score is calculated based

Figure 23: Uncertainty visualised. Student is the output of the student
model. Teacher is the output of the teacher model. N1 is the prob-
ability map of a single noise image put through the teacher network.
Clean is the cleaned mean image of the four noise images. Img is the
reference image.
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on the validation set (PLEX). Models applying Fourier
domain adaptation, transform images in training, as well
as a validation set. The final F1 score, precision and re-
call are calculated based on the CIRRUS testset, which
contains 50 manually annotated masks.

The results of the different experiments can be seen
in Table 1.

Name Epoch (vF1) F1 Prec Rec

MT 114 (0.897) 0.879 0.935 0.844
F+MT 107 (0.884) 0.895 0.916 0.887

F+MT+C 87 (0.881) 0.901 0.916 0.897

Table 1: Results of the Mean Teacher (MT) baseline and its variations.
Validation F-score (vF1), F-score (F1), Precision (Prec), Recall (Rec),
Fourier domain adaptation (F), certainty (C).

5. Discussion

5.1. Domain shift analysis
With the help of techniques for exploratory data anal-

ysis, we were able to understand the datashift between
the PLEX and the CIRRUS data.

Due to the high accuracy of the random forest classi-
fier, we can see, that chosen features differ greatly be-
tween two domains.

While the CIRRUS data has more variance within its
images, especially the illumination is less consistent.
Furthermore, CIRRUS images are brighter than PLEX
images.

5.2. Transforms
5.2.1. Interpretation of MUNIT results between CIR-

RUS and fundus data
In order to understand the unwanted results of the

MUNIT in this experiment, we need to look into the

Figure 24: Example result of the baseline.

Figure 25: Example result of FDA.

Figure 26: Example result of FDA with a cleaned mask.

inference stage of the network. Generally, only the two
generators are used to generate the new samples. The
generator is used as an encoder and as a decoder. In the
encoding direction, we translate an image into its con-
tent and style. In the decoding direction, we translate
an image from a content and a style representation back
into an image. The implementation allows us to either
use the style extracted from a target image, or use a ran-
dom vector.

See Figure 27 for a visualisation between PLEX (in
this example Fundus) and CIRRUS.

The image-to-image translation with the MUNIT
worked in a way, that a CIRRUS image got translated
to a fundus image and vice versa. However, the network
was not able to correlate the optic disc of the fundus and
the CIRRUS data. This may be due to multiple reasons:

The MUNIT network is not designed for this task.
It does image-to-image translation, hence generates a
typical CIRRUS image from a fundus image. It does not
do image registration-related tasks, which would have
been somewhat the goal.

The target and source domain would need to have
somewhat aligned content. This means, for example the
optic disc needs to be centered for both domains.

Both points are caused cause the domain shift is too
high, the network may not find the correlation of the
optic discs in both domains. The problem is not the
colour (style), but the shifted anatomy (content). Due to
the dark macula which is centered in the fundus image,
the MUNIT may connect the content of optic disc in the
CIRRUS with the macula in the fundus image.

Furthermore, the limited amount of data may play
a role. Additionally, the problem may be solved by a
longer training duration.

In conclusion, the easiest way of solving the mis-
match is the alignment of the optic discs.

Figure 27: MUNIT at inference. Example based on PLEX (or fun-
dus) and CIRRUS. There are only two generators used for inference,
the PLEX generator and the CIRRUS generator. Both are used for en-
coding and decoding throughout the inference. The style vector may
either be extracted from a (random) source image, or randomly gen-
erated.

5.2.2. Interpretation of MUNIT results between CIR-
RUS and PLEX data

Due to normalisation during the training, brightness
problems appear in the result data. The images are
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slightly blurry which can be solved by training for a
longer period of time as well as increase the image size.

5.2.3. Interpretation of FDA results
Fourier domain adaptation gave both, in CIRRUS-

to-PLEX as well as CIRRUS-to-fundus, decent results.
The limitation is, that only the low-frequency space is
exchanged and hence no natural artefacts are generated.

5.3. Segmentation Pipeline
The performance of all models are similar, this may

be due to the simplicity of the task.
Generally, dark areas are mistaken to be part of the

optic disc, hence artefacts which are common in CIR-
RUS images appear to be predicted as the foreground
class.

6. Conclusions

We introduce a pipeline for optic disc segmentation
incorporating image-to-image translation as a stand-
alone data augmentation technique and semi-supervised
learning to learn from labelled/transformed and unla-
belled data.

Multiple experiments were carried out.
Transforms were applied to account for the domain

shift. This includes, next to basic transforms such as in-
version, blurring and change in intensity, also image-to-
image techniques such as MUNIT and Fourier domain
adaptation.

As for semi-supervised learning, we used a mean-
teacher network, using both a supervised loss for the
labelled data and a consistency constraint for the un-
labelled data. Dependent on the experiment, we also
perform uncertainty estimation as well as pseudo mask
cleaning of the teacher’s model output.

6.1. Future Work
A range of steps can be taken to potentially improve

the segmentation results. The hyperparameters for the
Fourier domain adaptation filter can be learned. A
shape-based loss function based on the Hausdorff dis-
tance may reduce artefacts. Additionally, more inves-
tigation on the Lcertainty term should be made. Adver-
sarial learning seems like a promising, or even superior,
alternative, as widely used in literature. More tests with
the MUNIT should be made, potentially using a differ-
ent image size, longer training, as well as aligning optic
discs of fundus and CIRRUS images.
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Appendix

Progress of training a MUNIT

In order to visualise the progress of the MUNIT, we
choose the example of CIRRUS-to-fundus image trans-
lation as well as CIRRUS-to-PLEX, since this transla-
tion is more intuitive for understanding the MUNIT re-
sults. It becomes very clear, that the content alignment
is not working in the CIRRUS-to-fundus translation, for
instance, multiple optic discs are present in the fundus
results. We use the train data for visualisation. A more
detailed interpretation is present in each image caption.

Figure 28: Iteration 1: The reconstructed image in row two shows
green artefacts. The fundus image represents what we would have
wanted to receive as a final result. Unfortunately, the quality is rather
bad and the vessels are bright.

Figure 29: Iteration 100: After 100 iterations, the reconstructed image
is marginally blurry. The result images tend to have the optic disc
in the middle. Due to the fact that the CIRRUS image is way more
zoomed in, the optic disc in the result fundus image appears too small.

Figure 30: Iteration 200: The MUNIT performs well on the re-
construction task. Also, the general anatomy of a fundus image is
achieved. Occasionally, two optic discs are present in one image, ei-
ther mirrored horizontally or vertically. No optic disc is in the centre
anymore. Artefacts, especially on the borders of the fundus image are
present.

Figure 31: Iteration 1: The reconstructed image, similar to the
CIRRUS-to-fundus translation, shows artefacts. Generally, the same
effects as in the other experiment are present.

Figure 32: Iteration 100: Different to the CIRRUS-to-fundus experi-
ment, we can already see in iteration 100, that the MUNIT understood
the different style. It correctly takes the content of the CIRRUS image
and combines it with the style of the PLEX image. Note that this is
not the direction we need in our work (PLEX-to-CIRRUS). Translat-
ing CIRRUS to another domain makes it just visually better under-
standable, how the MUNIT is working.

Figure 33: Iteration 200: Similarly to iteration 100, the PLEX shows a
higher contrast. Also, the natural artefacts in OCT images are present
in both target and source domain which is a good sign, as we need
natural artefacts to increase the robustness of the semi-supervised ap-
proach.
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Abstract

Histopathology images are the gold standard to diagnose most different cancer types. These images are usually
analysed by a pathologist through optical inspection of the glass slides in modern microscopes. With a limited number
of pathologists and an increasing number of biopsies and resections performed, this work aims to explore modern
alternatives to alleviate the workload of pathologists. Digital Pathology concerns the acquisition and management of
glass slides and producing whole slide images (WSI) to be inspected on the computer. The workflows in hospitals
are shifting to a new domain where pathologists examine the WSIs on the computer instead of traditional microscope
observation. Computational Pathology emerges thanks to the slides’ digitalisation and therefore, the creation of
big WSIs datasets and it aims to develop computer-aided diagnosis (CAD) systems helping to reduce pathologists’
workload in tasks such as cancer segmentation and classification. Lung cancer holds the top position as the primary
cause of cancer-related deaths and has the second-highest incidence rate worldwide. Precise classification among the
different lung cancer subtypes is a crucial task that determines target treatments that improve the survival of patients
with such malignancy. A CAD system is proposed based on self-supervised pre-training and multiple instance learning
(MIL) training to classify lung WSIs into four classes, three major cancer subtypes, small cell lung cancer (SCLC),
non-small cell lung cancer, adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) and normal tissue (NL).
Trained in two different private datasets with 2,226 WSIs the model obtain an AUC of 0.8558 ± 0.0051 and a weighted
f1-score of 0.6537 ± 0.0237 in the 4-class classification on the test set. Moreover, to evaluate the generalisation
capability of the model, it was tested on the public TCGA dataset with LUAD and LUSC subtypes and obtained an
AUC of 0.9433 ± 0.0198 and a weighted f1-score of 0.7726 ± 0.0438.

Keywords: Self-supervised, Weakly-supervised, MIL, CAD, Lung Cancer, Histopathology, LUAD, LUSC, SCLC,
Automatic labels, Machine Learning, Deep Learning

1. Introduction

Morphological Histopathology is widely regarded as
the reference standard for the diagnosis of most cancers
(Tornillo and Franco, 2022). Currently, in most hospi-
tals, pathologists visually examine slides using micro-
scopes without the aid of modern technologies. The typ-
ical workflow in a histopathology laboratory involves
collecting either a biopsy or a tissue resection (part of an
organ) for examination. For resections, macroscopic in-
spection is conducted to select the tissue segments that
will undergo microscopic examination by the patholo-
gists. This differs from biopsy scenarios where all ex-
tracted tissue is prepared for microscopic examination.
The tissue undergoes various stages including dehydra-

tion with formalin and other chemical agents, and sub-
sequent embedding in paraffin to prepare it for cutting.
A microtome cuts the tissue into slides, which are typi-
cally 3 to 5 µm thick. Various stains are applied to dif-
ferentiate the different structures present on the slide.
The most used stain is Hematoxylin & Eosin (H&E).
Hematoxylin produces a blue-purple colour and stains
nucleic acids, whereas Eosin produces a pink colour and
stains basic structures. In a typical tissue sample, the
nuclei are stained darker due to the presence of DNA,
while the cytoplasm and extracellular matrix display
varying degrees of pink staining. Histopathology im-
ages include several tissue structures, ranging from mi-
croscopic entities (such as single-cell nuclei) to macro-
scopic components (such as tumour solid mass). (Fis-

5.1



A full pipeline to analyse lung histopathology images 2

cher et al., 2008)
The number of biopsies and resections collected

worldwide has been increasing over the years due to
several factors such as increasing screening strategies to
diagnose cancer before its symptoms are present and to
deliver a final diagnosis that would determine the best-
personalized therapy plan. In contrast, the number of
pathologists is not increasing equally with a consequent
workload on the sector. A study performed by Märkl
et al. (2021) explored the ratio of pathologists per num-
ber of inhabitants in Europe, the USA and Canada. In
Europe, on average, there is a ratio of one pathologist
per 32,018 inhabitants varying from 14,309 on Island
to 63,028 in Poland. Switzerland, the USA and Canada
have one pathologist per 35,355, 20,658 and 25,325 in-
habitants, respectively. Therefore, the scientific com-
munity aims to explore modern alternatives to alleviate
the workload of pathologists.

1.1. Digital pathology and computational pathology

A Whole Slide Image (WSI) is a digitized slide that
is scanned at high-resolution and stored in a multi-scale
(pyramidal) format as shown in Figure 1. Digital pathol-
ogy is becoming increasingly integrated into some hos-
pitals, with an additional step in the workflow involving
the digitisation of glass slides through the use of auto-
mated digital pathology scanners that offer magnifica-
tion equivalent to a microscope. Observation of slide
images in such cases usually involves a hybrid work-
flow, whereby, depending on the urgency of the mat-
ter, inspections are conducted either through traditional
microscopy or visualizing the scanned WSI directly on
specialized screens for improved resolution. The ac-
quisition of a WSI typically occurs at x40 magnifica-
tion level, resulting in images to over 100,000 pixels in
each dimension at the highest resolution level, with a
pixel size of 0.25 µm. Consequently, more public and
private datasets are available with histopathological im-
ages (Marini et al., 2021a).

Computational pathology aims to develop automatic
algorithms to analyse WSIs unleashing the power of
digital pathology. Most of these algorithms are cur-
rently based on Machine learning (ML), specifically
on Deep Learning (DL) algorithms to improve the ac-
curacy and efficiency of cancer diagnosis. By using
large amounts of data from digital pathology images,
DL algorithms can learn to identify and classify dif-
ferent types of cancer and provide additional insights
to aid pathologists in making a final diagnosis. ML-
powered image analysis can also help automate repeti-
tive and time-consuming tasks, such as tumour segmen-
tation and cell counting, enabling pathologists to focus
on more complex cases and improving overall diagnos-
tic accuracy (Abels et al., 2019).

Figure 1: Example of digitized whole slide image (WSI) scanned
at 40x (0.25 µm/pixel) as high-resolution and stored in a multi-scale
(pyramidal) at four different magnification levels.

1.2. Lung cancer

Lung cancer currently exhibits the highest mortal-
ity rate among all cancer types with an 18.0 age-
standardized mortality rate (ASR) per 100,000 inhab-
itants including all ages in 2020 (Ferlay et al., 2020).
Additionally, it has the second-highest incidence rate,
with an estimated 2,206,771 new cases reported in the
same year. In Europe, lung cancer holds the highest
mortality rate, with a 22.6 ASR per 100,000 inhabitants
including all ages, and the third highest incidence rate,
with an estimated 477,534 new cases in 2020 (Ferlay
et al., 2021; Sung et al., 2021). The lung cancer loca-
tions include the whole lung, the bronchus, their parts,
the mediastinum, the thoracic lymph nodes, the pleura,
and the pulmonary lymph nodes (Travis et al., 2011).

The initial step in diagnosing lung cancer involves
performing chest radiography on patients who exhibit
symptoms associated with either local or systemic ef-
fects of the tumour. In cases where radiography indi-
cates positive results, a biopsy is performed on the area
with abnormal lung findings (American Cancer Soci-
ety). In accordance with ICD-11 guidelines, patholo-
gists carefully examine the biopsy samples and issue a
report that includes the lung cancer subtype (if a tumour
is present) and TNM staging (Lababede and Meziane,
2018). Histopathology remains the gold standard for
cancer diagnosis and is critical in determining a pa-
tient’s prognosis and in identifying appropriate surgical
and/or treatment interventions.

Lung cancer is classified into two primary groups:
non-small-cell lung cancer (NSCLC) and small-cell
lung cancer (SCLC). NSCLC is further categorized into
three subtypes: adenocarcinoma (LUAD), squamous
cell carcinoma (LUSC), and large-cell lung carcinoma.
Among these, LUAD is the most common subtype and
accounts for 50% of all NSCLC cases. Adenocarcinoma
also has six subtypes, including acinar, papillary, mu-
cosal invasive, lepidic, micropapillary, and solid. Of
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all lung cancer cases, 80% are classified as NSCLC,
while the remaining 20% are classified as SCLC (Gold-
straw et al., 2011; Van Meerbeeck et al., 2011). Accu-
rate identification of the distinct categories and subcat-
egories is essential due to the varied prognosis for the
patient, and treatment options can vary significantly de-
pending on the cancer subtype, which is a critical step
in the diagnostic process that can profoundly impact pa-
tient survival.

SCLC is the lung cancer type with the worst progno-
sis as it has a high capacity for rapid metastasis, result-
ing in a low survival rate of 31% in the localized stage
and 2% in the disseminated stage after 5 years. In con-
trast, for non-small cell lung cancer (NSCLC), the size
of the primary tumour is a crucial factor affecting the
survival rate in stage I, while the number of malignant
nodules (N1) is the main factor determining the survival
rate in stage II. The survival rate in stage IV is approx-
imately 50%, while it is only 1% in stage IV (Kumar
et al., 2018).

Computational pathology could play a very important
role in pathologists’ workflow. By designing Computer-
aided diagnosis (CAD) systems using ML algorithms to
classify different lung cancer subtypes. The develop-
ment of these CAD tools could potentially help pathol-
ogists in the analysis of WSIs and reduce their workload
with an increasing number of biopsies performed on the
hospitals (Otálora et al., 2021).

1.3. Contributions

In this work, an algorithm is proposed to perform a
4-class classification task among the 3 most prevalent
cancer types SCLC, LUAD and LUSC and healthy tis-
sue as shown in Figure 2. The model is pre-trained in
a self-supervised algorithm and trained using a weakly-
supervised learning strategy by training a Multiple In-
stance Learning (MIL) model using both, labels auto-
matically extracted from the pathologist’s reports and
manual labels at WSI-level annotated by a pathologist.

This work presents the following contributions.

• An innovative pipeline is proposed that com-
bines self-supervised pre-training and weakly-
supervised training using MIL for the classifi-
cation task of lung cancer between four differ-
ent classes, the most prevalent three cancer types
(SCLC, LUAD and LUSC) and normal tissue.

• A comparison of the model trained on a private
cohort with manual annotation from an expert
pathologist and automatic labels obtained from
the reports. Additionally, to evaluate the perfor-
mance of using self-supervised learning to pre-
train the model, its performance is compared with
the model pre-train on ImageNet in the down-
stream classification task.

Figure 2: Representatives patches of the four different subtypes used
to train the model. LUAD: Non-small-cell adenocarcinoma, LUSC:
Non-small-cell squamous cell carcinoma, SCLC: Small-cell lung can-
cer, NL: Normal tissue.

• The models are tested on The Cancer Genome At-
las (TCGA) public dataset to analyse their general-
isation capabilities.

• An interpretability metric of the performance
of the self-supervised model is presented by
analysing the features extracted from 384 patches
composed of cells, glands or stroma, by using a
Uniform Manifold Approximation and Projection
(UMAP) for dimension reduction and plotting the
results to evaluate if the model is capable to sepa-
rate the three different patch-types in different clus-
ters.

2. State of the art

The diagnosis of lung cancer is a key factor in the
survival time. Currently, the conventional method of di-
agnosing lung cancer in most hospitals is through the
examination of histopathology slides by pathologists us-
ing a microscope. This method is considered the gold
standard for cancer diagnosis, but it can be a complex
and time-consuming process, as the morphological dif-
ferences among lung cancer subtypes are subtle. The
correct classification of lung cancer subtype is critical
for determining the most appropriate surgical and treat-
ment options for the patient (Coudray et al., 2018).

Recent advances in computational pathology and DL
techniques have demonstrated the potential in improv-
ing tumour histopathology evaluations. WSIs are im-
ages digitized at high-resolution, with dimensions rang-
ing from 10,000 to over 150,000 pixels. Due to their
large size, WSIs are commonly divided into patches,

5.3



A full pipeline to analyse lung histopathology images 4

Table 1: Review of state-of-the-art methods in the classification of histopathological lung cancer whole slide images highlighting the different
training strategies for learning and the number of whole slide images (WSI) used on the specific datasets. LUAD: Non-small-cell lung adenocarci-
noma, LUSC: Non-small-cell lung squamous cell carcinoma, NL: Normal, SCLC: small-cell lung carcinoma, PTB: pulmonary tuberculosis, OP:
Organizing pneumonia, AUC: Area under de ROC curve, TCGA: The Cancer Genome Atlas, ICGC: International Cancer Genome Consortium
KMC: Kyushu Medical Centre, MH: Mita Hospital, TCIA: The Cancer Imaging Archive, DPGFLCD: Department of Pathology of the Georges
François Leclerc Cancer Center in Dijon, UHC: University Hospital of Caen, TMUH: Taipei Medical University Hospital, WFH: Taipei Municipal
Wanfang Hospital, SHH: Taipei Medical University Shuang-Ho Hospital, SYSU: First Affiliated Hospital of Sun Yat-sen University, SZPH:
Shenzhen People’s Hospital dataset.

Paper Training stratagy Dataset Subtypes Results Preprocessing

Coudray et al. (2018) Fully-supervised TCGA 567 LUAD, 609 LUSC or 459 NL
AUCs of 0.993 tumour vs. NL,

0.950 LUAD vs. LUSC, 0.968 3-class Patch

Yu et al. (2020) Fully-supervised
TCGA
ICGC

427 LUAD 457 LUSC
87 LUAD 38 LUSC

AUC LUAD vs. LUSC 0.927 ± 0.004,
AUC LUAD vs. LUSC 0.842 ± 0.011 Patch

Wang et al. (2020) Semi-supervised
(coarse annotations)

WSI private dataset
TCGA

390 LUAD 361 LUSC
120 SCLC, 68 NL

Accuracy of 0.973
TCGA: AUC 0.820, accuracy 0.820 Patch

Kanavati et al. (2020) Weakly-supervised
4,054 KMC, 500 MH,
680 TCGA 500 TCIA

Lung carcinoma and
non-neoplastic carcinoma

AUCs 0.975 KMC, 0.974 MH
0.988 TCGA, and 0.981 TCIA Patch

Le Page et al. (2021) Fully-supervised
DPGFLCD, UHC

TCGA
66 nonLUSC 66 LUSC, 45 nonLusc
20 LUSC, 30 nonLUSC 30 LUSC

Accuracy 0.85 DPGFLCD
UHC: 0.81 AUC, TCGA: AUC 0.78 Patch

Chen et al. (2021) Weakly-supervised
TMUH, WFH, SHH

TCGA
3,876 LUAD 1,088 LUSC, 2,039 NL
TCGA: 532 LUAD and 512 LUSC

AUCs 0.9594 LUAD 0.9414 LUSC
TCGA: 0.8950 LUAD 0.8990 LUSC Resize

Lu et al. (2021) Weakly-supervised TCGA 55 LUAD and 55 LUSC AUC of 0.902 ± 0.016 for lung Patch

Yang et al. (2021) Fully-supervised
741 SYSU1, 318 SYSU2
212 SZPH and 422 TCGA

LUAD, LUSC, SCLC,
PTB, OP and NL

AUCs 0.970 SYSU1, 0.918 SYSU2,
0.963 SZPH and 0.978 TCGA Patch

Kanavati et al. (2021) Fully-supervised
1,723 KMC, 500 MH,

and 905 TCGA
LUAD, LUSC
SCLC and NL

AUCs 0.94 - 0.99 in LUAD, LUSC,
SCLC and neoplastic vs. non-neoplastic Patch

Chen et al. (2022) Self-supervised
Weakly-supervised TCGA

10,678 33 cancer types
1,008 LUAD and LUSC

Self-supervised pre-trained on 10,678 WSI
AUC of 0.952 ± 0.021 LUAD vs LUSC Scaling

as current graphics processing units (GPU) cannot han-
dle the entire WSI at its original size. Traditional deep
learning approaches require local labels for each patch,
which are time-consuming and expensive to create in
the medical field (Marini et al., 2021b).

The lack of large, annotated, datasets and data het-
erogeneity are still open challenges in computational
pathology. In a typical fully-supervised training pixel-
wise annotations are needed to train the model which
is a time-consuming task for pathologists and, there-
fore, very expensive. Several methods are proposed
to solve these problems such as semi-supervised and
weak-supervised learning as shown in Table 1.

2.1. Fully-supervised learning

Fully-supervised learning (Strong supervision) relays
on manual pixel-level annotations to train the deep
learning models. That means that for every patch on the
WSI, a label must be provided to train the model. Usu-
ally, it requires a pathologist or group of pathologists
to provide these manual pixel-level annotations, which
are expensive and a very time-consuming task. These
fully-supervised models achieve the best performances
and are the most widely strategy used in the state-of-the-
art models in lung cancer subtype classification. Us-
ing patch-level annotations, strong labels, Yang et al.
(2021) achieves a micro-average area under the curve
(AUC) of 0.970 among 3 different cancer types (LUAD,
LUSC and SCC), two cancer mimics, pulmonary tu-
berculosis (PTB) and Organizing pneumonia (OP) and
normal tissue examples using a private dataset (SYSU1)
and an AUC of 0.978 in TCGA public dataset. On the
other hand, Coudray et al. (2018) with the same training

strategy achieves an AUC of 0.968 in a 3-class classifi-
cation between LUAD, LUSC and Normal. Classify-
ing between LUSC and non-LUSC in a smaller dataset
Le Page et al. (2021) obtains an AUC of 0.81 in a pri-
vate external dataset and 0.78 in the TCGA. Yu et al.
(2020) obtains an AUC of 0.927 in the training TCGA
dataset and an AUC of 0.842 in an independent dataset.
Finally, Kanavati et al. (2021) obtains AUCs between
0.94 to 0.99 in the test set in 3 different datasets in four
various binary classification problems between LUAD,
LUSC, SCLC and neoplastic tissue vs. non-neoplastic
tissue.

2.2. Semi-supervised learning

In the case of semi-supervised algorithms, instead of
providing pixel-level annotations for all the data, the
strategy is to have a big portion of the dataset with weak
labels (labels at only WSI-level) using an automatic al-
gorithm to annotate the data and a smaller percentage
of pixel-level annotations to train the model. This strat-
egy is more convenient but still needs some effort from
a pathologist to manually annotate some WSIs on the
dataset. Using coarse annotations from pathologists
Wang et al. (2020) achieves an accuracy of 0.973 in a
private dataset and an AUC of 0.820 in the TCGA pub-
lic dataset.

2.3. Weakly-supervised learning

The line of research that investigates how to best
use image-level diagnostic labels, is known as weakly-
supervised learning. Without pixel-level annotations,
weak supervision models approach the training of a
model only using WSI-level annotations which better
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replicates the real scenario if a pathologist provides only
one diagnosis per image. These WSI-level annotations
are noisy by nature because only a small portion of the
patches are representative of the label. To solve this
problem among all the weakly-supervised algorithms,
MIL is the state-of-the-art. To represent the bags (WSIs)
in the MIL frameworks, two different strategies to ag-
gregate the instance-level features into a bag-level rep-
resentation are studied. These strategies aim to capture
the key characteristics of the lung tissue samples and
differentiate between the different cancer types and nor-
mal cells.

• Instance-level aggregation: One approach, is to
build an instance-level classifier that returns scores
for each patch. Then the individual scores are ag-
gregated by MIL pooling (such as max pooling or
average pooling). This pooling operation summa-
rizes the information within each patch, capturing
essential features associated with different cancer
types.

• Embedding-level aggregation: Alternatively, the
instances are mapped to a low-dimensional embed-
ding. Afterwards, MIL pooling is used to obtain a
bag representation independent of the number of
patches in each bag.

Lu et al. (2021) proposed an algorithm called CLAM
which is a deep-learning-based weakly-supervised
method that obtains an AUC of 0.956 ± 0.02 in the
TCGA public dataset to discriminate between LUAD or
LUSC. Kanavati et al. (2020) suggested also a weakly-
supervised training using only WSI-level diagnoses on
a dataset of 9,662 lung cancer WSIs. This method
achieves an AUC of 0.959 and 0.941 for LUAD and
LUSC on the testing set, respectively.

2.4. Transfer learning

Transfer learning approaches leverage pre-trained
models that have been trained on extensive datasets like
ImageNet or Instagram 1-Billion. The primary objec-
tive is to take advance of models that have already
acquired a feature representation of a sizable image
dataset. Consequently, the classifier layers of the net-
work can be retrained, or in some cases, specific lay-
ers of the model can be unfrozen to learn representative
features from the images in a new dataset. This process
involves training the model on the targeted dataset to
perform the new classification task. (Cheplygina et al.,
2019). All of the works, with the exception of the last
one that uses self-supervised learning, presented in Ta-
ble 1 take advantage of this strategy to load a pre-trained
network trained on ImageNet and train only the classi-
fier and in the specific lung cancer classification task
(Deng et al., 2009).

2.5. Self-supervised learning

In recent years, unsupervised representation algo-
rithms have gained prominence in the field of com-
puter vision. Instead of relying on pre-training mod-
els with weights from ImageNet, these approaches aim
to pre-train the models using the dataset’s own im-
ages, constructing tokenized dictionaries for unsuper-
vised learning. For example, in natural language pro-
cessing (NLP), tokenisation is the process of breaking
down the text into smaller inputs, such as words, called
tokens. A tokenized dictionary would contain these
individual tokens as its entries, allowing for efficient
lookup and analysis of specific words within the dic-
tionary. In the computer vision domain building these
dictionaries is an open challenge since the data exists in
a high-dimensional space.

He et al. (2020) addressed this challenge by introduc-
ing Momentum Contrast (MoCo), a technique that con-
structs dynamic, large, and consistent dictionaries using
contrastive loss. In their work, they demonstrate that
MoCo effectively narrows the gap between unsuper-
vised and supervised representations in computer vision
tasks such as object detection and segmentation, em-
ploying widely recognized datasets like PASCAL VOC
and COCO.

Additionally, Chen et al. (2020a) proposed a straight-
forward algorithm for contrastive learning. Through
their work on SimCLR, they highlighted the signifi-
cance of data augmentation composition, the incorpora-
tion of a learnable nonlinear transformation between the
representation and the contrastive loss and larger batch
sizes (4k - 8k batch size) together with more training
steps. With these three important findings, they en-
hanced model effectiveness and achieved a new state-
of-the-art on the ImageNet dataset.

Building upon these findings from SimCLR, the re-
searchers at Facebook AI Research introduced MoCo
v2 (Chen et al., 2020b), which incorporated more ag-
gressive data augmentation and an MLP projection head
exhibited improved performance compared to the work
of the Google research team on the ImageNet dataset.
What’s more, they show that with MoCo v2 is possi-
ble to process a large set of negative samples without
requiring large training batches and consequently pow-
erful GPUs. In contrast, Moco v2 can run on a typical
8-GPU machine.

Furthermore, Dehaene et al. (2020) demonstrated in
their work that leveraging MoCo v2 in a self-supervised
learning framework effectively closed the gap between
weakly-supervised and fully-supervised learning using
histopathology images from the Camelyon16 dataset.

Chen et al. (2022) uses a different strategy to pre-train
the self-supervised model using a new approach with
the potential of transformers called DINO and apply-
ing it to histopathology data (Caron et al., 2021). They
used DINO for pre-training with 10,678 WSIs from 33
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different cancer types collected from the public TCGA
dataset. Afterwards, they train a MIL model, using
weak labels, for a binary classification task on 1,008
WSIs of LUAD and LUSC achieving an AUC of 0.952
± 0.021.

2.6. Pre-processing strategy

In the context of the aforementioned discussion,
WSIs are images characterized by an immense num-
ber of pixels, rendering it unfeasible to process them
in their original size due to limitations posed by GPU
hardware. In the field of computational histopathology,
researchers have devised two distinct strategies to over-
come this challenge. The prevalent approach, employed
by a majority of researchers working with histopathol-
ogy images (as observed in 5 out of the 6 studies de-
tailed in Table 1), involves partitioning the images into
smaller patches. These patches are subsequently uti-
lized to train an ML model, enabling the model to learn
a downstream task.

Alternatively, Chen et al. (2021) pursued an alter-
native methodology, which involved resizing the WSIs
to dimensions of 21,000x21,000. In their study, they
directly trained a model on the resized WSIs to per-
form classification tasks using weak labels distinguish-
ing between LUAD and LUSC. By implementing this
approach, they achieved an AUC of 0.9594 for LUAD
and 0.9414 for LUSC on a private dataset, while obtain-
ing corresponding AUC values of 0.8950 and 0.8990 for
LUAD and LUSC, respectively, on the TCGA public
dataset.

In the case of Chen et al. (2022) instead of pre-
processing the WSIs patching or resizing them, they
take advantage of the potential of transformers to scale
through different stages to learn representable features
of these high-resolution images from lower to higher
patch-level resolutions to capture information from in-
dividual cells to tissue microenvironment.

3. Material and methods

This section is dedicated to describe the complete
methodology employed in this work. Describing the
datasets employed for training and testing, the complete
pipeline, the experimental set-up choice for both, train-
ing the self-supervised and the weakly-supervised mod-
els, the evaluation criteria and a final section describing
a visualisation tool for the classification results in more
detail than only a simple label per WSI.

3.1. Datasets

The self-supervised model is trained using all the
data from Azienda Ospedaliera per l’Emergenza Can-
nizzaro Catania (AOEC) with a total of 1,354 WSIs.
The goal is to extract high-representative features spe-
cific to histopathological lung data. All the WSIs were

Table 2: Overview of the dataset composition. The datasets
include lung images from digital pathology laboratories in Azienda
Ospedaliera per l’Emergenza Cannizzaro Catania (AOEC) and
Radboud University Medical Centre (RUMC) used for training and
testing. The training dataset is divided into train and validation using
5-fold cross-validation. Additionally, the model is tested on The
Cancer Genome Atlas (TCGA) public dataset. SCLC: small-cell lung
carcinoma, LUAD: Non-small-cell lung adenocarcinoma, LUSC:
Non-small-cell lung squamous cell carcinoma, SKET: Semantic
Knowledge Extractor Tool.

Source SCLC LUAD LUSC Normal Total labels Total images

Training dataset: automatic weak labels (SKET):
AOEC 51 715 367 164 1,297 1,225

Training dataset: manual weak labels (Pathologist):
AOEC 53 601 353 237 1,244 1,225

Training dataset from two different private datasets:
AOEC 53 601 353 237 1,244 1,225
RUMC 0 297 205 499 1,001 1,001
Total 53 898 558 736 2,245 2,226

Testing private datastets:
AOEC 17 16 9 14 46 46
RUMC 0 29 18 45 92 92
Total 17 45 27 59 138 138

Testing public dataset:
TCGA 0 530 506 0 1,036 1,036

preprocessed and divided into patches at 10x magnifica-
tion resulting in a total of 2,950,251 images.

Two different MIL models are trained following two
different approaches as shown in Table 2.

• A first model is trained on data provided by AOEC.
The goal is to compare the results obtained in the
same dataset with labels coming from two differ-
ent sources. Automatic labels using the Seman-
tic Knowledge Extractor Tool (SKET) (Marchesin
et al., 2022; Marini et al., 2022) extracting labels
directly from the pathologist’s reports and manual
labels provided by an expert pathologist.

• A second model is trained using WSIs from two
different private datasets AOEC and Radboud Uni-
versity Medical Centre (RUMC). The objective is
to study the improvement of the model with more
heterogeneity data coming from two different hos-
pitals and to observe if training with more data will
also help to develop a more accurate model.

The first model is tested on the private datasets in both
scenarios, using only a set of WSIs only from the AOEC
dataset with a set of 46 WSIs and on a separate set of
138 WSIs from both hospitals. The purpose is to com-
pare the performance in data from the same dataset and
data coming from Catania and Radbound hospitals. The
model trained with WSIs from the two hospitals is tested
only on this second set of 138 unseen WSIs. Addition-
ally, both models were tested on The Cancer Genome
Atlas (TCGA) public dataset composed of 1,036 LUAD
and LUSC WSIs (Albertina et al., 2016; Kirk et al.,
2016) from 5 different centres in the USA (Washington
University, University of Pittsburgh/UPMC, University
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Figure 3: Complete Pipeline to train the lung cancer subtype classification model. A: Preprocessing of the whole slide images (WSI) to extract
the patches used for training. B: Self-supervised learning to pre-train a feature extractor that captures high-level concepts directly from the
histopathological lung patches using Momentum Contrastive Learning (MoCo). C: For each WSI, the features extracted, using the self-supervised
model described in step B, are loaded to train a Multiple Instance Learning (MIL) model for the lung cancer classification task among, Non-small-
cell adenocarcinoma (LUAD), Non-small-cell squamous cell carcinoma (LUSC), Small-cell lung cancer (SCLC) and, Normal tissue (NL), using
a multi-label strategy. UMAP: Uniform Manifold Approximation and Projection, CNN: Convolutional Neural Network, x: number of patches per
WSI, f: feature vector, c: number of classes.

of North Carolina, Lahey Hospital & Medical Center
and Roswell Park).

The three different datasets are composed only of
WSIs stained with H&E. The training datasets from
AOEC and RUMC are imbalanced due to the charac-
teristics of digital pathology workflows. With a higher
number of WSIs with Normal tissue (negative biopsies
and resections areas without malignancy) and LUAD,
being the most prevalent subtype among the lung can-
cer ones, followed by LUSC and with fewer examples,
SCLC, being the less prevalent one.

3.2. Pipeline

Figure 3 provides a comprehensive overview of the
pipeline developed for classifying histopathology im-
ages of the lung into four distinct classes. First, all the
WSIs are preprocessed to extract the patches used for
training. Once all WSIs in the dataset are patched, these
images are utilized for pre-training a self-supervised
model based on MoCo v2 (Chen et al., 2020b). The
objective is to train a feature extractor specific to the
histopathology lung data. using the feature vectors from
the previous step, the MIL model employs weak labels
to train the classification model, to classify between the
three most prevalent lung cancer types (LUAD, LUSC,
SCLC) as well as normal WSIs.

3.2.1. Preprocessing
The pre-processing stage is composed of two compo-

nents. The initial task involves extracting patches from
each WSI. Each WSI is divided into multiple patches,
ranging from a few hundred to thousands, depending
on the WSI’s size and the amount of tissue contained
in each slide. The subsequent task involves selecting
patches from the extracted set that contain representa-
tive tissue information from the respective WSI.

Patch Extraction: The initial pre-processing step is
shown in Figure 4.A, it involves dividing each whole
slide image (WSI) into patches to meet the GPU re-
quirements for training the model at a specific magni-
fication level. To accomplish this task, the PyHIST tool
is chosen (Muñoz-Aguirre et al., 2020). This process
involves three main steps:

1. Extraction of a mask that effectively separates the
foreground (tissue) from the background content of
the WSI.

2. Creation of a grid of non-overlapping tiles overlaid
on the mask, followed by an evaluation to deter-
mine whether each tile belongs to the foreground
or background.

3. Selection of patches by choosing tiles that fall
within the extracted mask at the desired magnifi-
cation level.
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Figure 4: Pre-processing steps for one whole slide image (WSI). A:
Patch extraction: by generating a mask and selecting the patches that
fall into this mask. B: Patch selection: To remove wholes, patches
with not enough information and errors from the extracted patches.

After consultation with an expert pathologist and
considering the trade-off between hardware space and
optimal patch resolution for the lung classification task,
all the WSIs are downsampled and extracted patches at
a 10x magnification level, with a tile size of 256x256.
Based on the dataset characteristics, a downsampling
factor of two is applied for images saved at a maximum
magnification of 20x and a downsampling factor of four
for images saved at a maximum magnification of 40x.
This allowed us to obtain all patches at the desired 10x
magnification.

To extract the mask, the algorithm initially identi-
fies the tissue edges by applying the Canny edge de-
tector algorithm (Canny, 1986). This edge image effec-
tively separates the tissue information from the back-
ground, emphasizing the image borders. Subsequently,
a graph-based segmentation algorithm (Boykov and
Kolmogorov, 2004; Felzenszwalb and Huttenlocher,
2004) is employed to generate the final mask, which
completely separates the background from the tissue
content. This is achieved by applying a min-cut/max-
flow algorithm to the edge image.

Finally, the mask image is divided into a non-
overlapping grid and the WSI is downsampled to the
requested magnification level. The patches are then se-
lected by matching the corresponding tiles that intersect
with the mask.

Patch Selection: The patch extraction algorithm
achieves a low number of true negatives but produces
a significant number of false positives, as shown in Fig-
ure 4.A, in the bottom image. Upon careful inspection
of these false positives, several common characteristics
are identified:

• The WSIs may contain macro holes, and all WSIs
contain numerous micro holes that the graph cuts

segmentation cannot accurately identify as back-
ground. These patches are typically whitish.

• Some WSIs contain text that does not contain tis-
sue information and can be considered potential
confounders. These texts are written in black let-
ters.

• Some extracted patches usually located in the bor-
ders of the wholes do not contain enough tissue in-
formation.

To address this problem, the second step in pre-
processing involves refining the extracted patches
through a patch selection process. The primary objec-
tive is to reduce the number of false positives by remov-
ing unnecessary patches that would introduce noise in
the model training, while still preserving patches with
significant tissue information as illustrated in Figure
4.B.

To achieve the patch selection, an additional phase
is proposed in the pre-processing pipeline that filters
out unnecessary patches after the initial patch extraction
performed by PyHIST. Considering the characteristics
of the false positive patches, this step involves com-
puting the histogram for each extracted patch. From
the histogram, only the bins above and below a specific
threshold are counted. If the number of bins within this
threshold exceeds 50% of the total number of pixels in
the patch, it is considered to contain important tissue in-
formation and is retained. Contrarily, if the number of
pixels between the two thresholds falls below 50% of
the total number of pixels, the patch is discarded.

There are important differences among the WSIs,
with some being brighter and others darker, as shown in
2. Furthermore, as mentioned earlier, the false positive
patches predominantly consist of white and black areas.
Utilizing the mask computed by PyHIST, the average
pixel intensity is computed of the gray scale image for
the pixels contained within the mask. Three different
pairs of thresholds are set based on this average inten-
sity: if the average intensity is below 155, between 155
and 180, or above 180, lower thresholds of 35, 40, and
45 are set, and upper thresholds of 210, 215, and 220,
respectively. This approach allows us to discard the ma-
jority of whitish background patches and black patches
belonging to annotations in the images.

3.2.2. Self-supervised learning
In our investigation, it is observed that employing a

feature representation of the images, rather than sim-
ply relying on weights from a model trained on Im-
ageNet, can potentially produce better results. In the
field of lung cancer classification, state-of-the-art meth-
ods commonly utilize a frozen feature extractor that
has been pre-trained on ImageNet. However, this is
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identified as a potential limitation. To address this is-
sue, an alternative approach is suggested where a fea-
ture extractor is trained specifically for histopathology
lung images. Self-supervised algorithms aim to learn
a stronger data representation, exploiting data its-self,
without the need for annotations. (Chen et al., 2020b;
Dehaene et al., 2020).

To validate our proposal, the results obtained are
compared from two different feature extractors in the
downstream task of lung cancer classification using
weakly-supervised learning with MIL. The results on
both, training the MIL model using the features ex-
tracted from the self-supervised model and using the
same exact model but extracting features using the pre-
trained model with weights from ImageNet are com-
pared. As backbone for the self-supervised model, the
ResNet34 is implemented (He et al., 2016), loaded from
the PyTorch framework (Paszke et al., 2019).

By leveraging recent advancements in self-
supervised learning, a feature extractor is trained
specifically on histopathology images of the lung. Mo-
Cov2 self-supervised architecture (Chen et al., 2020b)
is chosen as a reference from the FAIR research group.
The primary objective is to train an encoder using
contrastive learning. The encoder learns to associate
images within the dataset by performing a dictionary
look-up task summarized in Figure 3.B.

Contrastive learning is a machine learning technique
used for unsupervised representation learning. It aims to
learn useful features by contrasting positive pairs (simi-
lar samples) against negative pairs (dissimilar samples).
In contrastive learning, a model is trained to map simi-
lar examples closer together in the feature space while
pushing dissimilar examples apart (Hadsell et al., 2006).
To achieve it, we have a scenario with an encoded query,
denoted as q, and a collection of encoded samples, rep-
resented as k0, k1, k2, ..., which serve as the keys in
a dictionary. It is assumed that within this dictionary,
there exists a single key (referred to as k+) that matches
the query q. Therefore, q and k will be a positive pair
if they are data-augmented versions of the same image
and negative otherwise.

This type of unsupervised learning is performed us-
ing contrastive loss. The value of this function is mini-
mized when the query q is similar to its positive key k+
but dissimilar to all other keys in the collection, which
are regarded as negative keys for q. The similarity be-
tween the query and keys is measured using dot product,
and specifically, a variant of contrastive loss known as
InfoNCE is considered (Wu et al., 2018) and presented
in Equation 1:

LInfoNCE = − log


exp(q · k+/τ)
∑N

i=0 exp(q · ki/τ)

 (1)

where:
q is the encoded query, a data-augmented version of

the inputted patch. k+ denotes the positive key, which is
the matching data-augmented version of the same patch
coming from the momentum encoder that should have
high similarity to the query. ki represents the negative
keys, which are unrelated patches that should have low
similarity to the query. τ is a temperature parameter that
controls the sharpness of the distribution. It is usually
set to a small positive value.

The numerator of the fraction computes the exponen-
tial of the dot product between the query and the positive
key, divided by the temperature τ. This term measures
the similarity between the query and the positive key
after applying a temperature scaling. The denomina-
tor sums the exponential of the dot products between
the query and all keys (positive and negative). This
term represents the normalisation factor, ensuring that
the resulting values are in the range [0, 1]. Taking the
logarithm of the fraction and negating it gives the fi-
nal InfoNCE loss value. By minimizing this loss, the
model learns to differentiate between related and unre-
lated patches, discovering meaningful representations.

The dictionary is built by using images as inputs that
are highly dimensional and discrete. By building the
dictionary as a queue of patches allows updating the
queue from patches from the above mini batches decou-
pling the dictionary size from the mini-batch size. The
queue size can be set as a hyperparameter. The queue
represents a sampled subset of all data by enqueuing the
last mini-batch and removing the oldest mini-batch in
the queue. Then together with this large dictionary a
momentum update is set to update the key in the en-
coder by backpropagation.

3.2.3. Multiple Instance Learning
The goal is to develop a MIL approach for the multi-

label classification of lung cancer based on histopathol-
ogy lung images. The dataset consists of WSIs of
lung tissue samples, where each WSI represents a bag
containing multiple image patches or instances. The
patches can be classified into four classes: SCLC,
LUAD, LUSC, or normal cells. The objective is to
train a model that can accurately predict the presence of
these cancer types within each WSI, which allows for
the identification and classification of different cancer
types in a single image. The MIL framework is suitable
for this task as the exact location and quantity of cancer-
ous cells within a WSI may vary. By using the MIL ap-
proach, completely avoids the need for a pathologist to
assign instance-level labels like in the fully-supervised
or semi-supervised learning approach and trains a weak
model using only the WSI-level labels.

In the MIL problem, instead of a single instance
like in typical classification problems such as the one
presented using the ImageNet dataset, there is a bag
of instances that represent one unique label. The in-
stances should not depend on each other and their order
within the bag should not be considered as significant.

5.9



A full pipeline to analyse lung histopathology images 10

These two strong definitions imply that the model must
be permutation-invariant. Therefore, the permutation-
invariant bag probability is computed using a scoring
function for a set of instances that is a symmetric func-
tion (Zaheer et al., 2018). The score function is used to
compute the bag probability and a permutation-invariant
function referred to as MIL pooling ensures that this
score function is a symmetric function by using com-
monly MIL pooling the max or mean operators.

The choice of these functions determines two dif-
ferent approaches to modelling the label probability
as described in Section 2.3, the instance-level and
embedding-level aggregation. The second aggregation
is selected as proposed by Ilse et al. (2018) as the ground
truth of the instances is not known, therefore, the first
approach will be potentially trained insufficiently, and
the prediction will be probably lower than the second
approach. Moreover, each WSI has a different number
of patches, in the instance-level aggregation this would
result in inconsistent matrix sizes for the attention score.
Instead in the embedding aggregation, the matrix is al-
ways fixed to an embedded score (c,f), being c the num-
ber of classes and f the number of features coming from
the feature extractor as shown in Figure 3.C.

Zaheer et al. (2018) propose a new strategy regarding
the MIL pooling layer. Instead of using the more typical
max or average pooling layer, they decided to introduce
an attention-based MIL pooling layer. The main differ-
ence is that the old-fashion pooling layers are predefined
and non-trainable. Alternatively, with this strategy, an
adaptive and flexible trainable attention pooling layer
could benefit from adjusting its parameters during train-
ing to the specific task. This attention mechanism works
using a weighted average of instances where the weights
are trained using a neural network. As an activation
function, the hyperbolic tangent (tanh) includes both
negative and positive values for proper gradient flow.
Together with this tanh a gated attention mechanism is
implemented introducing a learnable non-linearity.

The result of this attention-based MIL pooling layer
is passed to the classifier (a linear fully-connected layer)
that outputs the model prediction for each class. As
presented above, in this work the idea is to be able to
classify if necessary more than one class at a time, as
in the real case scenario when more than one cancer
can be present in the same WSI. To achieve that, the
final prediction is transformed into a probability using
the sigmoid function and applied individually for each
class, instead of the typical softmax applied in multi-
class problems. If the probability is higher than 0.5 for
a given class the model prediction is positive and nega-
tive otherwise.

3.3. Experimental set-up
3.3.1. K-fold cross-validation

For the training step of the MIL model, the WSIs
coming from both hospitals were divided into train and

validation following k-fold cross-validation. The train-
ing and validation sets are carefully split to avoid having
images from the same patient in the different sets. The
goal is to prove the robustness of the model to the se-
lected training data.

The training data is divided into k (k=5) groups In
each training iteration, the data from k-1 groups are uti-
lized to train the CNN, while the remaining group is
used for validation. This division is performed at the pa-
tient level to ensure that images are not shared between
the training and validation partitions. Subsequently, the
CNN is evaluated on the test partition, and the average
and standard deviation of the k models are reported.

3.3.2. Hyperparamertes
Self-supervised pre-training: The self-supervised

model is trained using all the patches available from the
AOEC dataset (2,950,251 images). With this amount
of data, a single experiment takes around 100 hours us-
ing an Nvidia A100 80GB. An initial learning rate (LR)
of 0.03 and a MultiStepLR scheduler that decreases the
LR in epochs 3, 6 and 11 by a gamma factor of 0.5.
As the optimizer, Adam from Pytorch was chosen and
a batch size of 256. In both cases, the last fully con-
nected layer has the same size resulting in a 128-feature
vector as output. The temperature, τ is set to 0.07 and
the queue to 32,768. For the data augmentation, strong
transformations are applied (Chen et al., 2020a) using
the Albuminations Python library (Buslaev et al., 2020).
With a probability of 0.5, the following transformations
are chosen: random resize crop, vertical and horizon-
tal flips, a random rotation of 90º, hue value satura-
tion, colour jitter, elastic transformations, grid distor-
tion, blurring, optical distortion, histogram equalisation
and with a probability of 0.2 converting the images to
grey.

Weakly-supervised training: To train the MIL model,
the 128-feature vector is loaded for all patches per WSI
and only the MIL pooling attention-based and the classi-
fier are trained. Training a model last around five hours
for the five models using the 5-fold cross-validation
strategy using an Nvidia A100 80GB. Therefore, a grid
search is performed to find the best hyperparameters to
train the model for our specific structure. As shown in
Table 3 several experiments are conducted combining
different learning rates, optimizers, schedulers strate-
gies, and two different loss functions specific to work
with the multi-label paradigm and to address the class
imbalance of our dataset as shown in Table 2. The BCE-
WithLogitsLoss with weights directly loaded from the
Pythroch framework (Paszke et al., 2019) and the focal
loss as shown in Equation 2 implemented from the work
of (Lin et al., 2017).

FocalLoss(pt) = −αt(1 − pt)γ log(pt) (2)

p t represents the predicted probability of the true
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class, and it is obtained by applying a sigmoid activa-
tion function to the logits. By multiplying the negative
logarithm of p t with the balancing factor α t and the
focusing factor γ, the focal loss penalizes misclassified
examples more strongly in the class with fewer exam-
ples and thus helps to address the class imbalance and
improves the training of models in the presence of diffi-
cult examples.

Table 3: Hyperparameters grid search to find the optimal values for
the training of the model. LR: Learning Rate, BCELoss: Binary
Cross Entropy with Logits Loss, SGD: Stochastic Gradient Descent,
RMSProp: Root Mean Squared Propagation.

Batch size Criterion LR Scheduler Optimizer

256 / 512
BCELoss /
Focal Loss

0.01 -
0.0001

MultiStepLR /
CosineAnnealingLR

Adam / AdamW
SGD / RMSProp

3.4. Evaluation

3.4.1. Self-supervised model
The performance of the self-supervised models is

evaluated from two different points of view. Qualita-
tively, an approach to have an idea of the performance
of the model before implementing it in the downstream
classification task. The main idea is to interpret if the
model is learning concepts from the patches. An expert
pathologist selected patches from 10 different WSIs that
contains cells, glands or stroma. From the feature vec-
tors of these patches extracted from the already-trained
self-supervised feature extractor. Afterwards, a Prin-
cipal Component Analysis (PCA) is performed to re-
duce the number of features to 20 components and from
there compute a dimension reduction using (UMAP)
(McInnes et al., 2018) to finally reduce the 128 fea-
ture vector from the self-supervised model to 2 repre-
sentative dimensions for each patch and plot the result.
The goal is to evaluate if the model is really extract-
ing separable feature vectors and learning that patches
with glands, stroma or cells are different. Quantitatively,
the results using the different self-supervised models are
compared in the lung cancer classification downstream
task with the pre-trained models on ImageNet explained
in the following section.

3.4.2. Classification task
The different prevalence of the lung cancer subtypes

leads to an imbalanced dataset. The major cancer type is
LUAD being the class with more patients in the dataset
as shown in Table 2. More important, we are working
on a multi-label scenario, and different from a multi-
class problem more than one class could be positive for
the same WSI. These facts make it not very convenient
to use metrics such as accuracy. To show the results
obtain in the different models presented in this work
and further comparison, the receiver operating charac-
teristic (ROC) curve is computed for each class and

the average-micro ROC curve as a global metric of the
model. Together with the ROC, the AUC is computed
for each class and on micro average. The idea is to un-
derstand the balance between true positive rate (TPR)
and false positive rate (FPR) at different thresholds with
the ROC curve. The AUC provides a global metric
of the performance of the model individually for each
class and globally with the average micro-AUC. The
f1-score is also evaluated which gives a global idea of
the precision/recall metrics of the model (Wu and Zhou,
2017). For evaluation of the model in real-time the pre-
cision/recall curve was drawn for each epoch together
with the ROC curve and the AUC for training and val-
idation. For the final evaluation of the model, all the
metrics are calculated on the test set with WSIs from
different patients never seen in the training phase.

3.5. Qualitative evaluation

In the MIL training, as presented above, a multi-head
attention layer is used for the MIL pooling. This layer
provides an attention score for all the extracted patches
in a WSI per class. The idea is to provide a visualisation
tool that overlaps the attention of the score for a given
class in the WSI. Through this process, the pathologist
would be able to understand better in which regions the
model is predicting a given class. The results are pre-
sented in the form of heatmaps (Lu et al., 2021) to in-
terpret that the model is correctly looking at where the
malignancy is present on the histopathology slide of the
lung.

This tool is very important to show at inference time
if is really learning from the areas of interest on the
WSI and not from arbitrary patches on the slides with no
pathological meaning. Moreover, in clinical practice is
a potential tool to help the pathologist not only receive a
prediction from the model but also present in the form of
a report the prediction of the model together with these
heatmaps. This will potentially reduce the time neces-
sary for a pathologist to analyse a slide presenting in
the result regions on the WSI where the cancer is likely
located on the slide.

4. Results

This section presents the results obtained in the
4-class classification task among SCLC, LUAD and
LUSC as cancer subtypes and normal healthy tissue.
The section is divided into several subsections to present
different studies performed on this work:

• Comparison between the results obtained in the
model trained using weak labels from a pathologist
and the same model trained on weak labels coming
directly from the reports using SKET.

• Evaluation of the performance between using a
self-supervised model as a feature extractor or a
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Table 4: Results of the lung cancer subtype classification using the model trained on the Azienda Ospedaliera per l’Emergenza Cannizzaro Catania
(AOEC) dataset. The table shows the metrics tested on AOEC and AOEC and RUMC datasets using the labels generated by Semantic Knowl-edge
Extractor Tool (SKET) and the ground truth provided by an expert pathologist. SCLC: small-cell lung carcinoma, LUAD: Non-small-cell lung
adenocarcinoma, LUSC: Non-small-cell lung squamous cell carcinoma, AUC: Area under the curve.

Labels AUC SCLC AUC LUAD AUC LUSC AUC Normal micro-AUC weighted f1-score

Test on AOEC:
SKET 0.8805 ± 0.0153 0.7780 ± 0.040 0.8331± 0.0422 0.5825 ± 0.0855 0.8037 ± 0.0282 0.6250 ± 0.0308
Ground truth 0.83333 ± 0.0316 0.7744 ± 0.1192 0.8275 ± 0.0430 0.6808 ± 0.0903 0.8024 ± 0.0450 0.5945 ± 0.0749

Test on AOEC and RUMC:
SKET 0.7860 ± 0.0446 0.6507 ± 0.0384 0.7682 ± 0.0273 0.6266 ± 0.054 0.6440 ± 0.0671 0.5123 ± 0.0019
Ground truth 0.7779± 0.0540 0.67985 ± 0.0352 0.7574± 0.0180 0.7234 ± 0.0718 0.6604 ± 0.0493 0.5068 ± 0.0342

Table 5: Results of the lung cancer subtype classification using the model trained on the Azienda Ospedaliera per l’Emergenza Cannizzaro Catania
(AOEC) dataset. The table shows the metrics tested on AOEC and AOEC and Radboud University Medical Centre (RUMC) datasets and compares
the performance of the self-supervised pre-training model and the model pre-trained on ImageNet. SCLC: small-cell lung carcinoma, LUAD:
Non-small-cell lung adenocarcinoma, LUSC: Non-small-cell lung squamous cell carcinoma, AUC: Area under the curve.

Pre-training AUC SCLC AUC LUAD AUC LUSC AUC Normal micro-AUC weighted f1-score

Test on AOEC:
ImageNet 0.7766 ± 0.0369 0.7176 ± 0.0642 0.8093 ± 0.0547 0.5500 ± 0.0410 0.7264 ± 0.0305 0.5175 ± 0.0627
Self-supervised
(AOEC) 0.83333 ± 0.0316 0.7744 ± 0.1192 0.8275 ± 0.0430 0.6808 ± 0.0903 0.8024 ± 0.0450 0.5945 ± 0.0749

Test on AOEC and RUMC:
ImageNet 0.7506 ± 0.065 0.6812 ± 0.0357 0.8007 ± 0.0462 0.7242 ± 0.0570 0.6603 ± 0.0469 0.5314 ± 0.0389
Self-supervised
(AOEC) 0.7779± 0.0540 0.67985 ± 0.0352 0.7574± 0.0180 0.7234 ± 0.0718 0.6604 ± 0.0493 0.5068 ± 0.0342

model trained on using the weights directly from
ImageNet. In this section, the model trained on
AOEC is compared with the model trained us-
ing data from 2 different hospitals (AOEC and
RUMC). The objective is to study the importance
of heterogeneity and the amount of data in the
training phase.

• Analysis of the generalisation capabilities of the
trained models by conducting a test study on the
data from the TCGA public dataset.

• Presentation of heatmaps to show where the model
is looking on the WSI and compare where a pathol-
ogist finds the lung cancer pathology.

4.1. Manual versus Automatic labels

The results of the model were trained only on data
from AOEC with the main goal of comparing the dif-
ferent outcomes obtained using manual or automatic la-
bels. In table 4 are illustrated the results of both strate-
gies tested on the unseen test set during training. There
are two test sets, one composed of only AOEC data and
the other composed of data from AOEC and RUMC to
study the performance in a different dataset.

4.2. Self-supervised validation

To evaluate the self-supervision performance two dif-
ferent results are presented. Quantitatively, the effec-
tiveness of the weakly-supervised classification model

is compared through two different scenarios. Pre-
training the model with the self-supervision model and
simply loading the pre-trained model from ImageNet.
Qualitatively, UMAPs of the self-supervision model and
the model pre-train on ImageNet to visualize its capabil-
ities to cluster different types of patches.

4.2.1. Self-supervised vs ImageNet pre-training

Table 5 presents the results of the model trained on
data from AOEC and pre-trained using self-supervised
learning in comparison with the same model with the
same fine-tuning using the pre-trained model from Im-
ageNet. The model is tested on both, the AOEC dataset
and AOEC and RUMC datasets.

Table 6 illustrates the results of the model trained on
data from AOEC and RUMC and pre-trained using self-
supervised learning in comparison with the same model
with the same fine-tuning using the pre-trained model
from ImageNet. The model is tested on AOEC and
RUMC datasets together.

Figure 5 shows the ROC curves and AUC for the
models pre-trained using the self-supervised train model
on AOEC (top image) and the models presented on Im-
ageNet (bottom image). On the left side are shown the
results of the MIL models trained and tested on AOEC
and AOEC and RUMC, respectively. On the right side
are presented the models trained on data from AOEC
and RUMC and tested on TCGA.
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Table 6: Results of the lung cancer subtype classification using the model trained on the Azienda Ospedaliera per l’Emergenza Cannizzaro Catania
(AOEC) and Radboud University Medical Centre (RUMC) datasets. The table shows the metrics tested on AOEC and RUMC and compares
the performance of the self-supervised pre-training model and the model pre-trained on ImageNet. SCLC: small-cell lung carcinoma, LUAD:
Non-small-cell lung adenocarcinoma, LUSC: Non-small-cell lung squamous cell carcinoma, AUC: Area under the curve.

Pre-training AUC SCLC AUC LUAD AUC LUSC AUC Normal micro-AUC weighted f1-score

Test on AOEC and RUMC:
ImageNet 0.8784± 0.096 0.7497 ± 0.0268 0.8764 ± 0.0247 0.8446 ± 0.0071 0.8596 ± 0.0143 0.6380 ± 0.0148
Self-supervised
(AOEC + RUMC) 0.8825 ± 0.0712 0.7457 ± 0.0267 0.8428 ± 0.0171 0.8468 ± 0.0130 0.8558 ± 0.0051 0.6537 ± 0.0237

Table 7: Results of the lung cancer subtype classification of the two both models, trained in the Azienda Ospedaliera per l’Emergenza Cannizzaro
Catania (AOEC) dataset and the model trained on the AOEC and Radboud University Medical Centre (RUMC) datasets and tested on The Cancer
Genome Atlas (TCGA) public dataset. SCLC: small-cell lung carcinoma, LUAD: Non-small-cell lung adenocarcinoma, LUSC: Non-small-cell
lung squamous cell carcinoma, AUC: Area under the curve.

Pre-training AUC SCLC AUC LUAD AUC LUSC AUC Normal micro-AUC weighted f1-score

Test on TCGA:
Train on AOEC:

ImageNet 1.0 ± 0.0 0.8754± 0.0081 0.8639 ± 0.0191 1.0 ± 0.0 0.9215 ± 0.0323 0.7212 ± 0.073
Self-supervised
(AOEC) 1.0 ± 0.0 0.8464 ± 0.0290 0.8735 ± 0.0370 1.0 ± 0.0 0.8762 ± 0.0205 0.6688 ± 0.0143

Train on AOEC and RUMC:
ImageNet 1.0 ± 0.0 0.8861 ± 0.0178 0.8875 ± 0.0168 1.0 ± 0.0 0.9448 ± 0.0078 0.7737 ± 0.0259
Self-supervised
(AOEC + RUMC) 1.0 ± 0.0 0.8818 ± 0.0163 0.8856 ± 0.0179 1.0 ± 0.0 0.9433 ± 0.0198 0.7726 ± 0.0438

Figure 5: Receiver operating characteristic (ROC) curves and area under the curve (AUC) in the 4-class classification task among three cancer
subtypes, small-cell lung carcinoma (SCLC), non-small-cell lung adenocarcinoma (LUAD) and non-small-cell lung squamous cell carcinoma
LUSC and normal tissue (NL). The top of the image presents the models pre-trained using the self-supervised model trained on Azienda Ospedaliera
per l’Emergenza Cannizzaro Catania (AOEC), while the bottom shows the models pre-trained on ImageNet. The left area shows the models train
on AOEC and AOEC and Radboud University Medical Centre (RUMC), respectively. On the right side are illustrated the results of the model
trained on AOEC and RUMC and testing them on The Cancer Genome Atlas (TCGA) public dataset.
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Figure 6: Uniform Manifold Approximation and Projection (UMAP)
for dimension reduction computed on 384 patches (135 cells, 158
glands and 91 stroma), selected by an expert pathologist, using the
self-supervised trained model.

Figure 7: Uniform Manifold Approximation and Projection (UMAP)
for dimension reduction computed on 384 patches (135 cells, 158
glands and 91 stroma), selected by an expert pathologist, using the
pre-trained model from ImageNet.

4.2.2. Clustering proficiency

For the self-supervised learning as mentioned above
the best model is chosen by the results obtained in the
lung cancer subtype classification task. Nevertheless,
in this section, UMAPs are computed from the features
extracted from the self-supervised model and the model
pre-train on ImageNet. The UMAP is computed on
384 patches (135 cells, 158 glands and 91 stroma) se-
lected by an expert pathologist. The UMAP for the self-
supervised model is shown in Figure 6 and the UMAP
for the pre-trained model from ImageNet is illustrated
in Figure 7.

4.2.3. Test on the public TCGA dataset

The results of the models tested on the public TCGA
dataset are illustrated in Table 7. The model trained only
on data from AOEC and the model trained using the
AOEC and RUMC datasets are presented using both,
self-supervised pre-training and the models pre-trained
on ImageNet.

4.2.4. Qualitative evaluation: Heatmaps

For qualitative evaluation of the MIL model perfor-
mance, a heatmap is illustrated in Figure 8 computed on
the model with the best performance. The model is pre-
trained using self-supervised learning and trained on the
AOEC and RUMC datasets. Three more heatmaps are
presented in the Annex to illustrate a wider representa-
tion of the study with three more examples, one for each
cancer subtype.

Figure 8: Heatmap computed using the final trained model (left side)
compared with the annotations from an expert pathologist (right side)
of a whole slide image (WSI) diagnosed with non-small-cell lung
squamous cell carcinoma (LUSC).
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5. Discussion

The main idea of this thesis was to develop a full
pipeline to build an algorithm able to classify, using
lung WSIs, between the three most prevalent cancer
types, LUAD, LUSC, SCLC and normal tissue. Be-
cause of the size of the WSIs, composed of billions of
pixels, the strategy adopted in this work, is first prepro-
cessing all the datasets and splitting the WSIs into non-
overlapping patches of size 256x256 at a 10x magnifi-
cation level. Afterwards, the model is pre-trained with
self-supervised learning using Momentum Contrastive
Learning (MoCo). Finally, a MIL model is trained to
perform the classification task using weakly-supervised
learning. The performance of the model is evaluated
in four different scenarios to understand the different
strengths and limitations of the strategy chosen and the
training process of the model as presented in the differ-
ent results sections.

The performance of the model is evaluated while
training using weak labels coming from two different
sources. Using automatically made labels by SKET
(Marchesin et al., 2022; Marini et al., 2022) and man-
ually labels made by an expert pathologist. As shown
in Table 4 the performance of both models are very
similar. Trained and tested on the AOEC dataset the
model using automatic labels achieved a weighted f1-
score of 0.6250 ± 0.0308 in comparison with 0.5945
± 0.0749 obtained using manual labels. Regarding the
AUC both models obtained very similar average micro-
AUC. While both models have similar values in predict-
ing LUAD and LUSC, the model using automatic labels
outperformed the network with manual labels when pre-
dicting SCLC but the model using ground truth labels
outperformed the rival when predicting normal tissue
samples. This is an important finding that supports the
works of Marchesin et al. (2022); Marini et al. (2022)
that confirms the possibility to train deep learning mod-
els with weakly-supervised learning using automatic la-
bels directly extracted from the reports unleashing the
potential of histopathological lung datasets without la-
bels for predicting lung cancer.

The performance of the model can be influenced by
the amount of heterogeneous data. This is a very com-
mon scenario in computational pathology where big dif-
ferences are found in the WSIs from the presence of
different H&E stains to differences in the characteris-
tics of the scanners. Building on the findings in Table 4
is appreciable that models trained on AOEC obtain bet-
ter results when tested on the same training dataset than
when tested combining WSIs from an Italian and Dutch
hospital. To improve the model on top of these obser-
vations, a new MIL model is trained, in this case, using
data from both hospitals. As illustrated in Table 6 the
performance when testing on both hospitals improved
from a f1-score of 0.5068 ± 0.0342 when trained on
AOEC to a f1-score of 0.6537 ± 0.0237 when trained in

both datasets. The model effectively improved the per-
formance considerably because it was trained with more
heterogeneous data combining both datasets for training
and also potentially because of the increase in the total
number of WSIs used to train the model.

For the validation of the self-supervision learning
strategy, two different approaches were adopted. Evalu-
ate quantitatively the performance of the model against
the same model pre-trained on ImageNet. Qualitatively
compare the UMAPs of the same models mentioned
above. When training in the AOEC dataset the self-
supervised model outperformed the model pre-trained
on ImageNet with a gap of almost 0.1 on the f1-score.
Moreover, when both models were trained using both
datasets (AOEC and RUMC) the self-supervision model
surpass the pre-trained model with an f1-score of 0.6537
± 0.0237 and 0.6380 ± 0.0148, respectively. These ob-
servations support the fact that a model learns more ac-
curately when trained on high-level features representa-
tive of the dataset, in this case, histopathological lung
data, than on images from a model pre-trained on Ima-
geNet (dogs, vehicles, etc).

In Figure 5 the ROC curves and AUC results are pre-
sented between the three models pre-trained with self-
supervision using the AOEC dataset and the same three
models pre-trained on ImageNet. On the left side, when
the MIL models are trained on data from the Cata-
nia hospital there is a big improvement as a conse-
quence of the self-supervised learning strategy. How-
ever, when the MIL models are trained on AOEC and
RUMC datasets the improvement is not that noticeable.
Possibly, the fact that the self-supervised model is only
trained on AOEC data could be the main reason. There-
fore, the effect of self-supervision will be more signifi-
cant if the training is done with more data.

Qualitatively, the UMAP is plotted for 384 patches
composed of cells glands are stroma. As shown in Fig-
ure 6 the self-supervised model is able to almost perfect
cluster the three types of patches into clear separable re-
gions with as exception of some outliers. Contrarily, in
the UMAP of the pre-train model on Image-Net (Figure
7) is possible to appreciate that the model does not sep-
arate perfectly the different clusters with some overlaps
on the regions between cells and stroma and glands and
stroma.

To evaluate the generalisation capabilities of the
trained models, they were tested on the public TCGA
dataset. This dataset is composed of 1,036 WSIs of
LUAD and LUSC collected from 5 different centres in
the USA. The best models are both trained on the AOEC
and RUMC datasets using self-supervision and Ima-
geNet pre-training strategies with a weighted f1-score
of 0.7726 ± 0.0438 and 0.7737 ± 0.0259, respectively.
These results point out the good generalisation capabil-
ities of both models performing good predictions on an
unseen dataset from another country. As discussed in
the previous paragraph, in Table 7, is clear that both
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models trained on data from AOEC and RUMC surpass
both models trained only on the AOEC dataset. This
also supports the fact that a model trained on more het-
erogeneous data is able to perform predictions more ac-
curately than its counterpart.

For the qualitative evaluation of the networks, a tool
was developed to elaborate heatmaps. These heatmaps
are computed from the attention scores coming from the
multi-head attention of the MIL model for each class
of a given WSI. On these heatmaps, only the atten-
tion scores of the ground truth class are computed and
compared with the manual annotations from an expert
pathologist. As shown in Figure 8 the model is ac-
curately giving high scores for the LUSC class to the
patches that are in the region similar to the manual an-
notations of the pathologist. Of the three areas where
the pathologist indicates that there is the presence of
LUSC two are localized for the model a no false pos-
itives are given. Additionally, in the Annex is possible
to find 3 more examples. The only case where the model
is giving more false positives is in the SCLC probably
because of the minor number of examples present in the
dataset. Nevertheless, also two out of three regions an-
notated by the pathologist are localized by the model.

Fully-supervised learning is usually the best approach
in terms of performance for training models to classify
lung histopathological data as presented in Section 2
with the work of Coudray et al. (2018); Kanavati et al.
(2021); Yang et al. (2021). The major drawbacks of
this approach are the need for pixel-level annotations
for training which is a very time-consuming task and
that this approach does not simulate the real scenario
where one label (or more if more than one malignancy
is present) is reported per WSI. Nevertheless, our model
with weakly-supervised learning has similar results than
the fully-supervised model presented by Yu et al. (2020)
and surpasses the work of Le Page et al. (2021). More-
over, the self-supervised model achieves this good per-
formance in a 4-class classification task while the two
papers mentioned above only present a binary classi-
fication. Among the weakly-supervised strategies, our
model surpasses the performance of and Lu et al. (2021)
with an AUC of 0.902 ± 0.016 and obtains similar re-
sults than Chen et al. (2021). Both works used transfer
learning as a pre-train strategy in comparison with the
self-supervision presented in this work.

Recent findings on the computer vision field with
the work of Caron et al. (2021) with DINO, and
more specifically for histopathological images, Chen
et al. (2022) with HIPT, shown the potential of self-
supervised learning to improve the prediction of ML
models. They show that using Vision Transformers
(ViT) is possible to obtain better feature representa-
tion of the images than using the architectures proposed
by Chen et al. (2020b) with MoCo v2 and Chen et al.
(2020a) with SimCLR using CNNs. The idea behind
HIPT is to use a scaling strategy in two stages using

two consecutive ViT. First patching pre-training using
patches of 256x256 and on top of this another ViT that
performs a region pre-training of size 4,096x4,096 us-
ing the features coming from the first stage. Finally,
these regions are used as feature extractors to feed a
MIL model that performs the downstream classification
task. The only drawback is that training HIPT, Chen
et al. (2022) uses a dataset with 10,678 WSIs, with a
total of 433,779 regions of 4,096x4,096 pixels that take
7.7 TB of space. These specifications need powerful
GPUs to be able to handle the training size.

As proven in this work, the training of MIL mod-
els potentially takes advantage of self-supervised pre-
training. Chen et al. (2022) using HIPT obtain an AUC
of 0.952 ± 0.021 in the binary classification between
LUAD and LUSC using 1,008 WSIs from the TCGA
dataset. In our case for the 4-class classification pre-
sented in this work, the MIL model obtains an AUC
of 0.9448 ± 0.0078 but AUCs of 0.8818 ± 0.0163 and
0.8856 ± 0.0179 in LUAD and LUSC, respectively.
HIPT obtains better performance by using the scaling
ViT strategy.

Improving the performance of CAD systems on com-
putational pathology and creating powerful tools for
clinical diagnosis to alleviate pathologists’ workload is
still an open challenge. Perhaps, it would be very inter-
esting to combine the power of HIPT as a feature extrac-
tor and the findings of this paper, such as using SKET to
have weak labels for more WSIs and training MIL mod-
els to classy, for example in the lung cancer scenario,
not only LUAD and LUSC but more lung subtypes as
presented in this paper mimicking real clinical scenario.
Regarding the recreation of a clinical real-life scenario,
include a multi-label strategy for training as more than
one cancer subtype can be present on the same WSI as it
is presented in this work. Additionally, combining more
datasets from different hospitals and public datasets to
train a more robust MIL model using more heteroge-
neous data.

6. Conclusions

There are different learning approaches to train the
histopathology images, fully-supervised achieves the
best results but not simulates the real scenario, in which,
usually only a singular label per WSI is provided (or
more than one, multi-label scenario as presented in
this work). Weakly-supervised learning tries to ad-
dress this issue by training a model with only WSI-
level annotations. The algorithm proposed in this work
is first pre-trained using self-supervised learning to ex-
tract high-level features representative of the dataset.
Afterwards, using weakly-supervised learning, a MIL
model is trained on the 4-class classification task to
predict among three cancer types, SCLC, LUAD and
LUSC, and normal tissue. It is demonstrated through
the different experiments conducted on this work the
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following findings. First, the ability of the model to be
trained using automatic labels extracted directly from
the pathologist reports unleashes the potential of using
unlabeled datasets. Second, a model trained on a more
heterogeneous dataset and with a larger number of WSIs
would potentially increase the performance. Moreover,
it is proven that training with a more heterogeneous
dataset also improves the generalisation capabilities of
the model making predictions in unseen data from ex-
ternal datasets. Third, self-supervised learning is able to
elaborate high-level features more representative of the
dataset, used later on for training, than directly using a
pre-train model on Imagenet. This is shown both, quan-
titatively through the lung subtype classification down-
stream task and qualitatively through the UMAP repre-
sentation of labelled patches. Finally, a tool is provided
in order to interpret better where the model is actu-
ally looking when making a prediction to a given class.
These heatmaps together with the prediction of the
model would be a powerful tool that provided in clinical
scenarios to the pathologist could potentially reduce the
time performed to analyse a new WSI. Developing CAD
systems to help pathologists make a diagnosis will be
beneficial in a world where the number of pathologists
is not increasing linearly with the number of biopsies
and resections performed. All code was implemented
in Python using PyTorch as the primary DL library. The
repository includes the full pipeline from processing the
WSIs to the training and evaluation of the models, and
is available at https://github.com/lluisb3/histo lung
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Annex: Heatmaps

In this section, supplementary heatmaps are pre-
sented to illustrate the wider range of classes and not
only one example. One example of each cancer type
is presented, SCLC (Figure 9), LUAD (Figure 10) and
LUSC (Figure 11).

Figure 9: Heatmap computed using the final trained model (top im-
age) compared with the annotations from an expert pathologist (bot-
tom image) of a whole slide image (WSI) diagnosed with small-cell
lung carcinoma (SCLC).

Figure 10: Heatmap computed using the final trained model (top im-
age) compared with the annotations from an expert pathologist (bot-
tom image) of a whole slide image (WSI) diagnosed with non-small-
cell lung adenocarcinoma (LUAD).

Figure 11: Heatmap computed using the final trained model (left side)
compared with the annotations from an expert pathologist (right side)
of a whole slide image (WSI) diagnosed with non-small-cell lung
squamous cell carcinoma (LUSC).
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Abstract

Multiple Sclerosis (MS) is a demyelinating disease characterised by white matter lesions. These lesions can lead to
physical disabilities and cognitive deficiency. The severity of the disease is commonly assessed using the Expanded
Disability Status Scale score, which measures disability across various stages ranging from “non-symptomatic” to
“death” and passing by different disability conditions. Accurately classifying the progression of MS is difficult due to
the complex differentiation among the MS groups. The data is imbalanced, and patients’ conditions can change over
time as they transition from the clinically isolated syndrome stage to relapsing-remitting MS (RRMS) and later on to
secondary progressive MS (SPMS). Additionally, patients who do not experience relapses are typically put as having
primary progressive MS (PPMS).

In this study, we explore the potential of using the Dynamic Affine Feature Map Transform (DAFT) approach for
classifying MS groups and EDSS scores. We extend the input dimensionality by concatenating multiple medical
imaging sequences with a lesion mask and apply regularisation strategies such as dropout and augmentation, along
with techniques derived from existing literature. Our experimental results demonstrate that the DAFT approach has
higher ensemble balanced accuracy than the baseline methods that solely use imaging data or tabular information.

Keywords: multiple sclerosis, classification, DAFT, MS groups

1. Introduction

Multiple Sclerosis (MS) is a chronic neurological
disease that affects approximately 2.8 million people
worldwide, according to the most recent studies (Wal-
ton et al., 2020). MS causes inflammation and di-
rectly attacks the central nervous system, including the
brain, spinal cord, and optic nerves (Aslam et al., 2022).
Specifically, MS is characterised by the demyelination
of the axons and is typically diagnosed by quantifying
white matter lesions. The lesions vary in size, shape,
and location. The structural damage to the central ner-
vous system links with other MS manifestations, such as
physical disability and cognitive deficits (Eijlers et al.,
2018). The disease is commonly classified into different
MS phenotypes, also called MS groups (Lublin et al.,
2014):

• Clinically isolated syndrome (CIS) is the first
episode of neurological symptoms that lasts at least

24 hours and is caused by inflammation or de-
myelination of the central nervous system. CIS
might not meet all the criteria for MS.

• Relapsing-remitting multiple sclerosis (RRMS) is
the most common type of MS, characterised by
clearly defined attacks, also known as relapses
or exacerbations, of new or growing neurological
symptoms, followed by intervals of remission.

• Primary progressive multiple sclerosis (PPMS) is
characterised by worsening of neurological func-
tions since the onset of symptoms without early
relapsing or remission.

• Secondary progressive multiple sclerosis (SPMS)
is followed by an early relapse period. Patients
who have more severe symptoms in their RRMS
phase may experience progression to SPMS.
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Diagnosing patients with MS initially places them
into distinct groups. However, this categorisation can
evolve over time, such as when CIS progresses into
RRMS, or when the majority of RRMS patients tran-
sition into SPMS. Additionally, SPMS and primary
PPMS exhibit numerous shared MRI features. Conse-
quently, this intricate interplay among different MS sub-
types makes classifying patients into distinct groups a
complex task (Shoeibi et al., 2021).

In terms of physical disability, several indexes and
scoring systems have been developed to assess the clin-
ical severity and functional deficits in patients with MS.
One of the most commonly used is the Expanded Dis-
ability Status Scale (EDSS), a scale that ranges from 0
to 10 with 0.5 increments. An EDSS from 1.0 to 4.5
refers to people who are able to walk without any aid.
EDSS from 5.0 to 9.5 is typically characterised by the
impairment to walk.

In this work, we want to use images and clinical in-
formation obtained from a sample of patients to classify
MS groups and EDSS scores. To the best of our knowl-
edge, this is the first time that these classification prob-
lems are addressed using convolutional neural networks
that allow embedding clinical information in the form
of tabular data along with brain MR images and lesion
segmentation masks.

2. State of the art

In this section, we present a review of the related
work on the classification of MS groups using imaging
and tabular data. While the literature specific to MS
group classification using both data forms is limited,
there is information from studies focusing on other dis-
eases with similar challenges. Notably, we found three
relevant papers that explore the integration of imaging
and tabular data for classification tasks in MS. The fol-
lowing subsections summarise the findings and discuss
their potential applicability to MS group classification.

2.1. Classification of MS

2.1.1. Methods for Classification of MS using Imaging
Data

Several studies have been conducted employing deep
learning techniques to classify or predict MS based on
imaging data as shown in Aslam et al. (2022), or Shoeibi
et al. (2021).

The study of Zhang et al. (2018) for the classification
between MS and no MS patients, presented a combi-
nation of the parametric Rectified Linear Unit (ReLU),
PReLU, and dropout techniques, as well as data aug-
mentation techniques. The PReLU improved the model
fitting with almost no change in computational cost,
while the dropout helped increase accuracy and reduce
overfitting. These methods improve accuracy in models

with less than 10 layers. However, the performance is
degraded in deeper models.

In the same manner, the study of Wang et al. (2018)
for the classification between MS and no MS pa-
tients, developed a 14-layer convolutional neural net-
work (CNN) that improves their work using stochastic
pooling, which utilises non-maximal activations within
the pooling region, an improvement compared with av-
erage or max pooling. Also, dropout, batch normali-
sation, and data augmentation were added to overcome
overfitting.

Moreover, the study of Calimeri et al. (2018) for the
classification of MS groups, aimed to develop a classifi-
cation method that uses structural connectivity informa-
tion related to white matter networks to generate struc-
tural connectivity graphs. Tractography was used as in-
put information for a graph-based neural network. The
main issue using this method was the small dataset.

In the study of Eitel et al. (2019) for the classifica-
tion between MS and no MS patients, a layer-wise rele-
vance propagation map that enables uncovering relevant
image features that CNN uses for decision-making was
proposed. The map was applied to images with MS im-
ages with hyperintense lesions. They concluded that the
CNN used in the paper focused on hyperintense lesions
as the primary source of information, but also incor-
porated information from lesion locations and normal-
appearing brain areas. This showed the need for ex-
plainability to retract the classification decision.

In terms of explainability, another approach was in-
troduced by Zhang et al. (2021). They utilised Gradient-
weighted Class Activation Mapping to gain insights into
the decision-making process of CNNs. The study found
that for SPMS cases, the CNNs highlighted frontal or
temporal/parietal regions. In the case of RRMS, the fo-
cus was on frontal and occipital regions, whereas the
control cases exhibited activations in the middle regions
of the brain, including frontal, parietal, and temporal
regions. This offered valuable insights into the discrim-
inative features associated with different MS subgroups.

2.1.2. Methods for Classification of MS using Imaging
Data and Clinical Data

These methods explore the integration of imaging and
clinical data for the classification of MS groups.

The study of Vatian et al. (2019) for the classification
between MS and no MS patients, combined clinical re-
ports information with imaging data. The clinical report
module employs Bidirectional Encoder Representations
from Transformers (BERT) and Long Short-Term Mem-
ory networks to process textual information. For the
image processing module, they use U-Net and VGG11
networks. In the final stage, they test early and late fu-
sion of information where the outputs of BERT and the
CNNs were concatenated and fed into a set of fully con-
nected (FC) layers. The results showed a significant im-
provement in classification accuracy, with the method
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achieving 80% accuracy compared to a baseline of 60%
when only using images. This demonstrated the effec-
tiveness of integrating textual and imaging data through
deep learning models for diagnosing MS.

Another approach was proposed by Yoo et al. (2019),
for predicting the conversion from CIS to MS, and it
used neural networks to extract latent information of
the MS lesions by computing Euclidean Distance Trans-
form masks, which indicate the distance to the closest
lesion boundary per pixel. They also fed 11 user-defined
measurements composed of clinical general informa-
tion, EDSS, and volumetric ratios of the brain. For the
merging stage, they concatenated the information before
the final FC layer.

Similarly, Roca et al. (2020) presented an algorithm
that used MRI images (FLAIR, T1) and clinical data
(sex, age, volume of lateral ventricles) to predict EDSS
score. They employed a patch-based CNN and ma-
chine learning strategies to extract features from these
inputs. Ultimately, the feature information from the
clinical data was combined before the last FC layer of
the network.

2.1.3. Methods for Combining Imaging Data and Clin-
ical Data in other Disease Domain

The previously described methods are cases found in
the literature for the classification of MS groups using
imaging and clinical data. These methods used more
naive strategies to combine the information by concate-
nating the features before passing to the FC layers of the
network, or in the case of early fusion of Vatian et al.
(2019), before the subnetwork of FC layers.

However, more exploration over combining these
types of data has been applied in the classification or
prediction of Alzheimer’s disease or prognosis of can-
cer with histopathological images, clinical and genetic
data. It has been shown that both information sources
contribute to the diagnosis step.

The more common approach to information introduc-
tion from these two data forms is to concatenate feature
vectors before passing through the last FC layer of the
CNN architecture, as shown before in some studies re-
lated to the MS groups and to another commonly stud-
ied neurodegenerative disease, the Alzheimer’s (Hao
et al., 2019; Kopper et al., 2021; Pölsterl et al., 2020).

To achieve a more balanced combination of clinical
and imaging data, El-Sappagh et al. (2020), Li et al.
(2020b), Mobadersany et al. (2018) and Spasov et al.
(2019), incorporated a multi-layer perceptron (MLP) in-
stead of the last FC layer. This modification allowed for
a non-linear contribution between the two modalities,
facilitating a more balanced integration of clinical and
imaging data within the model. The previous approach
was put into practice with works related to histological
and genomic data, as well as Alzheimer’s disease clas-
sification. However, the approach misses the interaction

at the local or pixel level of the image with the tabular
information.

Another approach was proposed by Braman et al.
(2021) using attention-gate tensor fusion, to fuse the
latent representation of radiologic, pathologic, and ge-
nomic data, showing an improvement in the classifica-
tion of glioma patients.

Duanmu et al. (2020) used multiplicative fusion by
utilising an auxiliar network to generate a scalar scal-
ing factor from the tabular information to rescale the
feature maps. This generated a latent image representa-
tion dependent on the corresponding tabular data. How-
ever, this approach increases the runtime and memory
requirements.

Finally, Wolf et al. (2022) proposed a Dynamic Affine
Features Map Transform (DAFT), a general-purpose
model that gets high-level concepts from the 3D images
using feature maps of a convolutional layer on patients’
images and tabular information.

Given the previous combination strategies of clinical
data presented in this section, the best results are ob-
tained by the DAFT approach (Wolf et al., 2022). The
validation of this method includes classification and sur-
vival experiments conducted using Alzheimer’s disease
data from the ADNI1 (Jack Jr et al., 2008). In both sce-
narios, the DAFT strategy consistently yielded superior
results.

3. Material and methods

3.1. Dataset

In this study, 86 MS patients divided into four clin-
ical profiles (12 CIS, 29 RRMS, 26 SPMS, 19 PPMS)
were used. Each patient underwent several consecutive
MR examinations, six on average, resulting in one scan
per visit, using a 1.5T Siemens Sonata system (Siemens
Medical Solution, Erlangen, Germany) with 8-channel
head-coil. For a thorough description of the dataset, we
refer to Kocevar et al. (2016).

We use the output of icobrain ms (FDA-approved
an CE-cleared software) (Rakić et al., 2021), with T1,
FLAIR images, lesion masks as well as tabular data of
different time points including the EDSS score and MS
group for each patient. These will be used as labels
for classification tasks. The T1 and FLAIR images of
the patients are preprocessed by registering them to the
MNI space and bias field removal was performed on the
T1 images using N4 (Tustison et al., 2010).

1The ADNI was launched in 2003 as a public-private partnership,
led by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial magnetic resonance
imaging (MRI), positron emission tomography (PET), other biolog-
ical markers, and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimer’s disease (AD). For up-to-date informa-
tion, see www.adni-info.org.
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CIS RR SP PP
Subset 1 3 7 6 4
Subset 2 3 7 6 5
Subset 3 3 7 7 5
Subset 4 3 8 7 5

Table 1: Table representing the manual distribution of data for the 3-
fold cross-validation in terms of MS groups.

3.2. Data Splitting

Regarding the dataset distribution for the experi-
ments, we decided to use a 3-fold cross-validation. The
folds will maintain the distribution of patients over the
different types of experiments for comparison purposes.
We manually divided the data into 4 subsets of patients
(20, 21, 22, and 23 cases respectively). These subsets
contain a stratified sample of patients, taking into ac-
count their MS groups and EDSS scores. In each fold,
we used two subsets for the training set, one as an eval-
uation set and one that will be the same over the folds
as test set (subset 4).

3.3. Classification of MS Groups and EDSS scores

We used the strategies that will be presented in the
next section for the classification task. Furthermore, we
will also present experiments concerning some of the
previously mentioned strategies and approaches that in-
volve just images or tabular information for compara-
bility proposes.

The experiments entail three classification tasks as-
sociated with MS groups or EDSS score. These tasks
encompass distinguishing patients between mild disease
patterns and progressive disease evolution in two groups
[CIS-RR, SP-PP] and classifying them into four groups
[CIS, RR, SP, PP]. Also, we perform a discrete version
of the EDSS score outlined in Table 2. The range of
EDSS scores shown in the table is based on the distri-
bution of cases present in the dataset so as to have 3
relevant and equilibrated ranges.

3.3.1. DAFT: Dynamic Affine Feature Map Transform
We use the DAFT open-source repository as a start-

ing point for the classification task (Wolf et al., 2022).
Initially, the network with the DAFT block receives a
3D T1-weighted image.

It was shown that the use of lesion labels as additional
inputs of the network substantially improved the accu-
racy when predicting MS patients (Sepahvand et al.,
2019). Therefore, we modify the architecture to receive
3 channels of 3D images. The new architecture is shown
in Fig. 1. The changes imply:

1. Modification in the computation of normalisation
options in the repository as well as the use of the
binary mask of the brain for the standardisation op-
tion.

Name EDSS
low EDSS 0 – 3.5

medium EDSS 4 – 4.5
high EDSS 5 – 9.5

Table 2: Table representing the discretisation of EDSS scores for clas-
sification purposes.

2. Implementation of the Hierarchical Data Format
version 5 (HDF5) file (The HDF Group, 1997-
NNNN) to use tabular, as well as imaging informa-
tion in each epoch. The authors of DAFT use the
HDF5 file that stores both of them in a per-patient
manner using groups and datasets. The final struc-
ture can be seen in Fig. 2.

3. For experimentation proposes we add several
schedulers and activation functions in the code.

4. To avoid overfitting, we use dropout and augmen-
tation (flipping, injecting Gaussian noise).

5. Zhang et al. (2018) shows that using PReLU im-
proves the model fitting with almost no change in
the computational cost. We implemented this ap-
proach in our work.

Also, since the CIS and early RR scans share a lot of
characteristics and are not easily distinguishable from
one another, and moreover the same can be said about
the relation of PP and SP scans, we performed the bi-
nary classification experiments. In these experiments,
we treat the CIS and RR subjects as one class (roughly
corresponding to mild disease patterns), whereas the PP
and SP subjects form the second class (indicative of pro-
gressive disease evolution).

Additionally, we perform a classification task also
with a discrete representation of the EDSS score, rang-
ing the scores as shown in Table 2.

3.3.2. Siamese Networks
Originally used for signature verification systems

(Bromley et al., 1993), Siamese networks receive a pair
of images into equivalent encoders. Nonetheless, in
the literature, they have been used for medical imag-
ing proposes on different occasions (Birenbaum and
Greenspan, 2016; Denner et al., 2021). In the Siamese
architecture, it is proposed to differentiate between dif-
ferent groups by feeding each of the inputs with an im-
age of each group. This has been applied in other neu-
rodegenerative images, such as Alzheimer’s disease, but
not in multiple sclerosis images. Moreover, it has also
been suggested to work when predicting the progress of
a disease (Li et al., 2020a).

3.3.3. Modification over Siamese Network with DAFT
block

Our objective is to demonstrate the significance of in-
tegrating diverse data types, which contain pertinent in-
formation and biomarkers, for the purpose of classify-
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Figure 1: The figure illustrates the modified structure of DAFT with ResNet as its backbone. The architecture input is a concatenation of a binary
version of the lesion mask, FLAIR and T1 images of the patient, along with tabular information. It generates a Tensor of variable dimensions,
depending on the configured experiments.

Figure 2: Representation of the HDF5 file structure for loading the dataset.

ing MS groups. Acknowledging the advantages offered
by Siamese networks in this classification task, we have
modified the encoder section of the Siamese architec-
ture.

Specifically, we incorporate the encoder as the DAFT
network we use for the classification task experiments.
The previous approach was to incorporate the DAFT
block into the encoder. In that way, we give the abil-
ity to mix information of imaging and tabular nature.

Additionally, we will employ the Euclidean distance
metric with the contrastive loss to quantify the similarity
between the two latent feature representations. These
modifications aim to enhance the performance and ac-
curacy of our model for MS group classification.

3.3.4. Implementation Details
We implemented all the previously described steps

using Python 3.7.16 as well as relevant libraries such as
PyTorch 1.12.1, and many others listed in the require-
ments file. The rest of the libraries and packages, as
well as the code, are available in our GitHub repository
(https://github.com/emyesme/DAFT).

3.3.5. Evaluation analysis and measures
Given the characteristics of the problem of classify-

ing MS groups in an imbalanced dataset of patients,
we opted to use balanced accuracy and confusion ma-
trices to assess the results in the test set of each fold.
Balanced accuracy is an appropriate metric for an im-
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balanced dataset since performs the average accuracy
for each class considering the majority and minority
classes’ accuracy. Also, we will compute the confusion
matrices to examine the distribution of true positives,
true negatives, false positives, and false negatives for
each class, enabling a more detailed examination of the
model’s strengths and weaknesses in correctly classify-
ing instances.

Due to the implementation of the 3-fold cross-
validation strategy in our experiments, we will obtain
a balanced accuracy and a confusion matrix for each
fold. To generate the most optimal decision based on
the three trained models, we implemented soft voting
by combining the probabilities of prediction from each
model from each fold and picking the prediction with
the highest total probability. From now on, we will re-
fer to these results as the ensemble balanced accuracy
and ensemble confusion matrix, respectively.

4. Results

In this section, we present the outcomes of employ-
ing the DAFT baseline and variations of it. Initially, we
evaluate DAFT to combine tabular and imaging data for
MS classification in the authors’ configuration. The re-
sults are presented in Table 3. Additionally, the table in-
cludes the initially modified version of DAFT for com-
parison purposes. In most cases, our modified DAFT
exhibits higher mean balanced accuracy. However, we
can notice more variability in the standard deviation and
median. This situation may be explained by data im-
balance and sensitivity to different input samples. The
gap between training and validation performance that
the variability produces can be addressed with regulari-
sation strategies.

Subsequently, considering this challenge, we apply
regularisation strategies, such as dropout and augmenta-
tion. Initially, when implementing the dropout strategy,
we consider the related work in the state-of-the-art and
conducted experiments varying the dropout probability
within the range of [0.4, 0.7] with a step size of 0.1. The
results are presented in Table 4. The most favorable re-
sults are at probabilities of 0.4 and 0.7. Considering
the performance in the three experiments, the most fa-
vorable result is obtained using probability 0.6. From
now on, all subsequent experiments that utilise dropout
will employ this specific probability value. When in-
corporating both dropout and augmentation the results
are shown in Table 5. The results demonstrate improve-
ment in experiments with the implementation of these
strategies.

PReLU has demonstrated promising results in the bi-
nary classification task between MS and non-MS pa-
tients as shown in the state-of-the-art section. There-
fore, we present an experiment varying the activation
function from the original configuration of the author
with ReLU to PReLU. The results shown in Table 6, for

(a) No dropout, no augmentation

(b) No augmentation, but with dropout

(c) No dropout, but with augmentation

(d) With both dropout and augmentation

Figure 3: Confusion matrices based on the ensemble of the models
obtained on the 3 folds for the 4 groups experiment. In each matrix,
the rows correspond to the predicted classes and the columns to the
ground truth classes.
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Table 3: Performance results of unimodal and multimodal input DAFT approaches. This is computed over the test set. Mean and std refer to the
mean and standard deviation of the results of each fold. 2 groups: [CIS-RR, PP-SP], 4 groups: [CIS, RR, PP, SP], 3 EDSS: [0-3.5, 4-4.5, 5+ ].

Experiment T1 T1 + FLAIR + lesion mask
mean (std) Ensemble mean (std) Ensemble

MS Subtypes Classification
2 groups 0.83 (0.01) 0.87 0.77 (0.09) 0.79
4 groups 0.38 (0.06) 0.50 0.66 (0.07) 0.63

EDSS Classification
3 EDSS 0.46 (0.13) 0.47 0.55 (0.08) 0.56

Table 4: Classification results using our modified DAFT approach varying the dropout probability in the range [0.4, 0.7]. This is computed over
the test set. Mean and std refer to the mean and std of the results of each fold. 2 groups: [CIS-RR, PP-SP], 4 groups: [CIS, RR, PP, SP], 3 EDSS:
[0-3.5, 4-4.5, 5+ ].

Experiments Dropout probability
p=0.4 p=0.5 p=0.6 p=0.7

mean(std) Ensemble mean(std) Ensemble mean(std) Ensemble mean(std) Ensemble
MS Subtypes Classification

2 groups 0.76 (0.07) 0.87 0.80 (0.07) 0.83 0.79 (0.06) 0.87 0.82 (0.05) 0.79
4 groups 0.55 (0.04) 0.60 0.61 (0.07) 0.66 0.63 (0.12) 0.76 0.64 (0.08) 0.63

MS EDSS Classification
3 edss 0.52 (0.09) 0.60 0.54 (0.07) 0.56 0.54 (0.07) 0.60 0.53 (0.05) 0.56

Table 5: Classification results using our modified DAFT approach implementing different balancing strategies. This is computed over the test set.
Mean and std refer to the mean and std of the results of each fold. 2 groups: [CIS-RR, PP-SP], 4 groups: [CIS, RR, PP, SP], 3 EDSS: [0-3.5, 4-4.5,
5+ ].

Dropout Augmentation Balanced Accuracy
mean (std) Ensemble

2 groups
– – 0.77 (0.09) 0.79
✓ – 0.79 (0.06) 0.87
– ✓ 0.79 (0.02) 0.83
✓ ✓ 0.79 (0.06) 0.87

4 groups
– – 0.66 (0.07) 0.63
✓ – 0.63 (0.12) 0.76
– ✓ 0.59 (0.10) 0.58
✓ ✓ 0.63 (0.13) 0.76

3 EDSS
– – 0.55 (0.08) 0.56
✓ – 0.54 (0.07) 0.60
– ✓ 0.50(0.04) 0.53
✓ ✓ 0.54 (0.07) 0.60

Table 6: Classification results on our modified DAFT approach applying ReLU original configuration of the author against PReLU. This is com-
puted over the test set. Mean and std refer to the mean and standard deviation of the results of each fold. “aug” refers to adding the augmentation
strategie. 2 groups: [CIS-RR, PP-SP], 4 groups: [CIS, RR, PP, SP], 3 EDSS: [0-3.5, 4-4.5, 5+ ].

Experiment p = 0.6 + aug p = 0.6 + aug + PReLU
mean (std) Ensemble mean (std) Ensemble

MS Subtypes Classification
2 groups 0.79 (0.06) 0.87 0.80 (0.07) 0.92
4 groups 0.63 (0.13) 0.76 0.65 (0.07) 0.62

MS EDSS Classification
3 EDSS 0.54 (0.07) 0.60 0.52 (0.07) 0.53
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Table 7: Final classification results of experiments over the test set. Mean and std refer to mean and std of the results of each fold. 2 groups:
[CIS-RR, PP-SP], 4 groups: [CIS, RR, PP, SP], 3 EDSS: [0-3.5, 4-4.5, 5+ ].

no DAFT RF DAFT
Experiments mean (std) Ensemble mean (std) Ensemble mean (std) Ensemble

MS Subtypes Classification
2 Groups 0.67(0.15) 0.70 0.94 (0.02) 0.92 0.80 (0.07) 0.92
4 Groups 0.37 (0.02) 0.35 0.43 (0.10) 0.58 0.63 (0.13) 0.76

MS EDSS Classification
3 EDSS 0.41 (0.10) 0.46 0.54(0.01) 0.56 0.54 (0.07) 0.60

the classification of the two groups exhibit high ensem-
ble balanced accuracy. Nonetheless, for the remaining
two experiments, the variation does not outperform the
current outcomes obtained using the ReLU activation
function.

In Table 7, we provide a final comparison between
the best-performing modified DAFT configuration, a
configuration employing the same architecture but ex-
cluding the DAFT block (receiving only imaging data
as input), and a well-known machine learning strategy,
namely random forest, which utilises the tabular infor-
mation. In general, the modified DAFT strategy has
the most favorable results. However, in the two-group
experiment, the random forest method outperforms the
modified DAFT strategy. This observation aligns with
the understanding that machine learning strategies can
outperform deep learning approaches depending on the
dataset size (Shwartz-Ziv and Armon, 2022).

Regarding the utilisation of the Siamese approach
with the DAFT block, we specifically implemented this
approach to distinguish between mild disease patterns
and progressive disease evolution in two groups, namely
[CIS-RR, SP-PP], due to the inherent nature of the ar-
chitecture. In this particular case, we achieved a mean
accuracy and standard deviation of 0.61 and 0.06 re-
spectively, along with an ensemble accuracy of 0.63.
However, it is worth noting that the accuracy curve ex-
hibited volatility during both the training and evaluation
stages. As a result, we did not conduct any further ex-
periments using this architecture.

The observed fluctuation in accuracy suggests that the
architecture exhibits uncertainty when making decisive
choices, depending on the specific fold it is trained on.
This behavior is to be expected, given the sensitivity
of the architecture to certain input samples, as demon-
strated in our other experiments.

5. Discussion

In this study, our objective is to investigate the po-
tential of a deep learning strategy, namely DAFT, which
combines medical imaging and clinical information to
classify MS groups and EDSS scores. Previous research
has demonstrated the effectiveness of this strategy in im-

proving the classification and disease progression pre-
diction for Alzheimer’s disease.

To evaluate the performance of the DAFT architec-
ture in the context of MS classification, we conducted
a baseline experiment comparing it with our modified
approach that incorporates state-of-the-art techniques.
Specifically, we concatenated imaging sequences (T1,
FLAIR) and a lesion mask to enhance the classification
of MS groups. In Table 3, we observe that our modi-
fication generally improves the results compared to the
previous DAFT architecture. However, the variability of
our results is higher due to the inherent imbalance in the
problem. To address this issue, we implemented several
strategies inspired by the literature (Wang et al., 2018;
Zhang et al., 2018).

Table 4 showcases the results of varying the dropout
probability within the range of [0.4, 0.7]. Given that in
three experiments there is a higher mean and ensemble
balanced accuracy from the dropout probability of 0.6
we select the performance. Subsequently, in Table 5,
we conducted experiments to investigate the impact of
the augmentation strategy. The combination of dropout
and augmentation, as well as the implementation of only
the dropout strategy reach the best results in all the met-
rics. In certain instances, the addition of augmentation
without dropout results in a decrease in the overall per-
formance of balanced accuracy. This phenomenon can
occur when there is a high sensitivity to specific input
samples.

By interpreting the confusion matrices presented in
Fig. 3, overall, we can notice the network has prob-
lems deciding over the progressive MS groups [SP, PP]
while the mild disease groups [CIS, RR] are classified
with more certainty. Specifically, the confusion matrix
corresponding to the best-balanced accuracy, item (d),
presents more problems to distinguish between progres-
sive disease groups [SP, PP]. This can be related to the
fact that these groups share several MRI features such
as lesion distribution, brain atrophy patterns, etc.

Let us focus on the best confusion matrix that corre-
sponds to the highest balanced accuracy for the exper-
iment 4 groups, shown in Fig. 3 item (d). The matrix
showcases difficulty in distinguishing between SP and
PP. This can be attributed to the fact that these groups
share numerous MRI features, which may lead to over-
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(a) No dropout, no augmentation

(b) No augmentation, but with dropout

(c) No dropout, but with augmentation

(d) With both dropout and augmentation

Figure 4: Confusion matrices based on the ensemble of the models
obtained on the 3 folds for the EDSS discretised experiment. In each
matrix, the rows correspond to the predicted classes and the columns
to the ground truth classes.

(a) No dropout, no augmentation

(b) No augmentation, but with dropout

(c) No dropout, but with augmentation

(d) With both dropout and augmentation

Figure 5: Confusion matrices based on the ensemble of the models
obtained on the 3 folds for the 2 group experiment. In each matrix,
the rows correspond to the predicted classes and the columns to the
ground truth classes.
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lapping patterns in the extracted information.
Due to these shared features, the network may strug-

gle to capture the subtle differences between the two
progressive disease groups, resulting in higher misclas-
sification rates and reduced certainty in the classifica-
tion outcomes.

In the experiment concerning the discretised EDSS,
the findings from the confusion matrices depicted in
Fig. 5 show the network’s ability to effectively discrim-
inate between different EDSS categories. The network
demonstrates a remarkable proficiency in distinguishing
low EDSS scores from those categorised as middle or
high. This observation suggests the presence of distinct
MRI features that serve as reliable indicators for differ-
entiating the more disabling EDSS scores from the rest.

The network’s capacity to accurately discern between
low EDSS scores and higher disability levels attests
to the robustness and discriminative capabilities of the
model. This distinction enables the identification and
characterisation of patients with more severe disabil-
ity. The fact that the network can readily differentiate
these debilitating EDSS scores from others signifies the
existence of pronounced MRI features associated with
higher disability levels.

Regarding the Siamese approach, the conducted ex-
periment for classification yielded relatively low accu-
racy. Nevertheless, existing literature (Birenbaum and
Greenspan, 2016; Denner et al., 2021) suggests that this
type of architecture is valuable for predicting disability
scores. Therefore, exploring its potential for the pre-
diction task could be a promising avenue for future re-
search.

5.0.1. Limitations
Our work has limitations, and it is crucial to acknowl-

edge these constraints in order to provide a comprehen-
sive understanding of the study:

Firstly, one notable limitation is the absence of de-
tailed records regarding treatment administration or its
absence. This lack of information prevents us from
studying the potential confounding factors related to
therapeutic effects.

Secondly, there are recognised biomarkers for MS in
blood test results or genetic data. Incorporating these
additional factors could provide valuable insights and
potentially enhance the predictive capabilities of our
model.

By addressing these suggestions, we can further en-
hance the accuracy and reliability of MS classifica-
tion and prognosis models, ultimately improving patient
care and treatment decision-making

6. Conclusions

In summary, the use of deep learning strategies,
specifically DAFT, to combine multiple medical imag-

ing sequences with lesion masks, and clinical informa-
tion leads to improved classification of MS groups and
EDSS scores compared to the individual use of medical
imaging or clinical information.

It is worth noting that the choice of utilising a single
form of information depends on factors such as sam-
ple size, the relevance of the available clinical data, and
the quality of medical imaging acquisition protocols.
In certain cases, employing a method that exclusively
leverages one type of information can be a prudent de-
cision.

This study focuses on the classification of MS groups
and EDSS scores, yielding favorable results. However,
the same methods can be applied to predict the EDSS
score of a patient over a given time period. In the case
of the Siamese architecture, instead of inputting images
and clinical information from patients across different
MS groups to each encoder, the input would consist of at
least two time points of the same patient, incorporating
the EDSS score from time point 1 and predicting for the
same patient at time point 2.
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Rakić, M., Vercruyssen, S., Van Eyndhoven, S., de la Rosa, E., Jain,
S., Van Huffel, S., Maes, F., Smeets, D., Sima, D.M., 2021. ico-
brain ms 5.1: Combining unsupervised and supervised approaches
for improving the detection of multiple sclerosis lesions. NeuroIm-
age: Clinical 31, 102707.

Roca, P., Attye, A., Colas, L., Tucholka, A., Rubini, P., Cackowski, S.,
Ding, J., Budzik, J.F., Renard, F., Doyle, S., et al., 2020. Artificial
intelligence to predict clinical disability in patients with multiple
sclerosis using FLAIR MRI. Diagnostic and Interventional Imag-
ing 101, 795–802.

Sepahvand, N.M., Hassner, T., Arnold, D.L., Arbel, T., 2019. CNN
prediction of future disease activity for multiple sclerosis patients
from baseline MRI and lesion labels, in: Brainlesion: Glioma,
Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th In-
ternational Workshop, BrainLes 2018, Held in Conjunction with
MICCAI 2018, Granada, Spain, September 16, 2018, Revised Se-
lected Papers, Part I 4, Springer. pp. 57–69.

Shoeibi, A., Khodatars, M., Jafari, M., Moridian, P., Rezaei, M., Al-
izadehsani, R., Khozeimeh, F., Gorriz, J.M., Heras, J., Panahiazar,
M., et al., 2021. Applications of deep learning techniques for auto-
mated multiple sclerosis detection using magnetic resonance imag-
ing: A review. Computers in Biology and Medicine 136, 104697.

Shwartz-Ziv, R., Armon, A., 2022. Tabular data: Deep learning is not
all you need. Information Fusion 81, 84–90.

Spasov, S., Passamonti, L., Duggento, A., Lio, P., Toschi, N., Ini-
tiative, A.D.N., et al., 2019. A parameter-efficient deep learning
approach to predict conversion from mild cognitive impairment to
Alzheimer’s disease. Neuroimage 189, 276–287.

The HDF Group, 1997-NNNN. Hierarchical Data Format, version 5.
Https://www.hdfgroup.org/HDF5/.

Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushke-
vich, P.A., Gee, J.C., 2010. N4ITK: improved N3 bias correction.
IEEE transactions on medical imaging 29, 1310–1320.

Vatian, A., Gusarova, N., Dobrenko, N., Klochkov, A., Nigmatullin,
N., Lobantsev, A., Shalyto, A., 2019. Fusing of medical images
and reports in diagnostics of brain diseases, in: Proceedings of
the 2019 the International Conference on Pattern Recognition and
Artificial Intelligence, pp. 102–108.

Walton, C., King, R., Rechtman, L., Kaye, W., Leray, E., Marrie,
R.A., Robertson, N., La Rocca, N., Uitdehaag, B., van Der Mei,
I., et al., 2020. Rising prevalence of multiple sclerosis worldwide:
Insights from the atlas of MS. Multiple Sclerosis Journal 26, 1816–
1821.

Wang, S.H., Tang, C., Sun, J., Yang, J., Huang, C., Phillips, P., Zhang,
Y.D., 2018. Multiple sclerosis identification by 14-layer convo-
lutional neural network with batch normalization, dropout, and
stochastic pooling. Frontiers in neuroscience 12, 818.

Wolf, T.N., Pölsterl, S., Wachinger, C., Initiative, A.D.N., et al., 2022.
DAFT: a universal module to interweave tabular data and 3D im-
ages in CNNs. NeuroImage 260, 119505.

Yoo, Y., Tang, L.Y., Li, D.K., Metz, L., Kolind, S., Traboulsee, A.L.,
Tam, R.C., 2019. Deep learning of brain lesion patterns and user-
defined clinical and MRI features for predicting conversion to mul-
tiple sclerosis from clinically isolated syndrome. Computer Meth-
ods in Biomechanics and Biomedical Engineering: Imaging & Vi-
sualization 7, 250–259.

Zhang, Y., Hong, D., McClement, D., Oladosu, O., Pridham, G.,
Slaney, G., 2021. Grad-CAM helps interpret the deep learning
models trained to classify multiple sclerosis types using clinical
brain magnetic resonance imaging. Journal of Neuroscience Meth-
ods 353, 109098.

Zhang, Y.D., Pan, C., Sun, J., Tang, C., 2018. Multiple sclerosis iden-
tification by convolutional neural network with dropout and para-
metric ReLU. Journal of computational science 28, 1–10.

6.11



6.12



Medical Imaging and Applications

Master Thesis, June 2023

Automatic Segmentation of histological images of the brain of mouse

Juan Cisnerosa, Alain Lalande (PhD)a, Fabrice Meriaudeau (PhD)a, Stephan Collins (PhD)b

aICMUB laboratory, University of Burgundy, Dijon, France
bNeuroGeMM, niversity of Burgundy, Dijon, France

Abstract

The study of the mouse brain is of utmost importance in the field of neuroscience, as it broadly offers the best
animal model for the study of the human brain. Specifically, genetical manipulation, so easily achieved in the mouse,
allows us to explore the effects of genes on brain morphogenesis. The host laboratory has recently published a list
of 198 genes through a high-throughput preclinical studies using using high-resolution and annually annotated histo-
logical images from thousands of mouse brains. Manual segmentation takes approximately 1 hour to 24 anatomical
regions. This work consisted in producing an automatic system for the segmentation of these anatomical regions
using the existing “ground truth” dataset. Deep learning methods were used based on a U-Net and a Attention U-Net
architectures. This system was trained with about 2,000 annotated images for each region of interest. The average size
of each image was 1 GB, thus one of the biggest challenges was to manage the volume of information in the images.
Neuroanatomical regions differ in predictability such as the ventromedial nucleus of the hypothalamus (VHMvl) and
the inferior colliculus (InfC). However, results show a 80.39% and 94.42% Dice scores respectively, making the deep
learning extremely powerful for the annotation task. For the end-user, analyzing an image now consists of a 5 minute
task, mainly through validation of automatically generated regions of interest

Keywords: Mouse brain, Anatomical phenotype, High resolution images, Segmentation, Deep Learning

1. Introduction

Neuroscience and the study of anatomical phenotypes
are intricately linked areas of scientific research. Neu-
roscience is a multidisciplinary field that focuses on
understanding the structure, function, and complex in-
teractions within the nervous system, particularly the
brain. Anatomical phenotypes, on the other hand, re-
fer to the observable and measurable structural traits of
an organism, which are influenced by both its genetic
makeup and environmental factors. These phenotyes
often refer to specific structural characteristics of the
brain and other parts of the nervous system. This in-
clude macroscopic features, such as the size and shape
of the different brain regions, and microscopic features,
such as the organization and connectivity of neurons.

1.1. Neuroanatomical phenotype

The study of these neuroanatomical phenotypes pro-
vides valuable insights into how variations in brain
structure relate to differences in function, behavior, and

susceptibility to neurological disorders. It also allows
researchers to investigate how specific genes and envi-
ronmental factors influence the brain’s physical charac-
teristics. Qualitative assessments have been used (e.g.,
cerebellar agenesis, failure of the med-crossing of the
corpus callosum), but the neuroanatomical phenotype
varies in effect size.

Autism spectrum disorders (ASD) harbor a wide
range of neuroanatomical phenotypes often considered
as subtle and difficult to assess. Studying the neu-
roanatomy of autism thus requires defined phenotypes
in different samples, at different stages of brain devel-
opment with high resolution. This is why a very precise
characterization of the regions of interest in the brain is
necessary.

3D imaging techniques such as fMRI are comple-
mentary. Whilst the resolution achieved is less than
standard histological techniques, these studies focus on
examining patterns of functional connectivity, identify-
ing specific brain regions or networks that show dif-
ferences in activity or connectivity between individuals
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with ASD and those without. These studies aim to un-
cover potential biomarkers, neural correlates and under-
lying mechanisms of ASD. (Hull et al., 2017).

The investigation of developmental diseases in hu-
man brains is complicated by reasons such as: obtain-
ing patient consent, limited access to developing brains,
procedures which must be non invasive, among others.
Animal models are therefore essential for the study of
developmental diseases. Working with animal mod-
els allows controlled experiments, where the environ-
ment, the age and the genetic background are controlled.
Within a defined set of ethical guidelines, it is also pos-
sible to manipulate genes and carry out invasive proce-
dures. Animal models also allow for longitudinal stud-
ies, have expanded sample sizes, and allow for a better
understanding of the underlying mechanisms of devel-
opmental diseases (Bossert and Hagendorff, 2021).

1.2. Mouse Model
Whilst human studies of cognitive disorders and in

particular, their genetic causes have had immense suc-
cess in the last two decades, it is estimated that 50 per-
cent of genetic cases remain unsolved. Often, because
of partial penetrance status, unclear pattern of famil-
iar inheritance, or mutations of unknowns significance.
The mouse is now seen as a unique tool to validate ge-
netic hypotheses and address the problem of missing
heritability in genetic developmental disorders. Indeed,
the human and mouse genomes share more than 90% of
the sequence homology with almost the same number of
genes (more than 20,000 genes) (Breschi et al., 2017).

Despite the obvious difference in size and some vari-
ations in brain structure, many fundamental aspects of
brain organization, neuronal function and even behav-
ior are conserved between mice and humans. But above
all, for genetics studies, the mouse has the main ad-
vantage of being genetically homogeneous (when re-
searchers use isogenic strains), offering a unique way to
test whether a gain or loss of function at a specific locus
in the genome is responsible for the same neuroanatom-
ical phenotypes as a patient harboring a mutation in the
same gene thereby providing the golden proof of causal-
ity.

Mice models then become invaluable in allowing ex-
tensive investigation into the function of a mutation and
explain the pathophysiology of a disease. Changes in
neuroanatomical phenotypes, such as atrophy of a par-
ticular brain region, can be indicative of disease pro-
gression in both mice and humans. Knowledge of these
changes in mice allows researchers to better understand
similar processes in humans, which in turn improve di-
agnostic tools, help anticipating disease progression and
saves time in finding potential treatments. In Figure 1 is
shown as an example key regions where fear memory is
involved in humans and mice.

According to Breschi et al. (Breschi et al., 2017),
the use of mouse models is very useful for the follow-

Figure 1: Key regions in the human and mouse brains involved in fear
memory. (Flores et al., 2018)

ing reasons: a) The mouse life cycle is long enough
to follow the evolution of a disease b) A lot of histo-
logical, anatomical or quantitative studies can be per-
formed on the mouse brain, thanks to the fact that it can
be extracted and applied to these various studies c) The
mouse brain anatomy and physiology has great similar-
ities with the human brain.

Beyond this, the mouse brain’s ability to be geneti-
cally manipulated allows for the exploration of the ef-
fects of genes on brain activity. These tiny creatures
also serve as invaluable models for the study of devel-
opment diseases such as ADHD (Majdak et al., 2016)
and Autism spectrum disorder (Kazdoba et al., 2016),
assisting in the discovery of potential treatments and the
comprehension of the diseases’ progression. With their
practical size and rapid reproduction, mice are the ideal
candidates for scientific investigation. Furthermore, the
uniformity of the mouse brain reduces experimental er-
ror, additionaly enhancing the accuracy of findings. In
essence, the examination of mouse brains is essential
to the understanding of both healthy and diseased brain
function, paving the way for potential therapies for neu-
rological disorders.

The mouse offers a number of powerful tools to make
an association between phenotypes and genotypes. An
expanding repertoire of technologies exist to manipulate
the mouse genome – to mutate, overexpress or knock-
out (KO) genes of interest, to help researchers study
pathogenicity at a molecular, cellular, physiological and
behavioral level. An example of the impact of these mu-
tations is shown in Figure 2.

The NeuroGeMM laboratory, of the university of
Burgundy, has identified 198 genes affecting brain mor-
phogenesis through a high throughput screen of 1500
knock out lines (mouse lines where a specific gene has
been inactivated) (Collins et al., 2019). The evalua-
tion of anatomical abnormalities is typically done on
high resolution histological images (24,000 pixels x
14,000 pixels sizes with 0.45 micrometer/pixel reso-
lution). This task is carried out using manual annotation
of the different regions of the mouse brain with semi-
automatic software assisted methods.

The aim of this study is to produce an automatic sys-
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Figure 2: Impact of mutations on the mouse brain. Examples having a
specific impact on: A the commissures and B the ventricles. (Collins
et al., 2019)

tem for segmenting regions of interest in the mouse
brain from histological images, with the purpose of
avoiding manual methods and reducing the time dedi-
cated to this task. Routinely, the task of annotating brain
regions is not performed by expert personnel, because it
is a repetitive and tedious task. It is assigned to students
or laboratory assistants, which can result in a less reli-
able annotation and thus requires a significant amount
of final checks for error detection.

In this paper we will evaluate the performance of dif-
ferent deep learning architectures for the task of seg-
menting regions of interest in the mouse brain. Some
of the issues identified at the very beginning were the
sheer size of images and images artefacts:

First, when working with histological images, image
quality is of utmost importance. By having a greater
detail of what is present in the image, abnormalities that
may be imperceptible with a low resolution can be iden-
tified using careful analysis of cellular patterns. This
is why histological slices (which have a 5 micrometer
depth) were scanned at high resolution. For obvious rea-
sons, dealing with such large images ( 1GB) is a main
issue since reducing image quality meant risking lower
segmentation quality.

Second, it is worth mentioning that not all regions are
systematically taken by expert anatomist for any given
image. Image quality (coloration, histological artefacts
such as tears, folds or autolysis) and histological ac-
curacies relative to precise stereotaxic coordinates are
not always optimal. Hence, an expert may draw the hy-
pothalamus for example, but not subcortical areas.

To overcome the above problems, we propose a
model able to segment 24 mouse brain regions and its
practical implementation in the laboratory. The main
objective of the proposed method is the reduction of the
time spent in segmenting the regions of the mouse brain.
In the NeuroGeMM laboratory this activity takes about
1 hour for the manual annotation of all regions of a brain
slice. In a normal working day, only 8 slices are fully
annotated.

The work will be done mainly with 2D histological

samples, as the laboratory collected data for more than 5
years. The present method proposes a general approach
for the correct annotation of the 24 regions, which will
serve as a starting point for future algorithms to special-
ize in different regions of interest. In addition, it will
serve for a possible analysis of brain regions in new 3D
samples that are currently being taken and manually an-
notated.

2. State of the art

The state of the art in medical image segmentation
is driven by ongoing research and innovation, aiming
to improve accuracy, efficiency, and generalizability
across various medical imaging modalities and applica-
tions. With these advances, physicians have the ability
to improve decision making, enhance patient care, and
accelerate medical research and diagnosis. In this sec-
tion, segmentation models will be explained, starting
with the manual ones and ending with the fully auto-
matic ones. Mainly for the segmentation of histological
images of mouse brain.

2.1. Manual segmentation

Manual segmentation of medical images involves a
human expert manually delineating structures or regions
of interest on the images. Experience and precision
are required to accurately delineate the boundaries of
anatomical structures or lesions using specialized tools.
This approach is an absolute prerequisite for evaluating
automated or semi-automated methods. It is considered
as the gold standard in cases requiring high precision
and accurate delineation, such as radiation therapy, dis-
ease diagnosis or image-guided interventions.

The software mainly used to perform this activity are:

• ITK-SNAP is a program application used for seg-
mentation, visualization and study of images in the
field of medical imaging. With ITK-SNAP, users
have the possibility of doing work such as manual
or semi-automatic segmentation, volume represen-
tation, 3D visualization and quantitative study of
medical images (Yushkevich et al., 2006).

• 3D-slicer is an open-source software platform for
medical image analysis and visualization. It sup-
ports various types of medical imaging data and
provides a wide range of tools and modules for
tasks such as segmentation, registration, and vol-
ume rendering. 3D Slicer is widely used in re-
search and education to enhance the exploration
and analysis of medical images for improved di-
agnosis, treatment planning, and scientific investi-
gation (Fedorov et al., 2012).

• ImageJ/Fiji is a popular open-source software
package for image analysis and processing in the

7.3



Automatic Segmentation of histological images of the brain of mouse 4

life sciences. It offers a user-friendly interface and
a broad range of tools for tasks such as enhanc-
ing, segmenting, quantifying, and visualizing im-
ages. With support for various image formats and a
vast collection of plugins and macros, Fiji/ImageJ
is widely used in research labs and academic insti-
tutions for biological and medical image analysis
tasks (Schindelin et al., 2012).

• OsiriX is an advanced open-source software pro-
gram designed specifically for navigating and
viewing medical images. Developed by radiolo-
gists, it provides a solution for managing, interpret-
ing and sharing radiological images. The software
supports a wide range of medical imaging formats,
including DICOM (Digital Imaging and Commu-
nications in Medicine), and enables 2D, 3D and 4D
imaging, assisting healthcare professionals in diag-
nosis and treatment planning (Rosset et al., 2004).

For working with histopathological images, the most
used is Fiji, because of the characteristics mentioned
above, and for being specialized in 2D image process-
ing.

2.2. Semi-automatic segmentation

Semi-automated segmentation combines manual in-
teraction with automated algorithms. The advantage of
this model is that the user provides the initial informa-
tion and the algorithm refines the segmentation itera-
tively. This approach takes advantage of the user’s expe-
rience while benefiting from automation, with the goal
of obtaining accurate and efficient results with reduced
manual effort. The process involves refining the seg-
mentation based on user feedback, allowing for adjust-
ments and validations as needed. Semi-automated seg-
mentation strikes a balance between user input and au-
tomation to improve segmentation accuracy, efficiency
and consistency. This method of segmentation can be
performed by applying specialized image processing
software, such as those mentioned in the previous sec-
tion. Initialization can be done by dropping seed points,
drawing manually or with some tools like thresholding
and edge detection to start segmentation. Additionally
there are segmentation refinement tools like: ”Wand”
or ”Brush” for Fiji, ”Region Growing” or ”Live Wire”
in ITK-SNAP, or ”Paint” and ”Grown for seeds” from
3D sclier. However, this automatic segmentation can
also be carried out using deep learning methods. This
approach maintain the main idea of reducing human in-
tervention while increasing efficiency and accuracy in
the recognition and correct segmentation of regions of
interest.

Di Scandalea et al. (Di Scandalea et al., 2019)
have developed Deep Active Learning, an open source
Python-based simulation framework designed to seg-
ment myelin from histological data using uncertainty

sampling. It uses the Keras framework and is based on a
convolutional neural network architecture. The frame-
work classifies pixels as myelin or background, provid-
ing a valuable tool for histological image analysis. The
pipeline of the framework is presented in Figure 3. This
active learning combines human experience with deep
learning to iteratively select the most informative sam-
ples for annotation. Initially, a small set of labeled data
is used to train a deep learning model. Next, the model
is used to predict segmentations on unlabeled data, and
the most uncertain or difficult samples are selected for
manual annotation. This process continues iteratively,
gradually improving model performance with the incor-
poration of additional labeled samples.

Figure 3: Deep Active Learning pipeline for semi-automatic segmen-
tation histological images with manual annotation for uncertain sam-
ple to further data labeling (Di Scandalea et al., 2019)

The proposed interactive segmentation network from
Jahanifar et al. (Jahanifar et al., 2021), offers an ef-
ficient approach for annotating various tissue types in
histological images with minimal user input, framework
shown in Figure 4. Users simply need to draw a few
pixels within each region of interest as a guide signal
for the model. To handle the diverse appearance and ir-
regular geometry of different tissue regions, the network
incorporates automatic and minimalistic techniques for
generating guide signals. These techniques enhance the
model’s robustness to variations in user input, resulting
in accurate and reliable segmentation. They use an Ef-
ficientNet network with and an extra Residual Multi-
scale (RMS) block. The dataset used for this work
contains 151 regions of H&E-stained tissue images ex-
tracted from WSI of as many triple-negative breast can-
cer cases acquired from the Cancer Genome Atlas.

These examples demonstrate how deep learning can
be combined with user input to achieve semi-automatic
segmentation, providing efficient and accurate segmen-
tation results while allowing for user interaction and
control in the segmentation process. Current advances
have helped to develop new approaches to this type
of semi-automatic segmentation, such as zero-shot seg-
mentation.

Zero-shot segmentation is a computer vision tech-
nique propose by Bucher et al. (Bucher et al., 2019),
where objects or regions in an image are segmented
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Figure 4: Proposed framework pipeline in Jahanifar et al. for histological images segmentation with minimal user input. (Jahanifar et al., 2021)

without the need for pre-training on specific classes. In-
stead, it relies on additional information, such as textual
descriptions or attributes, to generalize the segmentation
to unseen classes.

The idea behind zero-shot segmentation is to transfer
knowledge from seen classes (classes seen during train-
ing) to unseen classes (classes not seen during training)
by utilizing shared attributes or semantic embeddings.
By understanding the relationships between different
classes and leveraging this information, the model can
generalize to segment objects or regions belonging to
unseen classes.

Segment Anything Model (SAM) is a zero-shot seg-
ment framework, developed by the company Meta Plat-
forms, Inc. (California, United States) to build a starting
point for foundation models for image segmentation. It
was introduced by Kirillov et al. (Kirillov et al., 2023).
This takes inspiration from the field of NLP (Natural
Language Processsing) where foundation models and
large datasets (worth billions of tokens) have become
commonplace. The project leads to the creation of a
large dataset, a segmentation model, and is fed back
into the loop. The final dataset includes more than 1.1
billion segmentation masks collected on 11 million li-
censed and privacy preserving images. It should be em-
phasized that this framework is still under development
and is optimized to work with segmentable images, i.e.,
images that have good contrast and are easily differen-
tiated. But in the future this tool can be specialized to
focus on different environments, such as medical.

Semiautomatic segmentation of medical images has
served as a valuable intermediate step between man-
ual and automatic approaches. It has allowed for user
interaction and guidance to refine segmentation results
while reducing the manual effort required. However, the
field is continuously advancing towards fully automatic
segmentation methods. The goal is to minimize user
involvement and rely on advanced computational algo-
rithms, such as deep learning, for accurate and efficient
segmentation of medical images.

2.3. Automatic segmentation

Automatic segmentation of medical images involves
techniques such as machine learning, deep learning and
classical pre- and post-processing of images to automat-
ically analyze and identify the desired structures. The
goal is to achieve accurate and efficient segmentation
results, reducing the need for manual effort and mini-
mizing subjectivity.

Automatic models have been developed to identify
and properly segment the different regions and sub-
regions of the mouse brain. Mesejo et al. (Mesejo
et al., 2012) developed a two-step automated segmen-
tation method for the hippocampus in histological im-
ages (5). Initially, they maximize the overlap of a para-
metric deformable model with two important reference
substructures in the brain image using differential evo-
lution. This step guides the determination of the region
of interest. In the second step, a thresholding technique
based on Otsu’s method is applied to the points iden-
tified in the previous step. Finally, Random Forest is
used to extend the segmentation to regions not covered
by the model. The method achieved an average segmen-
tation accuracy of 92.25% and 92.11% on independent
test sets composed of 15 real and 15 synthetic images,
respectively.

Several frameworks have been developed for an auto-
matic segmentation of mouse brain regions, mostly for
MRI and ultrasound imaging, but none for histological
imaging. Until recently, Barzekar et al. (Barzekar et al.,
2023) provide a model capable of efficiently detecting
two subregions on histological slides, Substantia Retic-
ular part (SNr) and Substantia Nigra Compacta, dorsal
tier (SNCD) in all images, with a U-Net-based archi-
tecture. They compare the performance of their model
with various combinations of encoders, image sizes, and
sample selection techniques. In addition, to increase the
sample set they opted for data augmentation, which pro-
vided data diversity and robust learning. The model was
trained on approximately one thousand annotated 2D
coronal brain images stained with Nissl/Hematoxylin
and the enzyme Tyrosine Hydroxylase (TH, an indica-
tor of dopaminergic neuron viability). The final reach a
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Figure 5: Automated Hippocampus segmentation pipeline propose in
Mesejo et al. (Mesejo et al., 2012)

Dice coefficient of 87% for the task.
10 years separate the methods proposed by Mesejo

et al. (Mesejo et al., 2012) and by Barzekar et al.
(Barzekar et al., 2023). Incredibly, over this period of
time, no models have been developed or proposed that
are able to work with this type of imaging of the mouse
brain. As mentioned above, most of the proposed meth-
ods are applied for MRI. Furthermore, the literature re-
view revealed the lack of automatic systems for the de-
tection of different areas of the mouse brain specifically
for working with histological images as input data. One
of its main causes is the lack of properly labeled data
which, in some cases, is carried out by people with-
out the necessary knowledge for proper labeling. Fur-
thermore, histological images have high resolution (e.g.
28,000 pixels x 14,000 pixels), leading to a lack of ad-
equate hardware for training and testing models, given
the size of the images exceeding 1GB each. This com-
plicates the management of the images when a deep
learning model is to be trained and used.

3. Material and methods

I divided the automatic segmentation for the differ-
ent regions of the mouse brain into three main parts:
Dataset preparation, deep learning model and image
post-processing.

3.1. Dataset preparation

The NeuroGEMM laboratory (University of Bur-
gundy, Dijon) has several thousands of 2D images of

murine brain samples manually curated and segmented.
The overall process that the laboratory uses to analyze
a large number of mouse brains, which is robust and
simple, is detailed below. Four examples of images are
shown in Figure 6.

Figure 6: Examples of images of the mouse brain in sagittal view.

Brains are collected from 14 to 16-week-old KO
mice, fixed in paraformaldehyde and embedded in
paraffin. Sections of 5 µm are cut with a microtome
using three coronal or one sagittal plane depending on
the project. The section of interest is referred to as
the ”critical section”. Sections are deparaffinized and
stained with fast luxol blue and cresyl violet. Luxol
is a blue stain that stains the myelin revealing the ax-
ons. Cresyl stains the Nissl bodies present in the rough
endoplasmic reticulum of neurons, thus showing the
cell body. Finally, histological slides are scanned with
a high-resolution scanner (NanoZoomer 2.0HT, Hama-
matsu, Japan) to obtain digitized slides at high enough
resolution to see every single cell (around 20,000 pixels
by 12,000 pixels with a resolution of 0.455 micrometer
per pixel). Prior to data anlysis, a ”quality control” is
performed to establish the degree of variation in criti-
cal section distance to the target stereotaxic plane, fol-
lowed by an evaluation of symmetry, staining and image
quality. Then, the next step is to measure the areas and
length of the defined brain parameters/regions following
the standard operating procedures (SOPs) developed by
the laboratory. Fiji software is used to measure both sur-
face area and distances at each slice given by landmark
annotations for each region of interest. Both measures
are manually annotated and saved in ROI format, which
is a file type that stores information (landmarks) about
a specific region of an image that the user intends to
analyze separately from the rest of the image. Figure
7 shows an example of visualization of the landmarks
stored in the cerebellum annotation. Since the overarch-
ing goal of the data analysis is to identify morphogenes,
all the analysis is done genotype-blind until this step.

Following analysis, the data are also checked for hu-
man error or outliers. The laboratory has an automatic
program that calculates outliers within the interquartile
range (IQR) of 1.2. Most of the time, outliers are due
to asymmetries or suboptimal coordinates. In addition
to checking if all regions, or part of all, should be taken,
correct labeling is evaluated. In our project, we worked
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Figure 7: Landmarks, manually taken, for the Cerebellum (TC).

with the sagittal view and 24 regions of interest listed in
Table 1 and in Figure 8.

Table 1: Neuroanatomical Features
TAG Full Name
aca anterior commisure
cc corpus callosum
f fornix
fi fimbria
fp fibers of the pons
och optic chiasm
sm stria medularis
TB Total Brain
TCTX Total Cortical area
TC Total Cerebellum
IGL Intra Granular Layer
LV Lateral Ventricle
TTh Thalamus
CPu Caudate Putamen
HP Hippocampus
TILpy pyramidal cell layer
DG Dentate Gyrus
Pn Pontine nucleus
SN Substancia Nigra
Cg Cingulate cortex
DS Dorsal Subiculum
InfC Inferior Colliculus
SupC Superior Colliculus
VMHvl Ventro Median Hypothalamus

ventro lateral part

The work began with the preparation of the dataset
that was used to train the model.

Due to the number of regions and the diversity of ap-
proaches that could be implemented for each one, it
was chosen to work with a general model for all re-
gions. Due to the large size of the image files, a min-
imum workable resolution was evaluated as a trade-off
between calculation time for training and annotation ac-
curacy.

3.1.1. Landmarks to binary masks
The database was crossed-check for existence of both

images and .roi files.
Once this was verified, we checked if images and

landmarks defined by the .roi file overlaid properly and
matched in size. Regions were binarized and their size
was reduced from high resolution to two lower resolu-
tions, 512x256 and 2048x1024 to fit the medium scaled
images. A bilinear interpolation algorithm was used for
this purpose. It is a method used to estimate values be-
tween two known values in a grid or image. It calculates
the intermediate value based on a weighted average of
the surrounding four pixels. Subsequently, masks were
saved and some random checks were done to visually
verify that no regions were saved with a different name
(e.g. saved the fimbria instead of the anterior commisure
area). Based on the binary masks created for all the re-
gions, the location of each of them was analyzed as a
fourth step of data revision. It was found that several re-
gions overlapped due to manual annotation of their con-
tours. Thus, a method for the individual segmentation
of the each region of interest individually was proposed
instead of a multi-class approach.

3.1.2. Brain division
The first step was to divide brain regions of interest

into two groups. The first group consists of regions
where the entire image are used as input to train the
model. Within this group are: InfC, SupC, IGL, TC, TC,
SN, Pn, fp and TB. Meanwhile, for the second group,
the total brain area (TB) was used as the working bound-
ary area and the regions within this area were localized.
This group consists of: aca, cc, Cg, CPu, DG, DS, f, fi,
HP, IGL, LV, och, sm, TCTX, TTH and VMHvl. Figure
9 shows the grouping of the regions.

3.2. Deep learning models

We tested several learning models. Initially, we
chose to work and test these models at low resolution
(512x256) to verify their ability to capture important
features in the mouse brain.

The first model, U-Net, proposed by Ronneberger et
al. (Ronneberger et al., 2015), was used as a starting
point to segment brain regions, since this architecture is
often used in medical image segmentation. We chose to
work with a depth of 5 levels and with feature maps in
the encoder of 3, 16, 32, 64, 128 and for the decoder
256, 128, 64, 32 and 16, being the initial configuration
of the architecture.

Each experiment was trained for 100 epochs with a
minibatch size of 32 images. An Adam optimization
was performed and weights were saved for the epoch
that produced the last validation loss. A starting learn-
ing rate was fixed at 0.01 with a scheduler function that
reduces the learning rate by a factor of 10 after 15 con-
secutive epochs. An early stopping function was im-
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Figure 8: Regions of interest listed in the Table 1, taken by human user, within the mouse brain in sagittal view.

Figure 9: First (top) and second (bottom) group of regions

plemented to make the model training process time ef-
ficient. The model was trained with the Pytorch frame-
work using a NVIDIA A100 GPU. Two different loss
functions were tested, binary cross entropy with logits
loss (BCE) and Dice loss. The Dice loss function is de-
fined as follows:

Dice Loss = 1 − 2
∑N

i=1 pi · ti∑N
i=1 p2

i +
∑N

i=1 t2
i

Where:

N : Total number of pixels
pi : Predicted probability/label for pixel
ti : Ground truth label for pixel

The binary cross entropy with logits loss function is
defined as follows:

BCE with Logits Loss =

1
N

N∑

i=1

(
log(1 + exp(−ti · pi)) +max(0, pi) − ti · pi

)

Where:

N : Total number of samples
pi : Predicted logits for sample
ti : Ground truth labels for sample

The Dice loss function was chosen because it of-
fers better metrics and ability to describe model perfor-
mance. The results obtained did not meet the objective
in terms of accuracy. Therefore, the need for a change
in the architecture became evident (see results sections)
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Figure 10: Comparison between U-Net (top) vs Attention U-Net (bottom), architectures for training a single region.

as it required significant post-processing of the image
to fill holes in the binary masks by using morphological
operations and Dice loss scores were relatively poor.

The second model is based on Okay et al. (Oktay
et al., 2018) who proposed an architecture called Atten-
tion U-Net which adds attention blocks, which dynam-
ically weight the importance of different image regions
during the segmentation process. This enables the net-
work to focus on relevant features and enhance the ac-
curacy of the segmentation results. The same depth and
feature maps as the previous architecture were main-
tained. In Figure 10 is presented a visual comparison
between both architectures.

With better segmentation produced we decided to
modify the features maps to improve segmentation pre-
cision, and used an encoder/decoder feature maps con-
sisting of: 3, 64, 128, 256, 512 and 1024, 512, 256, 128
and 64, respectively.

A third test was carried out using the framework im-
plemented by Isensee et al. (Isensee et al., 2021), named
nnU-Net, for medical image segmentation. It is an
extension of the U-Net architecture and is specifically
designed for medical imaging applications. nnU-Net
provides a standardized and reproducible pipeline for
training and evaluating segmentation models on various
medical image datasets.

At the end of this round, using low definition images,
it was concluded that the U-Net architecture was not
able to acquire enough information to adequately de-
limit the regions of interest. Indeed, it was necessary to
apply extenssive post-processing of the images to im-

prove segmentation. This model was thus discarded
from the next round of testing which used medium res-
olution (2048x1024).

For the Attention U-Net, the number of levels had to
be increased from 5 to 7 in order to obtain consistent
segmentation results. The feature maps are as follows:
encoder 3, 64, 126, 256, 512, 1024, 2048 and decoder:
4096, 2048, 1024, 512, 256, 128, 64.

In Figure 11 is shown a standard workflow for all the
regions within the mouse brain.

In order to train and test the results of the models,
the database of all masks and images was divided into 3
groups. We used 70, 15 and 15 for training, validation
and testing, respectively. Once the training was finished,
performances of the models were tested in the different
regions and for the different resolutions previously es-
tablished.

3.3. Image processing

After training the deep learning models for the two
resolutions, it was necessary to return to the original size
of the images, so a bicubic interpolation algorithm was
used instead of the previously used bilateral one. This
interpolation calculates the intermediate value based on
a weighted average of the surrounding 16 pixels. This
technique is commonly used in image processing to re-
size or rescale images while maintaining greater sharp-
ness and detail compared to bilinear interpolation.This
change was necessary because the main objective was
to segment with a high level of accuracy the regions of
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Figure 11: Workflow proposed to evaluate the accuracy of the training.
This example is for Attention U-Net in medium resolution 2048x1024

interest within the mouse brain. Therefore, bicubic in-
terpolation helps to convert the finer details of the mask.
Unfortunately, even if you have the best interpolation
method, irregularities in the fine definition of the con-
tour are encountered. Figure 12 shows an example of
the jagged edges present as a result of the process of
returning the mask to its original size.

Figure 12: Example of jagged contours

The Douglas-Peucker algorithm was used to solve
this problem. It is a method for simplifying polylines
or curves by reducing the number of points while pre-
serving their shape. It selects significant points that con-
tribute to the overall shape and eliminates less signifi-
cant ones (Mokrzycki and M, 2012). By iteratively cal-
culating distances and selecting the point with the max-
imum distance from a line segment, the algorithm re-

moves redundant points and simplifies the curve while
retaining its essential characteristics. Figure 13 shows
in a visual way the result of its application. Several tests
were performed to achieve a balance between the num-
ber of points delivered by the polygon contour from the
binary mask, and the accuracy in annotating the contour
of the region of interest.

Figure 13: Example of the Ramer–Douglas–Peucker algorithm. a)
Input curve, b) - d ) specified stages of the Ramer–Douglas–Peucker
algorithm, e) output curve with reduced number of points (Mokrzycki
and M, 2012).

As a final result of our proposal, we have a set of land-
marks for each of the 24 regions of interest within the
mouse brain for histopathological imaging in sagittal
view. Figure 14 shows the final pipeline of the model.
The results of each of the phases and the models used
are presented in section 4.

3.4. Evaluation metrics
The following metrics listed below will be used to

evaluate the performance of the models worked on:

• Dice coefficient or Dice similarity coefficient, is a
metric commonly used to evaluate the accuracy of
segmentation results. It measures the overlap be-
tween the predicted segmentation and the ground
truth by calculating the ratio of twice the intersec-
tion of the two regions to the sum of their sizes.

Dice coefficient =
2 ∗ Intersection

Prediction +GroundTruth

• False Positive Rate (FPR) is a metric that mea-
sures the proportion of incorrect positive predic-
tions made by the model. A lower false positive
rate indicates better performance, as it indicates a
lower rate of false alarms or incorrect positive pre-
dictions.

FPR =
FP

FP + T N
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Figure 14: Final pipeline of the proposed method

FP = False Positive, TN = True Negative

• False Negative Rate (FNR), measures the propor-
tion of missed positive predictions by the model. A
lower false negative rate is desired as it signifies a
lower rate of missed detections or incorrectly clas-
sified negatives, indicating better sensitivity and
accuracy in capturing the target structure or region.

FNR =
FN

FN + T P
TP = True positive, FN = False Negative

Both FPR and FNR will be used to evaluate the
response of the models at pixel level.

• Hausdorff Distance (HD) measures the dissimilar-
ity between two sets of points or contours. It quan-
tifies the maximum distance between any point in
one set to the closest point in the other set.

HD(A, B) = max(max(d(a, B)),max(d(b, A)))

where:
d(a, B) represents the minimum distance between
a point a in set A and the closest point in set B.
d(b, A) represents the minimum distance between
a point b in set B and the closest point in set A.

• Shapiro-walk test is a method to evaluate if a mea-
sure follows a normal distribution. This measure
will help decide what other approaches will be
used to evaluate the model.

• The Student t-test is a statistical test used to deter-
mine if there is a significant difference between the
means of two groups which follows a normal dis-
tribution. It compares the means while considering
variability within each group and sample size.

• Wilcoxon signed-rank test is a nonparametric sta-
tistical hypothesis test used to compare the location
of two populations from two paired samples. It is
a paired differences test like the Student t-test, but
can be used with data that do not follow a normal
distribution.

• Bland-Atman plot is a visual method used to ana-
lyze the agreement between two different assays.
The objective is to determine whether there is a
systematic bias or significant variability between
the two methods. (Bland and Altman, 1986).

3.5. Segment Anything Model

As a test, the recently launched automatic segmenta-
tion tool SAM (Kirillov et al., 2023), was used. This
tool was used to test its efficiency in segmenting his-
tological images, in this case of the mouse brain. Our
model masks were used as input to help localize, par-
tially, the different regions of the brain. The results of
the different tests are shown in the next section.

4. Results

This section presents the results of all the methods
and techniques applied for the realization of the pro-
posed model.

4.1. Data preparation

After the whole process of preparing the database,
and going through the different stages of review. As a
result, we obtain the following area masks to work with
each region of interest within the mouse brain (Figure
15).

It should be noted that there is a different number
of masks per region. This difference in quantity is due
to several factors such the loss of information over the
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Figure 15: Number of mask images per region of interest area.

years, mislabeling of the areas or because the region is
not present in the brain slice. A notorious example is
with the IGL area, which due to human errors when tak-
ing the measurement could be located in another area of
the brain slice. This region is left uncorrected to check
the number of images required for a correct segmenta-
tion, given a large region with a good contrast to the
others.

Once the binary image dataset is created, for each of
the regions, we proceed to the deep learning training
stage.

4.2. Deep Learning
In order to start with the training of the models, the

first step was the selection of the loss function. The best
results were obtained with the use of a Dice loss func-
tion. A comparison between the two revised loss func-
tions is presented in Figure 16, where the Dice similarity
coefficient evaluation metric was used. The architecture
used for this purpose is the normal U-Net.

Once the loss function has been selected, the differ-
ent architectures proposed in the methods section can be
trained.

4.2.1. U-Net 5 levels
The results of training with the U-Net architecture

are presented for three different regions of the mouse
brain in Figure 17. The input images have the size of
512 pixels by 256 pixels.

Morphological operations such as dilation and ero-
sion were applied (Figure 18) to fill in incomplete areas
and in some cases to eliminate erroneously segmented
pixels.

Since there is a diversity in the results due to the char-
acteristics of the images, a post-processing stage cannot
be generalized to correct for the absence or presence of
additional pixels. Therefore, this stage showed a de-
crease in the Dice value as in the FPR.

Due to the lack of accuracy in image segmentation
with the basic U-Net architecture, it was decided to

Figure 16: Comparison performance while training models for the
corpus callosum (cc) using Dice loss versus binary cross entropy with
logits loss with Dice similarity coefficient as evaluation metric.

Figure 17: From left to right: prediction of the regions and ground
truth masks for (top) corpus callosum, (middle) fimbria, (bottom)
pyramidal cell layer TILpy.
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Figure 18: Results before and after applying morphological opera-
tions for the segmentation of the corpus callosum.

switch to an U-Net variant that includes attention gates,
Attention U-Net, to guide the segmentation.

4.2.2. Attention U-Net 5 levels
The results of training with the Attention U-Net ar-

chitecture are presented for two different regions of the
mouse brain (TB and InfC) in Figure 19. The input im-
ages have the size of 512 pixels by 256 pixels.

Figure 19: From left to right: prediction of the regions and ground
truth masks for (top) total brain area TB and (bottom) inferior collicu-
lus InfC.

In Figure 20 is shown the output evaluations metrics
for the training of two particular regions, TB and InfC.

Figure 20: Results for TB (top) and InfC (bottom) while training with
low resolutions (521x256) images with a 5 levels Attention U-Net

What is being tested now is whether segmentation ac-
curacy can be maintained, or better, with higher resolu-
tion images. For this purpose, the same test carried out
for a resolution of 512x256 is performed, with the in-
crease to 2048x1024 in resolution for the input image.
The training response, for the same regions as above is
presented in the following Figure 21.

Figure 21: From left to right: prediction of the regions and ground
truth masks for (top) total brain area TB and (bottom) inferior collicu-
lus InfC.

In Figure 22 is shown the output evaluations metrics
for the training of TB and InfC with the new input reso-
lution images.

The results obtained clearly showed the need to

7.13



Automatic Segmentation of histological images of the brain of mouse 14

Figure 22: Results for TB (top) and InfC (bottom) while training with
the second resolutions images with a 5 levels Attention U-Net

change the way in which the features are obtained
within the model, but without losing the details at a
smaller scale. It was decided to increase the depth of
the architecture, so that the model could obtain more
features and improve its performance.

4.2.3. Attention U-Net 7 levels
The results of training with the Attention U-Net ar-

chitecture with 7 depth levels are presented for the same
mouse brain regions previously worked in Figure 23.

Figure 23: From the left to the right:predictions for (top) total brain
area TB and (bottom) inferior colliculus InfC with a 7 levels depht
Attention U-Net.

In Figure 24 is shown the output evaluations metrics

for the training of TB and InfC.

Figure 24: Results for TB (top) and InfC (bottom) while training with
the second resolutions images with a 7 levels Attention U-Net.

4.3. Image post-processing
After the selection of the models, the masks are post-

processed. They are converted from binary images
to point vectors so that they can be visualized using
Fiji/ImageJ software. Figure 25 shows an example of
contour selection and curve approximation. The vec-
tors are saved in ROI format. Figure 26 compares the
post-processing performance with the two different res-
olutions (512x256 and 2048x1028).

Figure 25: Comparison between before and after the curve approxi-
mation for the fp (fibers of the pons).

4.4. Quantitative analysis
The performance of the different models with the best

responses, Attention U-Net of 5 levels with 512x256
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Figure 26: Example of converting contours to landmarks for the total brain area a) original number of points (805) in 512x256 resolution b) output
landmarks (76) with resolution images in b) c) original number of points (1501) with 2048x1024 resolution images d) final landmarks (56) with
resolution images in c).

Table 2: Evaluation metrics after image post-processing with an Attention U-Net 5 levels 512x256 resolution images
TAG DSC STD FPR STD FNR STD HD µm STD µm
aca 0.9617 0.0403 0.0001 0.0001 0.0389 0.0539 0.5812 0.5522
cc 0.9384 0.0634 0.0008 0.0005 0.0599 0.0718 1.7735 4.5100
f 0.8687 0.0901 0.0001 0.0001 0.1289 0.1257 1.3862 1.6350
fi 0.9155 0.0556 0.0005 0.0004 0.0848 0.0770 2.9190 1.9320
fp 0.7208 0.1681 0.0010 0.0013 0.2630 0.1995 7.6976 6.6295
och 0.9027 0.0938 0.0001 0.0001 0.0972 0.1119 1.4469 1.7490
sm 0.8729 0.1037 0.0003 0.0005 0.1104 0.1230 3.9239 5.9736
TB 0.9911 0.0058 0.0077 0.0084 0.0085 0.0072 5.3201 4.5393
TCTX 0.9789 0.0129 0.0010 0.0008 0.0213 0.0208 2.0512 1.6605
TC 0.9888 0.0078 0.0010 0.0006 0.0119 0.0134 2.8932 2.7347
IGL 0.9228 0.0474 0.0071 0.0042 0.0072 0.0057 2.4526 1.2877
LV 0.7361 0.2533 0.0032 0.0039 0.1987 0.2590 11.0957 7.2475
TTh 0.9520 0.0244 0.0022 0.0019 0.0453 0.0371 3.7287 1.7094
CPu 0.6594 0.3065 0.0006 0.0008 0.3306 0.3258 5.6841 4.8462
HP 0.9828 0.0065 0.0004 0.0002 0.0171 0.0102 1.3799 0.7973
TILpy 0.8886 0.0332 0.0002 0.0001 0.1056 0.0593 1.7654 1.3216
DG 0.9238 0.0242 0.0002 0.0001 0.0682 0.0443 0.9397 0.7214
Pn 0.9418 0.0718 0.0002 0.0002 0.0576 0.0845 1.1540 0.9904
SN 0.7496 0.2144 0.0007 0.0007 0.2072 0.2323 3.2851 2.3954
Cg 0.9098 0.0450 0.0007 0.0006 0.0817 0.0671 2.5104 1.3651
DS 0.8712 0.0538 0.0001 0.0001 0.1333 0.0887 1.2464 0.5641
InfC 0.9424 0.0355 0.0006 0.0006 0.0579 0.0571 2.2038 1.3951
SupC 0.9483 0.0249 0.0035 0.0032 0.0479 0.0364 5.3587 2.7498
VMHvl 0.7660 0.1712 0.0005 0.0005 0.2259 0.2195 3.0721 2.7958
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Table 3: Evaluation metrics after image post-processing with an Attention U-Net 7 levels 2048x1024 resolution images
TAG DSC STD FPR STD FNR STD HD µm STD µm
aca 0.9660 0.0394 0.0001 0.0001 0.0276 0.0573 5.2889 11.0271
cc 0.9365 0.0347 0.0012 0.0007 0.0421 0.0463 15.1756 14.8965
f 0.8828 0.0957 0.0001 0.0002 0.0822 0.1161 12.6860 40.1613
fi 0.9179 0.0810 0.0004 0.0004 0.0798 0.1035 27.9981 28.0597
fp 0.7047 0.1758 0.0013 0.0015 0.2383 0.2184 66.8368 52.7969
och 0.9214 0.0801 0.0001 0.0002 0.0613 0.1021 12.8222 22.2288
sm 0.8775 0.0927 0.0003 0.0004 0.0997 0.1256 31.4965 52.4748
TB 0.9914 0.0062 0.0079 0.0085 0.0078 0.0080 42.9213 42.1242
TCTX 0.9780 0.0280 0.0010 0.0008 0.0205 0.0387 20.3151 28.2891
TC 0.9902 0.0053 0.0010 0.0006 0.0087 0.0083 24.1482 23.9261
IGL 0.9267 0.0865 0.0036 0.0042 0.0546 0.1240 33.7096 43.5162
LV 0.9452 0.1069 0.0005 0.0010 0.0493 0.1058 41.9781 64.0020
TTh 0.9515 0.0268 0.0021 0.0017 0.0492 0.0435 34.1868 16.4720
CPu 0.7918 0.2614 0.0010 0.0013 0.1846 0.2654 43.7350 42.5232
HP 0.9848 0.0068 0.0004 0.0002 0.0122 0.0109 12.6344 7.6397
TILpy 0.8852 0.0812 0.0003 0.0001 0.0814 0.1050 18.8284 24.7633
DG 0.9302 0.0770 0.0002 0.0002 0.0465 0.0862 8.0014 11.5809
Pn 0.9500 0.0600 0.0002 0.0002 0.0391 0.0667 9.2620 8.7277
SN 0.7647 0.1958 0.0006 0.0007 0.2014 0.2184 28.2791 20.1335
Cg 0.9087 0.0612 0.0007 0.0006 0.0817 0.0873 23.3410 19.6141
DS 0.8842 0.0784 0.0001 0.0001 0.1012 0.1103 10.8247 6.6032
InfC 0.9442 0.0613 0.0006 0.0005 0.0542 0.0784 19.6080 13.8624
SupC 0.9483 0.0249 0.0035 0.0032 0.0479 0.0364 11.7670 6.0383
VMHvl 0.8039 0.1754 0.0005 0.0004 0.1797 0.2095 23.7869 23.7924

image resolution and Attention U-Net of 7 levels with
2048x1024 image resolution, were evaluated to start the
data analysis (Tables 2 and 3). The best values are high-
lighted in bold and the worst values are emphasized in
bold italics. With the first model, the best result was TB
(total brain area) and the worst was CPu (caudade puta-
men) for DSC with 99.11% and 65.94% respectively.
Meanwhile, for the second model, TB remains the best
value with 99.14% and now the worst value is fp (fibers
of the pons) with 70.47%, both for DSC.

The Saphiro-walk test was applied to prove the hy-
pothesis that the difference between the predicted and
true region masks follows a normal distribution. The
test led to reject the hypothesis of normality of the data
with 95% confidence for all regions of interest.

Subsequently, the nonparametric Wilcoxon test was
chosen to evaluate the relationships between the two
DSC values because this test allows working with sam-
ples that do not fulfill a normal distribution, in addition
to allowing working with data that are smaller in size.
The Wilcoxon test was performed at the different reso-
lutions and changes in the architecture.

Some examples of Bland Altman plots are presented
in Figure 27, specially for some areas which were diffi-
cult to segment.

Figure 27: Comparison between DSC with both resolutions for TB
and InfC
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Table 4: nnU-net framework evaluation metrics
TAG DSC STD HD STD
fp 0.7605 0.1490 78.9387 100.6994
CPu 0.7701 0.2910 66.6696 162.7281

Table 5: nnU-net framework evaluation metrics
TAG FPR STD FNR STD
fp 0.0011 0.0011 0.1525 0.1337
CPu 0.0012 0.0025 0.1963 0.3071

4.5. nnU-Net

In addition, the segmentation was checked with the
nnU-Net framework, in which the respective metrics
were performed, where the lowest DSC values were ob-
tained with our models. The results obtained for fp and
CPu are presented in the Tables 4 and 5.

In the end, the results obtained by our proposed
method are at the level of the nnUnet framework. In
one region we obtained better results in both DSC and
HD, while in another region we obtained worse results.

4.6. SAM

Finally, the performance of the new zero-shot mode
SAM segmentation was tested for mouse brain histolog-
ical samples (Figure 28) in three specific regions: ante-
rior commisure area (aca) and Ventro Median Hypotha-
lamus ventro lateral part (VMHvl).

Figure 28: Segment Anything Model (SAM) output a) original image
b) online demo c) with manual input seeds

The SAM performance for the two regions shows that
for areas where there is a good contrast and they are eas-
ily differentiated (visually) from each other, the frame-
work will perform well. Whereas, for regions where the
difference is at the cellular level (e.i. VMHvl or InfC)
its performance is not optimal.

4.7. Deployment

The proposed model was implemented, with a 7-level
deep Attention U-Net, on several computers to test its
performance. The following results were obtained and
are shown below:

• CPU and HDD
4800 sec/image (AMD RYZEN 7 3700U CPU @
2.30 GHz, 24 GB RAM, 8 THREADS)

• CPU and SSD
2760 sec/image (AMD RYZEN 7 3700U CPU @
2.30 GHz, 24 GB RAM, 8 THREADS)

1350 sec/image (INTEL CORE i7-10870H CPU
@ 2.20 GHz, 16 GB RAM,16 THREADS)

• GPU and SSD
300 sec/image (GPU TESLA K80 12 GB)

After the whole process, the final result is as many
ROI files as analyzed regions. It should be emphasized
that a result is not always obtained, either because the
area is not recognized correctly or because the region is
not present in mouse brain. These files will be mainly
used by the Fiji/ImageJ software to perform the different
neuroanatomical studies.

5. Discussion

The proposed model is presented as a general ap-
proach for automatic segmentation of different regions
of the mouse brain using histological images. The work
began with a review of the state of the art of murine
models in neuroanatomy studies and automatic segmen-
tation systems focused on mouse brains working with
histological images. The first part of the review allowed
us to understand the extreme need to achieve good ac-
curacy when annotating brain regions. With the correct
annotations, genes that help to understand the progres-
sion of developmental diseases such as ADHD can be
identified. The task of annotating the mouse brain re-
quires practice and expertise for its correct use in future
studies. Reducing annotation time is therefore a neces-
sity. In the second part of the review it was first found
that, a large amount of information was found for mag-
netic resonance imaging, but not for histologic imaging
because these require a higher resolution and their ma-
nipulation is complicated. This restriction means that its
study requires the appropriate tools (e.g. memory disk,
graphics cards) to work and develop automated systems.

This proposed approach will serve as a basis for fu-
ture work in relation to accurate generation of mouse
brain landmarks. The study did not use any advanced
deep learning method, thus proving that the tools re-
quired for its development is no longer a constraint and
opening the way for future research, taking this as a ref-
erence. Two main aspects found during the realization
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of the model are highlighted. The first is the drastic im-
provement in using attention gates to focus the segmen-
tation and improve the results. The second is the low
false positive ratio value which reflects that our model
always looks where it should look, thanks to the atten-
tion gate. In the results obtained by the proposed model,
Attention U-Net 7 levels deep, the best value obtained
is 99.14% of DSC for the total brain area. This region
is the largest area but has certain restrictions in terms of
its correct annotation which are easy to identify manu-
ally, but which our model also did. On the other hand,
the regions with the best performance such as the fibers
of the pons, are regions where their identification is not
so evident due to their grouping at the cellular level and
that are not always present in the brain. The result for
this region was 70.47 in DSC.%.

In addition, the performance of the model was tested
with the nnU-Net framework, which has been imple-
mented in some segmentation challenges, reaching the
first place. Comparing both performances, it can be said
that the proposed model is at the level of this framework
in terms of segmentation of the different regions of the
mouse brain. It was evaluated in the areas where our
model had the worst performance and the results ob-
tained are similar to those of the nnU-Net.

The model was developed in a block form in which
each of its parts can be substituted, replaced or im-
proved. What makes it a versatile tool. The parts of the
model presented are: dataset preparation, deep learning
and image post-processing. The NeuroGeMM lab will
be implemented as a means of extra annotation and will
serve for inter-observer study when performing brain
annotations to better test its performance.

5.1. Difficulties

When working with histologic images, they need to
have a resolution that allows them to differentiate from
shapes of the regions of interest and changes in tonality,
to clusters of small cells and vessels. Therefore, having
this high resolution will increase their size proportion-
ally. This was one of the major limitations in making the
proposed model, in addition to causing several times the
saturation of normal memory discs.

The second limitation found is the correct annotation
of brain regions. Therefore, several steps of treatment
and revision of the dataset were required in order to
continue with the deep learning training. This is also
the reason why a multiple class approach was not cho-
sen, because the manually annotation can cause over-
lapping between regions. Moving from a multiple class
to a multiple label approach.

5.2. Future work

In order to continue working with the proposed
method, the number of images can be increased. These
can be of mice of different age, sex and with some

pathology that affects the anatomy. Another field to be
investigated is the implementation of multiple class ap-
proaches instead of binary approaches. But, before that,
the dataset should be evaluated and corrected to avoid
overlapping between the annotated regions.

6. Conclusions

The proposed model provides a starting point for the
investigation of more accurate histological image seg-
mentation systems. The model, apart from being easy
to manage, does not require any additional software or
training of the laboratory staff to use it. The system ac-
cepts as input a given type of images and converts them
into landmarks of the regions of interest in the mouse
brain. It takes as little as 5 minutes to correctly detem-
ine 24 regions, which previously took an average of 1
hour to do the same task manually. The final results are
ROI files of the analyzed regions, which will be used
mainly by the Fiji/ImageJ software to perform the dif-
ferent neuroanatomical studies in the NeuroGeMM lab-
oratory
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Abstract

Parkinson’s disease (PD) is a neurodegenerative syndrome with diverse motor and non-motor symptoms. While
clinical assessment is the primary diagnostic method, magnetic resonance imaging (MRI) has gained importance in
aiding PD diagnosis and treatment planning. While researchers have identified spatial patterns of neurodegeneration
related to iron and neuromelanin (NM) that correlate with specific symptoms at 7T field strength, the applicability
of these insights at 3T remains uncertain. Quantitative MRI (qMRI) maps are commonly used to model parameters
that are robust across imaging sites and acquisition times. In PD, R2* and quantitative susceptibility mapping (QSM)
images, highly sensitive to iron, are frequently employed. From a cohort study in our centre, we acquired 3T scans
from which we can obtain different qMRI maps. Since the 3T protocol was not developed for PD imaging, performing
frequentist statistics may not be suitable, and a DL-based analysis could provide better insights leveraging more
powerful feature extraction and representation techniques.

Our study aims to investigate the ability of 3T qMRI maps to identify neurodegenerative changes in PD patients by
training a well-performing DL pilot model using limited data and employing different learning techniques. We pursued
two strategies: a) transfer learning-based binary classification using a 3D convolutional neural network (CNN) and
application of explainable artificial intelligence (XAI) algorithms to interpret model predictions, and b) normative
modeling, where we derived anomalies from reconstruction error maps and conducted binary classification based
on the percentage of anomaly within specific regions of interest (ROIs). Although the first strategy did not yield a
high-performing model, XAI proved invaluable in detecting issues such as overfitting and shortcut learning. In the
second strategy, we performed group average statistics on reconstruction error maps and identified relevant subcortical
nuclei in the MTsat, PD*, and R2* maps. By leveraging these ROIs, we quantified the error distribution among
healthy controls and discovered anomalies that facilitated classification between PD patients and controls. The most
discriminatory ROIs were the left globus pallidus interna in the MTsat map (AUROC: 0.84, G-mean: 0.82) and the left
subthalamic nucleus (AUROC: 0.84, G-mean: 0.85). Our results highlight the challenges of binary classification with
a small dataset and a 3D model architecture, even when employing diverse transfer learning strategies. However, the
use of XAI to assess model predictions and identify signs of shortcut learning is crucial. Additionally, other learning
techniques, such as unsupervised normative modeling, exhibit promising results, but necessitate careful selection of
generative models, enlargement of the controls dataset to better capture its distribution, and rigorous validation of
results.

Keywords: Parkinson’s Disease, quantitative MRI, Deep Learning, normative modeling, classification, explainable
AI

1. Introduction

1.1. Parkinson’s Disease and Imaging

Parkinson’s disease is a neurodegenerative syndrome
that affects multiple motor and non-motor neural cir-

cuits. It involves two primary pathological processes:
the loss of dopamine neurons and the accumulation of
Lewy bodies. However, the order of occurrence of these
processes is still unclear (Rizek et al., 2016). The loss of
dopaminergic function leads to a decline in motor func-
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tion and the emergence of clinical symptoms. Since
there is no definitive test for confirming the diagno-
sis of PD, clinical diagnosis relies on assessing symp-
toms and patient history (DeMaagd and Philip, 2015).
Neuroimaging studies, such as transcranial Doppler ul-
trasonography, PET, SPECT, and MRI, are performed
to aid in the differential diagnosis and exclude other
parkinsonian disorders (Rizek et al., 2016).

Structural changes resulting from neurodegeneration
can be reflected in alterations in the local iron and neu-
romelanin (NM) content within the dopaminergic sub-
stantia nigra pars compacta (SNc) and the noradrener-
gic locus coeruleus (Madelung et al., 2022; Zucca et al.,
2017) . Specifically, NM accumulates with age in the
SNc within dopamine and noradrenaline neurons, but
it depletes in PD patients due to the loss of these NM-
containing neurons. On the other hand, iron also ac-
cumulates with age, but its deposition is excessive in
PD (Biondetti et al., 2020; Zucca et al., 2017). These
changes are strongly associated with motor impairment,
such as the volume decrease of SNc in iron-sensitive
quantitative susceptibility mapping (QSM) correlating
with the severity of bradykinesia and rigidity, especially
in patients with longer disease duration (Poston et al.,
2020). Additionally, they are related to non-motor im-
pairment, such as orthostatic changes in systolic blood
pressure and apathy in locus coeruleus spatial neurode-
generation assessed by NM-sensitive MRI (Madelung
et al., 2022).

Nevertheless, the relationship between these struc-
tural changes and the complex pathophysiology of PD
is still not fully understood (Zucca et al., 2017). Mag-
netic Resonance Imaging (MRI) has become a valu-
able tool for researchers and clinicians to localize these
changes, utilizing techniques such as NM-MRI (Tru-
jillo et al., 2017) and iron-sensitive MRI (Biondetti
et al., 2021). In recent years, high-resolution images
obtained with ultra-high field scanners (7 teslas) have
provided new insights into the topographic patterns of
disease-related structural changes within these small
nuclei ( (Madelung et al., 2022). Furthermore, task-
related functional MRI (fMRI) has revealed alterations
in brain activation patterns related to the complex in-
teractions of dopaminergic neurodegeneration in target
nuclei (Meder et al., 2019).

However, the current MRI modalities targeting NM
and iron have not yet provided robust diagnostic
biomarkers for PD, mainly because they lack specificity
to the melanin-iron complex or its metabolic processes
during disease progression and onset. Additionally,
research-only ultra-high field scanners are not widely
available compared to the more commonly used 3 tesla
MRI scanners, and it remains unclear whether MRI im-
ages acquired at this field strength can reveal similar or
different patterns of PD-related changes.

Therefore, there is growing interest in emerging
techniques such as quantitative MRI (qMRI) mapping,

which aim to image tissue microstructure by modeling
specific parameters (e.g., relaxation rates R1 or R2*),
providing absolute measures and facilitating inter-site
comparability across different time points (Tabelow
et al., 2019; Weiskopf et al., 2013; Wenger et al., 2021).
The most widely used quantitative maps in recent PD
research are based on iron quantification within tissues,
including T2* relaxometry (R2*) and quantitative sus-
ceptibility mapping (QSM) that utilize local susceptibil-
ity and phase information from gradient-echo or SWI
sequences (Arribarat and Péran, 2020; Bae et al., 2021).
In terms of NM imaging, these sequences exploit the
property of melanin to reduce T1 relaxation time, while
magnetization transfer imaging (MTw) is used to im-
prove the contrast to NM, resulting in high-intensity
signals in NM-rich areas (Bae et al., 2021; Madelung
et al., 2022). Although quantitative maps derived from
these sequences have not been extensively utilized, it is
expected that R1 and magnetization transfer saturation
maps contain information sensitive to NM.

1.2. Data analysis
To gain a better understanding of the aforementioned

structural changes or functional patterns and draw in-
terpretable conclusions, the field of neuroscience re-
search has focused on conducting frequentist statistics
on smaller cohorts. These cohorts are often limited by
factors such as the availability of image modalities, sub-
ject and patient recruitment, and the complexity of dis-
ease progression.

More recently, deep learning (DL) has emerged as
an alternative approach by addressing the problem of
representation learning. DL aims to disentangle high-
dimensional data into a lower-dimensional representa-
tion, enabling the identification of meaningful patterns
and anomalies. In other words, DL attempts to learn
abstract patterns that are relevant to the data.

Among the various learning problems that DL can
assist with, classification tasks have been widely im-
plemented. By training models to automatically ex-
tract features and perform ”patient versus healthy con-
trol” classification for different brain diseases, we can
develop end-to-end computer-aided diagnosis (CAD)
systems that demonstrate exceptional predictive power
compared to traditional machine learning models (see
Section 2 State-of-the-art).

However, as we increase the complexity and flexi-
bility of DL models, their interpretability and explain-
ability diminish, contributing to the general skepticism
among clinical researchers towards the ”black box” na-
ture of DL models. To address this concern, numerous
explainability algorithms have been developed to gain
insights into the learned features and decision-making
processes of the models (Chaddad et al., 2023). Fur-
thermore, the application of DL models in the medical
domain is limited by data scarcity, which hampers their
performance in generalization across different domains.
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To mitigate this limitation, various training method-
ologies, such as transfer learning, unsupervised learn-
ing, and self-supervised learning, have been widely em-
ployed (Chen et al., 2019; Kim et al., 2022; Taleb et al.,
2020).

Another valuable application of DL is the creation
of normative models. In this framework, we move
away from the assumption that clinical groups are eas-
ily distinguishable and homogeneous, aiming to bet-
ter understand differences in relation to a reference
model (Rutherford et al., 2022). Normative models have
been utilized in various clinical scenarios, ranging from
growth charting in pediatrics to mental disorders (Mar-
quand et al., 2019). In the context of brain imaging, nor-
mative modeling has been employed to identify regions
of the brain affected by disease or specific pathological
patterns (see Section 2 State-of-the-art).

1.3. Project proposal

In this thesis project, we aim to investigate the rele-
vance of qMRI maps acquired at 3 teslas in identifying
structural changes in PD patients using a data-driven ap-
proach. We explore the possibility of training a high-
performing DL pilot model with various learning tech-
niques on limited data and examine the explanations for
their performance. Our main general hypothesis is as
follows:

• The qMRI maps (R1, R2*, PD*, and MTsat) ob-
tained at 3 teslas are sensitive to neurodegeneration
markers in PD, such as iron accumulation and NM
loss, as well as potentially other structural changes.
We will evaluate the classification performance of
the proposed DL models and utilize explainability
methods to identify relevant regions of interest.

We propose two exploratory strategies:
a) Unimodal binary classification with transfer learn-

ing: From a best performing model amongst different
experiments we will initially obtain a predictive perfor-
mance metric. Subsequently, by employing explainabil-
ity methods, we will generate attribution heatmaps to lo-
calize the most important brain regions for the model’s
predictions. This approach may help us identify known
nuclei affected by neurodegeneration, such as the SNc,
as well as other regions of interest.

b) Normative modeling with unsupervised learning:
In contrast to the first strategy, from PD patients we will
first generate a reconstruction error map to identify dis-
ease anomalies and their spatial distribution. Then, by
determining optimal thresholds that differentiate PD pa-
tients from controls, we will derive a final classification
performance metric.

These two strategies will enable us to assess the po-
tential of qMRI maps at 3 teslas in detecting structural

changes related to PD. It is important to note that, de-
spite the obtained qMRI maps were not particularly de-
veloped to be sensitive to PD neurodegenerative mark-
ers, we are optimistic that R2* maps are indeed sen-
sitive to iron and MTsat and R1 maps might be sensi-
tive to NM. This motivated our data-driven exploratory
project oriented to investigate the sensitivity of these
novel maps to identify structural changes related to PD,
through DL methods that are able to capture and extract
complex features and information from the images.

1.4. Abbreviations
PD, Parkinson’s Disease. HC, healthy control. NM,

neuromelanin. SNc, substantia nigra pars compacta.
qMRI, quantitative magnetic resonance imaging. XAI,
explainable artificial intelligence. ROI, region of inter-
est.

2. State of the art

In our literature review, we did not find specific ap-
proaches that predicted PD or assessed PD neurodegen-
eration using qMRI maps and DL models. Currently,
the research on DL-based PD classification has pre-
dominantly utilized other MRI sequences, brain imag-
ing modalities such as SPECT and ECG, clinical and
genetic data, or combinations of them.

When dealing with PD, the options for utilizing DL
models are limited due to requirements of the dataset
size. Thus, researchers often resort to using large public
datasets like the multi-modal longitudinal Parkinson’s
Progression Markers Initiative (PPMI) (Marek et al.,
2018) to train the models and validate them on smaller
in-house datasets. In Chaki and Woźniak (2023), a sys-
tematic review highlighted that DL has been extensively
used for neurodegenerative disorders in recent years.
However, for PD, they found a majority of papers focus-
ing on classification using non-brain imaging datasets
such as speech and handwriting, with only a few studies
using brain imaging data.

More recently, an increasing number of papers have
been published using the PPMI study and other datasets
to perform classification and explainability analyses.
For instance, Camacho et al. (2023) gathered 13 differ-
ent datasets comprising T1-weighted MRI scans (over
2000 participants). They employed a convolutional neu-
ral network (CNN) to classify PD and healthy control
(HC) subjects using Jacobian maps derived from defor-
mation fields of MNI spatial normalization, along with
basic clinical parameters. They achieved an AUROC of
0.86 in their independent test set and generated saliency
maps using the SmoothGrad (Smilkov et al., 2017) al-
gorithm, which identified frontotemporal regions, the
orbital-frontal cortex, and multiple deep gray matter
structures as the most important.

In Shinde et al. (2019), an in-house dataset of 80
subjects of NM-sensitive MRI was used to classify PD
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patients versus HC subjects and PD versus parkinso-
nian syndromes (APS) patients. They employed a 2D
ResNet50 model trained with axial slices of the brain-
stem region. Their classification results were compared
with two other ML-based models using radiomics and
contrast-ratio features, and they obtained an AUROC
of 0.906 on their test set, outperforming the ML ap-
proaches (AUROC of 0.54). To explain the DL model’s
decisions, they created class activation maps (CAM)
from the weights and feature maps of the last convo-
lutional layers and assessed contra-lateral activations in
the SNc. They found a significantly larger mean activa-
tion in the left SNc compared to the right in PD patients.

In Huang et al. (2023), to address the limited inter-
pretability of DL models, the authors defined disease
classification (prodromal PD versus HC) as a graph rep-
resentation task. They obtained relevant clinical inter-
pretations by highlighting key nodes. They used diffu-
sion tensor imaging (DTI) and structural MRI data from
194 subjects in the PPMI dataset to track fiber tracts and
construct structural brain networks (SBNs). By employ-
ing a graph neural network, they achieved promising
classification performance compared to other DL-based
and ML-based models. Furthermore, through paramet-
ric decomposition and leveraging embedded GNN char-
acteristics, they identified salient structural regions of
interest (ROIs) that occurred most frequently among
subjects, highlighting diverse cortical structures such as
the precentral gyrus-L and the superior frontal gyrus-
orbital.

The normative modeling framework has gained inter-
est in recent years for its application in medical imaging
tasks such as segmentation and classification. Addition-
ally, it has been explored as a means to detect anomalies
and identify lesions in brain MRI (Tschuchnig and Ga-
dermayr, 2021). For instance, in the study by Baur et al.
(2019), a novel deep autoencoding model with adver-
sarial training was proposed for the detection and de-
lineation of multiple sclerosis (MS) lesions based on
reconstruction error maps. The authors trained a vari-
ational autoencoder (VAE) using 2D slices of FLAIR
images from an in-house dataset of 83 healthy subjects,
achieving the highest dice score coefficient (DSC) com-
pared to other model architectures.

Similarly, Pinaya et al. (2021a) employed autoen-
coders to identify deviations from normal brains in
Alzheimer’s disease (AD) patients and identify asso-
ciated critical regions. They trained a conditional au-
toencoder on a large cohort of healthy controls using
subregional volume features extracted from over 11,000
structural MRI images from the UK Biobank. The per-
formance of the model was validated on five additional
datasets, where the mean squared error (MSE) between
the reconstructed and inputted data served as a metric
for brain deviation. This approach demonstrated high
discriminative performance in distinguishing between
healthy controls and AD patients. In a subsequent study,

Pinaya et al. (2021b) developed a novel model based on
VAEs and transformers to automatically detect various
types of lesions and their delineations. By training their
normative model on 15,000 FLAIR images from the UK
Biobank, they achieved superior performance in lesion
detection, specifically for white matter hyperintensities
and tumors, outperforming similar autoencoder-based
models in terms of DSC.

Lastly, in Muñoz-Ramı́rez et al. (2022), they identi-
fied subtle anomalies in de novo Parkinsonian patients
by training spatial autoencoders with healthy controls
DTI scans from the PPMI dataset. By utilizing 2-
channel hemisphere axial slices derived from mean dif-
fusivity (MD) and fractional anisotropy (FA) parame-
ter maps, the authors generated joint reconstruction er-
ror maps for both the healthy control test set and the
Parkinson’s disease (PD) set. By evaluating the error
maps per ROIs, they performed classification between
controls and patients, achieving the highest geometric
mean (G-mean) value for the macro regions of white
matter and temporal lobe, as well as subcortical struc-
tures including the globus pallidus interna and thalamus.

With all the previously mentioned approaches, we
want to highlight the diverse MRI sequences and DL
models that have been used, as well as the efforts to
explain the model’s decisions and find disease-relevant
ROIs. The latter aspect is particularly crucial when em-
ploying DL-based classification models, as the local-
ization of spatial neurodegenerative patterns is essen-
tial in the current clinical diagnostic strategy. There-
fore, explainability algorithms that provide attribution
heatmaps at the pixel-level are necessary. In norma-
tive approaches, this region localization is inherently
obtained through the reconstruction error map. More-
over, it is evident from these studies that either large
cohort datasets or the extraction of 2D slices from MRI
images are commonly employed to account for the size
of the used dataset. Given the limitations of a small
dataset in the present project, we adopt various learn-
ing techniques to evaluate the potential of qMRI maps
in identifying PD neurodegeneration compared to more
widely used MRI sequences while preserving the 3D na-
ture of MRI scans and exploit inter-slice information to
extract valuable information.

3. Material and methods

The general structure of this project comprised the
following. Initially, we used an existing internal dataset
part of the 7TPD project of the Danish Research Cen-
tre for Magnetic Resonance (Madelung et al., 2022),
composed of 7T and 3T structural MRI of PD patients
and HC subjects. From the 3T data we obtain a series
of qMRI maps and, according to the requirements of
the following steps, we pre-processed them (e.g. inten-
sity rescaling, skull stripping, etc.). Then, we devel-
oped the proposed strategies of work: a) a series of ex-
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periments systematically designed to compare different
pre-training techniques and perform binary classifica-
tion with DL models with the general goal of obtaining
the best-performing pilot model, and later implement
XAI algorithms to obtain attribution heatmaps; and b)
a series of experiments designed to perform normative
modeling of 3D neuroimaging data of a healthy popula-
tion, thus creating an anomaly detector for PD patients.
Each branch posed different challenges and limitations
that will be addressed accordingly.

3.1. Dataset
We had access to a dataset of MRI scans acquired

at 3 teslas on a Siemens Magnetom Prisma 3T scanner,
comprising the multi-parameter mapping (MPM) proto-
col proposed by Weiskopf et al. (2013). The MPM pro-
tocol includes three multi-echo 3D fast low-angle shot
(FLASH) scans: proton density (PDw), T1w, and mag-
netization transfer (MTw), a map of the B0 field (double
gradient-echo FLASH acquisition) and a series of 3D
EPI acquisitions of spin-echo (SE) and stimulated echo
(STE) to map the RF transmit field B1. The dataset
includes 72 subjects, out of which 49 have been diag-
nosed with PD and 23 are healthy controls (HC). In the
PD group, there are 21 (42.85%) females and 28 males,
with a mean age of 65± 10.75 years, and in the HC
group, there are 8 (34.78%) females and 15 males, with
a mean age of 67 ± 9.07 years.

We used the hMRI toolbox (Tabelow et al., 2019)
that is based on SPM12 to obtain 1 mm high-resolution
qMRI maps (Fig. 1):

• Longitudinal relaxation rate (R1 = 1/T1)

• Effective proton density (PD*)

• Magnetization transfer saturation (MTsat)

• Effective transverse relaxation rate (R2* = 1/T2*)

We used the multi-echo (TE = 2.34, 4.68, 7.02, 9.36,
. . . , 14.04 ms) FLASH scans: six MTw, eight PDw
echoes, and eight T1w, to model their signal by the
Ernst Equation (Ernst and Anderson, 2004), thus obtain-
ing R1, PD*, and MTsat maps. The R2* map was de-
rived through log-linear weighted least squares (WLS).
To correct the quantitative data for transmit bias, the
B1 transmit bias field was determined using consecutive
pairs of SE/STE images corresponding to different flip
angle nominal values, as well as the B0 field magnitude
and phase images. Also, we corrected the RF sensitivity
bias through the Unified Segmentation method, since no
RF sensitivity map from the body and/or head coil was
available. For further explanation of the methodology,
please refer to Tabelow et al. (2019).

After obtaining the qMRI maps from all subjects, vi-
sual assessment was performed and two subjects (i.e.
PD group, both males) were discarded due to data cor-
ruption problems.

a b

c d

Figure 1: Quantitative MRI maps: a) MTsat, b) PD*, c) R1, d) R2*.
Here displaying an axial slice at the SNc level after intensity scaling.

We preprocessed the obtained maps by first scaling
the intensities to the recommended range per map: PD*
= [50, 120] p.u., MTsat = [0, 2] p.u., R2* = [0, 70] s-1,
R1 = [0, 1.4] s-1. After that, as required per each exper-
iment level, we masked the volumes to obtain a region
of interest accordingly. To obtain the skull-stripped vol-
umes we utilized SynthStrip (Hoopes et al., 2022) and to
obtain the brain parcellation we used SynthSeg (Billot
et al., 2023), both tools available on FreeSurfer. From
the brain parcellation, we had 33 labels from which we
used the brainstem, left and right ventral diencephalon,
left and right caudate, left and right thalamus, and left
and right putamen, to create a binary mask of the brain-
stem and other nuclei of interest, which we will refer to
from now on as the brainstem region.

For our comprehensive analysis and evaluation, we
incorporated two labeled atlases: the previously men-
tioned SynthSeg atlas, which encompasses macro-
regions and selected subcortical parcellation regions,
and the MNI PD25 atlas (Xiao et al., 2014), which
specifically serves to MRI analysis and enables local-
ization of pertinent PD regions (refer to the Appendix
A.4 for a complete list of labels). The MNI PD25 at-
las provides bilateral subcortical structure delineations,
including the red nucleus (RN), substantia nigra com-
pacta (SNc), subthalamic nucleus (STN), putamen, cau-
date, thalamus, and external and internal globus pal-
lidus (GPi, GPe). To align each subject’s R1 qMRI
map with the PD25 T1 MPRAGE average atlas, we em-
ployed ANTs (Avants et al., 2011) for rigid, affine, and
deformable spatial normalization. Cross-correlation
served as the registration metric, and we used a multi-
resolution framework to enhance the accuracy of the
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Figure 2: Binary classification strategy. a) Three different datasets
per qMRI map type: complete scan, skull-stripped, and brainstem
masked. b) Three different leves of model pre-training: no pre-
training, using MedicalNet pre-trained model, and further pre-training
using PPMI’s MRI dataset of T1w images.

process.

3.2. Binary classification

We performed single-modality binary classification
using transfer learning and a convolutional neural net-
work (Fig. 2). We used the 3D Resnet (He et al.,
2015) model architecture since it contains residual con-
nections to tackle the vanishing gradient problem, and
we chose the smallest version of that family to avoid
over-parametrization.

Encoding full 3D scans and performing supervised
binary classification requires a sufficient number of data
samples to avoid overfitting the model or driving it
to shortcut learning. Shortcut learning occurs when
a model focuses on unintended easy-to-learn unrelated
features, leading to a lack of generalization and unintu-
itive failures (Geirhos et al., 2020). To investigate this
phenomenon, we conducted independent experiments
where the model was trained with three distinct levels of
region-of-interest (ROIs) (Fig. 2a). This strategy aims
to limit the models to overfit to irrelevant spatial infor-
mation or noise at each level.

Additionally, in the medical domain, transfer learning
has emerged as a valuable technique to tackle limited
data availability. This approach involves pre-training
a model on a large-scale dataset, allowing it to extract
general features, and subsequently fine-tuning it on a
smaller dataset for the specific task at . We explored two
levels of pre-training using medical datasets. Firstly,
we leveraged the pre-trained models from MedicalNet
(Chen et al., 2019), a framework trained on eight diverse
medical image datasets (3DSeg-8), encompassing vari-
ous imaging modalities such as MRI and computed to-
mography (CT). The authors have demonstrated notable
performance improvements in segmentation and classi-
fication tasks using these models (Chen et al., 2019).

Subsequently, we extended the pre-training by incor-
porating MRI images from the PPMI dataset (Fig. 2b).
The PPMI dataset (Marek et al., 2018) encompasses
multimodal imaging data, including CT, fMRI, SPECT,
PET, DTI, and MRI, collected at different time visits
from two main cohorts: Parkinson’s disease (PD) pa-
tients and healthy controls. For our purposes, we uti-
lized the 3T 3D T1-weighted scans from the initial visit,
resulting in a final dataset of 481 subjects (372 patients
and 109 healthy controls). We utilized the MedicalNet
pre-trained network and fine-tuned it using 60% of our
PPMI dataset.

In this way, we have the same model architecture and
three available sets of pre-trained weights (i.e. model
parameters). We carried out transfer learning by replac-
ing the pre-trained classification head with an adaptive
max pool 3D layer and a single fully connected layer,
with Xavier uniform parameter initialization. Because
of this, for that group of parameters, we used an initial
learning rate ten times larger than the group of parame-
ters from the encoder.

Furthermore, we employed data augmentation tech-
niques on the training set, a widely adopted approach
to artificially expand the training set by applying vari-
ous random transformations. The primary objective is
for the model to encounter diverse variations of a sin-
gle subject and learns robust features from them, for ex-
ample, image orientation, rotations, or even changes in
contrast. It is important to note that while traditional
augmentation aims to create variations that align with
the reality or the imaging technique’s nature/domain, re-
cent approaches have explored the opposite, generating
synthetic data to enhance the model’s robustness to vari-
ous variations (Billot et al., 2023). Since our project fo-
cuses on assessing the predictive capabilities of qMRI
maps, we employed simple affine transformations that
would not modify the intensity content of the images as
we were interested in preserving small or subtle contrast
information.

For each experiment, we trained the model for a max-
imum of 150 epochs and implemented early stopping
along with a reduce-on-plateau learning rate scheduler.
To ensure optimal performance, we conducted a conser-
vative hyperparameter tuning process, which involved
evaluating different optimizers, loss functions, and ini-
tial learning rates. Considering the extensive number of
experiments and the limitations of time and computa-
tional resources, we opted for a single train-validation
stratified split of 80% and 20%, respectively.

3.2.1. Self-supervised learning
One of the most widely used strategies to face the

limitations of data availability in the medical domain is
to perform self-supervised learning (SSL). In SSL, op-
posite to traditional transfer learning strategies, the pre-
learnt features are derived from the same data through
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Figure 3: Self-supervised pre-training. Top: By using our own skull-
stripped dataset, we train an encoder f (·) and a projection head g(·)
using the SimCLR framework. Bottom: After pre-training, only the
encoder is used for the downstream classification task using skull-
stripped volumes.

proxy-task training. Subsequently, fine-tuning is per-
formed in a supervised downstream task, reducing the
need for a larger sample size and their annotations
(Taleb et al., 2020).

The main goal of using this approach is to have the
model learn an embedding space that is based on seman-
tic similarity. In general, a spatial context proxy task is
defined, such as predicting the relative position between
image patches (Doersch et al., 2015), solving jigsaw
puzzles (Noroozi and Favaro, 2017), or based on con-
trastive predictive coding (Hénaff et al., 2020; van den
Oord et al., 2019). We chose to use the Simple Frame-
work for Contrastive Learning of Representations (Sim-
CLR) (Chen et al., 2020), since it has achieved state-of-
the-art results in various computer vision tasks.

In the SimCLR framework we needed to follow two-
steps. First, we created two different views from each
image in the training dataset by using a heavy data aug-
mentation composed of random flipping, affine trans-
formations, and by masking regions of the image with
noise (Fig. 3). With this, we were aiming for the model
to encode information regarding the intensity distribu-
tion of different parts of the brain. Second, we trained
a projection head in a contrastive manner by maximiz-
ing an agreement between differently augmented views
of the same image while minimizing an agreement be-
tween views from different images. For this, we used
the NT-Xent loss (Eq. 2) , which is a normalized
temperature-scaled cross entropy loss that uses cosine
similarity (Eq. 1).

sim(zi, z j) =
z⊤i · z j

∥zi∥ · ∥z j∥ (1)

ℓi, j = − log
exp(sim(zi, z j)/τ)∑2N

k=1 ⊮[k,i] exp(sim(zi, zk)/τ)
(2)

Where zi, z j are the embeddings output of the classi-
fication head coming from two augmented views of the
same image, and τ is the temperature parameter.. We
trained the model for 400 epochs using Adam optimizer
and a learning rate of 0.001. After that, we used the SSL
pre-trained network and fine-tune it for the unimodal
binary classification task using only the skull-stripped
volumes.

3.2.2. Explainability of Artificial Intelligence (XAI)
The primary objective of this project is to enhance the

transparency of the model’s predictions. To achieve this,
we explored various XAI algorithms to gain insights
into the model’s behavior through attribution heatmaps
and to gain a better understanding of disease-related
spatial neurodegeneration. Typically, XAI methods are
employed once a robust model with good performance
and validated generalization is obtained, allowing for
the assessment of any shortcut learning by visualizing
relevant features.

To obtain feature importance attribution, we imple-
mented two primary attribution algorithms: occlusion
sensitivity (OS) and integrated gradients (IG), which
evaluate the contribution of each input feature (voxel)
to the model’s output through image perturbation or ma-
nipulation.

OS is a method that involves masking or occluding
parts of an input image to determine the contribution
of each pixel to the output of a neural network. This
method can help identifying the regions of an image
that are most salient for a given classification task (Fig.
4a). With OS, we obtain an attribution heatmap at a
pixel-level, meaning that we would know how much a
region of specified size attributes to the model’s final
confidence score (Zeiler and Fergus, 2013). Because
of this, the final resolution of the map depends solely
on the sliding window size and stride, and furthermore,
changing these parameters will influence directly the in-
terpretation of the map regarding the relevance of the
spatial information.

IG, on the other hand, computes the importance of
each input feature for the neural network’s output by in-
tegrating the gradient of the output with respect to the
input along a straight path from a baseline input to the
actual input (Fig. 4b). By integrating the gradient over
this path, the method can capture the contribution of
each feature to the final prediction (Sundararajan et al.,
2017). In practice, the integral is efficiently approxi-
mated through summation, with the parameter m repre-
senting the number of steps between the baseline and
the model’s input.
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Figure 4: XAI. a. Occlusion sensitivity, by occluding parts of the
image with a sliding window we measure how important that part is
for the model, b. Integrated gradients, starting from an informationless
baseline, the model gradients are computed and later integraded w.r.t.
the scaling factor α.

For both algorithms, we utilized PyTorch’s Captum
implementation (Kokhlikyan et al., 2020). We deter-
mined a sliding window size of 8 voxels and a stride
of 5 voxels as a suitable trade-off between granularity
and computational cost for OS. Very small and over-
lapping patches significantly increase computation time
when occluding a 3D volume. Regarding the IG algo-
rithm, we used a zeros image as the baseline and ap-
proximated the integral using 200 steps.

For the best performing model, we obtained XAI
maps for accurately predicted healthy control (HC) and
Parkinson’s disease (PD) subjects with the highest con-
fidence scores, selecting a total of 8 subjects (4 HC and
4 PD) from the validation set. To identify the most
significant between-group differences, we performed
group average statistics per region of interest (ROI) us-
ing independent-samples t-tests and one-way ANOVA
(F statistic) tests on the mean values derived from the
normalized XAI maps.

3.3. Normative modelling

In our second line of investigation, we pursued an
unsupervised learning approach using normative mod-
eling to create a model of a healthy brain. Our goal
was to identify variations from the norm in diseased
brains. The basic concept involved constructing an
identity model, where an original image served as in-
put, and the model aimed to produce a reconstruction
that closely resembled the original, thereby minimizing
the reconstruction error (RE) between them. After the
model is trained, when a pathological scan is provided
as input, we expect to obtain a RE map indicating areas
where the scan deviated from normality. This RE map
functioned as an explanation heatmap for the model’s

predictions. Subsequently, by determining an optimal
error threshold, we could evaluate the discriminative ca-
pabilities of different ROIs in distinguishing between
diseased and control samples, enabling the computation
of a performance metric.

As seen in section 2 State of the art, one of the most
widely used architectures to perform normative model-
ing with brain imaging is the autoencoder (AE). In this
simple structure, an image x ∈ RH×W×D is fed through
an encoder fθ to obtain a latent space representation vec-
tor z, then a symmetrical decoder gθ will then map z
back to the reconstructed output x̂ ∈ RH×W×D. As con-
cluded by Muñoz-Ramı́rez et al. (2022) and Baur et al.
(2019), the dimensions of the latent space representa-
tion play a key role in the reconstruction error. Their
experiments show that using a dense latent space z ∈ Rn

performs significantly worse than having a 3D spatial
latent space z ∈ Rh×w×d, thus naming the autoencoder as
spatial AE (sAE).

Although the AE can yield to high quality reconstruc-
tions, this type of model is not generative, meaning that
as the model is allowed to create the latent space freely
to output the best reconstruction, if we ever choose
to create new synthetic images from a random latent
embedding, we would obtain unrealistic noisy images.
That is why variational autoencoders (VAE) were de-
signed to mitigate this behaviour, as they map the orig-
inal image to a latent space constraining it to follow a
multivariate normal distribution, i.e. by encoding it into
a mean µ and standard deviation σ latent variables. In
this way, by sampling values from each variable we can
obtain the latent space representation z.

To investigate how the latent space type and dimen-
sions affects the reconstructions, we also implemented
the vector-quantized VAE (VQ-VAE), a special type of
VAE proposed by Oord et al. (2017). In it, the output of
the encoder is mapped to the nearest point of a discrete
latent space, so the latent embedding space is a code-
book e of size K (i.e. vocabulary size) of vectors (i.e.
words) with dimension D, e ∈ RK×D. When training
this framework (see details in Oord et al. (2017)), the
codebook is learnt jointly with other model parameters.
In order to obtain a final latent discrete representation,
it would only be needed to replace each latent code by
its index k from the codebook.

We employed fully convolutional 3D models to in-
vestigate the influence of depth and latent space size
on the quality of reconstruction. In order to preserve
the spatial information of the input data in the latent
space, we opted for shallow encoders-decoders (Fig.
5a). Following the architecture of the VQ-VAE model
proposed by Tudosiu et al. (Tudosiu et al., 2022),
we implemented it using MONAI’s Generative Mod-
els package (Cardoso et al., 2022). The VQ-VAE ar-
chitecture incorporates residual units, where a selected
number of residual blocks are placed after each convolu-
tional layer. Each residual block consists of two consec-
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Figure 5: Normative modeling architectures. a. General architecture for the spatial autoencoder (sAE) and the spatial variational autoencoder
(sVAE), only the latent space changes according to the type of model, z is the latent space embedding, µ and σ correspond to the normal variables.
b. Vector quantized variational autoencoder (VQ-VAE) implemented architecture, the latent space embedding is vector quantized using a codebook
of 32 words (K) of length 256 (D). The codebook is learnt along with the model’s parameters using the algorithm exponential moving averages
(EMA).

utive convolutional layers, with the output of the second
layer being summed with the initial input. In our im-
plementation, we used two convolutional layers in the
encoder-decoder, with each layer followed by two resid-
ual blocks (Fig. 5b).

In order to augment our dataset, we adopted a patch-
based approach for implementing our normative frame-
work. This involved randomly cropping 3D patches
from each volume, thereby introducing an additional
parameter to consider. We chose a patch size of
128x128x128 to capture sufficient spatial information.
To create the train and validation subsets, we split the
HC set with a ratio of 70% for training and 30% for
validation. For each training subject, we obtained nine
patches from their respective volumes. During the in-
ference phase, when testing a new image, we divided it
into overlapping sub-volumes and fed each sub-volume
to the model. The final reconstructed volume was then

aggregated from all the sub-volumes, using a Hann win-
dow function to handle the overlapping regions and en-
suring a smooth reconstruction.

For each of the model architectures, we used specific
loss functions. In the simple sAE we used the L1 loss
(Eq. 3). For the spatial VAE (sVAE), we used a loss
function (Eq. 4) composed of the L1 norm as the re-
construction error and the Kullback-Leibler (KL) diver-
gence to constraint the encoder to distribute all encod-
ings around the center of the latent space (i.e. µ = 0 and
σ = 1). We weighted the KL term to favor the recon-
struction term with a 0.9 ratio.

L =∥ x − x̂ ∥1 (3)
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L = λ ∥ x − x̂ ∥1 +

(1 − λ)
−

1
2

J∑

j=1

(
1 + log(σ j)2 − (µ j)2 − (σ j)2

)


(4)

Regarding the VQ-VAE training, we also used the L1
norm as reconstruction loss and the exponential moving
averages (EMA) equation was used to learn the embed-
ding space (i.e. learn the codebook parameters of the
quantizer). With EMA, the embedding vectors ei of the
codebook are moved towards the encoder outputs ze(x).
For the quantization loss details please refer to Oord
et al. (2017). In the end, the final loss function com-
prised a sum of the reconstruction loss and the quantizer
loss L = Lrec +Lquant.

To assess the performance of our approach, we ob-
tained reconstructed images and their corresponding RE
maps from both the HC validation set and a sub-sample
of PD subjects. The sub-sample of PD subjects was cho-
sen to replicate the original imbalance ratio and match
the sex distribution and average group age of the HC
validation set. For the RE maps, we employed various
measures of deviation, including the L1 norm, L2 norm,
mean squared error (MSE), and the structural similar-
ity index measure (SSIM) (Wang et al., 2004). The
SSIM has been widely used in vision problems as it pro-
vides a better evaluation of perceptual image quality and
structural similarity. Similar to our analysis in Section
3.2.2, we conducted group average statistics to examine
between-group differences. Independent-samples t-tests
and one-way ANOVA (F statistic) tests were performed
on the mean and median RE values per ROI.

Finally, to evaluate the discriminant ability of each
significant ROI, we established two thresholds. The
first one, called abnormality threshold (a.t.), is set to de-
tect abnormal voxels, serving for classification at voxel-
level. We evaluated the a.t. as an extreme quantile value
in the HC validation set error distribution. As noted by
Muñoz-Ramı́rez et al. (2022), reconstruction errors can
arise from various sources, such as data noise, loss of
spatial information from the model, unaccounted vari-
ability in healthy controls, and actual anomalies caused
by PD. Hence, selecting an extreme quantile (e.g., 98%)
would classify only 2% of voxels in the control pop-
ulation as abnormal due to factors unrelated to PD.
On the other hand, choosing a less restrictive quantile
(e.g., 80%) would indicate that the model failed to accu-
rately capture the distribution of controls, leading to the
inclusion of genuine abnormalities within that thresh-
old. Therefore, the a.t. can be considered a confidence
threshold for the successful detection of abnormal vox-
els by the models.

Once the voxels in each ROI are thresholded based
on the selected a.t., the proportion of anomalous vox-
els is determined, allowing the selection of the second
threshold to evaluate the PD versus HC classification

performance at the ROI level. Finally, receiver oper-
ating characteristic (ROC) curves are generated to as-
sess the discriminating power of each ROI, and metrics
such as the area under the curve (AUROC) and geomet-
ric mean (g-mean) are computed to quantify the classi-
fication performance.

4. Results

4.1. Binary classification

In this section, we present the results of our experi-
ments in a sequential manner, allowing readers to follow
the logical progression of our arguments throughout the
experiments.

To evaluate the models’ performance we utilized the
area under the receiver operating characteristic curve
(AUROC, or ROC-AUC) and the F1-score. We chose
these metrics because they are more appropriate for
imbalanced datasets compared to accuracy. The ROC
curve plots the true positive rate (T PR = T P/(T P +
FN)) or sensitivity/recall against the false positive rate
(FPR = FP/(FP + T N)) or 1 - specificity at vary-
ing decision thresholds. With AUROC we measure
the model’s capability of distinguishing between classes
and it ranges from 0 to 1. An AUROC of 0.5 indicates
no separation capacity, above 0.5 indicates good sepa-
rability, and below 0.5 indicates the model predicts the
inverse class. The F1-score (Eq. 5) gives more weight
to the positive class (i.e., PD) by not considering true
negatives (TN). It is worth noting that in our sample, a
scenario where the model incorrectly predicts all sub-
jects as PD would yield a high F1-score (e.g., 0.78) due
to the larger number of positive cases (Fig. 6).

F1 =
T P

T P + 1
2 (FP + FN)

(5)

Figure 6: Confusion matrix of the case where all subjects are predicted
with the positive label PD and the high F1 score can be misleading.

Table 1 presents the classification results for all ex-
periments per qMRI map, considering the three levels
of pre-training and the three datasets used. The major-
ity of experiments produced results similar to those de-
picted in Figure 6. However, some experiments demon-
strated better performance in terms of high AUROC
and F1-score, such as those involving the MTsat and
R1 maps, utilizing complete scans and the PPMI pre-
training level. For these experiments, we conducted
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XAI analyses on selected subjects to gain further in-
sights into the models’ predictions and evaluate whether
they had learned any shortcuts for the classification task
(Fig. 7). The attribution heatmaps clearly reveal that
the models learned to focus on information outside the
brain, specifically in the neck and skull regions, respec-
tively for the PD and HC examples.

a. PD subject

b. HC subject

Figure 7: Occlusion sensitivity (OS) and integrated gradients (IG)
XAI maps overlayed on two subjects’ MTsat maps. Sagittal (S) and
coronal (C) views were selected for better visualization. The heatmaps
were obtained using the model trained with complete scans, and using
the weights from the PPMI pre-train level. The heatmaps were thresh-
olded to display positive attribution values and scaled for proper color
intensity.

We then focused on the R2* map experiment us-
ing skull-stripped volumes and the PPMI pre-training
level, which exhibited good performance in terms of
AUROC and an improved F1 score. To gain insights
into the model’s decision patterns through the attribu-
tion heatmaps in a group analysis, we computed group
average statistics for the subjects with the highest pre-
diction scores. Specifically, we obtained the mean val-
ues for both OS and IG normalized attribution heatmaps
for each ROI label in both the Synthseg parcellation and
PD25 atlas. The ROIs that demonstrated p-values be-
low our chosen confidence threshold (α < 0.05) for both
tests were considered the most significant (Fig. 8). The

detailed results for all ROIs can be found in the Ap-
pendix A.12.

Among the most significant ROIs, in the IG attribu-
tion heatmaps we can identify some nuclei from the
brainstem region for both atlases, highlighting that the
pallidum (i.e. synthseg) and the globus pallidus interna
and externa (i.e. PD25) are ROIs that significantly over-
lap and thus refer to the same region in the brain. On
the other hand, in the OS attribution heatmaps, only
the cerebral white matter macro-region and the lateral
ventricles displayed a significant average difference be-
tween the groups.

Finally, in order to validate the performance of
the R2* experiment, we performed 5-fold cross-
validation(Table 2), clearly revealing that the model
overfitted to that data split.

Table 3 presents the results of the SSL experiments.
It is evident that across all maps, the models performed
consistently, incorrectly predicting all subjects as PD
and exhibiting low AUROC scores.

4.2. Normative modeling

Figure 9 presents an example of qualitative results
for a R2* map, showcasing the reconstructed output for
each model architecture and the different types of RE
maps. Upon visual inspection, it is evident that the re-
constructed outputs appear blurred for all models (Fig.
9a). In Figure 9b, we observe that lower values (close to
0) in the L1, L2, and MSE maps indicate fewer devia-
tions from the normal brain, while in the case of SSIM,
a higher value signifies greater similarity to the normal
brain as it assesses structural similarity. For examples
of MTsat, R1, and PD*, please refer to the Appendix
A.13.

For each combination of qMRI map, model type, and
RE type, we conducted group average statistics per ROI
to assess the performance of the normative modeling ap-
proach. In the PD group, we anticipated observing an
increase in mean or median error for L1, L2, and MSE,
and a decrease in similarity according to SSIM. Figure
10 displays the ROIs from all experiments that exhib-
ited significant p-values (i.e., α < 0.05) for both statis-
tical tests. We can see that each qMRI map showed at
least one statistically significant ROI, with several sub-
cortical nuclei being identified, including the right SNc
in the R2* map. However, the R1 map only highlighted
the left cerebral cortex as a relevant ROI. Furthermore,
as expected, the error-based maps exhibited higher er-
ror values in the PD group, whereas the similarity-based
map (Fig. 10a and d, right) unexpectedly showed higher
values for the PD group. In cases where multiple RE
map types and statistics (mean or median) yielded sta-
tistically significant results, we only report one per ROI.

For each of the significant ROIs identified by group
average statistics, we evaluated the impact of the a.t.
on the final performance evaluation and selected the ex-
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(a) MTsat map
Dataset Pre-training AUROC F1

Level

Complete scans
None 0.811224 0.842105

MedicalNet 0.913265 0.941176
PPMI 0.97449 0.941176

Skull-stripped
None 0.678571 0.782609

MedicalNet 0.69898 0.782609
PPMI 0.739796 0.782609

Brainstem Region
None 0.678571 0.782609

MedicalNet 0.709184 0.782609
PPMI 0.739796 0.782609

(b) PD* map
Dataset Pre-training AUROC F1

Level

Complete scans
None 0.770408 0.782609

MedicalNet 0.785714 0.8
PPMI 0.714286 0.666667

Skull-stripped
None 0.739796 0.782609

MedicalNet 0.760204 0.782609
PPMI 0.811224 0.782609

Brainstem Region
None 0.709184 0.782609

MedicalNet 0.668367 0.782609
PPMI 0.655612 0.782609

(c) R1 map
Dataset Pre-training AUROC F1

Level

Complete scans
None 0.94898 0.888889

MedicalNet 0.938776 0.888889
PPMI 0.933673 0.947368

Skull-stripped
None 0.872449 0.782609

MedicalNet 0.770408 0.782609
PPMI 0.811224 0.782609

Brainstem Region
None 0.637755 0.782609

MedicalNet 0.668367 0.782609
PPMI 0.596939 0.782609

(d) R2*
Dataset Pre-training AUROC F1

Level

Complete scans
None 0.668367 0.782609

MedicalNet 0.760204 0.782609
PPMI 0.663265 0.727273

Skull-stripped
None 0.770408 0.782609

MedicalNet 0.831633 0.782609
PPMI 0.94898 0.888889

Brainstem Region
None 0.80102 0.782609

MedicalNet 0.831633 0.782609
PPMI 0.811225 0.782609

Table 1: Binary classification results for the validation set, per qMRI map. The best experiment’s results per qMRI
map are shown in bold.

Fold AUROC F1
1 0.918367 0.833333
2 0.595939 0.761905
3 0.729592 0.782609
4 0.529592 0.782609
5 0.69898 0.782609

Table 2: 5-fold cross-validation results for the R2* map,
using skull-stripped volumes and PPMI level of pre-
training.

Map type AUROC F1
MTsat 0.760204 0.782609
PD* 0.719388 0.782609
R1 0.760204 0.782609
R2* 0.760204 0.782609

Table 3: SSL pre-training classification results for the
validation set, per qMRI map.

treme quantile that yielded the best result. For that se-
lected a.t. we plotted the ROC curve and the G-mean
(Eq. 6) and associated abnormality percentage (i.e. the
second threshold that determines the optimal ROI-level
classification) (Fig. 11). The highest classification re-
sults was achieved by the left globus pallidus interna
(GPi) in the MTsat map (AUROC = 0.84, G-mean =
0.82) and the left subthalamic nucleus (STN) in the PD*
map (AUROC = 0.84, G-mean = 0.85).

G − Mean =
√

T PR ∗ (1 − FPR) (6)

5. Discussion

We did not obtain satisfactory results for the bi-
nary classification strategy. However, by employing
XAI techniques and conducting proper model valida-
tion, we gained valuable insights during the results anal-
ysis. Upon examining the XAI attribution heatmaps
(Fig. 7), we might infer that the shortcut learning was
due to structural information in the form of confounds
(e.g. anatomical head variations that only one sample
group showed), but because the qMRI maps showed
very disrupted patterns outside the brain, we believe the
model focused on learning noise. These findings high-
light the importance of XAI in validating deep learning
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a. Synthseg parcellation

a. PD25 atlas

OSIG

IG

Figure 8: Statistically significant average difference at ROI level for the R2* experiment (PPMI pre-training level, using skull-stripped volumes).
a. Integrated gradients (IG) and occlusion sensitivity (OS) results for Sythseg ROIs, b. IG results for PD25 atlas ROIs, OS had no significant
results. Above each pair, the p-value associated to the ANOVA test is displayed, the p-value associated to the t-test was always 0.0285. Each group
sampled contained the 4 subjects with higher predicted score. The XAI maps were normalized from 0 to 1 before computing the group statistics.

models’ performance. Nonetheless, interpreting XAI
attribution maps can be challenging, especially when
higher attributions are found within the brain. It is im-
portant to note that inferring novel disease-related neu-
rodegeneration without prior research would be difficult
without specific hypotheses, as we have for PD and the
SNc and LC ROIs. Nevertheless, by carefully exam-
ining the XAI maps, we confirmed that masking the
volumes effectively eliminated regions where the model
exhibited shortcut learning, thus reinforcing the need to
gain a deeper understanding of our data to interpret the
model’s decision process.

In our analysis of group average statistics for the
best R2* experiment (using skull-stripped scans and
PPMI pre-training level), although it was latter shown
with 5-fold CV that the model overfitted to that data
split, we wanted to better understand the model decision
and perhaps reveal similarly any shortcut learning evi-
dence. However, adding the previously stated consid-
erations, it is particularly difficult to infer explanations,
mainly because there are other constraints to deal with
when interpreting XAI attribution maps. For instance,

ablation-based algorithms like OS, where some features
are dropped and the change in predictions is noted, lead
to unrealistic inputs and potentially misleading interpre-
tations when features interact when changing the size of
the occluded region (Sundararajan et al., 2017). This
might explain the inclusion of the right and left lateral
ventricles as relevant ROIs in the OS heatmaps (Fig. 8).
Additionally, gradient-based XAI algorithms like Inte-
grated Gradients (IG) can be easily manipulated by ap-
plying imperceptible perturbations to the input, making
it difficult to interpret the resulting map as a reliable ex-
planation or to use it for assessing our general hypothe-
sis (Dombrowski et al., 2019).

We found that our pre-training strategies to address
data scarcity did not yield satisfactory results for our
problem. While in some experiments, such as PD*
skull-stripped volumes (Table 1b) showed an increase
in AUROC accordingly to the pre-training level, there
was no clear pattern indicating consistent improvement
across all qMRI maps and experimental settings. We
might attribute this failure to two things: domain shift
and data’s high dimensionality. Although transfer learn-
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a. R2* map

Original sAE VQ-VAEsVAE

b. RE map
for sAE

L2L1 MSE SSIM

Figure 9: Qualitative results example for R2*. a. Reconstructed output for spatial autoencoder (sAE), spatial variational autoencoder (sVAE), and
vector-quantized variational autoencoder (VQ-VAE). b. L1, L2, MSE, and SSSIM reconstruction error (RE) maps for sAE model.

d. R2*

c. R1b. PD*a. MTsat

Figure 10: Statistically significant difference at ROI level for different normative modeling experiments. a. MTsat map, mean group differences
using spatial autoencoder (sAE) and the SSIM RE map. b. PD* map, mean group differences using vector-quantized variational autoencoder
(VQ-VAE) and the L1 RE map. c. R1 map, mean group differences using spatial variational autoencoder (sVAE) and the L1 RE map. d. R2* map,
median group differences for sAE and L1 RE map (left), and mean group differences for sAE and SSIM RE map (right). Abbreviations: GPi -
globus pallidus interna, STN - subthalamic nucleus, SNc - substantia nigra.
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d. R2*

c. R1, left cerebral cortexb. PD*, left STNa. MTsat, left GPi

Right SNc Left accumbens area

Figure 11: Classification results for normative modeling. Shown are the statistically significant ROIs and their associated ROC curve after selecting
the appropriate a.t. In each ROC curve the AUROC is displayed, as well as the G-mean and corresponding abnormality percentage. a. Left GPi for
MTsat map, at 99 quantile. b. Left STN for PD* map, at 98 quantile. c. Left cerebral cortex for R1 map, at 98 quantile. d. For R2* map, right SNc
at 99 quantile (left) , and left accumbens area at 98 quantile (right).

ing in the medical domain has shown promising re-
sults for certain problems (Chen et al., 2019), domain
adaptation is still an evolving field. In our case, the
two pre-training stages were performed using imaging
modalities different to the qMRI maps, and this domain
shift between datasets prevented a proper transfer of
learning. Additionally, we still require large amounts
of data and our 3D strategy might not have been the
most suitable for our dataset size. For our classifica-
tion task, the limited number of samples and the high-
dimensional nature of imaging data, combined with a
single label per image, may have restricted the model’s
ability to make sense of the data as a whole. Further-
more, the poor results in our SSL experiments may be
attributed to the choice of transformations for the aug-
mented views, which failed to help the model learn
the relevant features for the downstream task. More-
over, our explorative experiments were scarce and a
patch-based framework could be explored to increase
the dataset size, or even consider trying different proxy
tasks, such as the jigsaw puzzle.

To determine which qMRI map was most suitable for
our classification task, the only slight indication was of
the brainstem region experiments, and that of the R2*
map that showed higher AUROC scores compared to
the other maps (Fig. 1d). However, since the model still
predicted all subjects as PD (i.e., F1 score of 0.7826),
we cannot definitively state that the R2* map contains

better or more discriminatory information.
Regarding our normative modeling approach, we be-

lieve it was a better strategy for our problem for two
main reasons. First, assessing a neurodegenerative dis-
ease such as PD as a continuum or a degree of devia-
tion of normality better suits its diagnostic framework.
Second, by generating RE maps we obtain explana-
tion maps that allowed us to identify spatial patterns of
anomalies, which was a primary goal of our project. Al-
though the choice of error or similarity metrics to gen-
erate the RE map is crucial, it significantly reduces the
limitations inherent in XAI algorithms, as we can di-
rectly interpret the error as a measure of abnormality.

Nevertheless, we still faced some limitations. The
data scarcity problem still arised for this approach de-
spite implementing a patch-based strategy to increase
our dataset size. Our HC set was smaller than our PD set
leading to a disproportionately smaller HC dataset, un-
like most existing normative models (see section 2) that
were trained with thousands of images. This directly
affected our implementation when it came to choose
the a.t., as it relates to the degree of confidence for the
model to accurately learn the HC distribution. We can
reasonably expect that the models failed to capture the
full variability of healthy controls and likely overfit to
patches from only 14 subjects. To properly validate our
approach, it would have been necessary to sample the
HC set and create different training-validation subsets.
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Unfortunately, due to time constraints, we could not per-
form this validation.

Regarding our reconstruction outputs (Fig. 9), it is
evident that our model architectures struggled to accu-
rately reconstruct high-frequency features, resulting in
blurred images. Despite our efforts to preserve spatial
information by tuning the size of the latent space (z)
and employing shallow fully convolutional networks,
the sharpness of the reconstructions was limited by the
chosen loss function. The use of L1 as a loss function
inevitably drove the model to learn that a blurred image
minimizes the error quickly. Furthermore, we attribute
the degree of blurring to the constraints imposed by the
models on the latent space distribution, whether it be
following a multivariate normal distribution (sVAE) or
being discrete (VQ-VAE), compared to the less restric-
tive sAE.

In our analysis of group average statistics, we found
that when using L1, L2, or MSE, the error difference
between the PD and control groups was higher than
that within the control group, supporting the argument
that the PD group deviates from the controls. However,
we obtained contradictory results for the SSIM maps,
where the similarity value should have been higher for
the HC group compared to the PD group. This dis-
crepancy may be attributed to the structural compo-
nent of the SSIM, which is highly sensitive to edge
and contour information—factors strongly affected by
the blurry nature of the reconstructed outputs (Renieblas
et al., 2017).

Finally, in the classification results of the normative
modeling, although the left SNc in the R2* map showed
significant group difference, it was not sufficiently dis-
criminant to separate PD and HC in our test set, com-
pared to other ROIs that showed better performance.
This could be attributed to two reasons. First, we rely
on the high contrast at voxel level in the R2* maps to as-
sess iron deposition in PD, and since our models recon-
structed blurred images, that high-frequency informa-
tion was lost. Second, as mentioned before, the single-
split training set may have not included enough controls
to model the normal distribution of iron at the SNc, as
well as it could have overfitted to a set of relevant ex-
amples.

6. Conclusions

In this thesis project, our goal was to explore the
potential of deep learning (DL) models in uncovering
novel insights into Parkinson’s Disease (PD) neurode-
generation. To achieve this, we employed explainable
artificial intelligence (XAI) algorithms to enhance the
transparency of complex model decisions and identify
relevant regions of interest. We initially pursued the tra-
ditional binary classification strategy, but encountered
challenges in obtaining satisfactory results. However,
this approach provided valuable insights, including the

identification of shortcut learning, model validation and
overfitting assessment, and the understanding of trans-
fer learning capabilities and limitations.

In our second strategy, normative modeling, we
achieved better-suited models for studying the disease
and obtained intrinsic explainable reconstruction error
maps that led to more interpretable conclusions. How-
ever, the results were modest due to the limitations of
our generative models to adequately reconstruct impor-
tant high-frequency information, and the lack of proper
validation for the model’s performance restrained us
from making more profound interpretations.

Our intention was to leverage the high spatial resolu-
tion of MRI scans by employing 3D models. However,
the small number of samples in our dataset suggests
that implementing a 2D or 2.5D model would have been
more appropriate. We also aimed to utilize pre-trained
models and publicly available datasets, but we faced do-
main shift limitations to effectively transfer the learned
knowledge to our specific classification task.

As future work, it would be beneficial to explore
multi-modal strategies, such as combining the four
quantitative MRI (qMRI) maps at 3T or integrating
additional imaging data, such as 7T NM- and iron-
sensitive images, as well as clinical data like PD scale
ratings. However, careful consideration must be given
to address the challenge of the curse of dimensionality
and ensure proper interpretation and explanation of the
model’s decisions.

Moreover, it would be particularly interesting and
clinically relevant to investigate multi-label or multi-
class classification approaches, as PD encompasses a
continuum of multiple motor and non-motor symptoms.
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Special thanks go to José Bernal for his invaluable as-
sistance in visualizing a more effective deep learning
approach and to Vladyslav Zalevskyi for his unwaver-
ing availability, patient guidance, and for sharing this
enriching experience with me. Lastly, I extend my ap-
preciation to all the researchers who have made their
research, code, and methodologies openly available, as

8.16



Neurodegeneration identification in Parkinson’s Disease with DL and qMRI maps 17

well as to the PPMI group for graciously granting me
access to their invaluable imaging data.

References
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Muñoz-Ramı́rez, V., Kmetzsch, V., Forbes, F., Meoni, S., Moro, E.,
Dojat, M., 2022. Subtle anomaly detection: Application to brain
MRI analysis of de novo Parkinsonian patients. Artificial Intelli-
gence in Medicine 125, 102251. URL: https://linkinghub.
elsevier.com/retrieve/pii/S0933365722000161, doi:10.
1016/j.artmed.2022.102251.

Noroozi, M., Favaro, P., 2017. Unsupervised learning of visual rep-
resentations by solving jigsaw puzzles. doi:https://doi.org/
10.48550/arXiv.1603.09246.

van den Oord, A., Li, Y., Vinyals, O., 2019. Representation learning
with contrastive predictive coding. doi:https://doi.org/10.
48550/arXiv.1807.03748.

Oord, A.v.d., Vinyals, O., Kavukcuoglu, K., 2017. Neural discrete
representation learning. URL: https://arxiv.org/abs/1711.
00937, doi:10.48550/ARXIV.1711.00937.

Pinaya, W.H.L., Scarpazza, C., Garcia-Dias, R., Vieira, S., Baecker,
L., F da Costa, P., Redolfi, A., Frisoni, G.B., Pievani, M., Cal-
houn, V.D., Sato, J.R., Mechelli, A., 2021a. Using norma-
tive modelling to detect disease progression in mild cognitive
impairment and Alzheimer’s disease in a cross-sectional multi-
cohort study. Scientific Reports 11, 15746. URL: https://
www.nature.com/articles/s41598-021-95098-0, doi:10.
1038/s41598-021-95098-0.

Pinaya, W.H.L., Tudosiu, P.D., Gray, R., Rees, G., Nachev, P.,
Ourselin, S., Cardoso, M.J., 2021b. Unsupervised Brain Anomaly
Detection and Segmentation with Transformers. URL: http:

//arxiv.org/abs/2102.11650. arXiv:2102.11650 [cs, eess, q-
bio].

Poston, K.L., Ua Cruadhlaoich, M.A.I., Santoso, L.F., Bernstein,
J.D., Liu, T., Wang, Y., Rutt, B., Kerchner, G.A., Zeineh, M.M.,

2020. Substantia Nigra Volume Dissociates Bradykinesia and
Rigidity from Tremor in Parkinson’s Disease: A 7 Tesla Imaging
Study. Journal of Parkinson’s Disease 10, 591–604. doi:10.3233/
JPD-191890.

Renieblas, G.P., Nogués, A.T., González, A.M., Gómez-Leon, N., del
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Sulzer, D., Sarna, T., Casella, L., Zecca, L., 2017. Interac-
tions of iron, dopamine and neuromelanin pathways in brain ag-
ing and Parkinson’s disease. Progress in Neurobiology 155, 96–
119. URL: https://linkinghub.elsevier.com/retrieve/
pii/S030100821500101X, doi:10.1016/j.pneurobio.2015.
09.012.

Appendix A. Extra figures

PD25 atlas Synthseg labels

Label Nuclei Label ROI Label ROI

1
3
5
7
9
11
13
15
2
4
6
8
10
12
14
16

Left red nucleus
Left substantia nigra
Left subthalamic nucleus
Left caudate
Left putamen
Left globus pallidus externa
Left globus pallidus interna
Left thalamus
Right red nucleus
Right substantia nigra
Right subthalamic nucleus
Right caudate
Right putamen
Right globus pallidus externa
Right globus pallidus interna
Right thalamus

2
3
4
5
7
8
10
11
12
13
14
15
16
17
18
24

Left cerebral white matter
Left cerebral cortex
Left lateral ventricle
Left inferior lateral ventricle
Left cerebellum white matter
Left cerebellum cortex
Left thalamus
Left caudate
Left putamen
Left pallidum
3rd ventricle
4th ventricle
Brain-stem
Left hippocampus
Left amygdala
CSF

26
28
41
42
43
44
46
47
49
50
51
52
53
54
58
60

Left accumbens area
Left ventral DC
Right cerebral white matter
Right cerebral cortex
Right lateral ventricle
Right inferior lateral ventricle
Right cerebellum white matter
Right cerebellum cortex
Right thalamus
Right caudate
Right putamen
Right pallidum
Right hippocampus
Right amygdala
Right accumbens area
Right ventral DC

Table A.4: Atlas labels

8.19



Neurodegeneration identification in Parkinson’s Disease with DL and qMRI maps 20

a. OS group average statistics

b. IG group average statistics

Figure A.12: Group average statistics for R2* experiment, using normalized OS and IG maps

Original

sAE

sVAE

VQ-VAE

MTsat PD* R1 R2*

Figure A.13: Reconstruction examples for all qMRI maps and the three different model architectures.
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Abstract

Long-tailed learning has the potential to provide significant benefits in various real-world applications, especially
within the medical field where certain diseases and conditions, such as skin lesions classification and gastrointesti-
nal recognition, exhibit a long-tailed distribution. Existing methods primarily rely on domain-specific optimization
objectives, hindering their ability to effectively handle rare diseases due to lacking a generalizable feature represen-
tation. In this thesis, we revisit long-tailed learning by utilizing publicly available pre-trained models, often called
“free lunch models”. Specifically, we propose effective knowledge distillation (EKD) to distill publicly available pre-
trained models to smaller target medical models in centralized and decentralized settings. For a centralized setting,
we present Fourier Prompted Knowledge Distillation (FoPro-KD) unleashing the power of frequency patterns learned
from frozen publicly available pre-trained models to enhance their transferability and compression. For decentralized
training, specifically federated learning, we investigate the learning dynamics of our proposed EKD in local clients
and present FedFree, a framework enabling federated long-tailed learning, providing valuable insights and unveiling
significant findings that can be derived from the utilization of pre-trained models. We evaluate the effectiveness of
our proposed frameworks on two long-tailed learning benchmarks, gastrointestinal and skin lesion recognition tasks.
The experimental results demonstrate the favorable performance achieved by both FoPro-KD and FedFree in their
respective settings for long-tailed medical imaging recognition.

Keywords: Long-Tailed Learning, Knowledge Distillation, Federated Learning

1. Introduction

Long-tailed distributions, characterized by severe
class imbalance where majority classes significantly
outnumber minority classes, are common in many medi-
cal imaging tasks, such as skin-lesion classification and
gastrointestinal image recognition (Borgli et al., 2019;
Combalia et al., 2019; Tschandl et al., 2018). While
convolutional neural networks (CNNs) have demon-
strated remarkable performance in medical image clas-
sification, their application can be limited in the pres-
ence of scarce labeled medical image datasets, particu-
larly in long-tailed datasets with rare diseases. To ad-
dress this challenge, transfer learning has emerged as
a promising approach, aiming to fine-tune pre-trained
models trained on natural images for improved perfor-
mance on medical image datasets. However, an impor-
tant consideration in transfer learning is to develop an
efficient technique that not only preserves the general-

ization capabilities of large pre-trained models but also
ensures compactness for practical deployment.

Publicly available pre-trained models, such as
MoCo (He et al., 2020), BYOL (Grill et al., 2020),
CLIP (Radford et al., 2021), and DINO (Oquab et al.,
2023), have attracted considerable attention in the med-
ical imaging community due to their promising general-
ization capabilities as “free lunch” models (Ding et al.,
2022). However, these pre-trained models’ extensive
complexity and significant computational resource re-
quirements can limit their applicability in clinical set-
tings in low infrastructure, point-of-care testing, and
edge devices. Moreover, fine-tuning (FT) these models
on smaller, long-tailed medical image datasets can dis-
tort the generalizability of these models (Kumar et al.,
2022). Therefore, developing an effective transfer learn-
ing approach is highly demanded to leverage the gener-
alization capabilities of large pre-trained models while
maintaining performance on the target task.
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In this thesis, we propose effective knowledge distil-
lation (EKD) to enhance the transfer of publicly avail-
able pre-trained models, known as “free lunch models,”
to smaller target medical imaging models. First, we in-
vestigate the inherent characteristics of these pre-trained
models in a centralized setting, particularly their pre-
ferred input frequencies and semantics. Then, we ex-
tend our investigation to decentralized training scenar-
ios.

Recently, Yu et al. (2023) quantified the frequency
bias in neural networks and proposed a method for guid-
ing the network to tune its frequency by utilizing a
Sobolev norm that expands the L2 norm. Although
their approach was limited to Neural Tangent Kernels
(NTK) and focused on quantifying the frequency bias
on a broad frequency basis, their work inspired us to
explore and exploit these patterns from publicly avail-
able pre-trained models conditioned on a target medical
dataset to improve the representation learning for rare
disease classification. Pre-trained models encode fre-
quency patterns through their convolutional and pool-
ing operations during pre-training. Each filter in the
convolutional layer acts as a frequency filter, captur-
ing distinct patterns in the input data while pooling
operations, further amplify or attenuate these patterns.
This frequency-dependent behavior can introduce bi-
ases in the model, making it more sensitive to certain
frequency patterns and less sensitive to others, which
may not align with the frequency characteristics of tar-
get medical data. To this end, we propose FoPro-
KD (Fourier-prompted Knowledge Distillation) for cen-
tralized training. FoPro-KD explores and exploits the
learned frequency patterns from publicly available pre-
trained models conditioned on a target medical dataset
to improve the representation transfer for rare disease
classification as depicted in Figure 1.

The applicability of large pre-trained models in cen-
tralized scenarios is promising; however, the privacy-
focused and decentralized nature of medical imag-
ing data, coupled with its inherent data heterogeneity,
presents a challenge in training a robust global model.
To address the challenges posed by data decentraliza-
tion, we extend our proposed effective knowledge dis-
tillation (EKD) to a decentralized training scenario.
Specifically, we notice that leveraging publicly avail-
able pre-trained models locally at each client can work
as consistent reference frames for measuring local bias.
Based on this insight, we introduce FedFree (Federated
learning via leveraging free lunch models), a framework
incorporating a novel dynamic long-tailed model aggre-
gation (DLMA). DLMA captures inter-client intra-class
variations and facilities robust global model aggrega-
tion.

The main contributions of this work can be summa-
rized as the following:

• We demonstrate that effective knowledge distilla-

Frozen (b)
Tuned

FoPro-KD

(a)

    Explore

Pre-trained Models

Distill

Figure 1: (a) The Free Lunch model assumes specific frequency pat-
terns in input data. (b) Our FoPro-KD approach explicitly queries the
model to identify meaningful frequency patterns for distillation.

tion (EKD) from frozen pre-trained models on nat-
ural images to a target smaller medical imaging
model can be just as effective as traditional long-
tailed methods, thanks to their generalization ca-
pabilities.

• For centralized training, we introduce a novel
framework called FoPro-KD to improve the trans-
ferability of pre-trained models to smaller medical
imaging models. Specifically, we generate targeted
perturbations as fourier spectral prompts that fur-
ther improve the distillation process.

• We explore the learning dynamics of our proposed
EKD in a decentralized setting, leading to the de-
velopment of FedFree. Fedfree encompasses a
novel dynamic long-tailed aggregation method to
address the challenges posed by inter-client intra-
class variations, which can impede effective repre-
sentation learning in decentralized training.

• We evaluate our frameworks on two challeng-
ing long-tailed datasets, the skin lesion classifica-
tion and a more challenging gastrointestinal image
recognition testbed. FoPro-KD and FedFree sur-
pass the state-of-the-art methods in both datasets
in centralized and decentralized settings, respec-
tively.

2. Related Work

In this section, we review the literature related to
transfer learning with prompt tuning, adversarial do-
main adaptation, long-tail, and federated long-tailed
learning.
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2.1. Transfer Learning

In recent years, transfer learning and fine-tuning have
been extensively studied in the literature, with a fo-
cus on adapting the feature extractor to fit the target
task. However, such approaches can deviate from pre-
trained features, resulting in a trade-off between the per-
formance of the majority class (in-distribution or IID)
and the rare class (out-of-distribution or OOD). To mit-
igate similar tradeoffs on IID and OOD datasets, Kumar
et al. (2022) proposed a simple variant of initializing the
head with a linear probed version followed by full fine-
tuning. Nevertheless, these methods can suffer from de-
viating semantics and extreme overfitting on long-tailed
problems when fully fine-tuning large pre-trained mod-
els. Prompt tuning arises in vision to address these is-
sues for efficiently fine-tuning large models in vision
tasks, similar to natural language processing (NLP). Jia
et al. (2022) proposed Vision Prompt Tuning (VPT),
which adds prompts to vision transformers and exploits
the transformer’s location-invariant features for effec-
tive fine-tuning. Similar to NLP prompt tuning, Dong
et al. (2023) explored the use of prompt learning for
the effective transfer of pre-trained vision transformers
for long-tail natural image classification. These meth-
ods are specially tailored to vision transforms similar to
NLP, failing to find an efficient prompt for transform-
ing the knowledge of CNN vision-pre-trained models,
which are important for medical imaging classification.
Recent studies have shown that DNNs rely on high-
frequency patterns, which are typically ignored by radi-
ologists for output representations (Makino et al., 2020).
Morever, Bai et al. (2022) found that a CNN teacher can
benefit vision transformers to fit high-frequency com-
ponents and proposed HAT to adversarially augment
images’ high-frequency components towards improving
vision transformers generalization capabilities. Prompt
tuning for CNN models can be related to the literature
on adversarial learning and domain adaptation.

2.2. Adversarial learning

Adversarial learning has emerged as a popular ap-
proach for domain adaptation (DA) and domain gen-
eralization (DG). To achieve DA, Huang et al. (2021)
proposed a method that generates adversarial examples
from the source dataset and fine-tunes the model on
the target dataset using both adversarial and clean ex-
amples. Similarly, Kim et al. (2023) modeled DG as
DA to adversarially generate worst-case targets from the
source dataset. Chen et al. (2022a) proposed MaxStyle
as an adversarial realistic data augmentation utilizing an
auxiliary image decoder for robust medical image seg-
mentation. For source-free unsupervised domain adap-
tation (SFUDA), Hu et al. (2022) proposed to learn a
domain-aware prompt adversarially for a UNet-based
model. More recently, Wang et al. (2023), inspired by
Fourier style mining (Yang et al., 2022), proposed to
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Figure 2: (a) The HyperKvasir Dataset. (b) The ISIC-LT dataset. (c)
Centralized training, (d) Decentralized Training.

learn a low-frequency Fourier visual prompt for SFUDA
that excelled in segmentation performance. However,
all these methods are restricted to source and target
datasets trained for the same closed-set task and often
rely on increasing noise to synthesize adversarial exam-
ples in DG or on bridging the gap between datasets in
DA. In addition, their approaches do not explicitly lever-
age the frequency patterns captured by pre-trained mod-
els on natural images, which can aid in representational
learning, especially for long-tailed datasets.

2.3. Long-Tail Learning
The severe class imbalance in long-tailed (LT) learn-

ing poses challenges for training accurate models, and
various approaches have been proposed to address
this issue, including data augmentation techniques, re-
sampling and re-weighting schemes, and curriculum-
based methods. Data augmentation techniques aim to
regularize the model by incorporating regularization
techniques to enhance the model’s representations. For
instance, Zhang et al. (2018) proposed MixUp, which
utilizes linear interpolation between two images with
soft labeling to provide information augmentation for
regularization during training. Chen et al. (2021b) intro-
duced Amplitude-Phase Recombination (APR), which
focuses on swapping amplitudes between images to re-
duce sensitivity to amplitude shifts.

These data augmentations need to be coupled with
a balancing scheme to account for the extreme class
imbalance in LT datasets. Galdran et al. (2021) pro-
posed Balanced-Mixup, a simple variant of MixUp us-
ing class conditional sampling that has compelling ca-
pabilities for highly imbalanced medical image classi-
fication. Nevertheless, data augmentation methods do
not account for the label distribution shift that can arise
over the test set. Class balancing loss (CB) (Cui et al.,
2019), Label distribution margin (LDAM) (Cao et al.,
2019), and balanced-softmax (BSM) (Ren et al., 2020)
was proposed as modified re-weighting strategies for
training models for long-tailed learning. However, these
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methods often have limitations, such as not effectively
addressing the extreme bias from head classes. To ad-
dress such bias, Kang et al. (2020) found that the clas-
sifier is the major bottleneck for the head classes bias
in long-tail learning and proposed a two-stage learning
approach that decouples the feature extractor represen-
tations from the classifier through a plug-in classifier
re-training (cRT). Despite the performance improve-
ments achieved by cRT in various long-tailed methods,
it fails to address the issue of intra-class imbalance that
can limit effective representation extraction (Zhao et al.,
2021).

To demonstrate this, we present the imbalance at-
tributes within the HyperKvasir (Borgli et al., 2019)
dataset in Figure 2 (a). The dataset exhibits instances
with different findings for the same class, such as tra-
chealization, varices, erosion with leukoplakia. We
cluster the features of the free-lunch model and vi-
sualize these attributes specifically for the Esophagitis
class. Additionally, the ISIC-LT dataset presents ex-
treme class imbalance across different skin tones (Be-
van and Atapour-Abarghouei, 2022), as shown in Fig-
ure 2 (b).

To tackle the intra-class imbalance, a previous study
by Tang et al. (2022) proposed invariant feature learn-
ing (IFL) through dual environment learning and re-
sampling techniques. On the other hand, methods
based on curriculum learning, requiring a pre-training
stage on the target dataset to extract meaningful rep-
resentation followed by utilizing these representations,
have achieved state-of-the-art (SOTA) performance for
long-tailed learning. For example, Zhang et al. (2023)
achieved SOTA in multiple long-tailed datasets by a
two-stage framework. First, by pre-training a teacher
model on the target dataset to capture the target dataset
representations, followed by a balanced knowledge dis-
tillation (BKD) to guide a student model. However, all
the aforementioned methods have not utilized the gen-
eralization capabilities of publicly available pre-trained
models known for their generalizable representations,
as they focus more on the problem on a narrow knowl-
edge extraction basis from the target dataset, whereas
pre-training and the knowledge gained from natural im-
ages have achieved compelling performance in medical
imaging as “free lunch models” (Ding et al., 2022).

In our work, we re-visit long-tailed learning in med-
ical imaging from a free lunch perspective. We demon-
strate that the generalizable features from publicly avail-
able pre-trained models on natural images can be com-
parable to different long-tail methods without additional
pre-training or fine-tuning of these free lunch models.
In addition, we find that these free lunch models have a
preferred frequency basis (i.e. styles) for their input that
can restrict their distillation in many tasks. To address
such preferred styles, we propose to explore these pre-
ferred styles through effective prompting on a frequency
basis. By exploring the pre-trained models’ frequency

patterns and iteratively distilling such knowledge, we
can recycle and compress these pre-trained models with
no additional training to the target medical task, our ap-
proach can be easily utilized with different long-tailed
learning schemes as a free lunch distillation, achieving
SOTA on multiple long-tailed medical imaging datasets.
Addressing long-tailed challenges in the centralized set-
ting as in Figure 2 (c), our method proves to be effective.
However, the task becomes even more daunting when
the dataset is decentralized across different clients, as
depicted in Figure 2 (d).

2.4. Federated Learning
Federated learning (FL) has emerged as a way to

train models with this decentralized data while preserv-
ing privacy. However, this decentralization has led to a
degradation in the performance of both generic and per-
sonalized models due to issues with data heterogeneity.
This issue is especially critical when dealing with long-
tailed datasets. With FedAvg (McMahan et al., 2017) as
the main baseline, multiple works propose to improve
the model’s generic performance under data heterogene-
ity (Li et al., 2021, 2020; Mendieta et al., 2022). While
these methods have been successful in achieving posi-
tive results while assuming a balanced global data distri-
bution, they have struggled when dealing with extreme
data heterogeneity, particularly in the case of long-tailed
(LT) datasets. Although there have been some meth-
ods proposed to address the imbalanced setting (Liu
et al., 2021; Mu et al., 2021), these methods shared lo-
cal features (such as correlation matrix) among clients,
which may raise privacy concerns for the clients. Ad-
ditionally, the issue of label distribution skewness has
been addressed in the context of federated learning (Oh
et al., 2022; Zhang et al., 2022). While these meth-
ods have shown promising results by adjusting the lo-
cal class distributions, they do not explicitly address
the inherent extreme label distribution skewness present
in long-tailed learning. This specific characteristic of
long-tailed learning poses unique challenges that need
to be explicitly accounted for in the context of federated
learning.

The issue of federated long-tailed (Fed-LT) was ini-
tially addressed by (Shang et al., 2022). The authors
proposed CReFF to handle synthetically generated LT
natural image datasets. Their approach involved retrain-
ing a new classifier by leveraging learnable features on
the server at the cost of uploading clients’ gradients
over their local distribution to the server. In a recent
study, Chen et al. (2022c) showed that despite its sub-
stantial server overhead for communication and compu-
tation, CReff only provides a minor improvement com-
pared to traditional FL methods. Different approaches
have also been proposed to regularize the local client
training procedure to address the Fed-LT challenge. For
instance, Shuai et al. (2022) incorporated knowledge
distillation (KD) from the global model, inspired by (Li
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Figure 3: Our proposed FoPro-KD framework has two phases: exploration and exploitation. In the exploration phase, the FPG generates Fourier
prompts to capture frequency patterns of the frozen pre-trained model f . In the exploitation phase, the proposed effective knowledge distillation
(EKD) module distills the knowledge from f into the target model g, guided by the Fourier prompt generator (FPG). Our framework can iteratively
alternate between the exploration and exploitation phases using adversarial knowledge distillation (AKD) to enhance representation distillation and
learning efficiency of g.

et al., 2021), for missing classes and applied local regu-
larization (Pereyra et al., 2017) for the majority classes.
Their method is specifically designed for local train-
ing. However, when coupled with standard FedAvg, dif-
ferent long-tailed methods like Balanced-Softmax (Ren
et al., 2020) demonstrate substantial performance im-
provements (Wicaksana et al., 2023). More recently,
several approaches have emerged to address the chal-
lenges of Federated long-tailed learning (Li et al., 2023;
Wicaksana et al., 2023; Wu et al., 2022; Yang et al.,
2023). These methods tackle the issues of label skew-
ness and class bias by adopting decoupled training, sep-
arating the classifier and the feature extractor. The ratio-
nale behind these methods is rooted in the understand-
ing that the classifier plays a significant role in label
skewness and class bias. By decoupling it from the fea-
ture extractor, these challenges can be effectively miti-
gated (Zhao et al., 2021).

A notable limitation of these approaches is their in-
ability to consider the inter-client intra-class variations
that emerge due to the federated long-tailed distribu-
tion. Moreover, these methods heavily rely on aggre-
gated representations from the global model, which re-
stricts further performance improvements in the absence
of local generalizable representations.

To this end, we study the learning behavior of our
proposed EKD in a decentralized setting to propose
FedFree towards robust federated learning via lever-
aging free lunch models. Unlike previous methods
that focus on local training (Shuai et al., 2022; Zhang
et al., 2022), we study the inter-client intra-class varia-
tions with our proposed effective knowledge distillation

(EKD) to identify clients that are not well captured by
the global model due to Fed-LT behavior. Based on this,
we derive a dynamic long-tailed-aware model aggrega-
tion (DLMA) that gives higher weights to client-specific
models, thereby capturing their local variance and con-
tributing to a more generalized global model.

3. Method

This section describes our effective utilization of
“free lunch models” in centralized and decentralized
training settings. We first introduce our framework
for centralized training, known as FoPro-KD. We then
present our proposed framework for decentralized train-
ing, known as FedFree.

3.1. FoPro-KD (Centralized Framework)
Figure 3 shows the framework for our proposed

FoPro-KD. The training of FoPro-KD consists of two
stages: an exploration stage and an exploitation stage.
In the exploration stage, we train one linear layer as
a Fourier Prompt Generator (FPG) to generate Fourier
amplitude spectral prompts, δ, conditional on our target
medical data, allowing us to explore the representations
of the free lunch model, f , by explicitly asking what
frequency patterns on the input lead to meaningful rep-
resentations. This is done while freezing f , pre-trained
on natural imaging dataset (ex: ImageNet (He et al.,
2020)). In the exploitation stage, we effectively distill
these generalizable representations to a smaller target
medical imaging model, g through our proposed Effec-
tive Knowledge Distillation (EKD). To make the Fourier
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prompts more diverse while being representative of f ,
we perform multiple iterations of the exploration and
exploitation stages by an Adversarial Knowledge Dis-
tillation (AKD). This allows us to effectively exploit the
generalization capabilities of large pre-trained models
and compress them into smaller student networks that
are useful for practical medical imaging deployment in
a clinical setting.

3.1.1. Fourier Prompt Generation
To attain optimal representational transfer, publicly

available pre-trained models necessitate input data that
closely align with their preferences. In this regard,
training a conditional generative adversarial network
(CGAN) (Mirza and Osindero, 2014) to guide the tar-
get dataset towards these preferences can substantially
modify the semantics of the dataset. As shown in Fig-
ure 4, training a CGAN with deep inversion causes mod-
ification in the semantics of the target dataset in the
highly informative regions conditional on the seman-
tics of the pre-training dataset, ImageNet (Deng et al.,
2009).

Recent research by Yu et al. (2023) has shown the-
oretically that neural networks can be sensitive to cer-
tain frequencies without explicitly considering the fre-
quency patterns captured during pre-training deep neu-
ral networks (DNNs). Therefore, we aim to explore
this frequency-dependent behavior of CNNs and en-
able frozen pre-trained models to output representations
through prompting on a frequency basis, which is facili-
tated by our proposed Fourier Prompt Generator (FPG).

FPG employs a random noise vector, z, to generate
a three-dimensional Fourier amplitude prompts, δ =
FPG(z), one for each channel respectively, enabling
the modification of the target dataset by emphasizing
or suppressing specific frequency patterns preferred and
captured by ”free lunch models” on the source natural
images dataset. Although these preferred patterns relied
on the deep learning dynamics of the “free lunch mod-
els”, the FPG can be trained to unleash such patterns
and generate Fourier prompts that are the preference of
the ”free lunch model” conditioned on our target medi-
cal dataset. This feature plays a critical role in effective
knowledge distillation.

Let the Fourier decomposition of an image x be F(x),
which consists of the amplitude A and phase ϕ compo-
nents:

F(x) = A ⊙ eiϕ (1)

To interpolate the Fourier amplitude between the in-
put image and the generated Fourier prompt, we use a
mixing coefficient, denoted by α and sampled uniformly
from 0 to 1, resulting in a new Fourier amplitude spec-
trum Â:

Âi j = αAi j + (1 − α)δi j (2)

CGAN

.. ..

FPG

.. ..

Input images

Input Images

Prompted images

Prompted images

Figure 4: Using a conditional GAN (CGAN) to manipulate the in-
put dataset changes the image semantics in highly informative regions
compared to surpassing or amplifying certain frequencies in these re-
gions with FPG.

where Ai j represents the Fourier amplitude of the input
image, δi j represents the the generated Fourier prompt,
and i j are the indices of the Fourier coefficients.

The modified Fourier coefficients are then trans-
formed back using the inverse Fourier transform to gen-
erate the modified image, denoted by x̂,

x̂ = F−1(Â ⊙ eiϕ) (3)

where F−1 denotes the inverse Fourier transform.
We train the Fourier prompt generator in the explo-

ration phase while freezing all other modules. Specifi-
cally, we feed x̂ to the frozen pre-trained feature extrac-
tor, f , and utilize the batch regularization technique that
was first introduced by Ye et al. (2020). This technique
minimizes the divergence between the feature statistics,
which include the mean and variance of the features,
and the corresponding batch normalization statistics by
assuming a Gaussian distribution:

LBN(x) =
∑

l∈ f

D
(
N
(
µl(x̂), σ2

l (x̂)
)∣∣∣∣N

(
µl, σ

2
l

))
, (4)

where D is the L2 divergence loss, N(µl(x̂), σ2
l (x̂)) is the

feature statistics of the modified input batch x̂, N(µl, σ
2
l )

is the batch normalization statistics of the frozen model,
f , and l indexes the layers of f .

To better capture the frozen pre-trained model’s
learned frequency patterns and avoid skewing in the
learning of the Fourier Prompt Generator (FPG), we
propose a regularization approach that encourages the
synthesis of Fourier prompts with a more balanced dis-
tribution of activations across the final pre-classification
features. This is achieved by maximizing the entropy
of the free lunch model output towards a uniform dis-
tribution where each feature has an equal probability of
being activated as

Lbal =

C∑

i=1

pi log pi (5)

where C is the dimension of the final pre-classification
features, and pi is the i-th element of the softmax output
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p of the frozen pre-trained model on the target modified
data x̂. This approach avoids bias towards any particular
feature and promotes the generalization ability of the
learned Fourier prompts.

The final inversion loss Linv to train the FPG module
is defined as the combination of the batch normalization
loss, LBN , and the balancing loss, Lbal, as

Linv = LBN + µ Lbal (6)

where µ is the weighting factor for the balancing regu-
larization.

Combining this balanced regularization term with the
batch statistics losses, the generated Fourier prompts
can exhibit higher entropy while being specific to the
frozen pre-trained model’s desired frequencies to bet-
ter benefit the knowledge distillation. We apply a Her-
mitian constraint to ensure that the generated Fourier
prompts produce valid Fourier amplitudes.

The exploration phase ensures that the Fourier gen-
erator produces styles consistent with the preferred fre-
quency patterns of the free lunch model while avoiding
overfitting specific styles.

Our training approach for the FPG can be seen as
a deep inversion method in the literature of data-free
knowledge distillation (Fang et al., 2021). However, our
method is unique in the learnable and target objectives,
in addition, conditioned on a cross-task target dataset,
which makes it more challenging.

3.1.2. Exploitation with Effective Knowledge Distilla-
tion

Large pre-trained models available to the public pos-
sess remarkable generalization capabilities that can as-
sist in the classification of rare diseases. It has been
observed that performing linear probing on these mod-
els yields high-accuracy results on out-of-distribution
(OOD) datasets. However, complete fine-tuning of
these models may lead to distortion of these highly
generalizable representations (Kumar et al., 2022). To
this end, we propose Effective Knowledge Distillation
(EKD), which aims to compress the generalization ca-
pabilities of the free lunch models while maintaining
generalizable performance on the target data using a
smaller model.

To achieve this, we utilize a small target model with a
feature extractor g(·) to be trained on the target medical
dataset, along with a large frozen publicly available pre-
trained encoder f (·) (free lunch model). To compare
the latent features of the target model with those of the
free lunch model, we add a 2-layer MLP on top of the
smaller target feature extractor, g(·).

To generate the necessary encodings for distillation,
we sample an image x uniformly from the target dataset
D and use prompt mixing following Equation (3) to ob-
tain x̂, while freezing FPG. This allows us to navigate
the representation of f based on the styles and frequen-
cies it was trained on.

From here, we generate two encodings: a projection
y = MLP(g(x)) and a target representation t = f (x̂)
from our target network and the large frozen pre-trained
network, respectively. We then L2-normalize both en-
codings and distill the information from the large pre-
trained model to the smaller target model using a mean
squared error loss as our distillation loss between both
encodings, as

L f = 2 − 2 · ⟨y, t⟩· (7)

While previous approaches (Chen et al., 2022b,
2021a) aims to reduce the performance gap between the
teacher and student models on the same task, our pro-
posed distillation loss is designed to narrow the gener-
alization capabilities of free lunch models to a different
task, which our student model is being trained on. This
approach can act as an implicit regularization technique,
leveraging the discriminative generalization capabilities
of large pre-trained model features for the tail classes.
Specifically, our approach encourages the g(·) to gen-
eralize well to the tail classes of the target task, which
may be rare and difficult to identify without additional
guidance. We denote the exploitation loss, Lexploit, to
minimize at each training step as:

Lexploit = Lt + λ f L f , (8)

where Lt is a balanced risk minimization (Ren et al.,
2020).

3.1.3. Exploration with Adversarial Distillation
To ensure that the learned Fourier amplitudes become

more diverse while being representative of the natural
image styles, thus alleviating any representational mode
collapse issue in distillation, we propose to further en-
hance the Fourier prompt generation by navigating the
latent space of the free lunch model with an iterative
adversarial loss.

To achieve this, we propose maximizing the proposed
effective knowledge distillation (EKD) loss between the
free lunch model and the target model for iterative ex-
ploration. The final exploration loss, Lexplore, to be op-
timized is given by:

Lexplore = −γλ fL f + Linv (9)

Here we maximize the similarity between the free-
lunch model and the target model, as described in Equa-
tion (7). This adversarial loss is weighted by a hyper-
parameter γ, which determines the strength of the ad-
versarial training. Unlike standard adversarial training,
we aim to explore the free-lunch model, so we set γ
between 0 and 1, with an upper bound of the exploita-
tion distillation factor λ f . This is similar to the train-
ing of generative adversarial networks (GANs) (Good-
fellow et al., 2014). To this end, we choose a value of
γ = 0.3 and provide an ablation study to validate our
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choice. Linv ensures that the prompts generated by the
Fourier prompt generator accurately represent the pre-
trained model.

3.2. FedFree (Decentralized Training)

While FoPro-KD leverages pre-trained models for
centralized training, the significant data heterogeneity
under data decentralization makes it more challenging
to train a robust global model. In this regard, we investi-
gate the application of “free lunch models” in federated
learning.

Figure 5 shows the overview of our FedFree frame-
work. Each local client is provided with a publicly self-
supervised pre-trained model (e.g., MoCo-RN50 (He
et al., 2020)) that is not involved in the training or
communication process of the federated learning frame-
work. These “free lunch models” do not increase com-
munication costs while ensuring each client can access
discriminative unbiased representation from the same
consistent model. With n local clients and one global
server, our FedFree performs the following steps in each
round: (1) Each client receives the global model to up-
date its local model and estimate global class-aware
L f using Equation (7); (2) Each client trains its local
model to minimize Equation (8) while estimating its
local class-aware L f ; (3) Each client calculates a res-
cue scalar; (4) Client uploads the parameters of its lo-
cal model and RF to the server; (5) Using our proposed
DLMA, the server aggregates a new model from the pa-
rameters of the received client models, weighted by RF;

3.2.1. EKD in FL setting
“Free lunch models” uniquely offer a consistent dis-

criminative distribution for all clients, facilitating the
alignment of diverse client learning processes with a

shared discriminative distribution at the local level. In
our study, we explore the application of our proposed
EKD (Equation (7)) in a decentralized setting. To en-
sure a fair comparison with other federated learning
methods, we exclude the FPG from our decentralized
framework.

Finally, the client minimizes a total loss concerning θ
only, following the exploitation in Equation (8), exclud-
ing the FPG component. The loss is given by

Ltotal = Lt + λ f L f , (10)

where Lt refers to a balanced risk minimization (BRM)
loss as BSM (Ren et al., 2020), and λ f as the free
weighting factor.

3.2.2. Federated Long-Tailed Study

In FL settings, estimating both the global long-tailed
and intra-class distribution imbalance can be difficult
due to the decentralization of data. Prior studies on
long-tailed recognition that rely on identifying head or
tail classes through prediction confidences or classifier
weights (Kang et al., 2020; Kobayashi, 2021) can im-
pede representation learning by exacerbating intra-class
imbalance (Ju et al., 2022; Tang et al., 2022). In Fed-
LT, both extreme class imbalances and inter-client intra-
class variations can lead to client drift. For instance, a
class attribute imbalance may surface across clients due
to differences in findings, scanners, or populations. As a
result, estimating the global LT distribution in medical
images within the FL framework is a challenge that is
yet to be explored.

We study the normalized distribution of Lθf (Equa-
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Figure 6: Analysis of DLMA: (a) The globally aggregated class counts (Mglobal), and client five local class counts (Mlocal) with wk in one round.
(b) Client’s Data Distribution, (c) Client’s Contribution to θglob throughout rounds, (d) Rescue Factor (RF) on different clients throughout rounds

tion (7)) in each class k with Mk total samples as:

Lθk =
1

Mk

Mk∑

i=1

L f (xk,i). (11)

At the beginning of each round in the federated learn-
ing process, each client receives the model from the
global server θglobal, which is evaluated on the local
data in each client, generating a loss value wk, where
wk = L

θglob

k . The factor wk can help capture the distri-
bution difference between the global server and the free
model on each client’s local data. This divergence can
provide insights into the sensitivity of the global model,
θglob, in effectively capturing the specific classes in each
client’s local data during federated learning. A high wk

indicates the failure of θglob in capturing a local client
class k. In Fed-LT, we can see that wk is inversely pro-
portional to the global LT distribution, even if the local
client is not necessarily LT (See Figure 6 (a)).

A client updates its local model, θ′ with the received
global model, θglob and takes subsequent optimization
steps for E local epochs while estimating ŵk, where

ŵk =
E∑

e=1
Lθ

′
k . The factor ŵk can help to capture how

well the information from mξ has been distilled to each
of the local client’s classes (distillation belief).

We can then correct this estimation, ŵk, with a global
observation wk to generate a rescue factor, RF, at each
client in every round.

RF =
K∑

k=1

wkŵk. (12)

A higher RF indicates that the client has information
that the global model has not appropriately captured.

3.2.3. Dynamic LT-Aware Model Aggregation (DLMA)
Inspired by the fact that client-specific models should

contribute more to the global server to capture local
variance, we propose a novel dynamic LT-aware model

aggregation (DLMA). We use our proposed RF to indi-
cate client-specific models that should contribute more
to the global model than client-generic models to cap-
ture their class variations (Client 5 in brown in Fig-
ure 6 (b) have mostly tail classes and contribute the
most to θglob in Figure 6 (c)). While our proposed RF
can be used for biased client selection (Jee Cho et al.,
2022), we use it to aggregate a global model. Instead
of aggregating based on the weighted samples as in Fe-
dAvg (McMahan et al., 2017), we propose to weight the
global model, θglob, based on the RF value as follows:

R̄Fc =
RFc∑
j

RF j
, and θr+1

glob =

C∑

c=1

R̄Fcθ
′
c. (13)

We show in Figure 6 (d) that the rescue factor for all
clients is decreasing throughout rounds. This highlights
the ability of DLMA to accommodate different clients.
Also, the scalar, RF, does not reveal the input data dis-
tribution. (See Algorithm 1).

4. Experiments

4.1. FoPro-KD
4.1.1. Datasets
ISIC-LT is a challenging long-tailed skin lesion classi-
fication dermatology dataset from ISIC (Combalia et al.,
2019). The original ISIC dataset consists of eight
classes, and we create a long-tailed version of it follow-
ing (Ju et al., 2022) using a Pareto distribution sampling
approach. To ensure class imbalance and rare disease
diagnosis, we set the class imbalance ratio between the
majority class and the minority class in training set to be
100, 200, 500 and select 50 and 100 images from each
class for the validation and test sets, respectively, from
the remaining samples. We assess the model perfor-
mance on the held-out test set. Results for each method
are averaged over five runs, each with a different sam-
pled train, validation, and held-out test set. To assess the
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(c) Skin-FL Clients(b) Type 2(a) Type 1

Figure 7: Decenteralized Data Division across HyperKvasir with (a) Type-1 and (b) Type-2, and (c) the attribute setting of ISIC-LT

Algorithm 1 Pseudocode for FedFree.
1: Notations total number of clients (C), server (S),

total communication rounds (R), local epochs (E),
learning rate (η), and a set of client’s data sliced into
batches of size B (B).

2: ServerExecution:
3: Init θ1glob
4: for each round r = 1, ...,R do
5: for client c ∈ C in parallel do
6: θc,RFc ←LocalUpdate(θrglob);
7: end for
8: θr+1

glob ←DLMA(RFc, θ
′
c,c = 1 to C); // Equa-

tion (13)
9: end for

10: Return θRglob
11: LocalUpdate (θglob):
12: Init ŵk = 0;
13: Init wk = L

θglob

k ;
14: for each local epoch e = 1, ..., E do
15: for each batch b ∈ B do
16: Ltotal = Lsup + λ fL f ; // Equation (10)
17: θ′ ← θ′ − η▽Ltotal;
18: ŵk ← ŵk+L f (bk); // running free loss mean

for each class k
19: end for
20: end for
21: RF =

K∑
k=1

wkŵk; // RF ↑≈ divergence θglob,mξ ↑
22: Return θ′,RF

model performance on the balanced test set, we follow
recent guide (Reinke et al., 2022) to report the Mathew-
correlation coefficient (“MCC”), accuracy (“Acc”), and
f1-score.
Hyperkvasir is a long-tailed dataset of 10,662 gastroin-
testinal tract images comprising 23 classes represent-
ing different anatomical and pathological landmarks and
findings. To analyze the long-tailed distribution, we cat-
egorize the 23 classes into three groups: Head (with
over 700 images per class), Medium (with 70 to 700
images per class), and Tail (with fewer than 70 images
per class) based on their class counts. Notably, the Tail
class includes a distinct class for Barrett’s esophagus,
which presents a short segment and is considered a pre-
malignant condition that may progress to cancer. Ad-
ditionally, the Tail classes encompass two transitional
grades of ulcerative colitis, an inflammatory bowel dis-
ease, and the terminal ileum, which confirms a complete

colonoscopy but cannot be differentiated endoscopically
from parts of the small bowel. Since the official test set
only contains 12 classes, we follow the evaluation ap-
proach of BalMixUp (Galdran et al., 2021) and assess
our model’s performance using a stratified 5-fold cross-
validation method. To assess the performance with a
high imbalance test set, We report the balanced accu-
racy (“B-Acc”) that considers the average per class ac-
curacy and denotes the performance of the few-shot di-
vision (“Head’, “Medium”, “Tail”) and their average re-
sults denoted as “All”.

4.1.2. Implementation Details
For both datasets, we use checkpoints pre-trained on

MoCo-RN50 (He et al., 2020) available online as the
free lunch models trained on ImageNet for compressing
its generalization capabilities unless otherwise stated.
We use Adam optimizer with a learning rate of 3e − 4
for all methods on the ISIC-LT dataset. On the other
hand, we follow (Galdran et al., 2021) for the Hyper-
Kvasir dataset and use SGD with a cosine annealing
scheduler (Loshchilov and Hutter, 2017) with a maxi-
mum learning rate of 0.01. For both datasets and all
methods, we use a ResNet-18 as the target model with
a batch size of 32 and apply augmentations techniques
such as random crop and flipping. Images are resized
to 224x224, and we train all methods until there is no
further increase in the validation set for 20 epochs with
a total of 100 epochs. To ensure a fair comparison be-
tween different methods, we keep all hyperparameters
the same. We set λ f to 3, µ to 10, and γ to 0.3 on both
datasets. For every five training epochs exploited, we
explore the pre-trained model for one epoch to balance
the training process.

4.1.3. Baselines
Our experimental evaluation compares the perfor-

mance of our proposed FoPro-KD method against sev-
eral state-of-the-art long-tailed learning approaches.
Specifically, we evaluate (1) re-sampling (RS) and re-
weighting (RW) techniques, (2) various data augmen-
tation techniques including APR (Chen et al., 2021b),
MixUp (Zhang et al., 2018), and its balanced ver-
sion (BalMixUp) (Galdran et al., 2021), specifically
designed for medical image classification. (3) Modi-
fied Loss re-weighting schemes including Class balanc-
ing (CB) loss (Cui et al., 2019), and label-distribution-
aware margin (LDAM) loss with curriculum delayed
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Table 1: Experimental results on long-tailed skin lesion classification (ISIC-LT) with different class imbalance ratios.

Method
Class Imbalance Ratio

1:100 1:200 1:500
MCC Acc F1-Score MCC Acc F1-Score MCC Acc F1-Score

CE 57.64 (±1.6) 62.15 (±1.4) 65.52 (±1.4) 53.71 (±1.7) 58.33 (±1.5) 62.72 (±1.2) 44.9 (±2.2) 50.22 (±1.9) 55.83 (±2.0)
RS 59.46 (±1.0) 63.9 (±0.9) 67.04 (±0.6) 55.53 (±1.6) 60.35 (±1.5) 63.71 (±1.4) 48.54 (±1.4) 53.73 (±1.2) 59.15 (±1.1)
RW 56.03 (±2.3) 61.2 (±1.9) 63.17 (±2.2) 52.22 (±1.6) 57.95 (±1.4) 59.48 (±1.5) 46.77 (±0.4) 52.8 (±0.4) 55.36 (±0.7)
CE-IFL (Tang et al., 2022) 60.58 (±1.8) 64.72 (±1.6) 67.96 (±1.6) 57.06 (±2.2) 61.45 (±1.9) 65.4 (±1.7) 47.26 (±1.6) 52.32 (±1.5) 57.99 (±1.7)
CE-EKD (ours) 61.37 (±1.8) 65.42 (±1.6) 68.49 (±1.5) 57.57 (±1.1) 61.9 (±0.9) 65.41 (±1.2) 49.16 (±1.9) 54.2 (±1.8) 59.24 (±1.4)
CB (Cui et al., 2019) 57.28 (±2.3) 62.23 (±2.1) 64.36 (±1.6) 53.58 (±2.1) 58.9 (±2.1) 61.27 (±1.6) 47.16 (±1.2) 53.17 (±1.1) 55.9 (±1.6)
LDAM-DRW (Cao et al., 2019) 60.27 (±0.7) 64.88 (±0.6) 66.17 (±0.7) 55.85 (±1.6) 60.98 (±1.5) 62.25 (±1.3) 50.34 (±1.1) 55.98 (±0.8) 57.95 (±1.3)
BSM (Ren et al., 2020) 63.88 (±1.9) 68.15 (±1.7) 69.25 (±1.6) 60.47 (±1.6) 65.12 (±1.4) 66.2 (±1.2) 53.61 (±1.1) 59.02 (±1.0) 60.27 (±0.9)
MixUp (Zhang et al., 2018) 55.53 (±1.8) 59.91 (±1.9) 64.33 (±1.0) 48.96 (±2.1) 53.59 (±2.2) 59.68 (±1.5) 43.03 (±1.6) 48.12 (±1.5) 54.36 (±1.1)
APR (Chen et al., 2021b) 57.05 (±1.5) 61.65 (±1.4) 65.23 (±1.0) 52.84 (±0.9) 57.67 (±0.9) 61.64 (±0.9) 45.5 (±1.2) 50.78 (±1.1) 56.5 (±1.1)
BalMixup (Galdran et al., 2021) 61.35 (±1.8) 65.5 (±1.5) 68.46 (±1.5) 56.36 (±3.9) 61.0 (±3.5) 64.37 (±3.5) 50.26 (±1.1) 55.3 (±1.1) 60.29 (±0.7)
BSM-APR (Chen et al., 2021b) 63.29 (±2.8) 67.7 (±2.5) 68.59 (±2.4) 61.07 (±2.0) 65.7 (±1.8) 66.64 (±1.6) 52.94 (±1.9) 58.48 (±1.6) 59.93 (±2.0)
BSM-IFL (Tang et al., 2022) 65.01 (±1.9) 69.05 (±1.7) 70.48 (±1.5) 60.42 (±2.3) 64.95 (±2.0) 66.6 (±1.7) 54.12 (±1.8) 59.15 (±1.5) 61.69 (±1.9)
BKD (Zhang et al., 2023) 62.24 (±1.6) 66.55 (±1.6) 68.35 (±0.9) 63.06 (±1.4) 67.42 (±1.2) 68.32 (±1.3) 54.25 (±1.3) 59.59 (±1.1) 60.5 (±1.2)
FoPro-KD (ours) 68.33 (±2.3) 71.8 (±2.0) 73.88 (±1.9) 66.08 (±1.5) 69.8 (±1.3) 71.91 (±1.2) 57.33 (±1.5) 61.9 (±1.5) 64.43 (±1.3)

reweighting (DRW) (Cao et al., 2019), and the bal-
anced softmax (BSM) (Ren et al., 2020) (4) A recent
curriculum-based method, balanced Knowledge Distil-
lation (BKD) (Zhang et al., 2023).

4.2. FedFree
4.2.1. Dataset
HyperKvasir-FL We follow the same splitting strategy
as proposed by (Shang et al., 2022) to split the Hyper-
Kvasir to eight clients, resulting in Type 1 and Type 2
as shown in Figure 7 (a) and (b) respectively. Type 1
indicates that clients are identically distributed (iid) fol-
lowing a long-tail distribution that matches the global
distribution. However, Type 2 indicates that split data
clients are non-identically distributed (non-iid) relative
to their class count following a Dirichlet distribution.
We use Dirichlet distribution with α = 0.5 to simulate
Type 2. We assess all methods’ performance using strat-
ified 5-fold cross-validation.
ISIC-LT Attribute Split To investigate the inter-client
intra-class variations within a specific attribute, we pro-
pose conducting our study on the ISIC-LT dataset using
the skin color attribute. This choice aims to replicate
real-world attributes and their distributions. we lever-
age the publicly available skin tone labeling provided
by Bevan and Atapour-Abarghouei (2022), after remov-
ing any duplicate samples. Then, we divide the dataset
into two distributions, namely HAM-1000 (Tschandl
et al., 2018) and ISIC (Combalia et al., 2019), to sim-
ulate heterogeneity among clients. We further cate-
gorize the clients based on two attributes: light and
dark skin tones. The division of the 8 clients is deter-
mined by the attribute, class count, and dataset distri-
bution as depicted in Figure 7 (c). For instance, client
1-4 is derived from the HAM-1000 distribution, with
client HAM-3 characterized by a dark skin tone for
classes 1-5 (“Head”) and a light skin tone for classes
6-8 (“Tail”). On the other hand, clients 4-8 are obtained
from the ISIC-19 distribution, with client 8 encompass-
ing a dark “Head” and “Tail”. Additionally, we split the
data between each client for training, validation, and

testing with 70%, 15%, and 15%, respectively. The
global validation and global test set is an aggregation
of the local validation and test. To evaluate the perfor-
mance of attributes, we report the “B-Acc” separately
for each attribute (“Light”, “Dark”) within each distri-
bution (“HAM-1000”, “ISIC-19”), and the average of
these scores “Avg”. Additionally, we report the overall
“B-Acc” across all attributes and distributions.

4.2.2. Implementation Details
To simulate the FL setting, we adopt a torch multi-

processing strategy and deploy each local client on an
NVIDIA RTX-3090 with each client having the same
implementation details as in Section 4.1.2. Finally, for
Hyperkvasir and the ISIC-FL, we train eight clients for
200 and 100 communication rounds respectively, or un-
til the global model convergence.

4.3. Baselines

We compare our methods with FL methods. Specif-
ically, we evaluate FedAvg (McMahan et al., 2017),
FedProx (Li et al., 2020), MOON (Li et al., 2021).
We also integrate Focal (Lin et al., 2017), LDAM-
DRW (Cao et al., 2019), and BSM (Ren et al., 2020)
into the FedAvg framework and rename them as Focal-
FL, LDAM-FL, and BSM-FL respectively. Addition-
ally, we compare our results with a label-distribution
skew FL method, FedLC (Zhang et al., 2022), and a
federated-LT method CReFF (Shang et al., 2022).

5. Results

5.1. FoPro-KD
5.1.1. Performance on ISIC-LT

We present the performance of our proposed FoPro-
KD approach for long-tailed skin lesion classification
on the ISIC-LT dataset in Table 1. Our approach out-
performs all baselines across all class imbalance ratios
and evaluation metrics, demonstrating its effectiveness.
FoPro-KD improves the performance of the naive cross
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entropy by 10.7%, 12.4%, and 12.4% on the “MCC”
over the balanced test set for class imbalance ratios of
1:100, 1:200, and 1:500, respectively. Compared to the
baseline, BSM (Ren et al., 2020), FoPro-KD improves
the “MCC” being sensitive for class imbalance by 4.5%,
5.6%, and 3.7% for imbalance ratios of 1:100, 1:200,
and 1:500, respectively. Furthermore, it increases the
performance of the baseline, BSM (Ren et al., 2020), by
3.7%, 4.7%, and 2.9% on the “Acc” metric for class im-
balance ratios of 1:100, 1:200, and 1:500, respectively.
Compared to the best-performing baseline on imbalance
ratios 1:200 and 1:500, BKD (Zhang et al., 2023), our
method outperforms it by 6.0%, 3.0%, and 3.0% on the
“MCC” for the three imbalance ratios, respectively. No-
tably, our approach outperforms BKD on the f1-score
with 3.6% and 3.9% performance gains over the im-
balance ratios 1:200 and 1:500 without additional pre-
training on the target dataset.

It is worth mentioning that our proposed EKD used
with the naive cross-entropy loss improves performance
by 3.7%, 3.9%, and 4.3% on the “MCC” metric for
class imbalance ratios of 1:100, 1:200, and 1:500, re-
spectively, without the need for FPG or special loss
re-weighting or re-sampling, demonstrating the need to
leverage the free lunch models for the long-tail prob-
lems in an effective way.

Table 2: Experimental results on long-tailed Gastrointestinal image
recognition. The top-1 accuracy is reported using a shot-based divi-
sion (“Head”, “Medium”, “Tail”) to address test set imbalance, and
their average “All”, along with the resilient metric “B-Acc” for class
imbalance.

Method Metrics
Head Medium Tail All B-Acc

CE 93.14 (±0.7) 74.7 (±1.2) 4.05 (±4.8) 57.3 (±1.3) 58.81 (±1.1)
RS 88.89 (±3.9) 72.37 (±3.2) 11.38 (±10.4) 57.55 (±1.8) 58.84 (±1.6)
RW 87.43 (±1.8) 70.04 (±2.5) 20.28 (±7.6) 59.25 (±2.0) 60.19 (±1.8)
CB (Cui et al., 2019) 88.22 (±1.5) 70.36 (±1.7) 18.04 (±9.8) 58.88 (±2.7) 59.88 (±2.5)
LDAM-DRW (Cao et al., 2019) 92.53 (±0.6) 69.4 (±1.5) 24.55 (±9.1) 62.16 (±2.5) 62.79 (±2.2)
BSM (Ren et al., 2020) 91.4 (±0.7) 65.96 (±3.0) 26.54 (±7.7) 61.3 (±1.9) 61.7 (±1.6)
MixUp (Zhang et al., 2018) 94.23 (±0.6) 75.08 (±1.2) 3.93 (±3.3) 57.75 (±1.0) 59.25 (±0.9)
BalMixUp (Galdran et al., 2021) 92.16 (±1.1) 74.57 (±1.7) 8.44 (±3.8) 58.39 (±1.1) 59.8 (±0.9)
BKD (Zhang et al., 2023) 92.53 (±0.9) 69.88 (±5.0) 17.43 (±12.6) 59.95 (±2.7) 60.81 (±2.3)
FoPro-KD (ours) 92.78 (±2.0) 68.08 (±6.5) 31.9 (±8.5) 64.25 (±0.8) 64.59 (±0.9)

5.1.2. Performance on HyperKvasir
We present the experimental results of our method

on the long-tailed gastrointestinal image recognition in
Table 2. Our approach outperformed the naive cross-
entropy method by 7.0% and 5.8% for the highly im-
balanced test-set and increased the performance of the
baseline (Ren et al., 2020) by 2.9% and 2.9% on the
“All” and “B-Acc” metrics respectively. Moreover, our
method achieved the highest performance on the “Tail”
(31.9%), highlighting its ability to capture rare diseases.

Our method outperformed the state-of-the-art
BKD (Zhang et al., 2023) on the HyperKvasir dataset.
BKD relies on distilling a pre-trained teacher model
over the target dataset, which can amplify bias over
the head classes if the teacher model fails to capture
the tail classes. In contrast, our approach leverages
the discriminative generalizable features of free lunch

models. Specifically, our approach outperformed BKD
by 4.3% and 3.8% over “All” and “B-acc”, respectively.

5.1.3. Ablation
Effectiveness of EKD and FPG In Table 3, we present
an ablation study of our proposed components over
the ISIC-LT. Our approach combines a Fourier prompt
generator (FPG) with effective knowledge distillation
(EKD) to exploit the pre-trained model. Our experimen-
tal results on the ISIC-2019 dataset demonstrate that
EKD alone improves performance by 1.5%, 3.6%, and
2.2% on the “MCC” for the three imbalance ratios, re-
spectively. By adding FPG, we achieve even higher per-
formance gains of 4.5%, 5.6%, and 3.7% on the “MCC”
for class imbalance ratios of 1:100, 1:200, and 1:500
compared to the baseline, BSM (Ren et al., 2020).

Table 3: Ablation of FLKD and FPG on three imbalance ratios on
ISIC-LT

EKD FPG Metric
MCC Acc F1-Score

ISIC-LT (1:100)
BSM (Ren et al., 2020) × × 63.88 (±1.9) 68.15 (±1.7) 69.25 (±1.6)
w/ EKD (ours) ✓ × 65.36 (±3.3) 69.47 (±2.9) 70.42 (±2.9)
FoPro-KD (Ours) ✓ ✓ 68.33 (±2.3) 71.8 (±2.0) 73.88 (±1.9)

ISIC-LT (1:200)
BSM (Ren et al., 2020) × × 60.47 (±1.6) 65.12 (±1.4) 66.2 (±1.2)
w/ EKD (ours) ✓ × 64.08 (±1.4) 68.35 (±1.2) 69.19 (±1.3)
FoPro-KD (Ours) ✓ ✓ 66.08 (±1.5) 69.8 (±1.3) 71.91 (±1.2)

ISIC-LT (1:500)
BSM (Ren et al., 2020) × × 53.61 (±1.1) 59.02 (±1.0) 60.27 (±0.9)
w/ EKD (ours) ✓ × 55.81 (±1.6) 60.92 (±1.4) 62.02 (±1.3)
FoPro-KD (Ours) ✓ ✓ 57.33 (±1.5) 61.9 (±1.5) 64.43 (±1.3)

Our proposed EKD and FPG methods provide com-
plementary benefits for improving the performance of
the target model in the long-tailed setting. While FPG
helps to explore the pre-trained model’s latent space by
explicitly asking what frequency patterns it wants in
the input, EKD helps to exploit the pre-trained model’s
generalizable representation. By leveraging pre-trained
models’ frequency patterns, our approach achieves the
best performance on the ISIC-LT dataset and HyperK-
vasir dataset, highlighting the importance of utilizing
pre-trained models for medical image classification with
long-tailed class distributions.
Ablation of Free Factor We present an ablation study
of the weighting factor, λ f , for the exploitation pro-
posed in Equation (8), with experiments conducted on
the ISIC-LT imbalance factor 1:500 without our pro-
posed FPG. The results are summarized in Table 4.

Table 4: Exploitation λ f ablation without FPG on the ISIC-LT (Acc)

Method ISIC-LT (1:500)
λ f = 0 λ f = 1 λ f = 3 λ f = 5

EKD 59.02 (±1.0) 59.52 (±2.4) 60.92 (±1.4) 60.47 (±1.6)

We find that using effective knowledge distillation
(EKD) with a factor of λ f = 3 improves the perfor-
mance on the ISIC-LT dataset compared to the baseline
(λ f = 0), (Ren et al., 2020), achieving an “Acc” gain of
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1.9%. However, a higher value of λ f can deviate from
the learning objective.

Table 5: Ablation of Exploration on the ISIC-LT 1:500 dataset

Linv Ladv
Metric

MCC Acc F1
EKD (ours) × × 55.81 (±1.6) 60.92 (±1.4) 62.02 (±1.3)
Explore only ✓ × 56.80 (±1.4) 61.59 (±1.2) 63.73 (±1.8)
FoPro-KD ✓ ✓ 57.33 (±1.5) 61.9 (±1.5) 64.43 (±1.3)

Effectiveness of FPG To evaluate the importance of
Linv, we perform an ablation study and report our re-
sults in Table 5. We find that learning the FPG and
exploring the frozen pre-trained model with only Linv

leads to an improvement over our proposed EKD with
an increase of 1.0 % and 1.7% on “MCC” and f1-score,
respectively. Moreover, when using iterative adversar-
ial knowledge distillation (AKD) along with Linv, we
achieve the best performance with a notable gain of
1.5%, 1.0%, 2.4% on the “MCC”, “Acc”, and F1 score
respectively, compared to our proposed EKD. While
Linv ensures that the synthesizable Fourier amplitudes
are representative of what the free lunch model wants,
capturing the frequency patterns in the frequency bands
it was trained on, Ladv is responsible for further explor-
ing the latent space of the frozen model and making
the frequency prompts more diverse than the ones pre-
viously distilled to the target model. (See 5.1.3 for FPG
output ablation)

(a) (b)

Figure 8: Sensitivity to µ and γ on the ISIC-LT Imbalance Ratio 1:500

Sensitivity of Balancing Regularization Batch nor-
malization (BN) statistics are necessary for learning the
Fourier prompts (FPG) in our proposed method. Sim-
ilar to deep inversion and data-free knowledge distil-
lation approaches (Fang et al., 2021), without BN, the
FPG can be limited to balancing regularization. we per-
form ablation experiments on the balancing regulariza-
tion weighting factor µ for the exploration phase pro-
posed in Equation (6) over the extremest ISIC-LT set-
ting (1:500). As shown in Figure 8 (a), we observe that
a value of µ = 10 increases the performance by 2.6%,
2.4%, and 2.5% on the “MCC”, “Acc”, and F1, respec-
tively. Without using µ, the exploration phase is limited
to the BN statistics without activation of the free-lunch
model latent space, which can limit the representation
transfer. A high value of µ, however, can negatively im-
pact performance by encouraging the network to output

a uniform distribution that is not discriminative nor in-
formative.
Sensitivity of AKD Next, we investigate the effect of
the adversarial factor γ proposed in Equation (9) on the
performance of the extremest ISIC-LT setting (1:500).
We found that a low value of γ (e.g., γ = 0.3) can
enhance performance by making the Fourier prompts
more diverse with iterative adversarial training, increas-
ing the performance by 1.0% 2.0% on the F1-score and
“MCC”, as shown in Figure 8 (b). On the other side, a
high value of γ (e.g., γ = 1) results in a 2.0% drop in the
F1-score. It is worth noting that, unlike other adversar-
ial training approaches in domain adaptation, our focus
is not on adversarial training but on synthesizing images
based on the frozen pre-trained model by our proposed
FPG. A lower value of γ ensures the diversity of gener-
ated prompts, whereas a higher value may result in FPG
generating worst-case images with random amplitudes
that the frozen pre-trained model cannot comprehend,
leading to a decrease in overall performance.
FPG is conditional on both the input and the frozen
free-lunch models

Input dataset Pre-trained on FPG outputEpoch 1

(a)

Average
 Manipulation

High-Frequency
Manipulation

Low-Frequency
Manipulation

Epoch 10

(b)

(c)

Figure 9: Average FPG generated prompts in three scenarios of pre-
training f on different frequency components of the ISIC-LT dataset.
(a) Pre-training f on only the low-frequency components. (b) Pre-
training f on only the high-frequency components. (c) Pre-training f
on all-frequency components.

In Figure 9, we demonstrate the behavior of our FPG
with different settings. In (a), we trained the frozen
pre-trained model, f , on only the low-frequency com-
ponents of the ISIC-LT dataset. We observed that the
FPG converged to a similar average amplitude as the
input dataset but with different surpassing and amplifi-
cation in the low-frequency parts that are conditional on
f . (b) shows the FPG’s behavior when f was trained
on only the high-frequency components of the ISIC-LT
dataset. We found that the FPG attends to the different
frequencies in their higher frequencies that f has cap-
tured. Finally, in (c), we trained f on all frequency com-
ponents of the input dataset. Interestingly, we found that
the average amplitude generated by the FPG does not
fully reduce to the amplitude of the source dataset, al-
though it is conditional on the input dataset. This is be-
cause we do not have any prior knowledge of what fre-
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quency patterns in what frequency bands the pre-trained
model extracts from the dataset in the pre-training stage.
Nonetheless, FPG was able to amplify or suppress cer-
tain frequencies to provide understanding and interpre-
tation of the behavior of pre-training models.

Input dataset Pre-trained on FPG outputEpoch 1

(a)

Epoch 10

(b) (c)

Figure 10: (a) Average ISIC-19 Fourier amplitude spectrum. (b) Aver-
age ImageNet Fourier amplitude spectrum. (c) FPG output in different
epochs.

We show in Figure 10 when the frozen pre-trained
model f is pre-trained on the ImageNet dataset with the
average ImageNet Fourier spectrum. The generated out-
put of our FPG is conditioned on both the frequency
patterns extracted by the pre-trained model f from the
ImageNet Fourier spectrum and the frequency patterns
of the target input dataset.

Our proposed Fourier Prompts Generator (FPG) is
designed for understanding and interpreting the behav-
ior of pre-trained models. Unlike prior methods that
rely on adding noise to synthesize worst-case images,
the FPG is conditional on both the input dataset and the
frozen pre-trained model. We demonstrate in our anal-
ysis that the FPG can be used with only the Linv and no
adversarial training. Our method leverages the different
frequency patterns captured in the pre-training stage of
the network to amplify or suppress certain frequencies.
By exploring these patterns with the FPG, we can gain
insights into the specific input preferences of the pre-
trained model that enable better representational trans-
fer and interoperability. However, to enhance the gener-
alizability and interpretability of our approach, further
investigation is required into the distinct patterns of fre-
quencies captured by the pre-trained model f , and their
differences on more sophisticated models.
EKD benefits LT even with smaller models The learn-
ing of the target model can be limited with an upper
bound to the capacity of the free lunch model, f , and
the MLP projector, and the information gained from f to
the target task. However, we demonstrate in Table 6 that
such limitations do not adversely affect the performance
of the minority class on ISIC-19 LT (“Tail”), with lin-
ear probed (LP) supervised ImageNet weights achieving
41.89% and EKD achieving 55.93% on the “Tail” accu-
racy.

Our experiments presented in Table 6 demonstrate
that our proposed EKD method can improve the per-
formance of the target task even with smaller models.
Specifically, we show that when given a target model
g and its pre-trained version as the free lunch model f ,

EKD can benefit the tail classes using the frozen fea-
tures from f despite f having the same capacity as g and
being pre-trained on ImageNet. We observed a perfor-
mance gain of 3.8% on tail class accuracy and 0.94% on
“MCC” compared to the best-performing baseline ini-
tialized with ImageNet weights. It is worth mentioning
that these results are averaged over 5 runs over the 3
class imbalance ratios (15 experiments).

This phenomenon arises because fine-tuning can dis-
tort the pre-trained features, leading to a drop in gen-
eralization performance. However, the target model
can further enhance its performance by using free dis-
criminative distribution during training. While EKD
can improve the performance of the target task even
with smaller models, the best performance is achieved
when using ResNet50 (RN50) as the free lunch model
( f ), with a performance gain of 1.85% and 1.81% on
“MCC” compared to the baseline, BSM (Ren et al.,
2020), when the target model is initialized randomly
(None) or with ImageNet weights respectively.

While most empirical evaluations ignore pre-trained
initialization to provide fair and better convergence
analysis, initialization unsurprisingly increases the av-
eraged performance by 6.92% and 6.96% on “MCC”
for the baseline and our proposed EKD, respectively.

Table 6: Effective Knowledge Distillation (EKD) with varying free
lunch models. Results are averaged across 5 runs and across the three
imbalance ratios (1:100, 1:200, 1:500) on the ISIC-LT dataset.

Setting Metric (%)
Method Target Target Init Free Lunch Free Lunch Init Tail MCC
LP None None RN-50 Sup-ImageNet 41.89 48.77
LP None None RN-50 MoCov2 48.72 49.85
BSM RN-18 None None None 46.6 59.32
EKD RN-18 None RN-50 Sup-ImageNet 51.47 61.13
BSM RN-18 ImageNet None None 52.07 66.24
EKD RN-18 ImageNet RN-50 Sup-ImageNet 55.93 68.09
EKD RN-18 ImageNet RN-18 Sup-ImageNet 55.87 67.18

Free Lunch model Ablation We present an ablation
study of full fine-tuning and linear probing of the free
lunch models pre-trained solely on ImageNet without
any knowledge from our target task, used with both the
naive cross-entropy (CE) and the baseline, BSM (Ren
et al., 2020).

As shown in Table 7, our experiments on linear
probing models reveal that linear probing models ini-
tialized with MoCoV2 outperform models initialized
with supervised ImageNet pre-training, with a per-
formance gain of 2.26% and 6.83% on “Head” and
“Tail” accuracy, respectively. This is because MoCoV2
learns competitive generalizable discriminative repre-
sentations that benefit the tail classes in linear probing.
Thus, our approach of leveraging models pre-trained
solely on natural images without any prior knowledge
from the target dataset proves to be effective.

On the other hand, full fine-tuning with the naive-
cross entropy benefits the head classes more than linear
probing with a gain of 25.18% on the “Head” but comes
with a performance drop of 12.7% on the “Tail” in com-

9.14



Revisiting Long-Tailed Learning From a Free-Lunch Perspective 15

parison with the best-performing linear probing. These
models are computationally heavy for full-fine tuning
and deployment, having almost two times the number of
parameters as the target model (23 million vs 11 million
parameters). Therefore, we propose EKD distilling and
compressing such generalization capabilities to smaller
models.

Table 7: Linear Probing (LP) and Fine-Tuning (FT) Accuracy of free
lunch models with naive cross-entropy (CE), averaged over 5 runs
across the three imbalance factors for the ISIC-LT dataset. The table
includes the accuracy of the majority class (“Head”) and the accuracy
of the minority class (“Tail”)

Setting Metric (%)
Method Free Lunch Head Tail MCC Acc
LP Sup-ImageNet 65.36 41.89 48.77 54.96
LP MoCov2 67.62 48.72 49.85 55.99
FT Random 88.23 22.88 49.46 54.63
FT MoCov2 89.93 27.6 56.0 60.48
FT Sup-ImageNet 92.8 35.93 62.51 66.34

Head

Tail

1:100 1:200 1:500
Random MoCo-ImageNetSup-ImageNet

Figure 11: Bar plots illustrating the Linear Probing and Fine-Tuning
Accuracy of free lunch models with baseline (BSM) (Ren et al., 2020)
across three imbalance factors (1:100, 1:200, and 1:500) for the ISIC-
LT dataset.

In Figure 11, we show the results of full fine-tuning
and linear probing of the free lunch models utilized
with the best-performing baseline, BSM (Ren et al.,
2020). We observed that the linear probing of the free
lunch model (RN50) trained with contrastive learning
(MoCov2) works better than the supervised version lin-
ear probed. The performance gain is 2.9%, 1.2%, and
2.6% on the head class and 5.4%, 6.9%, and 8.2% on
the tail class for the three imbalance factors, respec-
tively. This gain is attributed to the generalizable fea-
tures from MoCo-v2 as reported previously. However,
when fully fine-tuning the weights of the supervised
ImageNet with the baseline (Ren et al., 2020), we ob-
served compelling performance over both the head and
tail classes compared to fully fine-tuning initialized with
MoCov2. The performance gain is 6.8%, 5.4%, and
5.4% on the “Head” and 6.9%, 14.8%, and 5.6% on
the “Tail” for the three imbalance factors, respectively.
This gain can be attributed to the supervised ImageNet’s
weights being already suited for supervision signals.
These results are consistent for all three imbalance fac-
tors.

Our experiments have shown unsurprisingly that ini-
tialization methods play a crucial role in the perfor-
mance of deep learning models on imbalanced datasets.
While we show empirically that linear probing with
contrastive learning approaches works best due to their
superior generalization capabilities, we find that the su-
pervised ImageNet initialization provided the best ini-
tialization performance for full fine-tuning of the free
lunch model.

(a) ISIC-LT (1:500) (b) HyperKvasir

Figure 12: Initialization of target models with ImageNet pre-trained
weights and random weights for all methods on ISIC-LT and Hyper-
KVasir datasets. The left y-axis represents the performance of models
initialized with random weights, while the right y-axis represents the
performance of models initialized with ImageNet pre-trained weights.

(a) SGD (0.1) vs SGD (0.01) (b) SGD (0.1) Initialization

(c) SGD (0.1) vs Adam (d) Adam Initialization

Figure 13: Comparison of different optimizers and different initializa-
tion on the HyperKvasir dataset. (a) and (c) depict experiments with
different optimizers, while (b) and (d) represent experiments with dif-
ferent initialization.

Effectiveness of weight initialization In Figure 12,
we demonstrate the importance of weight initialization
when dealing with long-tail learning. Recent works
have mostly ignored such initialization steps in their
empirical experiments to provide fair and better con-
vergence analysis. We agree that pre-trained model
weights are architecture-dependent and may not be
available for smaller models with the rising of large
publicly available pre-trained models. However, if the
smaller pre-trained model’s weights are available, it
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Table 8: Comparison with other methods on HyperKvasir Dataset. We comprehensively evaluate different LT methods in FL. All clients are
initialized with ImageNet pre-trained weights; each result is averaged over five runs.

Type 1 Type 2
Methods Head Medium Tail All B-acc Head Medium Tail All B-acc

Federated Learning Methods (FL-Methods)
FedAvg (McMahan et al., 2017) 94.1 ± 1.3 72.9 ± 1.3 3.1 ± 0.9 56.69 ± 0.6 58.1 ± 0.6 86.2 ± 2.7 70.3 ± 0.5 8.0 ± 1.2 54.83 ± 1.0 56.17 ± 0.9
FedProx (Li et al., 2020) 94.6 ± 0.4 72.1 ± 0.2 3.0 ± 1.2 56.58 ± 0.4 57.93 ± 0.4 88.1 ± 2.2 73.1 ± 2.7 3.6 ± 2.5 54.93 ± 1.3 56.51 ± 1.3
MOON (Li et al., 2021) 94.7 ± 0.7 74.6 ± 0.4 4.0 ± 1.8 57.77 ± 0.6 59.23 ± 0.6 84.4 ± 3.6 73.1 ± 1.6 5.5 ± 2.1 54.3 ± 1.2 55.93 ± 1.1

LT-integerated FL Methods
Focal-FL (Lin et al., 2017) 95.3 ± 1.3 73.6 ± 0.1 2.7 ± 2.7 57.20 ± 1.3 58.63 ± 1.2 84.8 ± 1.3 71.3 ± 1.5 1.5 ± 2.0 52.54 ± 1.1 54.18 ± 1.0
LDAM-FL (Cao et al., 2019) 95.4 ± 0.5 72.2 ± 1.1 5.7 ± 3.9 57.77 ± 1.4 59.03 ± 1.3 86.9 ± 2.8 70.9 ± 1.2 4.7 ± 4.6 54.16 ± 1.4 55.61 ± 1.4
BSM-FL (Ren et al., 2020) 93.2 ± 1.5 74.6 ± 2.6 9.1 ± 3.7 58.92 ± 0.6 60.28 ± 0.7 89.6 ± 3.9 68.7 ± 3.0 16.4 ± 5.4 58.24 ± 1.2 59.15 ± 1.3

Label Distribution Skew FL
FedLC (Zhang et al., 2022) 96.5 ± 0.4 75.3 ± 2.5 7.4 ± 5.5 59.73 ± 1.8 61.08 ± 1.7 95.8 ± 0.6 73.1 ± 2.4 6.6 ± 4.1 58.51 ± 1.5 59.78 ± 1.5

Federated Long-Tailed Methods (Fed-LT)
CReFF (Shang et al., 2022) 95.1 ± 0.8 72.0 ± 1.5 2.6 ± 1.8 56.53 ± 1.4 57.88 ± 1.4 89.3 ± 0.7 70.1 ± 1.6 9.0 ± 4.5 56.12 ± 1.3 57.34 ± 1.2
FedFree (ours) 94.3 ± 1.2 72.9 ± 1.0 15.9 ± 2.7 61.05 ± 0.3 62.08 ± 0.2 93.0 ± 0.9 72.5 ± 2.6 16.2 ± 1.3 60.57± 1.1 61.61 ± 1.0

can offer a compelling starting point, increasing per-
formance by 4.4% on “Acc” of ISIC-LT 1:500 with the
baseline, BSM (Ren et al., 2020). Moreover, initializa-
tion with pre-trained weights can further increase our
FoPro-KD (“Ours”) performance by 5.0% on “Acc“ on
the ISIC-LT 1:500. Our method conserves the discrim-
inative distribution capability while training through la-
tent projections with EKD and input manipulation with
FPG, which is vital for LT problems. On the HyperK-
vasir dataset, we observed that the performance of all
methods improves when using the same optimization
objective as in (Galdran et al., 2021), namely stochastic
gradient descent (SGD) with a learning rate of 0.01 and
a cosine annealing scheduler. We present additional ex-
periments conducted on the HyperKvasir dataset in Fig-
ure 13. In (a), we observe that SGD with a learning
rate of 0.1 and cosine annealing scheduler was optimal
for random initialization, outperforming the setting pro-
posed in (Galdran et al., 2021) and increasing the base-
line performance (Ren et al., 2020) by 2.5% in terms
of “B-Acc”. However, when using ImageNet initializa-
tion with SGD 0.1, we observe in (b) a negative im-
pact on performance, possibly due to the high learning
rate distorting the pre-trained features. Nevertheless,
our proposed Effective Knowledge Distillation (EKD)
approach demonstrates its benefits on both random and
pre-trained initialization in (b), with a minimal perfor-
mance drop of 0.61% on “Ours” compared to a 1.65%
drop on the best-performing baseline (Ren et al., 2020)
in terms of “B-Acc”. Furthermore, we can notice in
(b) that “Ours” and the BKD approach (Zhang et al.,
2023) are minimally affected by random and pre-trained
model initialization. This can be attributed to the uti-
lization of knowledge distillation, which helps maintain
stability during training and prevents deviation in the
target model’s performance. Additionally, our results
showed that SGD with a learning rate of 0.1 converged
to an optimal point more effectively than most methods
when using Adam. However, when initializing with pre-
trained weights and using Adam, we achieved a mean
of “B-acc” of 69.9%. Overall, our proposed method

consistently outperformed other approaches across dif-
ferent weight initialization and optimization strategies,
demonstrating its effectiveness.

5.2. FedFree

In this section, we present the results of our pro-
posed method, FedFree, in the federated learning set-
ting. First, we start by comparing FedFree with vari-
ous federated learning methods on the gastrointestinal
dataset. Then, we shorten the benchmark to compare it
on the federated skin-attribute setting.

5.2.1. Performance on HyperKvasir-FL
FL-Methods (Li et al., 2021, 2020; McMahan et al.,
2017). One simple solution for federated long-tailed
learning is to directly apply existing FL methods to our
setting. To this end, we compare our methods with state-
of-the-art FL methods, including FedAvg (McMahan
et al., 2017), FedProx (Li et al., 2020), and MOON (Li
et al., 2021), under the same setting. As shown in Ta-
ble 8, we find that our method outperforms the best
existing FL method MOON by 2.85% and 5.68% on
“B-Acc” in both Type 1 and Type 2 settings, respec-
tively. Notably, our FedFree achieves similar results
with MOON (Li et al., 2021) on the head class while
reaching large improvements on the tail class (11.9%
on Type 1 and 10.71% on Type 2), showing that our
FedFree can tackle LT distribution under FL more ef-
fectively. The limited results could be attributed to the
use of local empirical risk minimization in MOON (Li
et al., 2021). However, even when we applied a bal-
anced risk minimization (BRM) in MOON, our method
still outperformed it (60.69% vs. 62.08% on B-Acc for
Type 1); we provide ablation results in Table 11.
LT integrated FL methods (Cao et al., 2019; Lin et al.,
2017; Ren et al., 2020). To design FL methods for local
clients with long-tailed distribution, a straightforward
idea is to directly use LT methods in each local client
and then use an FL framework such as FedAvg to ob-
tain the final results. From Table 8, we can notice the
LT methods utilizing an FL framework have produced
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limited results in tail class classification, primarily due
to the extreme client drifting phenomenon. Please note
that in the FL, FedFree does not focus on designing
specific long-tailed training for each local client. In-
stead, the DLMA module enables the global server to
effectively aggregate the model parameters from long-
tailed distributed local clients. As a result, our Fed-
Free can successfully capture the tail class with a 6.84%
tail accuracy gain on Type-1 with lower variance than
the best-performing method BSM-FL (Ren et al., 2020).
Notably, our method consistently outperforms the best-
performing LT method on the “B-Acc” with a lower
variance (improvement of 1.8% on Type-1 and 2.46%
on Type-2).
Label-Skew FL FedLC (Zhang et al., 2022), inspired
by (Cao et al., 2019), proposes a loss function to ad-
dress label distribution skewness by locally calibrating
logits and reducing local bias in learning. Their mod-
ification yields compelling performance. Nevertheless,
our method surpasses them in both Type 1 and Type 2,
achieving improvements of 1.0% and 1.83% in terms
of balanced accuracy (“B-Acc”), respectively. Remark-
ably, our method effectively captures the tail classes
with reduced variance in both Type 1 and Type 2, ex-
hibiting improvements of 8.5% and 9.6%, respectively,
while experiencing only a minor drop in performance
for the head classes (96.5% vs 94.3% for Type 1 and
95.8% vs 93.0% for Type 2).
Fed-LT methods (Shang et al., 2022) We compare our
method with the state-of-the-art Fed-LT method CR-
eFF (Shang et al., 2022). CReFF, as proposed by (Shang
et al., 2022), involves a method of re-training the classi-
fier by utilizing learnable features on the server at each
communication round, holding an equal treatment of all
clients’ models. However, this technique fails to accom-
modate inter-client intra-class variations which could
arise. From Table 8, we can notice that FedAvg with
local LT such as BSM-FL (Ren et al., 2020) can outper-
form CReFF (Shang et al., 2022) on the HyperKvasir
dataset in both Type-1 and Type-2 by 2.4% and 1.8%
on “B-Acc”, respectively. Our comparative analysis il-
lustrates that FedFree consistently outperforms CReFF
in both Type-1 and Type-2 by 4.2% and 4.27% on “B-
Acc”, respectively, by addressing client drifting issues
with our proposed FLKD (Fast and Convenient Local
Model) and DLMA (Robust Estimation for the Global
Model) innovations.

5.2.2. Performance on ISIC-FL Attribute
We evaluate the best-performing and competitive

methods in the Fed-LT experiments with the ISIC-
FL attribute dataset to shorten the benchmark. While
previous studies neglect weight initialization to pro-
vide better convergence analysis as pre-trained weights
are architecture dependent. Recently, Nguyen et al.
(2023) and Chen et al. (2023) studied the impact
of pre-training initialization on reducing the data and

Table 9: Experimental Results on ISIC-FL-Attribute Split

Method
Metrics

HAM-1000 ISIC-19 All
Light Dark Light Dark Avg B-Acc

w/o Weight Initialization
FedLC (Zhang et al., 2022) 50.09 54.99 61.78 41.20 52.02 57.33
BSM-FL (Ren et al., 2020) 54.79 56.61 62.38 46.58 55.09 59.40
FedFree w/o DLMA 55.09 63.28 62.89 52.33 58.39 60.36
FedFree (ours) 60.62 65.69 65.43 53.72 61.37 63.45

w/ ImageNet Weight Initialization
FedLC (Zhang et al., 2022) 66.75 37.80 74.25 79.40 64.55 71.39
BSM-FL (Ren et al., 2020) 66.93 68.90 74.53 78.55 72.23 72.15
FedFree (ours) 69.04 74.97 75.74 79.26 74.75 73.18

system heterogeneity in FL. We present in Table 9
the results of the most competitive methods with and
without weight initialization on the ISIC-FL attribute
setting. FedLC (Zhang et al., 2022) demonstrates
compelling performance to address label skewness in
Hyperkvasir-FL. Nevertheless, it falls short in accom-
modating attribute heterogeneity in ISIC-FL due to its
local learning focus. Our method consistently outper-
forms FedLC (Zhang et al., 2022) with a notable im-
provement of 9.4% and 6.1% in terms of the averaged
balanced accuracies (“Avg”) and balanced accuracy
(“B-Acc”) respectively when clients’ model weights are
not available. When the client’s model weights are
available and initialized with ImageNet weights, the im-
provements are 10.2% and 1.79% on the “Avg” and “B-
acc” respectively. Furthermore, our method exhibits a
performance gain of 6.3% and 4.1% on “Avg” and “B-
Acc” compared to the baseline (Ren et al., 2020) respec-
tively when clients’ models are not available, and 2.5%
and 1.8 % on “Avg” and “B-Acc” respectively when
client’s model weights are available.

Table 10: Ablation of EKD and DLMA on HyperKvasir Type-2.

EKD DLMA Metrics
All (%) B-Acc (%)

Baseline (Ren et al., 2020) × × 58.24 ± 1.2 59.15 ± 1.3
w/ EKD ✓ × 59.26 ± 1.2 60.19 ± 1.1

w/ EKD + DLMA ✓ ✓ 60.57 ± 1.1 61.61 ± 1.0

5.2.3. Ablation
Effectiveness of EKD and DLMA. As shown in Ta-
ble 10, applying the EKD to the baseline can enhance
the “All” and “B-Acc” via 1.02% and 1.04%. With both
EKD and DLMA, the performance is further improved
to the best via 2.33% and 2.46% on “All” and “B-Acc”,
respectively. DLMA utilizes bias-free frozen generaliz-
able representations to incorporate the inter-client intra-
class characteristics in FL and combine it with the distil-
lation belief of EKD (how well the information of free
lunch models has been distilled to local clients). This
combination helps in capturing client-specific models in
the aggregation step.
Local Learning matters in FL Similarity to prior FL
studies (Chen and Chao, 2022; Mendieta et al., 2022),
we show that local learning matters in FL. We apply
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Table 11: FL methods with local BRM.

Method All B-Acc
Type-1 Type-2 Type-1 Type-2

FedAvg 58.92 58.24 60.28±0.6 59.15±1.3
FedProx 59.37 58.86 60.47±1.3 59.64±2.0
Moon 59.45 58.72 60.69±0.9 59.66±0.8
FedFree (ours) 61.05 60.57 62.08±0.2 61.61±1.4

our baseline, BSM (Ren et al., 2020), as a local bal-
anced risk minimization (BRM) with different feder-
ated learning algorithms. We can notice BRM can boost
the performance of different federated methods. How-
ever, the best performance is achieved by our FedFree
with 1.39% and 1.95% improvements on the “B-Acc”
on Type-1 and Type-2 than the best performance FL
method, MOON (Li et al., 2021). Although we use
our LT estimations and findings to boost the FL frame-
work, our framework can be further boosted via lo-
cal LT re-sampling techniques (Ju et al., 2021, 2022)
using our proposed distillation belief or via classifier-
retraining (Kang et al., 2020) as shown in Table 12.

Table 12: Using a plug-in cRT on methods on Type-2.
Method + cRT All B-Acc
Decoupling (Kang et al., 2020) 54.21 55.6
BSM-FL (Ren et al., 2020) 62.67 63.11
FedFree 65.05 65.11

6. Discussion

Rare disease classification is a crucial aspect of med-
ical imaging, and leveraging publicly available pre-
trained models can potentially improve the diagnosis
and representations of these diseases. Existing work
in this area often regularizes training on synthesiz-
ing worst-case scenarios and extracting the knowledge
using closed-set datasets without fully exploiting the
generalization capabilities of widely known pre-trained
models. Although some studies have explored effec-
tive prompting techniques for these models, their ap-
proaches are often limited to high-level features and
prompt engineering without a deep understanding of
how these ”free lunch” encoders work, or how their rep-
resentations can be further enhanced through a funda-
mental understanding of DNNs. In this work, we ad-
dress this gap by investigating an intuitive phenomenon
that has been widely neglected in the community: ex-
plicitly asking the pre-trained model what it wants, con-
ditional on a cross-task medical input data, in order to
gain insights into the learning dynamics of these mod-
els for effective representation learning. Through our
method, we successfully demonstrate and leverage this
phenomenon, shedding light on the inner workings of
these models’ frequency patterns and their behavior to-
ward representation learning. Additionally, while skin
lesions and gastrointestinal images can be considered
out-of-distribution data for the free lunch model, there

are extreme cases in medical imaging, such as X-rays
and MRIs, which may require further exploration. Fu-
ture research should aim to bridge the gap between natu-
ral image and medical imaging domains to enhance our
understanding of the billions of parameters utilized in
pre-trained models released yearly. On the other hand,
in decentralized training, FedFree offered compelling
performance in measuring the local bias and correcting
it with the same discriminative consistent model. Nev-
ertheless, theoretical proofs rather than empirical evalu-
ations are needed for better convergence analysis to ad-
dress nonvanishing terms and unlock further improve-
ments.

7. Conclusion

In conclusion, we propose two frameworks to address
long-tailed medical image classification tasks: FoPro-
KD for centralized training and FedFree for decentral-
ized training. FoPro-KD effectively compresses knowl-
edge from publicly available pre-trained models into
smaller target models. Future research can focus on
exploring the generalization capabilities of pre-trained
models and developing compression methods for med-
ical imaging tasks. On the other hand, FedFree in-
troduces a Federated Long-tailed Learning framework
for decentralized training. Fed-Free promotes consis-
tent learning in a decentralized setting with a dynamic
aggregation method to effectively integrate inter-client
variations. Both frameworks utilize the pre-trained
model’s knowledge to smaller target models for medical
tasks that can be particularly useful in clinical settings
where affordable AI is needed. Overall, our two pro-
posed frameworks and findings represent a promising
direction for addressing long-tailed classification prob-
lems and transfer learning in medical imaging.
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Research institute of Computer Vision and Robotics (ViCOROB), Universitat de Girona, Catalonia, Spain

Abstract

Multiple sclerosis (MS) is a progressive disease of the central nervous system, characterized by lesions of different
shapes and sizes. Recently, computer-aided diagnosis (CAD) systems based on deep learning attained remarkable
results in segmenting MS lesions in magnetic resonance imaging (MRI). However, when tested on images from dif-
ferent domains (ie, scans acquired from different MRI scanners and protocols), these systems show an important drop
in performance, hence become unreliable. In this master thesis, we explore several approaches based on state-of-the-
art strategies in terms of segmentation and domain generalization (DG) to tackle this domain shift problem. Starting
from a 3D residual UNet (ResUNet) architecture, we incorporate some recently proposed modules for enhancing fea-
ture representation learning. Moreover, variational autoencoder based architectures are also considered to evaluate the
impact of their feature regularization ability on DG, as well as transformers-based networks to assess their robustness
and efficiency in medical imaging segmentation. All models are trained on the recent Shifts challenge 2023 dataset,
and the best model is further tuned using more images from an in-house dataset of the Vall d’Hebron University Hos-
pital (Barcelona). The obtained results show that the ResUNet trained on relevant feature representations achieves the
best performances among the studied methods, but remains weak in detecting all lesions in unseen domains, due to
the limited training data and the difficulty of the MS lesion segmentation task itself.

Keywords: Multiple sclerosis, MRI, lesion segmentation, deep learning, domain generalization, Shifts challenge.

1. Introduction

Multiple sclerosis (MS) is a progressive and incur-
able inflammatory-demyelinating disease of the central
nervous system (CNS) that negatively alters individu-
als’ lives (Malinin et al., 2022). It has reached 2.8 mil-
lion cases in 2020 (Walton et al., 2020) and became the
most common non-traumatic neurological disease diag-
nosed among young adults (Lladó et al., 2012). The
pathologic hallmark of MS includes multiple focal areas
of myelin loss and inflammation (referred to as plaques
or lesions), axonal loss and gliosis scattered within the
CNS (Lladó et al., 2012; Popescu et al., 2013).

Currently, magnetic resonance imaging (MRI) is a
fundamental technique used to characterize and quan-
tify MS lesions, which is essential for the disease diag-
nosis, progression tracking and evaluation of the treat-
ment’s efficacy (Valverde et al., 2019). MRI proto-
cols mainly include fluid-attenuated inversion recovery
(FLAIR), T2-w and T1-w modalities for their comple-

mentary contrasts and high sensitivity in detecting the
presence of lesions (Ackaouy et al., 2020).

Even though visual lesion inspection is practically
feasible, the manual delineation of MS lesions is highly
challenging and time-consuming for the large number
of MRI slices to assess per patient, as well as prone to
intra- and inter- expert variability (Salem et al., 2022).
This has led to an increasing interest in the development
of automated MS lesion segmentation methods, making
it an active field of research.

In fact, recent years have shown the emergence
of various image processing methods based on deep
learning (DL). In particular, convolutional neural net-
works (CNN) architectures have demonstrated remark-
able performances in different fields, including medi-
cal imaging, which helped in building better computer-
aided diagnosis (CAD) systems (Kamraoui et al., 2022;
Valverde et al., 2019).

Nonetheless, in machine learning (ML) and DL
strategies, it is commonly assumed that the training and
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Figure 1: MRI scans from one patient in three 3T scanners with au-
tomated lesion segmentations in green. From left to right: Philips
Achieva, Siemens Skyra and GE Discovery (Billast et al., 2020).

testing data are independent and identically distributed
(Malinin et al., 2022), meaning that they come from the
same data distribution. In real life medical applications,
this assumption does not always hold, especially for
MRI which can exhibit high or subtle variations across
different sites and medical centers due to the acquisi-
tion protocols, MRI scanners, softwares and individuals
(Ackaouy et al., 2020). Figure 1 shows an example of
these variations found when the same patient underwent
a brain scan from different MRI scanners.

These biases result in a poor generalization of the
trained models when applied to new unseen target im-
ages, hence a decrease in their performances and appli-
cability (as seen in the segmentations of Figure 1). This
is known as the domain shift problem (Kamraoui et al.,
2022).

For the MS lesion segmentation task, the limited
availability of public datasets that describe the hetero-
geneity of the pathology, along with the various MRI
domains, make this task even more challenging and
require more robust and reliable strategies to tackle
it. Several international challenges have been orga-
nized for this matter, such as ISBI (Carass et al., 2017),
MSSEG (Commowick et al., 2018) and the most recent
one Shifts challenge 2023 (Malinin et al., 2022), which
particularly aims to handle the domain shift problem.
These challenges serve as platforms to benchmark and
foster collaboration among researchers to ultimately im-
prove the reliability of the MS lesion segmentation tech-
niques.

In this study, we start from a basic segmentation
pipeline and explore DL based methods proposed in the
recent literature on domain generalization (DG) to de-
velop and discuss reliable approaches for segmenting
MS lesions and potentially help in the early diagnosis
and follow-up of the disease.

Similarly to Jin et al. (2021) but in a medical imaging
context, we introduce a style normalization and restitu-
tion (SNR) module to a residual 3D UNet architecture
to benefit from its style-normalized and task-relevant
features. Other mechanisms such as attention and his-
togram matching are introduced to assess their impact

on handling domain shifts. In addition, variational au-
toencoder (VAE) based architectures are also evaluated
in terms of regularizing features to address DG, as well
as transformers-based architectures to assess their ro-
bustness and efficiency in this segmentation task. The
different proposed pipelines are trained on a relatively
small annotated dataset (available from the Shifts chal-
lenge 2023 (Malinin et al., 2022)) and evaluated over
24 cases, allowing to analyse the impact of the different
contributions introduced in this work.

The best performing pipelines were submitted to the
online testing platform (Grand-Challenge) to be evalu-
ated on a testing set of 74 out-of-domain (OOD) cases
and compared with the state-of-the-art of the Shifts
challenge 2023.

2. Literature review

Regarding the importance of enhancing the general-
ization ability of ML and DL methods, several related
research topics have emerged, such as domain adap-
tation (DA) and DG, while others have been explored
for this matter, like transfer learning and meta-learning
(Wang et al., 2022).

DA occupies most of the literature for adapting spe-
cific target datasets on the source domain according to
the applications. But in recent years, DG has received
greater emphasis, as it aims to learn a model from one
or several different but related domains that will gener-
alize well on unseen target domains (Wang et al., 2022).
These target data are totally unknown, not even unsu-
pervised as in DA, which makes it more interesting, es-
pecially in the medical field where data is scarce and
cannot include all possible variations for a better gener-
alization.

According to Wang et al. (2022), the existing work
on DG for computer vision can be categorized in the
literature into three main groups:

1) Data manipulation
It is among the simplest and less computationally de-
manding way to increase both the quantity and diversity
of the training data. It includes data augmentations
and data generation through generative models, such
as VAEs, generative adversarial networks (GAN) and
the MixUp strategy. Examples of these approaches
are the work of Somavarapu et al. (2020), which
employs adaptive instance normalization (AdaIN) to
achieve fast stylization to arbitrary styles, and Li et al.
(2021a), which generates domains instead of samples
via adversarial training, but remains highly complex
and quite computationally expensive.
A much more simple approach is MixUp (Zhang et al.,
2017), which consists of generating new samples
or new features by performing linear interpolation
between any two instances and between their labels.
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2) Representation learning
It is the most popular approach in DG and can be
divided into two main techniques:

• Domain invariant representation-based DG, whose
goal is to reduce the representation discrepancy be-
tween multiple source domains to make the feature
space more domain invariant and thus, make the
learnt model have a better generalizability to unseen
domains. In this division, we find domain adversar-
ial neural networks (DANN) (Ganin et al., 2016), in
which the discriminator is trained to distinguish the
domains while the generator is trained to fool the dis-
criminator to learn domain invariant feature represen-
tations. This idea was further adapted in a DG way by
Li et al. (2018b).
Other strategies focus on the normalization of fea-
tures, such as in IBNNet (Pan et al., 2018) where
instance normalization (IN), a task agnostic layer, is
used alongside batch normalization (BN) to preserve
discriminative information. Nam and Kim (2018)
takes it one step further by replacing BN layers by
batch-instance normalization (BIN) layers. Another
interesting idea is found in Jin et al. (2021), where
a SNR module was introduced. It consists of per-
forming style normalization via IN, then by training
a weighting vector, find the task-relevant features and
add them back with the style-normalized features to
restore helpful information and obtain better discrim-
ination.

• Feature disentanglement-based DG, whose ap-
proaches consist of decomposing a feature represen-
tation into one that is domain invariant, and the other
that is domain specific (Wang et al., 2022). An exam-
ple of it is domain-invariant variational autoencoder
(DIVA) (Ilse et al., 2020), that disentangles the fea-
tures into domain information, class information, and
other residual information. Another example is Sag-
Nets (Nam et al., 2021) in which they disentangle
the style encodings from the class categories to better
highlight the content.

3) Learning strategy
It focuses on exploiting the general learning strategy
to promote the generalizability of the trained models.
Among the works found in this category, Zhou et al.
(2021) proposes Domain Adaptive Ensemble Learning
(DAEL), which is composed of a shared CNN feature
extractor across domains and multiple domain-specific
classifier heads (experts). The DAEL aims to learn
in a collaborative way, such that the experts teach the
non-expert classifiers, and with that, encourage the
ensemble to learn how to handle data from unseen
domains. Li et al. (2018a) proposes meta-learning for
domain generalization (MLDG) that splits the source
domains data into meta-train and meta-test to simulate
the shifts in domain and learn general representations.

Other works focus on using gradient information to
force the model to learn generalized representations,
such as Shi et al. (2021), which aims to maximize the
gradient inner product to align the gradients’ directions
that are assumed to be the same across domains.

Focusing back on the medical-related DG works, re-
gardless of their categories, Li et al. (2021b) made use
of histogram matching (HM) with an encoder-decoder
(ED) architecture to achieve automatic left atrial seg-
mentation from multi-center late gadolinium enhanced
MRI. The paper shows that the simple HM managed to
outperform other DG strategies that consisted of mu-
tual information-based feature disentanglement (MID-
Net) and pseudo-novel domain augmentation via ran-
dom style transfer (RST-Net).

Hu et al. (2022) proposes a multi-source domain gen-
eralization model (DCAC) based on an ED architec-
ture and domain and content adaptive convolutions for
medical image segmentation. The general idea is to
feed the globally average-pooled and concatenated fea-
ture maps of the encoder layers to a domain predictor
that generates a domain code. This code is later used
by a domain-aware controller to predict the parameters
of a domain-adaptive head, and another content-aware
controller predicts the parameters of a content-adaptive
head, which is used to obtain the segmentation results.

As for MS lesion segmentation, Kamraoui et al.
(2022) is among the very few papers that tackle this
problem in a DG way. It presents DeepLesionBrain
(DLB), a segmentation framework based on a spatially
distributed strategy that uses a large group of overlapped
compact 3D UNets, each one specialized in a certain
region of the brain. This allows to produce robust
predictions compared to an individual network. DLB
also uses some data augmentations to increase training
data variability, and a hierarchical specialization learn-
ing (HSL) strategy by pre-training a generic network
over the whole brain, then use its weights as initializa-
tion to the locally specialized networks. This results in
the network learning both generic and specific features
extracted at global and local image levels respectively.

By reviewing the current state-of-the-art in DG ap-
plied to the medical field, very few works seem feasible
for this project, regarding the limited available data for
training and the difficulty of the task itself. Nonetheless,
some ideas will be worth exploring. In this research,
we start from a basic segmentation baseline and try to
improve it by investigating the impact of some of the
previously mentioned ideas in terms of robustness and
generalizability.

3. Material and methods

3.1. Datasets
In this work, two datasets are available to explore DG

in MS lesion segmentation: one from the Shifts chal-
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Table 1: Meta information and splits of the Shifts challenge 2023 and VH datasets. Scanners are: Siemens Verio, GE Discovery, Siemens Aera,
Philips Ingenia, Philips Medical, Siemens Magnetom Trio and Siemens Tim Trio.

Location Scanner Field Resolution (mm3) Raters Train Devin Evalin Devout Evalout

Shifts challenge

2023

MSSEG-1

Rennes S Verio 3.0 T 0.50 x 0.50 x 1.10 7 8 2 5 0 0

Bordeaux GE Disc 3.0 T 0.47 x 0.47 x 0.90 7 5 1 2 0 0

Lyon
S Aera 1.5 T 1.03 x 1.03 x 1.25

7 10 2 17 0 0
P Ingenia 3.0 T 0.74 x 0.74 x 0.70

ISBI Best P Medical 3.0 T 0.82 x 0.82 x 2.20 2 10 2 9 0 0

PubMRI Ljubljana S Mag 3.0 T 0.47 x 0.47 x 0.80 3 0 0 0 24 0

Private Lausanne S Mag 3.0 T 1.00 x 1.00 x 1.20 2 0 0 0 0 74

VH Private Barcelona S Tim 3.0 T 0.49 x 0.49 x 3.00 1 30 0 27 0 0

lenge 2023, the MS lesion segmentation track that took
place from september 2022 to may 2023 (Malinin et al.,
2022), and an in-house one from the Vall d’Hebron Uni-
versity Hospital of Barcelona (Valverde et al., 2019).
Details on each of them are presented in the following
subsections.

3.1.1. Shifts challenge 2023 dataset
The dataset for the MS lesion segmentation track is

a combination of several publicly available datasets1

(ISBI, MSSEG-1 and PubMRI) and one private dataset
from the university of Lausanne, which is not re-
leased and kept for submission evaluation on the Grand-
Challenge platform.

The data consists of 3D FLAIR and T1-w brain scans
already pre-processed using denoising (non-local mean
denoising filter), skull stripping, bias field correction
(N4ITK), registration to FLAIR and interpolation to
1mm isovoxel space (Malinin et al., 2022). As for the
ground-truth (GT) masks, they were obtained from a
consensus of multiple expert annotators, except for Best
and Lausanne (single mask) (Malinin et al., 2022).

1Data were generated by participating neurologists in the frame-
work of Observatoire Français de la Sclérose en Plaques (OFSEP),
the French MS registry (Vukusic et al. 2020). They collect clini-
cal data prospectively in the European Database for Multiple Sclero-
sis (EDMUS) software (Confavreux et al. 1992). MRI of patients
were provided as part of a care protocol. Nominative data are deleted
from MRI before transfer and storage on the Shanoir platform (Shar-
ing NeurOImagingResources, shanoir.org).

Vukusic S, Casey R, Rollot F, Brochet B, Pelletier J, Laplaud D-
A, et al. Observatoire Français de la Sclérose en Plaques (OFSEP):
A unique multimodal nationwide MS registry in France. Mult Scler.
2020;26(1):118–22.

Confavreux C, Compston DAS, Hommes OR, McDonald WI,
Thompson AJ. EDMUS, a European database for multiple sclerosis.
J Neurol Neurosurg Psychiatry 1992; 55: 671-676.

Andrey Malinin, Andreas Athanasopoulos, Muhamed Barakovic,
Meritxell Bach Cuadra, Mark JF Gales, Cristina Granziera, Mara
Graziani, Nikolay Kartashev, Konstantinos Kyriakopoulos, Po-Jui Lu,
Nataliia Molchanova, Antonis Nikitakis, Vatsal Raina, Francesco La
Rosa, Eli Sivena, Vasileios Tsarsitalidis, Efi Tsompopoulou, Elena
Volf. Shifts 2.0: Extending The Dataset of Real Distributional Shifts,
arxiv preprint https://arxiv.org/abs/2206.15407

For the Shifts challenge 2023, the data was struc-
tured in a ‘canonical partitioning’ in order to have in-
domain training, validation and testing (train, devin and
evalin respectively), as well as OOD testing (devout and
evalout) which were also shifted relative to each other.
The details on the characteristics and splits of the data
can be found in Table 1. The partitioning was selected
based on experiments, where ensembles of 5 UNet mod-
els were trained on each data location and tested on
all the others to identify the one presenting the high-
est shift. Other experiments using trained models on all
data except for one location at a time allowed to confirm
that Ljubljana (PubMRI) presents the greatest shift, fol-
lowed by the private dataset, hence were both chosen
as the OOD data while the rest were considered as the
in-domain (Malinin et al., 2022).

It is worth mentioning that the variations in the data
are not exclusive to the locations or scanner types, but
also related to the scanner strengths (1.5T and 3T), an-
notators’ guidelines, resolution of the raw FLAIR scans
and the size of lesions (OOD data presents more sub-
jects with smaller lesions) (Malinin et al., 2022).

These conditions portrait real-world distributional
shift which makes the data suitable for assessing the ro-
bustness and generalizability of MS lesion segmentation
solutions.

3.1.2. Vall d’Hebron dataset
This local dataset is provided by the Vall d’Hebron

(VH) University Hospital in Barcelona, Spain. The
FLAIR (TR=9000 ms, TE=93 ms, TI=2500 ms, flip
angle=120°, voxel size=0.49×0.49×3mm3) and T1-w
(TR=2300 ms, TE=2 ms, TI=900 ms, flip angle=9°,
voxel size=1×1×1.2mm3) images were acquired from
a 3T Siemens scanner with a 12-channel phased-array
head coil. The data was pre-processed following the
work of Valverde et al. (2019), which included skull
stripping, N3 bias field correction, co-registration to
T1-w (FSL-FLIRT) and interpolation to 1mm isovoxel
space. The dataset was randomly partitioned into train
and test sets (details are shown in Table 1) and presents
cases with relatively low lesion loads.
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3.2. Network architectures

This subsection presents the main network architec-
tures used in the evaluated approaches. The main objec-
tive is to design a robust MS lesion segmentation model
that can handle domain shifts in terms of segmentation
and detection sensitivity (lesion-wise). In addition, the
model should ideally be able to comply with the con-
straints of the Shifts challenge 2023, which impose pre-
dictions within 800ms per input sample, and the respect
of the data partitioning, such that models are build only
using the data provided by the organizers (train and
devin for training and validation purposes respectively)
or using data that is publicly released.

For this task, 3D encoder-decoder based architectures
with skip connections are preferred for their simplic-
ity and performances. We will analyze their ability to
extract relevant and regularized feature representations
with the help of additional components described later
in section (3.4). In what follows, we describe the main
architectures used within this work.

3.2.1. UNet (baseline)
The organizing team of the Shifts challenge 2023 pro-

vided their baseline model as a starting point. It is
based on a 3D UNet (Çiçek et al., 2016) architecture
with 5 layers and a strided convolution at the begin-
ning of each block (for down- and up- sampling), which
immediately reduces the spatial dimension of the input
data by 2 (as shown in Figure 2). The network is im-
plemented in MONAI. Three of this model are trained
with different seeds on 3D patches of 96x96x96 vox-
els, for a maximum of 300 epochs with early stopping
and no dropout. The trained models’ predictions on the

Figure 2: 3D UNet architecture as implemented in MONAI.

Figure 3: 3D ResUNet architecture as implemented in MONAI.

OOD data (devout) are ensembled and the resulting per-
formance will be taken as a reference for further im-
provements in the following approaches.

3.2.2. ResUNet

Residual UNet (ResUNet) (Kerfoot et al., 2019) is
an enhanced version of the UNet architecture in which
residual units are included to facilitate information flow
and enhance training efficiency to better capture com-
plex patterns and improve general performances and
adaptability to unseen data.

The network consists of an ED of 5 layers with resid-
ual units, and connected through skip-connections. It
uses convolutions and transpose convolutions with a
stride of 2 for down-sampling and up-sampling the data
respectively. This allows the network to learn opti-
mal down-sampling and up-sampling operations while
reducing the spatial dimension (Kerfoot et al., 2019).
Parametric rectifying linear units (PReLU) are used to
allow the network to learn the slop of the negative part
of ReLU as a parameter, hence having a better activa-
tion and training. Dropout layers of 35% are added to
avoid overfitting, and IN is applied to help generaliza-
tion by removing instance-specific contrast information
from the features. The overall architecture can be seen
in Figure 3.

Having this model as an initial network, two addi-
tional modules are added to study their impact on DG:
SNR (Jin et al., 2021) and attention gate (AG) (Oktay
et al., 2018) modules. The details of each approach are
explained in the subsection (3.4).
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Figure 4: Graphical representation of a VAE.

3.2.3. VAE
VAEs (Kingma and Welling, 2013) are generative

models based on an ED architecture and used for their
efficient representation learning. The overall idea con-
sists of first mapping the input data by the encoder to
low-resolution and high-level feature representations,
then this endpoint output is mapped to a latent space
that corresponds to a low-dimentional space in which
half represents the mean and the other half the stan-
dard deviation (std) of a distribution. Then, a sample
is drawn from that latent space and used by the decoder
to reconstruct the original input data (as seen in Figure
4). The training of such models is done by minimizing
a VAE loss function composed of two terms: a recon-
struction loss to make the ED reconstruction as perfor-
mant as possible, and a regularization loss that makes
the latent space distribution close to a standard normal
distribution ∼N(0, 1). This is further detailed in the loss
functions part of subsection (3.3.2).

With the hypothesis that VAEs learn to encode in-
put data into a compact and meaningful latent repre-
sentation, and following the successful work done by
Myronenko (2019) and Li et al. (2020) in terms of 3D
brain tumors segmentation from MRI, the SegResNet-
VAE (Myronenko, 2019) model (winner of BraTS2018
challenge) and a ResUNetVAE model are considered for
this task to study the effect of VAEs on DG. The details
of each approach are explained in the subsection (3.4).

3.2.4. Transformers
Following the success of transformers in NLP,

Hatamizadeh et al. (2022b) proposed UNEt TRansform-

Figure 5: Overview of the UNETR architecture from Hatamizadeh
et al. (2022b).

ers (UNETR), a UNet-like architecture where the en-
coder is replaced by transformer blocks, with skip con-
nections connecting them to the decoder, as seen in Fig-
ure 5. As in Vision Transformers (ViT), the images are
separated into patches to be linearly projected into token
embeddings and added with the positional embeddings.

From the same authors, Hatamizadeh et al. (2022a)
proposed SwinUNETR, which employs a Swin trans-
former block as the encoder, achieving by that impres-
sive performances in some medical image segmentation
works. Therefore, both networks are evaluated on their
applicability in this MS lesion segmentation task.

3.3. Training details

This subsection presents some implementation and
training details used in the studied strategies.

3.3.1. Data transforms
Following the challenge’s baseline, the brain volumes

are split into 3D patches of 64x64x64 voxels and nor-
malized to zero mean and unit std. During training, 128
patches are randomly sampled from the original inputs
such that they are centred on a lesion voxel 80% of the
time. Other random transforms from MONAI are used:
intensity shift and scale, flipping, rotation and affine
transformation.

As for validation and inference, patches overlapping
by 50% and 70% respectively are used with Gaussian
weighting averaging to get the final segmentation pre-
dictions for the ResUNet based approaches. For the rest
of the methods, the overlapping of patches was by 25%
in validation.

For each of the studied approaches, 3 single models
are trained (each one initialized with a different seed) to
form a deep ensemble (by averaging their output prob-
abilities) and increase their robustness. These probabil-
ities are then thresholded to obtain the final per-voxel
segmentation map. The threshold value remained un-
changed from the challenge baseline (0.35) since exper-
imenting with different values did not yield significant
variations in the results.

3.3.2. Optimization
• Loss functions: the loss functions help guiding the

learning process and optimization of a model by
quantifying the difference between the true and pre-
dicted values. For this task, several loss functions
have been used according to the model’s needs:
- Dice loss (Milletari et al., 2016), which measures
the similarity between the predicted and ground truth
segmentation masks by computing the overlap be-
tween the two.
- Focal loss (Lin et al., 2017), a cross-entropy based
loss that addresses class imbalance by focusing on
challenging regions and minority classes during train-
ing.
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Figure 6: Overall structure of the SNR module from Jin et al. (2021). From left to right: SNR module and dual restitution loss constraint.

- VAE loss, which is the combination of two terms:
the reconstruction loss and the regularization loss.
The reconstruction loss between the original image
and the reconstructed one encourages the VAE to
generate outputs that are as close as possible to the
original input (usually mean squared error: MSE).
The regularization loss between the learned distri-
bution of the latent space and the target distribution
(usually the standard normal distribution) helps to
regularize the latent space and ensures that it follows
the chosen target distribution (Kullback-Leibler di-
vergence loss: KLD).
- Dual restitution loss (Jin et al., 2021), as illustrated
in Figure 6b, encourages the disentanglement of task-
relevant and task-irrelevant features by comparing the
discrimination capability of features before and after
restitution. This will be further explained in the sub-
section (3.4).

• Optimizer: Adaptive moment estimation (Adam)
(Kingma and Ba, 2014) optimizer is used with a Re-
duceOnPlateau learning rate (LR) scheduler to im-
prove the model’s training. The starting LR is 1e−3

and will be reduced by a factor of 2 if the validation
loss does not improve after 7 epochs. This configura-
tion is common for all the studied methods.

• Early stopping: all models are trained with 300 maxi-
mum epochs and an early stopping with a patience of
50 according to the validation loss (on devin). The pa-
tience was overly increased due to the relatively slow
training of the models, thus to give more chances for
the models to improve.

3.4. Evaluated approaches
This subsection presents the main experiments done

in this project and trained on the FLAIR images of the
Shifts challenge 2023 dataset (train and devin). They are
devided into three main parts according to the network
architecture they are based on.

3.4.1. ResUNet
3.4.1.1. ResUNet
As described in the previous subsection (3.2.2), the

first approach consists of leveraging the available
baseline by training a 5 layers 3D residual UNet from
scratch on the available data. The model, as seen in
Figure 3, is implemented in the MONAI library and
the training was done with a batch size of 3 and a
loss function that combines the dice loss and the fo-
cal loss.

3.4.1.2. ResUNet SNR
As introduced in the literature review (2), the SNR
(Jin et al., 2021) module aims to enhance both the
generalization and discrimination capabilities of any
model by inserting the module after convolutional
blocks. The detailed architecture of the module is
shown in Figure 6a, and can be summarized as fol-
lows. First, IN is applied to the input features F to re-
duce their instance discrepancy and obtain some kind
of style-normalized features F̃. Then, to counter the
loss of discriminative information induced by IN, the
next steps aim to restitute the task-relevant features
from the residuals R by disentangling them into task-
relevant R+ and task-irrelevant R− features through
masking R by a learned channel attention vector a.
With that, the task-relevant features R+ are added
back with the normalized features F̃ to restitute im-
portant information and obtain F̃+.

For our segmentation task, the SNR module is added
after each convolutional block of the encoder, to ob-
tain better and robust features before feeding them to
the decoder. For training this model, the batch size
was 4 and the loss function combined the dice loss,
the focal loss and the dual restitution loss (Jin et al.,
2021). This latter is illustrated in Figure 6b and fol-
lows the intuition that after restitution, the enhanced
features F̃+ become more discriminative and thus,
when the feature vector of each spatial position of F̃+
is passed to a fully connected layer of K nodes fol-
lowed by a softmax (K being the number of classes,
here 2), the predicted class likelihood should have a
smaller entropy. On the other hand, when adding the
task-irrelevant features R− to the normalized features
F̃, the obtained features F̃− should result in a larger
entropy as they are less discriminative.
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Figure 7: Schematic of additive AG from Oktay et al. (2018).

Regarding the dropout layer, both scenarios with and
without the layers were evaluated since the training
data might be relatively small for the model to per-
form well with dropout.

3.4.1.3. ResUNet AG
In this approach, AG (shown in Figure 7) are added
with the skip connections in the decoder path to ide-
ally learn to focus on important structures for seg-
menting MS lesions regardless of the domain.

Due to memory constraints, the ResUNet model was
build with 4 layers instead of 5. It was trained with
a batch size of 4 and the loss function combined the
dice loss and the focal loss. Similarly to the previous
approach, both cases with and without dropout layers
were evaluated.

3.4.1.4. ResUNet HM
This approach uses the same 3D ResUNet model but
trained on data that underwent histogram matching.
This simple method consists of transforming the his-
togram of an input image to match the histogram of
another selected image by mapping the voxel intensi-
ties accordingly. Ideally, if the model is well trained
on the transformed data, it should remain performant
with new unseen target data regardless of the domain,
as the images will also be transformed with HM. The
selected image was chosen from Lyon (MSSEG-1) by
observation for having a good contrast, and the train-
ing was done with a batch size of 3 and a loss function
combining the dice and focal losses.

3.4.2. VAE
3.4.2.1. SegResNetVAE
This model (Myronenko, 2019) is based on an asym-
metrical ED architecture, where the encoder is larger
than the decoder to extract deep image features. In
addition, a VAE branch is added to the encoder end-
point to reconstruct the image. The motivation behind
it is to guide and regularize the encoder for a better
generalization.

The SegResNetVAE model, shown in Figure 8, is im-
plemented in the MONAI library and is trained with
the default configuration (except for the number of
output filters of the initial convolutional layer that is
32 instead of 8), a batch size of 4 and a loss function
combining the dice, focal and VAE losses.

3.4.2.2. SegResNet
This approach is only examined to determine whether
the VAE branch has a positive impact on the model.
The architecture and configurations are the same as
SegResNetVAE, with only the VAE decoder branch
removed, keeping just the segmentation decoder, and
the loss function combining dice and focal losses
only.

3.4.2.3. ResUNetVAE
In this approach, a ResUNet adapted with a VAE bot-
tleneck and decoder is first trained on the available
data to reconstruct the original input images. Here
the loss consists of only the VAE loss, and the net-
work output is 1 channel.

Once the model is trained (on a batch size of 3), its
encoder is used in evaluation mode to return the bot-
tleneck output and the skip connections, which will
be used as inputs to train another decoder (same con-
figuration as ResUNet decoder) for segmenting the
lesions.

The goal here is to use the efficiently encoded fea-
ture representations from the VAE encoder (ideally
close to a standard normal distribution regardless of
the data’s original domain) as inputs to a segmenta-
tion decoder. The loss function for this part was the
combination of dice and focal losses, and the batch
size is kept as 3.

3.4.3. Transformers
Two additional DL networks based on transform-
ers are trained on a batch size of 1: UN-
ETR (Hatamizadeh et al., 2022b) and SwinUNETR
(Hatamizadeh et al., 2022a). Both models are imple-
mented in MONAI and the configurations are kept as
default. The loss function used during both trainings
was the combination of dice and focal losses.

3.5. Evaluation metrics
The models’ performances are evaluated following

the common metrics for medical image segmentation
between the GT and the predicted segmentation masks.
It includes:

• Segmentation and detection wise metrics
Dice similarity coefficient (DSC), true positive frac-
tion (TPF) and false positive fraction (FPF) are com-
puted both voxel-wise (segmentation) and lesion-
wise (detection) as follows:

DS C =
2 × T P

FN + FP + 2 × T P

T PF =
T P

T P + FN
FPF =

FP
FP + T N

where T P, T N, FP and FN denote the number of
true positives, true negatives, false positives and false
negatives, respectively.
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Figure 8: SegResNetVAE architecture from Myronenko (2019) as implemented in MONAI.

• Shifts challenge 2023 metrics
The Shifts challenge 2023 evaluation was based on
two main metrics provided with their baseline (Ma-
linin et al., 2022):

– Normalized DSC (nDSC): decorrelates model per-
formance and lesion load to avoid having higher
DSC just because the patients present larger lesion
volumes.

– Area under the retention curves (nDSC R-AUC):
jointly assesses robustness and uncertainty quality
from the nDSC scores. The error-retention curve
is obtained by replacing at a time portions of the
model’s predictions by ground-truth labels (in or-
der of decreasing uncertainty) and computing the
error metric (here nDSC). The final metric would
be the area under the resulting curve.

• Other metrics

– HD: mesures the Hausdorff distance to estimate
how much the predicted segmentation masks de-
viates from the GT.

– Abs-lesion-diff: computes the absolute difference
between the number of lesions in the GT and the
prediction masks.

• Statistical test
To evaluate the statistical significance of the perfor-
mance between the different approaches, a serie of
permutation tests are ran between the dice scores
(DS Cs and DS Cd) of each pair of methods.

Following the work of Salem et al. (2020), the per-
mutation tests consist of selecting random subsets of
images from the dataset (devout), and for each pair of
methods, performing permutations of their DSC val-
ues from the selected subsets and counting the num-
ber of times that the t-test results in a p−value ≤ 0.05.

This process is repeated S times (here S=1000), and
the mean and std of the fraction of times when each
method obtained significant p-values is calculated
over all iterations S . This results in methods with
higher significance having higher means. All the ap-
proaches are then ranked into three levels according
to the mean score (µ0 ± σ0) of the best method:
rank1 has methods with mean scores in (µ0-σ0, µ0],
rank2 in (µ0-2σ0, µ0-σ0], and rank3 in (µ0-3σ0, µ0-
2σ0].

3.6. Implementation details

This project was implemented using Pytorch 1.12.1
and CUDA 11.6 on VSCode IDE. MONAI 0.9.0 was
used for its ready-to-use loss functions and data trans-
forms, Tensorboard 2.11.2 for monitoring training plots
and ITK-SNAP for visualization. The networks were
trained on several Nvidia A30 GPUs devided into MIGs
with 12Gb of memory each.

As for the challenge submissions, Docker Engine
20.10.24 was used to build docker images of the best
performing methods and upload them on the Grand-
Challenge online platform.

4. Results

This section is divided into two main parts. In the
first one, we present the results obtained with the differ-
ent approaches described before and which were trained
using the train and devin data from the Shifts challenge
2023. We also present the results of the submitted solu-
tions for the challenge, which were evaluated online on
the private dataset of Lausanne. In the second part, we
refine the best performing model by adding more im-
ages from the in-house dataset in order to include more
brain volumes with smaller lesions.
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Table 2: The resulting evaluation metrics of the different approaches when tested on the devout dataset. The methods consist of the reference
baseline from the challenge, the ResUNet based, VAE-based and transformers-based approaches, as well as ResUNet SNR trained on both datasets
(challenge and in-house) and denoted as ’ResUNet SNR + VH’. The scores represent the mean and std over all patients and are divided into
segmentation and detection wise, challenge-specific and other common metrics used for the segmentation task.

Segmentation Detection Challenge Other metrics
Model DS Cs T PFs FPFs DS Cd T PFd FPFd nDS C R-AUC nDS C HD Abs-lesion-di f f

UNet (baseline) 53.31 ±
22.26

43.38 ±
21.29

22.71 ±
21.25

29.72 ±
10.51

21.16 ±
8.32

23.75 ±
25.13

2.5389 ±
1.477

51.25 ±
19.42

38.48 ±
11.36

60.79 ±
64.94

ResUNet 69.73 ±
12.69

65.86 ±
14.51

24.17 ±
13.38

52.88 ±
10.53

37.96 ±
9.47

11.62 ±
12.04

1.1499 ±
0.7571

67.05 ±
8.18

30.95 ±
9.92

48.25 ±
50.17

ResUNet SNR 69.86 ±
13.58

63.31 ±
16.14

19.41 ±
9.89

52.25 ±
12.15

40.26 ±
11.56

11.75 ±
14.14

1.1046 ±
0.7177

66.96 ±
10.39

31.14 ±
10.88

39.33 ±
42.42

ResUNet AG 69.55 ±
15.05

62.17 ±
18.22

17.41 ±
8.2

50.05 ±
11.81

36.95 ±
10.86

11.15 ±
13.42

1.0416 ±
0.6057

65.76 ±
11.63

32.55 ±
13.26

47.29 ±
48.34

ResUNet HM 69.45 ±
11.84

64.51 ±
11.59

23.5 ±
15.19

52.6 ±
11.66

40.05 ±
10.51

18.63 ±
17.45

1.1252 ±
0.8529

67.91 ±
6.64

31.88 ±
10.76

41.88 ±
46.32

SegResNet 63.32 ±
17.24

57.98 ±
18.93

27.91 ±
15.89

42.56 ±
12.24

27.74 ±
9.08

11.65 ±
15.07

1.8532 ±
1.2625

59.47 ±
13.46

37.83 ±
11.91

65.38 ±
64.02

SegResNetVAE 65.07 ±
17.91

62.56 ±
19.54

30.17 ±
17.42

45.73 ±
11.9

29.65 ±
8.86

10.24 ±
14.72

2.4728 ±
1.7005

60.41 ±
14.16

35.64 ±
9.27

66.12 ±
65.77

ResUNetVAE 60.82 ±
18.08

52.62 ±
18.1

23.14 ±
15.26

43.48 ±
10.16

34.08 ±
8.39

18.97 ±
16.96

1.6558 ±
0.9717

59.19 ±
15.55

32.47 ±
8.91

41.29 ±
48.26

UNETR 58.03 ±
21.0

50.99 ±
18.36

27.63 ±
24.75

29.59 ±
10.46

29.32 ±
8.81

48.51 ±
24.51

2.3305 ±
1.8897

57.86 ±
15.85

32.07 ±
8.66

40.33 ±
41.57

SwinUNETR 63.05 ±
14.11

53.46 ±
15.82

19.18 ±
11.65

46.38 ±
11.13

39.43 ±
11.78

15.93 ±
13.97

1.8122 ±
1.0336

61.14 ±
10.88

31.18 ±
7.28

38.0 ±
44.76

ResUNet SNR + VH 71.14 ±
15.15

67.5 ±
18.09

22.33 ±
11.34

55.57 ±
11.78

43.27 ±
11.27

19.04 ±
16.63

1.1279 ±
0.658

67.35 ±
10.87

29.83 ±
9.14

41.67 ±
44.64

4.1. Training with the challenge dataset only

Different approaches were studied to asses the im-
provement of the baseline through the different changes
and components added to it. In this project, we analyzed
the impact on the segmentation results within a domain
shift situation of all of: AG, style-normalized relevant
features, histogram matching, efficient latent space rep-
resentations of VAEs and transformers.

The presented results are divided into two subsec-
tions: the first one shows the results obtained on the
available testing data (devout and evalin), and the sec-
ond one presents the results obtained on the challenge
submissions.

4.1.1. Testing results
The resulting metrics of each of the evaluated meth-

ods on the OOD data (devout) are shown in Table 2,
and examples of the obtained segmentation masks are
seen in Figure 9. The overall scores seem rather close
between the methods and clearly outperform the UNet
baseline of the challenge.

The visual analysis of the results depicted in Figure
9 indicates that the majority of the methods managed to
segment most of the lesions. However, some methods
exhibited a tendency to oversegment certain regions of
high intensities (as highlighted by the yellow arrows),
while others failed to capture certain lesions (as indi-
cated by the purple arrows). It can also be noted, from
this example, that the ResUNet SNR model demon-
strated relatively lower levels of oversegmentation com-
pared to the other methods.

Additionally, ResUNet based approaches outper-
formed the ones relying on VAE and transformers. This
observation is further supported by the statistical test
conducted for both segmentation and detection DSC (as
seen in Figure 10), where ResUNet-based models ap-
pear in rank1, followed by the VAE-based and Swin-
UNETR.

Focusing on the DSC, Figure 11 shows the boxplot
of the DS Cs of all methods on both in-domain (evalin)
and OOD (devout) data. It can be noticed that the per-
formances on both domains are relatively close for most
methods, meaning that the proposed approaches gener-
alize well and achieve good segmentation results, with
ResUNet SNR being slightly better. However, in Fig-
ure 12, the boxplot of the DS Cd of all methods shows a
very large decrease in performance between the two do-
mains, which suggests that all of the trained models are
missing a considerable amount of lesions. Nonetheless,
ResUNet and ResUNet SNR demonstrated a slightly
better performance compared to the others.

To further understand the gaps noticed in the boxplot,
we will focus on ResUNet SNR, the best performing
model so far in segmentation and detection sensitivity,
and inspect some correlation plots. Figure 13 shows on
the left side the correlation plot between the true and
predicted lesion volumes in the OOD data. We can note
that the overall predicted volumes tend to be less than
the real ones, but not in very large proportions, which
corresponds to the relatively good segmentation scores
obtained. As for the right side of Figure 13, the cor-
relation plot between the real and predicted number of
lesions in the OOD data shows that even the best per-
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Figure 9: Qualitative results for MS lesion segmentation. The right side of each pair of images depicts zoomed regions of interests shown in blue
rectangles on whole-brain scan (on the left side). (a) and (b) represent the FLAIR and GT respectively, while the remaining pairs represent the
overlayed segmentation masks obtained from each method: Baseline UNet (c), ResUNet (d), ResUNet SNR (e), ResUNet AG (f), ResUNet HM (g),
UNETR (h), SwinUNETR (i), SegResNet (j), SegResNetVAE (k), and ResUNetVAE (l). The yellow arrows indicate regions of oversegmentation
and the purple ones indicate missed lesions.

forming model is missing a large number of lesions,
almost by a factor of 2, yielding in low metric values.
This might be due to the training data not having enough
small lesions to train the models on, especially that the
dataset is limited and the 3D patches are mostly cen-
tered in lesions.

For this reason, the next step was to further train the
best model (ResUNet SNR) on some more images from
the in-house dataset and evaluate its impact on the re-
sults.

4.1.2. Challenge submission results
Due to the limited time that was left before the sub-

mission deadline, only two of the submitted approaches
were based on the methods proposed in this study,

which are ResUNet and ResUNet SNR.
Table 3 shows the scores obtained on the private

evalout dataset used for evaluation (Lausanne dataset).
The ranking of the solutions was based on the nDSC R-
AUC scores, and the total number of submissions that
appear on the leaderboard was 36. The ResUNet model
achieved the best nDSC score among all participants,
but was ranked 8th according to the nDSC R-AUC met-
ric. As for the ResUNet SNR method, it reached the 6th

position on the leaderboard, making our team in the 4th

place.

4.2. Training with challenge and in-house datasets

Considering the encountered issue in the previous re-
sults (subsection 4.1.1), more data was added to train
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Figure 10: Permutation test on dice scores (DS Cs and DS Cd).

Figure 11: Boxplots of DS Cs using the different approaches.

Figure 12: Boxplot of DS Cd using the different approaches.

the previous ResUNet SNR model. Table 4 shows the
average lesion volume for each data partition. It can be
seen that the train set has some lesions of very large
sizes, while the devout seems to have a larger number of
small lesions. As for the VH data, both partitions have

a small lesion tendency, mainly in the VH train, which
led us to add it with the train data of the challenge to
further tune the model.

To achieve that, the ResUNet SNR model is first
loaded with the previously trained weights, then trained
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Figure 13: Correlation plots using ResUNet SNR model. From left to right: correlation plot between the true and predicted lesion volumes, and
correlation plot between the true and predicted lesion numbers.

Figure 14: Boxplot of DS Cs and DS Cd (from left to right, respectively) using ResUNet SNR with the combined training data.

Table 3: Submission scores of the two proposed solutions for the
Shifts challenge 2023, along with the current winner’s scores for a
reference.

Model nDSC R-AUC nDSC Rank / 36
Current winner 1.28 ± 1.69 51.10 1
ResUNet SNR 1.60 ± 1.24 60.04 6

ResUNet 1.71 ± 1.83 66.87 8

Table 4: Additional characteristics of the datasets, in terms of total
number of lesions and their average volumes.

Train Devout VH train VH evalin
Total lesion count 1628 3544 790 573

average lesion volume
(mm3)

376 ±
2994

120 ±
1254

156 ±
427

183 ±
564

on the new combined data with devin for validation, a
batch size of 4 and a starting LR of 1e−4. Even though
the preprocessing of the two datasets are not the same,
the little differences that might appear in the in-house
dataset can be considered as part of its own domain.

The obtained results seen in Table 2 show a little im-
provement in terms of DSC and sensitivity (TPF). The
comparison between both cases and the baseline is also
seen in Figure 14. However, a t-test between the DSC
before and after adding the data gave a p-value of 0.97
and 0.85 in segmentation and detection respectively,

which implies that the results after adding the images
have low statistical significance. This suggests that fur-
ther model improvements are still necessary to enhance
the segmentation performances.

5. Discussion

5.1. MS lesion segmentation
In this project, we investigated some methods and ar-

chitectures that would potentially help surpass the do-
main shift problem encountered when segmenting MS
lesions from MRI scans. In this subsection, we try to
explain the possible reasons behind the performances of
each approach.

From the different quantitative results, ResUNet
achieved higher scores than the baseline UNet, thanks
to the residual units that allow a better flow of infor-
mation in the network, as well as the use of IN, which
helps style-normalizing features and making them more
generalizable.

By adding the SNR module in the encoder part and
removing the dropout layers, the ResUNet SNR ap-
proach achieved the best metrics among all methods, in
terms of segmentation and detection (sensitivity), and
had the second lowest absolute lesion difference score.
This reinforces the idea that restituing task-relevant fea-
ture representations would help better generalize the
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Figure 15: Qualitative results for both in-domain and out-of-domain cases, showing segmentation outputs of different slices using the ResUNet
SNR model. Both cases were among the ones achieving the best metrics.

model across domains, especially when using the dual
restitution loss function that helped obtaining enhanced
features. More examples of the resulting segmentation
masks for this approach are shown in Figure 15 and Fig-
ure 16. The first one presents different slices from two
of the best segmented cases (one for each domain). In
the OOD case, the lesion load was big, and the model
managed to detect most of the lesions and have a good
overall segmentation. As for the in-domain case, the ab-

sence of domain shift allowed even smaller lesions to be
segmented and detected. However, the model failed in
other cases, as seen in Figure 16. Here the model missed
small lesions in both in- and out-of-domain cases, high-
lighting the necessity for additional optimization of the
model

Another added module in the ResUNet is the AG.
From Figure 17, it can be seen that the attention mech-
anism helped the model (without dropout) focus its fea-
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Figure 16: Qualitative results for both in-domain and out-of-domain cases, showing segmentation outputs of different slices using the ResUNet
SNR model. Both cases were among the ones getting the lowest metrics.

tures a little more on the main important regions of the
images, corresponding to lesions. Even though the over-
all obtained results are lower than the ResUNet, this ap-
proach still managed to achieve the lowest FPF scores,
making it among the most reliable ones. Its robustness
can also be seen through the challenge metric (nDSC
R-AUC) in Table 2. This suggests that the model, if fur-
ther optimized and added with SNR module, might be
more fit to tackle the small lesions issue while facing
the domain shift.

Considering the inference-time constraint of the chal-
lenge, histogram-matching method was tested with the
ResUNet model. It achieved comparable results with
the others, which further confirms the simplicity and ef-
fectiveness of HM. However, this approach is still prone
to unstability as it relies on the selected image for HM,
and thus might fail in some other cases.

Moving on to the VAE based models, comparing the
results between SegResNet and SegResNetVAE shows
a little improvement when the VAE branch is added.
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Figure 17: Comparison between segmentation masks with and with-
out attention. (a) input patch, (b) attention map, (c) feature map with
attention, (d) feature map without attention, (e) GT, (f) segmentation
mask with attention, and (g) segmentation mask without attention.

This confirms that the VAE branch allows to regularize
the encoded features and hence, helps achieving better
performances. However, it is not as performant as Re-
sUNet, which might be due to the default normalization
layer being the group norm instead of IN.

As for ResUNetVAE, even though it achieved a bet-
ter sensitivity score (detection), the DSC are lower com-
pared to SegResNetVAE. This might point out the im-
portance of training both models (reconstruction and
segmentation) jointly for a better regularization of the
encoded features towards a good semantic segmenta-
tion.

Regarding the transformers-based approaches, the
underperformance of the UNETR might be explained by
the complexity of the network and its need for a larger
amount of data to train on. In addition, the size of the
input images are rather small patches, while the trans-
former is supposed to be efficient for capturing global
multi-scale information. This information might be lost
when using patches as the transformer will further di-
vide them into tokens.

Nonetheless, SwinUNETR still managed to outper-
form UNETR, probably thanks to the efficiency of the
SwinTransformers for focusing on nearby patches and
capturing local context within each input patch.

At the end, the different approaches performed quite
similar to each others, with the ResUNet based ones
leading in most metrics and having higher statistical sig-
nificance. In a DG point of view, the ResUNet SNR is
the model that mainly tackles the domain shift prob-
lem, and its limited efficiency could be linked to the
training data. In fact, this hypothesis can be supported
by the results obtained when testing the model trained
on the challenge data directly on the VH dataset. The
DSC scores dropped to the values of 37.37 ± 21.51 and
44.71 ± 20.91 in segmentation and detection, respec-
tively. The VH dataset contains smaller lesion loads,
and thus the model did not manage to generalize well.
Also, when more data from the VH dataset was added

for training, the results increased a little bit, as more ex-
amples of small lesions were provided to train the model
on.

With that being said, there is still a clear need for ro-
bust models for small lesions that are more frequent in
MS, as well as the need to highlight the detection met-
rics and sensitivity, which are far more important for
doctors in this kind of diseases.

5.2. Limitations and future work

It is clear that the easy way to achieve the best do-
main generalization is to include all possible variations
of the data when training a model. As it is not practi-
cally feasible with the scarcity of medical data and the
lack of representative data that capture the variabilities
across domains and MRI scanners, we can only bypass
these limitations by working on improving the models
with the available data in hand.

From this project, we can note that the heterogene-
ity of the disease, in terms of lesion variations in shapes
and sizes, considerably affects the results and must be
tackled jointly with the domain shift problem. For this,
a better optimization of the proposed models is vital,
by tuning the hyperparameters and including more ad-
equate data transforms and augmentation. This latter
can be based on the MixUp strategy and is kept for a
future study. We also plan to make use of pre-trained
models from MONAI and include more modalities in
training for a more robust solution, as well as exploring
other feature disentanglement methods to further high-
light the content part and normalize the style ones.

6. Conclusions

In conclusion, several approaches have been ex-
plored, taking advantage of some state-of-the-art strate-
gies in DG. The methods included architectures based
on ResUNet, VAE and transformers. According to the
results, it appears that residual UNets are still favorable
for the imposed constraints, and perform even better
when added with the SNR module. The effectiveness
of its relevant feature learning allowed to capture the
essential content of the images, yielding in a relatively
good segmentation. However, it is important to note that
there is still need for improvement in the lesion detec-
tion capability of the model, mainly in detecting smaller
lesions that were frequently missed.

Nonetheless, during the Shifts challenge 2023, the
ResUNet SNR model still proved its efficiency and
made it among the top solutions in the leaderboard, al-
lowing the team to reach the 4th position among all par-
ticipants.

At the end, despite the presence of domain shifted
data, MS lesion segmentation remains a challenging
task due to the inherent heterogeneity of the disease and
the lack of representative data that encapsulates these
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variabilities. Therefore, more robust architectures and
optimization techniques must be explored to surpass the
current results.

Acknowledgments

I would like to thank my supervisors Dr Xavier Lladó
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Lladó, X., Oliver, A., Cabezas, M., Freixenet, J., Vilanova, J.C.,
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Abstract

A significant number of women are diagnosed with breast cancer each year. Early detection of breast masses is
crucial in improving patient prognosis and survival rates. In recent years, deep learning techniques, particularly
object detection models, have shown remarkable success in medical imaging, providing promising tools for the early
detection of breast masses. This thesis uses transfer learning methodologies to present an end-to-end breast mass
detection and classification pipeline. Our approach involves a two-step process: initial detection of breast masses
using variants of the You Only Look Once (YOLO) object detection models, followed by classification of the detected
masses into benign or malignant categories. We used a subset of OPTIMAM (OMI-DB) dataset for our study. We
leveraged the weights of RadImageNet, a set of models specifically trained on medical images, to enhance our object
detection models. Among the publicly available RadImageNet weights, DenseNet-121 coupled with the yolov5m
model gives 0.718 mAP at 0.5 IoU threshold and a True Positive Rate (TPR) of 0.97 at 0.85 False Positives Per Image
(FPPI). For the classification task, we implement a transfer learning approach with fine-tuning, demonstrating the
ability to classify breast masses into benign and malignant categories effectively. We used a combination of class
weighting and weight decay methods to tackle the class imbalance problem for the classification task.

Keywords: , Breast Mass Detection, Breast Mass Classification, Breast Cancer, RadImageNet, YOLO Object
Detection, Transfer Learning, Computer Aided Diagnosis

1. Introduction

Breast cancer is a significant public health concern
and one of the most prevalent cancers affecting women
predominantly. It is the second leading cause of can-
cer death among women, following lung and bronchus
cancer. (Mattiuzzi and Lippi, 2019) In the year 2022,
it attributed to 31% of all women’s cancers. Despite
advances in screening and treatment, breast cancer re-
mains challenging to diagnose, making early detec-
tion and prevention critical to reducing mortality rates.
(Siegel et al., 2023)

One of the primary methods for detecting breast can-
cer is through mammography screening, which involves
taking X-ray images of the breast to visualize the inter-
nal structure of the breast. Early mammography screen-
ing for breast cancer is a widely used clinical procedure.
By enabling the detection of breast cancer in its initial
stages, when it is more manageable, and the chances for

effective treatment are higher, mammography screen-
ings significantly contribute to reducing breast cancer
mortality rates.(Tabár et al., 2018). Full field digital
mammography (FFDM) clearly depicts low-contrast le-
sions in dense breasts.

Breast masses, also known as breast lumps, are
swellings, bulges, or bumps in the breast that differ from
the surrounding tissue. They vary significantly in size,
shape, and texture. These masses, such as fibroadeno-
mas or cysts, can be benign (non-cancerous), and some
can be malignant (cancerous). Regarding their relation-
ship with breast cancer, not all breast masses indicate
malignancy. However, they are often the first notice-
able symptom of breast cancer. Therefore, any new or
unusual breast mass suggests medical evaluations.

Figure 1 shows that breast masses occasionally
present themselves in a way that distinctly separates
them from the surrounding breast tissue, enabling a
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Figure 1: Examples of some breast masses visualized in mammo-
graphic images within a distinctive bounding box.

trained radiologist to identify these abnormalities eas-
ily. However, the detection of breast masses is not al-
ways a straightforward task. At times, the anomalies
may be subtly embedded within the breast tissue, mak-
ing it challenging for even experienced radiologists to
distinguish them (Evans et al., 2016). Additionally, the
variety in the shape, size, and density of breast masses
further complicates their identification. Some masses
may appear as tiny specks or calcifications, while oth-
ers might present as larger, irregularly shaped struc-
tures. (Sampat et al., 2005) The characteristics of these
masses can be highly variable. This heterogeneity in
presentation often makes it difficult to consistently de-
tect breast masses, emphasizing the need for advanced
imaging techniques and tools to aid in accurate diagno-
sis.

This thesis proposes an approach to breast cancer
diagnosis by developing a computer-aided diagnosis
(CAD) system. This system aims to detect and clas-
sify masses present in mammography images from the
OPTIMAM (OMI-DB) dataset. To accomplish this,
state-of-the-art object detection algorithms, particularly
YOLO(You Only Look Once) based algorithms are uti-
lized to detect and localize breast masses accurately.

In addition, the thesis leverages the RadImageNet-
trained weights. The research uses weights initialized
by the MS COCO dataset along with RadImageNet
dataset weights. MS COCO is an object detection and
captioning dataset known for its high-quality annota-
tions and diversity of object categories. It is an ideal
choice for weight initialization in object detection tasks
(Lin et al., 2014) . Alongside, the RadImageNet dataset
comprises five million professionally annotated medi-
cal images for effective transfer learning (Mei et al.,
2022). Consequently, the detected masses are further
classified into a respective benign and malignant class
as it is crucial for making informed decisions regarding
patient treatment plans.

2. State of the art

Current clinical methods for breast mass detection
are largely based on radiologist interpretation of mam-

mographic images. Radiologists use various indicating
factors such as the shape, margin, and density of ab-
normal tissue to determine the presence of mass (Se-
chopoulos et al., 2021). In some cases, computer-aided
diagnosis (CAD) systems were used. These systems
are designed to assist radiologists in identifying suspi-
cious areas within mammograms that could represent
masses, calcifications, or other abnormalities of breast
cancer. These systems are practical to reduce oversight
errors, typically for inexperienced radiologists. While
some studies supported the benefits of CAD in enhanc-
ing cancer detection, others raised concerns about in-
creased false-positive rates (Zahoor et al., 2020).

The rise of deep learning, machine learning, and ar-
tificial neural networks has greatly contributed to the
effective implementation of CAD systems. In the past
few years, deep learning models have been increasingly
used to detect and classify breast masses (Rodriguez-
Ruiz et al., 2019). Various deep learning architectures,
mainly convolutional neural networks (CNNs) and, in
recent times, transformer-based models, are now being
used for breast mass detection and classification tasks.
Current research in this area is focused on improving
the accuracy of these deep learning models and inte-
grating them into clinical workflows. Transfer learning,
where models pre-trained on large, diverse datasets are
fine-tuned on specific tasks, is being actively explored
to leverage the power of deep learning even when med-
ical imaging datasets are relatively small. (Shin et al.,
2016)

For breast mass detection, various CNN-based object
detection algorithms have been proposed. (Akselrod-
Ballin et al., 2019) proposes Faster R-CNN model to de-
tect breast masses by classifying the dataset into benign,
malignant, and other categories. The model achieves
an area under the curve (AUC) of 0.91 (95% CI: 0.89,
0.93), with a specificity of 77.3% (95% CI: 69.2%,
85.4%) at a sensitivity of 87%.

Convolutional Neural Networks (CNNs) have been
extensively employed to classify breast masses, partic-
ularly in the Digital Database for Screening Mammog-
raphy (DDSM) dataset (Lévy and Jain, 2016) applied
CNNs to classify breast masses in the DDSM dataset
using different CNN architectures, specifically shallow
CNN, AlexNet, and GoogLeNet.

(Yan et al., 2021) used You-Only-Look-Once
(YOLO) region proposals for effective detection of
breast masses in INbreast and DDSM-CBIS (Digital
Database for Screening Mammography) datasets using
both patch level and dual view mammographs. In this
study, they integrated the mass matching technique and
achieved 94.78% as Area Under the Curve(AUC) score
for detection and a classification accuracy of 0.87.

(Agarwal et al., 2020) paper used a subset of OMI-
DB dataset and applied Faster-RCNN model in a in
Full-Field Digital Mammograms (FFDM). In this study,
the detection model was tested on INbreast dataset. In
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the following dataset it was managed to achieve a true
positive rate of 0.87 at 0.84 false positive per image
(FPPI). This study serves as one of first research to
benchmark on large-scale OPTIMAM Mammography
Image Database (OMI-DB).

(Betancourt Tarifa et al., 2023) showcases the poten-
tial of transformer models, when combined with convo-
lutional layers for prediction tasks, to achieve remark-
able results. This study uses multi scale swin trans-
formers as a backbone model along with Representa-
tive Points and the Deformable Detection Transformer
(DETR). This research notably achieved a high TPR of
0.903 at 0.8 FPPI, demonstrating the efficacy of the pro-
posed method. It importantly underlines the potential of
transformer models, when combined with convolutional
layers for prediction tasks, to achieve remarkable re-
sults. Providing a strong foundation for future research
to explore and leverage the full potential of transformers
in the field of medical image analysis.

The work presented by (Ryspayeva and Molinara,
2022) proposes a two-stage methodology for the detec-
tion and classification of breast masses in OPTIMAM
(OMI-DB) dataset. For breast mass detection, the au-
thor used RetinaNet variation of ResNet backbones
alongside different weight initialization mainly Ima-
geNet ,COCO weights and model trained from scratch.
Additionally, the study emphasized not only on ana-
lyzing the whole mammograph but also patches taken
from the mammograms images. The results shows a
True Positive Rate (TPR) of 0.959 at 0.84 False Posi-
tives Per Image (FPPI) when using the RetinaNet with
the ResNet151 backbone and ImageNet weights.

3. Material and methods

3.1. Dataset

The OPTIMAM Mammography Image Database
(OMI-DB) is a collection of mammography images.
The database The collection includes digitized mam-
mograms that have been gathered from various United
Kingdom(UK) hospitals and clinics. It includes full
annotations for each image, including the radiologist’s
notes, patient information, and biopsy results. Cur-
rently, there are 2.5 million images gathered from
173,319 women from three main UK breast screening
centers. OMI-DB dataset may vary based on the spe-
cific access agreement and version. Generally it in-
cludes digital mammograms captured from the medi-
olateral oblique (MLO) and craniocaudal (CC) views
(Halling-Brown et al., 2021).

For this particular study, we have a total of 7,629 im-
ages. 3,529 of the mammograms are identified as hav-
ing breast masses, and the remaining 4,100 mammo-
grams have no breast masses.

For the breast mass detection task only the cropped
region with the breast area is used, as it can be

Figure 2: Class Distribution in the dataset

seen in the Figure 3. The dataset consists both left
and right mediolateral oblique (MLO) and craniocau-
dal(CC) views.

Each image with a breast mass has a correspond-
ing CSV file containing the ground truth annotation for
the region of the mass. This annotation is provided in
the form of coordinates representing the top-left and
bottom-right points of the mass region, denoted as (x1,
y1, x2, y2). These coordinates serve to draw the bound-
aries of the identified breast mass, allowing for precise
localization and further analysis. By associating each
image with its respective CSV file, the dataset provides
essential information for accurately interpreting and un-
derstanding the characteristics of breast masses in the
images.

3.2. Bounding Box Conversion

At the beginning of our study, we were provided with
ground truth bounding boxes formatted in accordance
with the Pascal VOC dataset. The Pascal VOC format
describes the bounding box location using four coordi-
nates: the minimum x (x min) and y (y min) values and
the maximum x (x max) and y (y max) values. This for-
mat essentially provides the top-left and bottom-right
corners of the bounding box.

[
x min, y−min, x−max, y−max

]

In the YOLO format, each bounding box is described
using four different parameters: the x and y coordinates
of the box’s center (x center and y center), and the box’s
width and height. In the YOLO format, the x center
and y center values represent normalized coordinates,
indicating the central point of the bounding box rather
than its corners.

[ x−center, y−center, width, height]
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(a) Right CC (b) Left CC

(c) Right MLO (d) Left MLO

Figure 3: Mediolateral oblique (MLO) and Craniocaudal(CC) views
in the dataset

We processed each positive case image individually
to convert these bounding boxes to the required YOLO
format.

3.3. Proposed Method

In this study, our objective is to develop an effective
and robust algorithm for detecting breast masses, focus-
ing on utilizing YOLO (You Only Look Once) based
object detection techniques. YOLO has emerged as a
popular and powerful approach in the field of computer
vision due to its real-time performance and accurate ob-
ject localization capabilities. (Al-Masni et al., 2018)

To achieve our goal, we explored and implemented
various versions of the YOLO algorithm, including
YOLOv5, YOLOv6, YOLOv7, and YOLOv8. Each
version offers distinct architectural enhancements and
optimization strategies, which we carefully evaluated
and compared in our experiments. Our evaluation
consists of various metrics, such as mean average
precision(mAP), precision, recall, and true positive
rate(TPR) per false positive per image(FPPI), to ensure
the assessment of each algorithm’s performance.

Our proposed method involves a two-step procedure:
breast mass detection followed by a classification task.
The object detection stage is mainly uses variants of
YOLO models. As shown in Figure 4, the first step in-
volves feeding the mammogram images into the YOLO
model. This model identifies the regions in the images

containing potential breast masses. A typical YOLO
model has three main components. The backbone, neck,
and the prediction head. Each of these components will
be discussed later in detail. Once the areas of interest
(potential breast masses) have been identified, these re-
gions are cropped from the original images, preparing
them for the next stage.

Following the object detection phase, the regions of
interest, which are the cropped breast mass regions, are
directed into the classification stage, as it can be seen
in Figure 5. The objective of the classification stage
is to distinguish between benign and malignant breast
masses. In order to do this, we used transfer learning,
specifically through the fine-tuning of pre-trained mod-
els. We used a range of pre-trained models for the clas-
sification task including DenseNet 121, Inception V3,
VGG 16, AlexNet, ResNet 18, and ResNet 50.

3.4. YOLO

YOLO (You Only Look Once) object detection algo-
rithm is a widely used one-stage object detection algo-
rithm. As opposed to two-stage detectors, YOLO per-
forms object detection in one go. The input image is
split into grids, and each cell in the grid is responsi-
ble for predicting objects within it. It simultaneously
predicts the bounding boxes and class probabilities for
these boxes. (Redmon et al., 2016)

Two-stage detectors, such as R-CNN, Fast R-CNN,
and Faster R-CNN, approach object detection in two
primary steps. The first stage involves generating a set
of proposal regions within the image where the object
might be located, and this is usually done using a re-
gion proposal network. Once these candidate regions
are proposed, the second stage involves extracting fea-
tures from them and classifying them to identify the ob-
ject. (Du et al., 2020)

3.5. YOLOv5

Yolov5, as its former variant architecture, uses the
darknet architecture. Mainly the model’s architecture
is a composition of the backbone, neck, and head. The
backbone is a CSP-Darknet53 that is responsible for ex-
tracting relevant features from the input image. Then
the extracted features will pass to the next component
of the architecture. The neck, SPPF (Spatial Pyramid
Pooling Fast) serves as the transitional component. It
uses multiple convolutional layers and pooling layers
to create a multiscale feature map. This is useful for
detecting objects of different sizes in the image. The
head, using the previous YOLOV3 head, is the predic-
tion layer where the actual object detection occurs. It
uses the multiscale feature map generated by the neck
to make predictions about the presence and location of
objects in the input image. (Jocher et al., 2020) At
this stage bounding box coordinates for each detected
object and the object class is predicted. It also offers
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Figure 4: Proposed method for breast mass detection

Figure 5: Proposed method for classification task

multiple versions of the model YOLOv5n, YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x that vary in size
and computational requirements.

Figure 6: YOLOV5 Architecture

In this study, we used YOLOv5 models and, specif-
ically, yolov5s, yolov5m, yolov5l and yolov5m6 pre-
trained models, along with RadImageNet weights. Each
of these models is differentiated by their computational
size and capacity, with ’s’ referring to a small model,
’m’ to medium, ’l’ to large, and ’m6’ being a medium-
sized model in the updated version six.

As an extension to the foundational YOLOv5 model,

we also used a variant incorporating Transformer
architectures right on top of the conventional YOLOv5
structure. YOLOv5 Transformer Prediction Head
(TPH) design modification helps enhance the overall
performance of the object detection model by allowing
it to more effectively learn and process contextual
information in the image data. Due to their attention
mechanism, transformers can capture interactions
between distant pixels, thereby improving the model’s
ability to detect objects, especially in complex scenes
where traditional convolutional methods may struggle.
(Zhu et al., 2021)

Yolov5 Models Parameters
YOLOV5S Image size 1024

Batch size 16
Epochs 100

YOLOV5M Image size 1024
Batch size 16

Epochs 100
YOLOV5M6 Image size 640

Batch size 32
Epochs 100
Freeze 12 layers

YOLOV5M6 Image size 1280
Batch size 8

Epochs 100
YOLOV5M6 Image size 1536

Batch size 2
Epochs 100

Configuration TPH
YOLOV5L Image size 1024

Batch size 16
Epochs 100

Alongside various YOLOv5 models, we used RadIm-
ageNet weights. The YOLOv5 models are typically
trained on the MS COCO dataset, which comprises
a wide variety of general-purpose images. Whereas
RadImageNet is exclusively trained on medical image
datasets. This characteristic led us to assume that using
RadImageNet could potentially enhance our model’s
performance in detecting breast masses, as it has already
been exposed to and trained on medical data during its
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development phase. By leveraging these weights, the
model is provided with a more suitable initial configura-
tion, setting it on the right path toward learning the fea-
tures of breast masses. This pre-training could reduce
the necessary training time and potentially improve the
final performance of the model.

Our study further tested our hypothesis about the
benefit of using RadImageNet weights with more
specific models: ResNet50, DenseNet121, and Incep-
tionV3. These models are trained on a small subset of
around 1.4 million medical images (Mei et al., 2020).
We used these models’ weights instead of training them
from scratch or using the pre-trained weights from MS
COCO dataset.

RadImageNet Yolov5 Models Parameters

InceptionV3 YOLOV5M Image size- 640
Batch size - 16
Epochs- 300

DenseNet121 YOLOV5M Image size- 640
Batch size - 16
Epochs- 300

ResNet50 YOLOV5M Image size- 640
Batch size - 16
Epochs- 300

3.6. YOLOV5-Transfomer Prediction Head

The Transformer Prediction Head variant of
YOLOv5 is another variation and a modified version of
the YOLOV5 models’ heads. In a nutshell, it integrates
a transformer prediction head in place of the conven-
tional convolutional layers in YOLOv5’s prediction
stage. This was inspired by the recent successes of
transformers compared to CNN. The Transformer
Prediction Head follows the same core architecture as
YOLOv5, retaining the basic features of the YOLO
family. It comprises of three main components: a
backbone for feature extraction, a neck for multi-scale
feature aggregation, and a prediction head for object
detection. Like other YOLO models, the backbone
is responsible for extracting features from the input
images. It is generally a deep convolutional neural
network (CNN) that can process an image and output
a set of feature maps that encapsulate the salient infor-
mation in the image. Followed by the neck, where it
merges the feature maps from the backbone at multiple
scales. This enables the model to detect objects of
various sizes present in the image. The prediction head
is where this variant diverges from the conventional
YOLO architecture. Instead of using convolutional
layers, it uses a transformer network for prediction.
The transformer prediction head uses self-attention
mechanisms to model the various relationships between

different image parts. This helps understand complex
spatial dependencies and improves the model’s ability
to locate and classify objects in the image (Zhao et al.,
2023).

Figure 7: YOLOV5 with four transformer prediction head architecture

One of the significant advantages of using a trans-
former in the prediction head is its ability to model long-
range dependencies. Convolutional layers typically fo-
cus on local features, and while pooling layers can help
capture larger contexts, they may miss out on specific
long-range relationships. On the other hand, transform-
ers are explicitly designed to handle these kinds of de-
pendencies, making them a powerful tool for tasks like
object detection.

3.7. YOLOV6
YOLOv6 is another addition to the YOLO series.

It aims to optimize the YOLO framework further by
incorporating different scales among various models.
Smaller models use a single-path backbone, while larger
models were built upon efficient multi-branch blocks.
This strategy is aimed at optimizing the trade-off be-
tween speed and accuracy. Another characteristic of
YOLOv6 is the use of a self-distillation strategy (Li
et al., 2022). The strategy was utilized for both the clas-
sification task and the regression task. The aim was to
enable the student model to learn more efficiently from
the teacher and labels during all training phases.

In terms of network design, the backbone of YOLOv6
differed based on the size of the models. For smaller
models, the backbone during the training phase was the
RepBlock. Larger models use a CSP block called CSP-
StackRep Block. The neck is built on the Path Aggrega-
tion Networks(PAN) model. Followed by Efficient De-
coupled Head.

3.8. YOLOV7
The YOLOv7 series focuses on optimizing both the

architecture and the training process to maximize per-
formance and efficiency. It uses Extended Efficient
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Figure 8: YOLOV6 Architecture

Layer Aggregation Networks (E-ELAN). E-ELAN is
designed to maximize learning capabilities without dis-
rupting the gradient path, which can improve efficiency
and performance. This architecture employs an ex-
pand, shuffle, merge approach to guide the network’s
learning (Wang et al., 2023). Regarding model scal-
ing, YOLOv7 introduces a new method specifically de-
signed for concatenation-based models. This approach
is designed to balance the impacts of scaling on different
aspects of the model, maintaining optimal structure and
performance across different scales. It also implements
a unique deep supervision strategy with two kinds of
heads: an auxiliary head to assist in training and a lead
head responsible for the final output. This arrangement
helps improve the model’s overall performance.

3.9. YOLOV8

YOLOv8 is another new state-of-the-art object detec-
tion model. Its architecture is divided into two primary
components: the backbone and the head. The backbone
of YOLOv8 is an adaptation of the CSPDarknet53 ar-
chitecture. It uses a network of 53 convolutional lay-
ers in cross-stage partial connections. In the head, the
model integrates a self-attention mechanism. It evalu-
ates the relative importance of various features, adjust-
ing its attention according to the relevance of these fea-
tures to the task. This selective attention allows for more
refined object detection, as the model can better detect
objects of interest from background noise. YOLOv8
also enhances spatial attention, feature fusion, and con-
text aggregation modules. Spatial attention helps the
model focus on specific locations in the image space
likely to contain objects of interest. Feature fusion en-
ables the model to combine information from different
types and levels of features, and context aggregation al-
lows the model to integrate contextual information from
the surrounding image, improving its ability to differen-
tiate objects from their backgrounds.

3.10. Evaluation Metrics

There are various performance evaluation metrics
for object detection tasks, Several evaluation metrics
are used to give a comprehensive understanding of the

model’s performance (Padilla et al., 2021). Our anal-
ysis for the breast mass detection methods is based on
some of these commonly known metrics applied to test
datasets. We mainly used precision, recall, and mean
average precision (mAP) along with the measure of true
positive rate(TPR) at a threshold of 0.85 false positives
per image (FPPI)

Below, we will describe four commonly used evalua-
tion metrics in object detection tasks: Precision, Recall,
Mean Average Precision (mAP), and Intersection Over
Union (IoU).

Precision measures the accuracy of the detected in-
stances. It quantifies the number of correct positive pre-
dictions made. Specifically, it is the ratio of the cor-
rectly predicted positive observations (True Positives)
to the total predicted positive observations, which in-
cludes both True Positives and False Positives (incor-
rectly identified as positive).

Precision = TP
TP + FP

Recall/Sensitivity/True Positive Rate quantifies the
model’s ability to find all the relevant instances in a
dataset. It is the ratio of correctly predicted positive ob-
servations to all actual positive observations in the data.

Recall = TP
TP + FN

Mean Average Precision (mAP) is a single number
summary of the average precision at varying recall
levels. It’s one of the most important evaluation metrics
for checking the accuracy of an object detection model.
mAP considers both Precision and Recall to compute
the score. For every predicted bounding box, the
Average Precision (AP) is calculated, and mAP is the
mean of APs for all classes.

Intersection Over Union (IoU) is a measure of
the overlap between ground truth (Bpt) and predicted
bounding (Bgt) boxes. It is used as a criterion to de-
cide if a prediction is a True Positive, False Positive, or
False Negative. The IoU of two bounding boxes is cal-
culated as the area of their overlap divided by the area
of their union. (Padilla et al., 2021)

IOU =
area

(
Bp ∩ Bgt

)

area
(
Bp ∪ Bgt

)

4. Results

In this section, we will discuss in detail the per-
formance of the different YOLO models and versions
that we have utilized in the process of detecting breast
masses. we will deal with the specific performance of

11.7



Breast Mass Detection and Classification using Transfer Learning on OPTIMAM Dataset through RadImageNet
weights 8

each of these models in our task and analyze the detec-
tion accuracy, classification precision, recall, and F1-
score. The performance of these models will be com-
pared with each other, providing us with a clear idea
about which model performs the best in the context of
breast mass detection and classification.

4.1. Breast Mass Detection

The results obtained from the various trained models
of YOLOV5 for breast mass detection are summarized
in the table below. The four performance metrics used in
the analysis include Precision, Recall, mAP@50 (mean
average precision at Intersection over Union (IoU) over
0.50), and TPR at FPPI of 0.85 (True Positive Rate
at a False Positive Per Image rate of 0.85). In ta-
ble 1, YOLOV5m performed best in terms of preci-
sion, achieving a score of 0.694. Precision measures
the proportion of correctly predicted positive observa-
tions to the total predicted positives. Regarding re-
call metrics, the DenseNet121 model trained on the
RadImageNet dataset with the YOLOV5m architecture
performed the best, achieving a recall of 0.713. Re-
call measures the proportion of correctly identified pos-
itive cases from all actual positive cases. Looking
at mAP@50, the DenseNet121 model trained on the
RadImageNet dataset with YOLOV5m again stands out,
achieving a mAP@50 of 0.718. The true positive rate at
an FPPI of 0.85 is highest for the DenseNet121 with
a value of 0.97. In conclusion, based on the metrics,
the DenseNet121 model trained on the RadImageNet
dataset with YOLOV5m seems to outperform the other
models in this task. This model appears to provide a
good balance of precision and recall, leading to better
overall performance in detecting and classifying breast
masses.

Our experiments with the DenseNet121 model
trained on the RadImageNet dataset and subsequently
applied to breast mass detection have shown good re-
sults. A visual representation of these results is illus-
trated in the Figure 10.

In our experiment, we examined the performance of
the YOLOv5 model with a Transformer prediction head,
coupled with RadImageNet DenseNet 121 weights, to
evaluate its efficiency in detecting breast masses, as
shown in Figure 11. We achieved a True Positive Rate
(TPR) of 0.89 at a False Positive Per Image (FPPI)
threshold of 0.85.

Yolov5 transformer prediction head model result,
when compared with another variant of the YOLOv5
model, which utilizes the DenseNet121 weights from
RadImageNet, shows a notable performance difference,
as can be seen in Figure 12. The YOLOv5 model,
when paired with DenseNet121 weights, outperformed
the Transformer prediction head model variant by yield-
ing the highest performance in our tests. It achieved a
TPR of 0.97 at the same FPPI threshold of 0.85.

Figure 9: Example of detected breast masses with yolov5m with
RadImageNet-DenseNet121 weights

Figure 10: FROC Curve for YOLOV5 all trial
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Precision Recall mAP@50 TPR at FPPI 0.85

YOLOV5s 0.619 0.537 0.556 0.93
YOLOV5m 0.694 0.609 0.600 0.88
YOLOV5l 0.616 0.544 0.533 0.90

YOLOV5m6 0.636 0.606 0.588 0.85
YOLOV5m6 Frozen Layer 0.641 0.529 0.534 0.93

YOLOV5m6 Transformer Head 0.652 0.551 0.568 0.87
RadImageNet InceptionV3 YOLOV5m 0.605 0.606 0.557 0.88

RadImageNet ResNet50 YOLOV5m 0.605 0.606 0.557 0.88
RadImageNet DenseNet121 YOLOV5m 0.678 0.713 0.718 0.97

Table 1: YOLOV5 all trained models result

Figure 11: FROC Curve for YOLOV5-transformer prediction head
trial

This performance gap highlights model architec-
ture’s significant impact on detection performance.
It indicates that the YOLOv5 model combined with
DenseNet121 weights performs more efficiently in de-
tecting breast masses, providing more accurate results
than the variant that uses a transformer prediction head.
It’s important to note that while transformers have
shown promising results, their performance in object
detection tasks might vary depending on the dataset and
problem context.

The area under the Precision-Recall curve mAP of
the yolov5 transformer prediction head along with
RadImageNet-DenseNet121 weight yields 0.51 as it can
be shown in Figure 10

In our experiment with the YOLOv6 object detection
model, we used the YOLOv6l6 model, which is bet-
ter performing due to its larger architecture. The orig-
inal YOLOv6l6 had reached a mean Average Precision
(mAP) of 57.2 at an Intersection over Union (IoU) of
0.5 on a COCO dataset. After fine tuning the model and
running it on for 100 epochs we got an mAP of 0.625 at
0.5 IoU.

Figure 12: Comparision between Yolov5 with RadImageNet-
DenseNet121 weights vs Yolov5 transformer prediction head along
with RadImageNet-DenseNet121 weights

Figure 13: Precision vs Recall curve for Yolov5 transformer predic-
tion head on test dataset
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Precision Recall mAP@50 TPR at FPPI 0.85

YOLOV5-Transformer Prediction Head 0.558 0.540 0.510 0.89

Table 2: YOLOV5-Transformer Prediction Head result on test dataset

Recall mAP@50

YOLOV6l6 0.601 0.625

There are six models provided by YOLOv7, all of
which were trained on the MS COCO dataset. Out
of these, we choose the YOLOv7-E6E model. It’s the
largest as well as it is also more accurate compared to
the rest of the models, which is significantly important
when it comes to choosing a model for this study. It
is important to highlight that the performance benefits
of YOLOv7-E6E come at the expense of speed. As
our work with the model demonstrated, it is relatively
slower than the other options available. For instance, a
run of 100 epochs took over 72 hours to complete. How-
ever, given the superior accuracy of the YOLOv7-E6E,
the trade-off between speed and accuracy was accept-
able in the context of this study.

We also trained the YOLOv7-E6E model with an
initialized weight from RadImageNet - DenseNet121.
This strategy was adopted to evaluate and compare the
performance of the YOLOv7-E6E model against the
RadImageNet dataset. The results show that the per-
formances of the RadImageNet - DenseNet121 and the
YOLOv7-E6E models were closely matched. However,
the YOLOv7-E6E model exhibited slightly better per-
formance.

Figure 14: FROC Curve for YOLOV7 trial

The Precision-Recall curve is a vital tool for under-
standing the performance of an object detection model.

It is a plot of the precision and the recall for different
thresholds. A model with perfect precision and recall
would achieve a point at the top right corner of the
plot, indicating that it has perfectly classified all posi-
tive instances without making any false-positive errors.
In practice, however, models usually exhibit a trade-off
between precision and recall.

The area under the Precision-Recall curve (AUPRC),
also known as mean average precision (mAP), is a
single-value metric that summarizes the model’s over-
all quality across all thresholds. It considers both pre-
cision and recall at every possible threshold and effec-
tively summarizes the balance between them.

In the context of YOLOv7-E6E’s performance, as
seen in Figure 15, achieving an mAP of 0.618 shows
that the model has a good balance of precision and recall
and is relatively reliable in identifying breast masses.
However, there is still room for improvement as the
mAP value is not very close to 1.0.

Figure 15: Precision vs Recall curve for Yolov7-e6e on test dataset

After integrating the DenseNet121 weights trained
on the RadImageNet dataset with the YOLOv7-E6E
model, a slight decrease in the mean average precision
(mAP) value was observed during our experiments, as
shown in Figure 16.

For the yolov8 trial we used a yolov8X and yolov8l
models, yolov8x is an extra-large size, although it leads
to a relatively slower computational speed, often pro-
vides higher accuracy. The YOLOv8X model’s perfor-
mance has been evaluated, and it has achieved a 0.53
mAP score at 0.5 IoU on the COCO validation dataset.
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Precision Recall mAP@50 TPR at FPPI 0.85

YOLOV7-e6e 0.655 0.632 0.618 0.92
RadImageNet DenseNet121 YOLOV7-e6e 0.677 0.585 0.600 0.91

Table 3: YOLOV7 trained models result on test dataset

Figure 16: Precision vs Recall curve for Yolov7 with DenseNet121
weights

When we applied this model to our dataset, the mAP
results at 0.5 IoU reached 0.579. Figure 17 visually rep-
resents the Precision vs Recall curve for the YOLOv8X
model on our dataset.

Additionally, the yolov8l, a large-sized model, per-
formance is in close comparison to the yolov8x model
with an mAP of 0.563 at 0.5 IoU. The precision vs recall
curve shows the results in Figure 18.

4.2. Breast Mass Classification
This study follows a two-step pipeline, starting with

detecting any masses present in the breast, then the clas-
sification of these detected masses into benign or malig-
nant categories. This approach allows for a more effi-
cient and effective diagnosis, facilitating early detection
and treatment of potential breast cancer cases.

In our approach, we utilized the YOLOV5m model,
trained with RadImageNet DenseNet121 weights, to
initially detect breast masses. This particular model was
chosen due to its outstanding performance compared to
other models. As demonstrated in our detection anal-
ysis, this model exhibited high precision in detecting
breast masses, making it an ideal candidate for this crit-
ical first step.

The identified breast masses were extracted from the
original mammogram images after the detection phase.
This process involves cropping the image around the re-
gion identified as a mass by the YOLOV5m detector.
These cropped sections, each containing a single mass,

Figure 17: Precision vs Recall curve for Yolov8x model

Figure 18: Precision vs Recall curve for Yolov8l model
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Precision Recall mAP@50

YOLOV8X 0.690 0.523 0.579
YOLOV8L 0.673 0.506 0.563

Table 4: YOLOV8X result in test dataset

were then prepared for the next process phase: classifi-
cation.

With a collection of cropped images of detected
breast masses, we moved into the classification phase.
The purpose of this step is to classify each detected mass
as either benign (non-cancerous) or malignant (cancer-
ous). This information is crucial to the subsequent med-
ical procedures, guiding clinicians in choosing treat-
ment and intervention strategies.

The classification model has been trained to recog-
nize the distinguishing features between benign and
malignant breast masses, thereby accurately classifying
new instances. By feeding the cropped images from the
detection phase into this classifier, we were able to gen-
erate a robust, two-step diagnostic tool that both identi-
fies and categorizes breast masses.

In our study, we faced a substantial class imbalance
problem that could potentially impact the performance
of our classification model. This issue is largely at-
tributed to the nature of our dataset, which comprises
a significant number of benign breast masses compared
to malignant cases. Out of the 3363 detected breast
masses, only 312 were benign, while the rest 3051 were
malignant cases. Such class imbalance can lead to a bias
in the classifier towards the majority class, in this case,
the malignant masses.

The class imbalance problem is a well-known chal-
lenge in the field of deep learning, especially in medi-
cal imaging, where the number of positive cases can be
considerably lower than the number of negative cases.
This imbalance can introduce a bias towards the major-
ity class during the training phase, leading to a model
that performs poorly on the minority class. This is a sig-
nificant concern, as the misclassification of malignant
masses could have severe consequences in a clinical set-
ting.

Addressing this problem required implementing sev-
eral strategies to ensure our model performed optimally
despite the imbalance. One of the approaches we em-
ployed was applying class weights during the training
phase. Class weights are a powerful tool in machine
learning that can help to balance out the influence of
each class during training. By assigning higher weights
to the minority class (benign cases in our dataset), we
can increase their impact on the model’s learning pro-
cess, thereby reducing the bias towards the majority
class. Another strategy we implemented was using a
regularization method known as weight decay. Regular-
ization is a technique used to prevent overfitting, which

is a common problem when a model learns to perform
too well on the training data, and as a result, performs
poorly on unseen data. Weight decay works by adding
a penalty to the loss function based on the magnitude
of the weights in the model. This encourages the model
to learn simpler decision boundaries, leading to a model
that generalizes better to new data.

The combined implementation of class weights and
weight decay proved to be a promising solution to our
class imbalance problem. Applying these methods re-
sulted in a less biased model towards the majority class
and performed better on the minority class. This ap-
proach, while not entirely eliminating the imbalance,
significantly resolved its impact on our model’s perfor-
mance.

Figure 19: Breast mass classification dataset

As can be seen in Figure 19, there is a significant
class imbalance in our mass classification dataset.
We based our classification task on a dataset derived
from the ground truth since there were instances of
undetected masses left behind from the detection stage.
Our original dataset comprised 3849 breast masses,
out of which we were successful in detecting only
3363 masses. Consequently, due to the incomplete
detection, we decided to use the entire dataset of 3849
masses for our training and validation. The reason
behind this division was to create a robust model
that could generalize well in the provided data. This
division resulted in a training dataset comprising 2711
images and a validation set with 1138 images. For the
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testing phase of our study, we used the data derived
from the previous detection pipeline, totaling 3363
images. Therefore, the testing data represents the actual
conditions in which the model would work.

Class Distribution

Train Benign - 271
Malignant - 2440

Validation Benign - 101
Malignant - 1037

Test Benign - 312
Malignant - 3051

5. Discussion

In this study, we carried out a two-step approach
for breast mass detection and classification. Pri-
marily, we utilized a variety of YOLO-based archi-
tecture variants for our detection task. By effec-
tively integrating both pre-trained weights on the MS
COCO dataset and leveraging the RadImageNet dataset
weights across several CNN architectures, including In-
ceptionV3, DenseNet121, and ResNet50. For the se-
lection of the detection models, we evaluated an ar-
ray of YOLO variants, including YOLOV5, YOLOV6,
YOLOV7, and YOLOV8. Among the evaluated models,
DenseNet121, initialized with RadImageNet weights
and integrated with the YOLOV5m architecture, stood
out in terms of performance. In this experiment, we got
0.97 TPR at 0.85 FPPI. This is a satisfactory result bal-
ancing between detection accuracy and computation ef-
ficiency, making it an ideal choice for subsequent clas-
sification tasks.

The subsequent breast mass classification phase
was predicated on the detected regions by the best-
performing detection model. Each of the detected breast
masses was further cropped and fed into the classifier
model as a test case. We leveraged transfer learning ar-
chitectures to train the classification task. As there were
some missing masses left undetected from the detection
model. We opted to use the dataset with the annotated
ground truth value for training and validation.

Furthermore, the comprehensive evaluation metrics
deployed in this study support the ability to assess
model performance. Precision, Recall, Mean Aver-
age Precision (mAP), True Positive Rate at False Pos-
itive Per Image threshold of 0.85, and Intersection over
Union (IoU) were calculated to offer a holistic view of

the models’ effectiveness. These metrics provided a ro-
bust framework for model evaluation, ensuring that the
assessment was comprehensive, fair, and objective.

The classification stage of our study posed a chal-
lenge due to a significant class imbalance between the
benign and malignant classes. To resolve this issue, we
implemented class weighting during the training pro-
cess. This approach assigns different weights to the
classes inversely proportional to their frequency. As
a result, the model pays more attention to the less-
represented class during the learning process.

Alongside class weighting, we also applied weight
decay regularization, a common method to prevent
overfitting in deep learning models. This technique adds
a penalty to the loss function based on the size of the
weights, discouraging the model from learning overly
complex patterns that may not generalize well to unseen
data. Despite these adjustments, the class imbalance is-
sue wasn’t fully resolved. Yet, we were able to achieve a
reasonable performance with the VGG16 model, which
attained an accuracy of 0.924 a comparative result in
other evaluation metrics.

6. Conclusions

In conclusion, our work showcases a two-stage ap-
proach for detecting and classifying breast masses,
demonstrating the potential for integrating object detec-
tion models, such as YOLO and it’s variants for breast
mass detection. Moreover, our work underlines the im-
portance of using models trained specifically on medi-
cal images. In our study, the use of the RadImageNet
model, which is specially designed and trained on ra-
diological images, stands out as a particularly effective
strategy. The positive impact of using such domain-
specific models has significant implications for future
medical imaging studies.

For our breast mass detection task, we used transfer
learning. The models were fine-tuned for our dataset,
allowing us to adapt these high-performing models into
the specifics of our task. Although we faced a high
class imbalance in our breast mass detection dataset,
where the benign cases were significantly outnumbered
by malignant cases. we mitigate the problem using class
weighting and regularization approaches.
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Abstract

Computed tomography (CT) is a vital medical imaging modality that provides detailed cross-sectional images of the
human body. CT plays a crucial role in clinical diagnosis, treatment planning, and disease monitoring. However, CT
imaging involves exposing patients to ionizing radiation, which raises concerns regarding potential health risks asso-
ciated with repeated exposure. To address these concerns, we focus on the significance of low-dose CT reconstruction,
which aims to minimize radiation dose while maintaining high-quality image reconstruction. Our proposed frame-
work utilizes an Implicit Neural Representation (INR) approach combined with active projection sampling techniques
to improve the accuracy and efficiency of low-dose and highly ill-posed CT reconstruction. By combining Fourier fea-
ture encoding and incorporating prior terms into a Multi-Layer Perceptron (MLP) fitting process, we achieve optimal
results in scenarios with limited views. Consequently, we select INR as the foundation for our reconstruction approach
and proceed to investigate active sampling methods for sampling projections. Our active sampling study focuses on
comparing greedy approaches for projection sampling and highlights the advantages of non-uniform sampling over
uniform sampling. Through extensive evaluations, we assess the performance of our models on both a Shepp-Logan
type phantom dataset and a Low-Dose Parallel Beam (LoDoPaB)-CT dataset, specifically targeting sparse view cases
as low as 8 views for the Phantom dataset and 25 views for the LoDoPaB dataset. Furthermore, we reveal that the an-
gles chosen for optimal reconstructions exhibit discernible patterns, suggesting a link with the underlying anatomical
structures being reconstructed.

Keywords: Inverse problems, Low dose CT Reconstruction, Implicit Neural Representations, Active Learning

1. Introduction

Computed tomography (CT) is a non-invasive imag-
ing modality that enables the reconstruction of cross-
sectional maps of the scanned object. The process of
tomography involves obtaining a series of projections
of the object being scanned from various angles and
then utilizing reconstruction algorithms to obtain a den-
sity field representation of the object based on these
projections. Ideally, the acquisition process produces
a significant number of uniformly sampled projections
across the angular range for high-quality reconstruction.
Mathematically, the reconstruction algorithms attempt
to solve the inverse problem wherein the unknowns are
the pixel/voxel intensities representing the object, while
the knowns are the projection values. In some cases
such as medical CT scans, reducing the number of pro-

jections is desirable to reduce X-ray radiation exposure
to the patient. However, the lower dose reconstruction is
a challenging problem. To achieve dose reduction, two
acquisition scenarios are commonly employed: sparse-
view tomography, which uses a limited number of pro-
jections, and limited-angle tomography, which samples
within a limited angular range. These tomographic re-
construction problems are severely ill-posed and under-
determined. Under such circumstances, the commonly
used analytical reconstruction method, Filtered Back-
Projection (FBP), becomes obsolete (Zang et al., 2021).

In traditional image reconstruction from limited ac-
quisition, methods have relied on iterative techniques
that incorporate prior knowledge and information (Kim
et al., 2015; Sagara et al., 2010; Tian et al., 2011). These
methods achieve good results but they are computation-
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Figure 1: Framework of the active learning method developed. Initially, k0 projections are sampled at uniformly spaced angles and used to
reconstruct a low-quality representation with the INR in Fig. 5. The Radon transform of this reconstruction is input to the sampler, which suggests
the next angles to be sampled. The suggested angles are then sampled, and the reconstruction process is repeated using all available angles. The
loop is run till the allocated budget is reached.

ally expensive. More recent approaches based on deep
learning (DL) aim to directly learn the mapping between
low-dose, filtered back-projection (FBP) reconstructed
images and high-quality images through paired training
(He et al., 2020; Li et al., 2019; Ye et al., 2018). For su-
pervised deep learning-based reconstruction, the avail-
ability of training data remains an issue. Thus, a self-
supervised framework is desirable (Zang et al., 2021).
Among the data-free methods, reconstruction methods
with Implicit Neural Representation (INR) as a back-
bone have shown promising results in both sparse-view
and limited-angle scenarios (Song et al., 2023; Zang
et al., 2021).

Generally, in a sparse-view setting the projections
are sampled uniformly across the desired angular range.
Uniform sampling is not adaptive to patients as it does
not consider any factor of body representation such as
weight, age, and sex (Shen et al., 2020). We hypothesize
that reconstruction could benefit from active learning of
the projection samples to sample at each progression of
reconstruction. We formulate this problem of the ac-
tive reconstruction as utilizing the sampled projections
at each cycle to obtain a low-quality reconstruction and
utilizing it to suggest the best projection angles for the
next cycle.

In this work, we develop an INR-based reconstructor
and investigate the impact of active sampling of projec-
tions in a non-uniform manner. The major contributions
of the thesis can be summarized as follows:

• We design a self-supervised data-free Implicit
Neural Representation based CT reconstruction
method that incorporates shape priors and achieves
state-of-the-art performance in data-free methods
for sparse-view problems.

• We design an active learning framework for CT re-
construction (Fig. 1) and extend the widely used

Operator Discretization Library (ODL) to work
with non-uniform Radon Transform.

• We investigate the impact of active sampling meth-
ods on CT reconstruction and demonstrate that cer-
tain projection angles might be more informative
to obtain a better reconstruction in a sparse-view
scenario.

2. State of the art

2.1. CT Reconstruction

Researchers have approached the CT reconstruction
problem with a variety of methods such as initial analyt-
ical FBP techniques, iterative reconstruction techniques,
a hybrid of these two approaches, and deep learning
based data-free and learned reconstruction techniques.
A summary of the broad classification of these tech-
niques with advantages and limitations is presented in
Table 2.
Analytical methods. The filtered back-projection
(FBP) method reconstructs CT slices from projection
data by applying a high-pass filter followed by a back-
ward projection step (Willemink and Noël, 2019). The
high-pass filter reduces image artifacts and improves the
contrast and sharpness of the image. FBP produces im-
ages of high diagnostic quality when a large number of
projections are available. However, the low-dose recon-
struction using FBP results in a significant decrease in
image quality with higher image noise and fringing ar-
tifacts. While FBP offers the advantage of shorter re-
construction times, the ability to incorporate model and
prior information, such as in modeling image noise, is
severely limited (Lu et al., 2023).
Iterative and hybrid methods. Iterative reconstruc-
tion methods iteratively refine an initial estimate of the
image to minimize an objective function that measures
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Table 1: Summary of CT Reconstruction Techniques

Reconstruction
Technique

Description Advantages Limitations

Filtered Back
Projection (FBP)

Uses a convolution filter and
back projects the measured pro-
jections.

Fast reconstruction time. Limited prior information can be
applied. Degraded quality in low
dose reconstruction.

Iterative Recon-
struction (IR)

Iterates on an objective function
to satisfy predefined convergence
criteria.

Increased quality images; re-
duced noise and artifacts; can
handle low dose data.

Slow and computationally inten-
sive requires careful optimization
and tuning.

Deep Learning-
based Recon-
struction

Generally data-driven and
learned. In some cases used for
data-free optimization.

Fast. Can produce high-quality
images with reduced noise and
artifacts, and can handle low-
dose imaging.

Computationally expensive,
large data requirement, general-
izability, adversarial attacks.

the difference between the measured projection data and
forward projected data of the current estimate. IR ap-
proaches are particularly well-suited for the ill-posed
problem of low-dose CT reconstruction, as they can
be combined with regularization and prior terms(such
as Total Variation) in an optimization framework (Tian
et al., 2011). This helps to improve the stability and
quality of the reconstructed images, and can also help to
reduce the amount of radiation dose required to obtain
diagnostic-quality images. Total Variation (TV) regu-
larization based Reconstruction is often selected as the
baseline for Iterative methods (Baguer et al., 2020; Tian
et al., 2011; Zang et al., 2021). However, the IR pro-
cess is computationally expensive and requires signif-
icant expertise and optimization to obtain optimal re-
sults.

Deep learning methods. Recently, Deep learning (DL)
based approaches have been developed which achieve
satisfactory performances with fast reconstruction
time. These techniques can be classified based on
the component of reconstruction they are designed to
learn. Post-processing learning employs DL to learn
a mapping function between low-quality, sparse view
or limited angle FBP reconstruction and high-quality
images via paired training. Others are fully learned
algorithms that operate on the projection data and do
not depend on FBP. A category of these end-to-end
methods is learned iterative or unrolling approaches
such as learned primal-dual reconstruction which
replace the operators in primal-dual optimization with
convolutional neural networks (Adler and Öktem,
2018). Fully learned approaches directly learn a
mapping from projection data to the image domain
through a deep network architecture. In scenarios
where training pairs are not available, self-supervised
denoising methods such as Noise2Noise (Wu et al.,
2020) and data-free or limited data methods such as
Deep Image Prior (DIP) have been proposed. In DIP
and variants, a U-Net type generative network takes a
fixed input of noise and performs the reconstruction
iteratively optimizing for the loss of projection data
(Baguer et al., 2020). Inspired by NeRF-like meth-

ods proposed for view synthesis, co-ordinate based
neural representations have also been experimented
with for CT reconstruction (Song et al., 2023; Tancik
et al., 2021; Zang et al., 2021). A summary of Deep
learning-based CT reconstruction methods is presented
in Table 2.

2.2. Implicit Neural Representation.

Implicit Neural Representation (INR) is an alternate
representation of an image as a continuous function
whose input is a pixel coordinate and output is the
image intensity at that pixel (Chen et al., 2021; Tancik
et al., 2021). This function is parameterized by a mul-
tilayer perceptron (MLP). INR has been successfully
employed for applications including 3D shape recon-
struction (Genova et al., 2019), super-resolution (Chen
et al., 2021), novel view synthesis (Mildenhall et al.,
2021) and data compression (Dupont et al., 2021). For
CT reconstruction with implicit representation, Zang
et al. (2021) employ INR wherein an MLP is trained
in a self-supervised fashion alongside a geometry
refinement module to reconstruct a CT image. Due to
promising results with INR, Song et al. (2023) have
developed an INR-based framework with test time
adaptation which does not require access to training
data for hyperparameters tuning. Implicit CT represen-
tation and reconstruction thus show promising results
significantly outperforming existing approaches on
several ill-posed inverse problems of sparse view and
limited angle. Thus, we choose to study and develop
INR based method as our backbone reconstructor for
this project.

2.3. Active Learning.

Active learning is based on the motivation that a ma-
chine learning model can achieve greater accuracy if al-
lowed to select the most informative examples from an
unlabeled dataset (Gal et al., 2017; Konyushkova et al.,
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Table 2: Summary of DL-based CT Reconstruction Techniques. Post-process methods employ Deep Learning to learn a mapping from low-
quality FBP representation to high-quality images. Fully learned methods directly learn a mapping from projection data to reconstruction. Learned
iterative methods learn the operators such as gradients of iterative reconstruction approaches. INR-based reconstruction methods employ neural
representation as an optimization framework.

Method Strategy Training type Summary
FBPConvNet Supervised A U-Net type CNN is trained to reconstruct CT image from sparse view FBP

reconstructed image. (Jin et al., 2017)

Post
process

RED-CNN Supervised U-Net like design with patch based training. (Chen et al., 2017)
MS-D network Supervised Dilated convolutions are used for capturing image features at various scales and

layers are densely connected. (Pelt et al., 2018)
WGAN Supervised GAN denoising with Wasserstein distance and perceptual similarity (Yang et al.,

2018)
iRadonMAP Supervised Neural network with three components: sinogram filtering, back-projection,

and refinement. (He et al., 2020)

Fully
learned

Deep Back Pro-
jection (DBP)

Supervised Each view is back-projected separately to form a stack of back projections
which is input into a CNN. (Ye et al., 2018)

iCT-Net Supervised Neural network with four components: conversion to dense view sinogram,
filtering, backprojection from each view angle, and combination of the partial
images. (Li et al., 2019)

Hierarchical re-
construction

Supervised A hierarchical framework by casting the original problem as a continuum of
intermediate representations. (Fu and De Man, 2019)

Learned
Iterative

Learned GD Supervised Learning of the gradient for gradient-like iterative reconstruction, making use
of prior information, noise model, and a regulariser. (Adler and Öktem, 2017)

Learned PD Supervised Employs CNNs as proximal operators in unrolling a proximal primal-dual opti-
mization method. (Adler and Öktem, 2018)

DIP-based Self-supervised A fixed noise input is passed to U-Net type network to generate the reconstruc-
tion by minimizing the loss on projection data. (Baguer et al., 2020)

INR based

Learnit Pre-training +

self-supervised
Coordinate based neural representation with learned initialization. (Tancik
et al., 2021)

IntraTomo Self-supervised Coordinate based neural representation with a forward-backward splitting
solver-based geometric refinement module. (Zang et al., 2021)

PINER Supervised Two-stage input-adaptation and output-correction framework with implicit neu-
ral representation learning. (Song et al., 2023)

2017). The active learner asks queries (unlabeled in-
stances) to be labeled by an oracle. Uncertainty sam-
pling is one of the simplest methods applied to prob-
abilistic learning models (Lewis, 1995). Query-by-
committee maintains a committee of models each repre-
senting competing hypotheses and trained on the avail-
able labeled set. The instance that exhibits the high-
est level of disagreement among the committee mem-
bers is considered to be the most informative query
(Seung et al., 1992). Another active learning frame-
work is based on expected model change, which prefers
the instances that are likely to have the highest impact
on model parameters (Settles et al., 2007). In another
framework with an estimated error reduction strategy,
the expected future error with the labeling of an instance
is estimated, and then the instance that minimizes that
expectation is selected (Roy and McCallum, 2001). Ac-
tive learning has seen research related to selecting the
most informative examples to label. In medical image
analysis, batch mode active learning methods have been
proposed for medical image classification (Hoi et al.,
2006). More recently, there are also several deep ac-
tive learning methods for applications such as diabetic
retinopathy detection and biomedical image segmenta-

tion (Smailagic et al., 2018; Yang et al., 2017). Yang
et al. (2017) have shown that state-of-the-art segmenta-
tion performance can be achieved by using only 50% of
training data.

However, the research on active CT reconstruction re-
mains limited. There are limited prior work with rein-
forcement Learning (RL) based algorithms where the
sampling policy is learned to select the angles (Shen
et al., 2020; Wang et al., 2022). However, this frame-
work requires plenty of data and involves a lot of com-
putation and training. Thus, the research question on
active CT reconstruction for this project is to investi-
gate the efficacy of simpler active learning techniques
on sampling projections. To be more specific, we in-
vestigate if certain projections are more important than
others if a limited or fixed number of views are to be
sampled for reconstruction.

3. Material and methods

In this section, we first establish a background where
we introduce the terminologies and notations used and
then describe more specific details of our proposed
method. Then, we introduce the experimental setup
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Figure 3: Illustration of Radon transform operator for a ray passing
through 50 degree angle.

which includes the datasets, the evaluation metrics, and
the implementation details.

3.1. Background

3.1.1. Radon Transform
Let (x, y) be the coordinates of points in the plane,

and f be an arbitrary function defined on some domain
D of R2. For any line L in the plane, then the mapping
defined by the projection or line integral of f along all
possible lines L is the 2D Radon transform R of f pro-
vided the integral exists (Deans, 2007). Mathematically,

f̌ = R f =
∫

L
f (x, y)ds, (1)

where ds is an increment of length along L. The do-
main D could be the entire plane or some region of the
plane as shown in Fig. 2.

In 2D images, the Radon transform on an image for a
set of angles is the sum of the intensities of the pixels in
each direction. Fig. 3 depicts a ray passing at a projec-
tion angle of 50 degree, and the blue dots represent the
coordinates used to calculate the line integral.

3.1.2. CT Reconstruction
In CT reconstruction, the projection data represents

the line integral or the attenuation of the x-ray when

𝜙

X
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y 
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D
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Radon 
Transform

Figure 4: Parallel beam geometry with x-ray beam projected at evenly
spaced 300 angles ϕ from 0 to π to obtain sinogram on the right.

passing through a body, which is given by 2D Radon
transform. In this work, we consider a parallel beam
geometry where the x-ray beam is collimated to form
a parallel beam as illustrated in Fig. 4. In the first dia-
gram, four dotted parallel lines represent the rays of the
x-ray beam and the yellow line parallel to it represents
the detector. The yellow line in the second diagram in
Fig. 4 represents the projection that corresponds to the
projection angle in the first diagram. Here, projection
angle ϕ is the angle between the x-axis and the line of
projection. A sinogram is obtained by taking a series of
projections of an object at a series of projection angles.
The goal of CT reconstruction is to perform an inverse
Radon transform to estimate an image from a sinogram.
However, this inverse problem is highly ill-posed when
the reconstruction is to be done from a sparse view of
projections.

The problem can be formulated by Radon operator
A : X → Y from space X to Y and the measured noisy
projection data:

yδ = Ax† + τ. (2)

where yδ is the acquired noisy projection, x† is the
true solution and τ ≤ δ is the noise in the projection.
The objective of CT reconstruction is to obtain an ap-
proximate x̂ for x†.

3.1.3. Implicit Neural Representation (INR)
In INRs, a CT image is represented as a function

whose input is pixel coordinate pi = (xi, yi) and out-
put is the gray-scale intensity value at pi. Let N be the
number of pixels that discretize the image space. This
continuous function is approximated with an MLP net-
work FΘ : p → I and the weights Θ are optimized to
map the pixel coordinates to intensity value.

FΘ (pi) = Ii, i = 1..N (1)

We describe the INR design used in more detail and
also present an overview diagram in Fig. 5.

3.1.4. Gaussian random Fourier feature Encoding.
Positional encoding has been shown to improve the

high-frequency details in applications such as neural
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Figure 5: Architecture used for the implicit neural representation and reconstruction. The input of the network is pixel coordinate and the output is
intensity at that pixel coordinate. Positional encoding (random Fourier feature encoding) is applied to the pixel coordinate before inputting to the
MLP. The intensity values represent the image on which Radon Transform is applied to obtain projections. The loss is calculated on the projections
and backpropagated.

𝜎=0.1 𝜎=3 𝜎=8

Figure 6: Gaussian Fourier features at different σ.

scene rendering, low-dimensional regression, and also
CT reconstruction (Mildenhall et al., 2021; Tancik et al.,
2020; Zang et al., 2021). This encoding is formulated
as a mapping of a low-dimensional point to a high-
dimensional space with a set of sinusoidal features, also
called Gaussian random Fourier features. Formally, the
mapping we use is given by the encoding function γ(.),
which is applied elementwise.

γ(v) = [cos 2πBpi, sin 2πBpi]⊤ (3)

where B ∈ Rm×2 is sampled from Gaussian distribu-
tion N(0, σ2), and m is the encoding size. We visualize
the encoded pixel space visualized at the resolution
(256, 256) in Fig. 6. We can see that the high value
of σ represents higher frequencies and the low value
represents lower frequencies. Thus, the selection of σ
depends on the application. We present the ablation on
the choice of this encoding later in the section 4.4.2.

3.1.5. Active learning
In active learning literature, random sampling is a

common method chosen for comparison with the devel-
oped sampling method. In general, it is not straight-
forward to apply the general active learning methods to
the problem of Active CT Reconstruction. We explain
the framework designed in Section 3.2.2. Here we ex-
plain the sampling methods which are commonly used

n_angles = 10 n_angles = 20 n_angles = 50

Figure 7: Illustration of projection angles sampled by USampler.

as a comparison standard for active learning problems
we consider as our baseline.
Uniform sampler (US). Uniform Sampler is the sim-
plest possible case of the sampler in which evenly-
spaced projections are sampled from the angular range
of 0 to π. To illustrate, we present examples of angular
sampling with 10 and 20 angles in Fig. 7.
Core-set sampler (CSS). CSS is a k-center-greedy al-
gorithm that minimizes the maximum distance of any
point to a center (Sener and Savarese, 2017). In our
case, at each cycle, the greedy algorithm chooses the
k projections which are at the furthest distance from the
current center of projections. We use Euclidean distance
as the distance metric for the Core-set sampler.

3.2. Proposed method

3.2.1. INR Design
Here we describe the more specific components

of our INR design: MLP Layers, Radon Transform
specifics, and Loss functions.

MLP Layers. The MLP consists of 8 fully-connected
layers with 256 neurons in each layer, except the last
layer which has one neuron. Each linear layer is fol-
lowed by a ReLU activation while the final layer goes
through a Sigmoid activation. With the representation
presented above, we can input the pixel coordinates in a
desired discretized space to the MLP to obtain an image
output.
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Loss functions and regularization. After applying the
Radon Transform operator on the output of the MLP,
predicted projections are obtained. Loss is computed
between the predicted projections and the ground truth
projections. We experiment with L2-loss and Poisson
loss (details provided in Section 3.3.3). We add Total
Variation (TV) regularization term to the loss, whose
weight is tuned for each dataset. TV regularization is
shown to recover sharp edges while it looks for a so-
lution with minimal total variation (Strong and Chan,
2003). The TV regularization term for an intermediate
output x is:

TV(x) =
∑

i, j

|xi+1, j − xi, j| + |xi, j+1 − xi, j| (4)

Early Stopping. Optimization-based algorithms re-
quire stopping criteria to avoid over-fitting to noise. We
use early stopping based on loss with patience of 2000
iterations.

3.2.2. Active Learning
Active learning literature is focused on the sampling

of the most informative examples to label to improve
model performance. It is not straightforward to apply
these developed concepts to CT reconstruction because
they require a pool of observations from which suitable
samples need to be labeled. Nevertheless, we investi-
gate some active learning methods adapting them to the
CT reconstruction problem. We assume that the projec-
tions are available to investigate for evidence that active
learning is suitable for CT reconstruction.

We structure the active learning framework for CT
reconstruction as learning a discrete selection problem.
The active sampler should learn a sampling matrix P to
sample the projections from A x† (ground truth projec-
tions) to minimize the projection error and regulariza-
tion terms as mathematically formulated in Eq. 5.

min
x,P

1
1
|| P A x − yδ

2 || + αTV(x) (5)

where α is the regularization weight.

Active reconstruction thus has two main components
and we alternate between the following two steps
until desired criteria are met. The iterative scheme is
depicted in Fig. 8.

1. Reconstruction: At any cycle k, the task of the
reconstructor is to reconstruct image given the obtained
projections at that cycle. We have designed this step as
optimizing the INR MLP described in 3.1.3 to better fit
the projections available at each cycle. Initially, k0 pro-
jections are uniformly sampled so that the reconstructor
learns a low-quality representation to be passed to the
sampler which would then suggest the best projections
to sample from based on the current reconstruction. In

Projection Sampler (S)
Input:
—------
1. Current reconstruction
2. Projections

Output:
—--------
Projection(s) to be sampled in 
next iteration

Reconstructor (R)
Input:
—------
1. Available projections

Output:
—--------
Updated reconstruction

Figure 8: Iterative scheme of simultaneous reconstruction and sam-
pling. The Sampler takes in current reconstruction and projections as
input and the Reconstructor takes in available projections to recon-
struct.

terms of active learning terminologies, k0 is analogous
to initialbudget.

2. Sampling: At each cycle n, the sampler S samples
k projections corresponding to angles ϕk. Here, k can
be considered as the budget in active learning context.
The sampler is expected to sample the projections that
would lead to the best possible reconstruction, given the
current reconstruction. If the reconstruction at the end
of cycle n is xn and the sampling matrix is Pn, the sam-
pled projections at cycle n + 1 can be represented as:

pn+1 = S (xn, Pn) (6)

Since we do not have access to the ground truth
reconstruction and only have access to the projection
data, one way to sample the projections is to choose the
projections for which the current error is highest. It can
be expected that sampling projections with the highest
error might lead to low projection error and possibly
higher quality reconstruction. We describe the methods
investigated for sampling in the following section.

Projection error based sampler (PES). The hypothe-
sis behind sampling a projection with the highest error
at any cycle is that sampling such a projection should
reduce the projection error after undergoing the next re-
construction cycle, which in turn should improve the
reconstruction quality. Thus, at each cycle, we calcu-
late the current projections (discretized at 1000 angles
in the range 0 to π), calculate the Euclidean distance to
the ground truth projections, and sample the projection
with the highest distance.
Let ŷ = Axk be the predicted projections at cycle k, and
yδ be the ground truth projections. The selection criteria
of PES can be mathematically formulated as:

min
ϕ

√ ∑

ϕ∈Phi

(ŷϕ − yδϕ)2 (7)

where j represents the discretized space from which
sampling is done.

Projection error based sampler constrained on an-
gle distribution (C-PES). In some poorer cases of re-
construction with sampling by PES, we observe that the
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PESampler Constrained-PESampler

Figure 9: An example of the angles sampled by PESampler vs.
Constrained-PESampler.

projection angles are concentrated around one angular
region (first diagram in Fig. 9). This implies that the
projection error alone might not be a good criterion for
sampling and some uniformity is also required so that
the sampled projections contain enough information in
all directions.

In order to enhance the PES, we introduce a simple
constraint. During each sampling cycle, we ensure that
the angle sampled is no less than 49.5% of the current
division of the projection angular region. For instance,
if 10 projection angles have been sampled in a given cy-
cle and an equal division is assumed, each angle would
differ by 0.314 radians. With the added constraint, the
chosen angle must be at least 49.5% of half the value of
0.314 radians.

3.2.3. Optimization Strategy
The Reconstructor operates on the available projec-

tion data through the INR fitting strategy with a loss on
projection data. In each cycle of active sampling, the
Sampler samples k projections. While the Reconstruc-
tor aims to minimize the projection loss, the Sampler
suggests the best angles to sample from. In this work,
we assume the projections are available to demonstrate
that CT reconstruction does benefit from active learn-
ing. The Sampler is a defined method and not learned.
Thus, INR fitting is updated each cycle minimizing the
loss on all the sampled projections.

3.3. Experimental setup

3.3.1. Datasets
We run our experiments on the following datasets:

1. Shepp-Logan phantoms: Shepp-Logan phantom
was first created by Shepp and Logan (1974) and has
been used as a standard test image by CT reconstruction
research. We use 50 randomly generated 256x256 pixel
Shepp-Logan phantoms as ground truth and we gener-
ate the projections by applying the Radon operator with
a parallel beam geometry with 256 rays. We experi-
ment with different numbers of available projections in
a sparse-view setup. Additionally, we add a white noise
with a standard deviation of 2.5% of the mean absolute

Algorithm 1 Active reconstruction framework.
reconstruct = a method that fits the given pro jections
into an MLP.
k0, k, n angles = initial budget, budget, maximum bud-
get
Require: pro jections, iterations, f iterations, k, n, k0
Require: reconstruct

initial samples← uni f orm partition(0, π, k0)
sampler ← sampling strategy
selected ← initial samples
reconstruct(selected)
for each cycle in range(n angles − k0) do

new sel← sampler.sample(gt pro j, pred pro j, k)
selected ← selected + new sel
reconstruct(selected)

end for
best output ← reconstruct(selected)

Figure 10: Some samples of randomly generated Shepp-Logan phan-
toms.

value of the projection data to the projection data. 5
separate samples are used for tuning hyperparameters
which are not included in the test set. We show some
Shepp-Logan phantoms in Fig. 10.

2. LoDoPaB-CT dataset: Low-dose parallel beam
(LoDoPaB) CT dataset is a benchmark dataset for low-
dose ct reconstruction designed by Leuschner et al.
(2021). In this dataset, the ground truth is composed of
362 × 362-pixel human chest CT reconstructions. The
projections are simulated with a simple parallel beam
geometry with 1000 angles and 513 projection beams.
We sub-sample the angles from the available 1000 to
simulate even sparser reconstruction scenarios. We use
50 images as a test set and 5 for tuning hyperparameters.
We show some LoDoPaB-CT sampled in Fig. 11.

3.3.2. Evaluation metrics
We focus on two evaluation metrics which are widely

used to evaluate CT reconstruction performance:

Peak signal-to-noise ratio (PSNR)
PSNR is the ratio between the maximum possible

value of an image and the power of noise that affects
the quality of its representation. For an image f and its
approximation g of size m x n, PSNR in decibels (dB)
is defined as:
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Figure 11: Some samples of LoDoPaB-CT dataset.

PS NR = 20log10(
MAX f√

MS E
) (8)

where MSE is the Mean Squared Error calculated as:

MS E =
1

mn

m−1∑

0

n−1∑

0

|| f (i, j) − g(i, j)||2 (9)

The higher the PSNR, the better the reconstruction
quality.

Structural Similarity Index (SSIM)
SSIM is formulated by representing image distortion

as a composite of three contributing factors, loss of cor-
relation, luminance distortion, and contrast distortion
(Hore and Ziou, 2010).

S S IM( f , g) = l( f , g)c( f , g)s( f , g) (10)

where l( f , g) = 2µ f µg+C1

µ2
f+µ

2
g+C1

, c( f , g) = 2σ fσg+C2

σ2
f+σ

2
g+C2

, and

s( f , g) = σ f g+C3

σ fσg+C3

l( f , g) is luminance comparison function where µ f

and µg denote mean luminance. c( f , g) is a contrast
comparison function where contrast is measured by the
standard deviation σ. s( f , g) measures the correlation
between the images and σ f g is the covariance between
f and g. Constants C1, C2, and C3 are added to avoid
zero denominators.

SSIM index values lie in [0,1] where 0 implies no
correlation and 1 implies f and g are the same image.

3.3.3. Implementation Details
We implement all the methods in PyTorch. Active

sampling requires that the Radon transform should be
able to compute projections at non-uniformly sampled
angles. Thus, we extend the Operator Discretization Li-
brary (ODL) for non-uniformly sampled Radon Trans-
form operations to compute projections for any set of
input projection angles. We use the Dival Library to
access the LoDoPaB-CT dataset and extend it for Phan-
tom dataset. We use L2 and Poisson loss for the Phan-
tom dataset and LoDoPaB-CT dataset respectively. We
use Adam Optimizer for all experiments and the learn-
ing rate starts from 0.001 for the Phantom dataset and
0.0005 for the LoDoPaB-CT dataset. We use a learning
rate scheduler to reduce the learning rate on plateau with

Table 3: PSNR/SSIM summary on Phantom (PD) and LoDoPaB-CT
(LD) dataset at different angles.

PD 8 10 15 20

FBP 8.50/.102 9.73/.130 12.18/.199 13.72/.242
TV 19.48/.536 22.62/.64 29.64/.870 31.65/.922
DIP 28.41/.916 30.40/.949 31.65/.960 32.14/.965
INR 28.39/.901 33.05/.951 35.59/.972 36.31/.976
LD 25 50 100 200

FBP 10.45/.107 18.45/.141 22.38/.241 28.38/.649
TV 27.64/.695 29.03/.732 30.06/.757 30.86/.776
DIP 28.34/.719 29.82/.756 31.19/.773 31.89/.800
INR 28.94/.719 30.44/.756 31.32/.777 32.21/.800

a patience of 1500 iterations. We set the budget k to 1,
and initial budget k0 to half of the total budget. After
sampling new projection in each cycle, we run the op-
timization for 100 iterations. We evaluate the Phantom
Dataset at 256 × 256 resolution and the LoDoPaB-CT
Dataset at 362 × 362 resolution. All experiments are
performed on NVIDIA V100 GPU. A summary of all
hyperparameters is presented in Appendix A.

4. Results

4.1. INR base method vs. baseline methods
We compare the reconstruction quality of the devel-

oped base INR model with FBP, TV-based reconstruc-
tion, and Deep Image Prior. For FBP, we use a simple
ramp filter. For Iterative and DIP reconstruction, we use
the implementation by Baguer et al. (2020). In Table 3,
Fig. 12, Fig. 13, we show that INR has the best per-
formance among the compared self-supervised methods
both quantitatively and qualitatively for both datasets.
DIP and INR are far better than FBP and TV. However,
the proposed INR outperforms DIP at all evaluated an-
gles for the LoDoPaB-CT dataset.

4.2. Active learning
We choose the INR as a base reconstructor and eval-

uate the reconstruction results using different greedy
sampling techniques: PES and C-PES. We report the
PSNR and SSIM of the sampling methods, and US and
CSS in Table 4 for the Phantom dataset and Table 5
for LoDoPaB-CT dataset. For the Phantom dataset, C-
PES achieves better reconstruction in all angles except
when n angles is 20, where the US and CPES attain
similar metrics. Similarly, for the LoDoPaB-CT dataset,
we observe improved PSNR and SSIM across all eval-
uated angles. However, we notice that the improvement
over US diminishes as more angles are sampled. In the
case of the Phantom dataset, the PSNR improvement
is 1.48dB for 8 views, while for 20 views, the average
PSNR on this dataset is equal. We observe a similar
trend for the LoDoPaD-CT dataset. The improvement
in PSNR is 0.93DB for 25 views, 0.32dB for 50 views,
0.16dB for 100 views, and 0.11dB for 200 views.
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Table 4: Comparison of reconstruction on Phantom dataset with different sampling techniques on the INR base reconstructor.
n angles=8 n angles=10 n angles=15 n angles=20

Sampler PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
US 28.39 .901 33.05 .951 35.59 .972 36.31 .976
PES 29.40 .921 32.47 .958 34.52 .971 35.74 .976
CSS 27.97 .897 30.92 .939 34.31 .966 31.63 .779
CPES 29.87 .927 33.34 .958 35.67 .973 36.31 .976

Table 5: Comparison of reconstruction on LoDoPaB-CT dataset with different sampling techniques on the INR base reconstructor.
n angles=25 n angles=50 n angles=100 n angles=200

Sampler PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
US 28.53 .712 30.12 .750 31.16 .773 32.10 .787
PES 28.01 .699 29.37 .730 30.56 .756 31.63 .780
CSS 28.33 .708 29.68 .737 30.74 .761 31.63 .779
CPES 28.94 .719 30.44 .756 31.32 .777 32.21 .800

FBP TV DIP INR

8.68

9.86

12.56

14.41

17.30

19.40

25.95

30.94

24.94

27.39

31.98

32.85

24.99

32.35

33.19

33.60

Figure 12: Reconstruction at different numbers of projection angles
8, 10, 15, and 20 from top to bottom on Shepp-Logan phantom. The
number at the bottom right refers to the PSNR value.

To present the qualitative results, we illustrate four
examples of reconstruction using only 8 projections for
the Phantom dataset in Fig. 14. Despite the limited num-
ber of angles, the C-PES method consistently exhibits
excellent reconstruction results, wherein small ellipses
are distinctly visible in comparison to US or CSS ap-
proaches. In certain cases, the US method produces a
reconstruction that is slightly better, as observed in row
2. However, there are cases where US exhibits compar-
atively poorer reconstruction results, characterized by
dissolved major structures or an unsmooth texture, as
seen in row 1.

Similarly, we present the reconstruction results on

28.9127.7827.8110.41 PSNR

30.8810.86 30.34 30.97 PSNR

FBP TV DIP INR GT

9.63 27.97 29.38 30.19 PSNR

Figure 13: Reconstruction comparison of baseline methods on
LoDoPaB-CT dataset. The number at the bottom right refers to the
PSNR value.

LoDoPaB-CT dataset at different angles in Fig 15. As
this is a more complex dataset with finer details, we also
present a zoomed-in snapshot of the reconstructed im-
age in the second and fifth rows. At 25 angles (row 1,
example 1), we observe that the C-PES retains finer de-
tails more effectively compared to US or CSS. We ob-
serve a similar trend with 50 angles (row 1, example 2),
where the reconstruction demonstrates slight improve-
ments in capturing details. We also present a scenario
(row 3, example 1) where C-PES exhibits a slightly
lower PSNR (0.16dB) when compared to US. However,
upon visual inspection, the reconstructions appear sim-
ilar. Furthermore, in row 3, example 2, we observe that
C-PES achieves slightly superior reconstruction, partic-
ularly in preserving smaller structures.

4.3. Analysis of Sampled angles

We illustrate the angles sampled by the sampling pro-
cesses in Fig. 14 (rows 2 and 4) and Fig. 15 (rows 3 and
6). We notice that the angles that lead to better recon-
struction are not always uniformly spaced. US has sig-
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28.6325.58 31.7428.65

33.8833.50 32.0831.68 PSNRPSNR

PSNR PSNR26.76 25.21

32.70 32.47

Sampled angles

Sampled angles

US CSS C-PES GT US CSS C-PES GT

Figure 14: Reconstruction with 8 projection angles on Phantom dataset. The second and fifth rows visualize the zoomed-in image. The number at
the bottom right refers to the PSNR value.

28.91 28.65 29.51 PSNR

US CSS C-PES GT

Sampled angles

34.1833.6733.63 PSNR

30.8830.4531.04 PSNR 36.36 35.91 36.48 PSNR

Sampled angles

US CSS C-PES GT

Figure 15: Reconstruction at different numbers of projection angles 25, 50, 100, and 200 on LoDoPaB-CT dataset. The second and fifth rows
visualize the zoomed-in image. The number at the bottom right refers to the PSNR value.

12.11



Low-dose CT Reconstruction with Active Learning and Implicit Neural Representation 12

nificantly poorer performance for certain Phantom ex-
amples (row 1 in Fig. 14). When the angles are anal-
ysed, we observe that the angles sampled by C-PES cor-
responding to these reconstructions are different com-
pared to US. However, in row 2, example 2, we can ob-
serve that the reconstruction by US is close to C-PES.
Upon inspection of the angles sampled by C-PES, we
observe that the angles are close to uniform sampling.
Similarly, for LoDoPaB-CT dataset, we can observe that
the best reconstruction obtained by C-PES does not cor-
respond to US angles.

4.4. Ablation studies

4.4.1. Radon Transform Implementation
We can utilize the continuous representation of an

image to accurately compute Radon transform, which
requires interpolation when being computed at differ-
ent projection angles. In Fig. 3, we visualize an exam-
ple of Radon transform for a ray at a projection angle
of 50 degrees. For the implementation of Radon trans-
form, we explored two strategies: (i) directly applying
Radon operator on the image rendered by the INR, or
(ii) inputting the points sampled to calculate the inte-
gral and obtain the intensity value from the network. In
Fig. 3, we illustrate the process of calculating the pro-
jection value for a ray. In the case of equally spaced
parallel beam acquisition, we can notice that the sam-
pled points are not always located at the center of a
pixel. Consequently, the projections computed using the
first strategy may lack precision. We compared the re-
construction quality between computing the predicted
Radon transform from the rendered image and predict-
ing the intensities at the required continuous pixel posi-
tions and summing them. Although the second imple-
mentation resulted in slightly better quality reconstruc-
tion (0.91 dB PSNR improvement), we chose to use the
first implementation due to its faster reconstruction time
(2.1 times faster).

4.4.2. Hyperparameter choices
We discuss the choice of hyperparameters involved

in the developed methods: σ,m in Gaussian Fourier
feature encoding. In Fig. 17, we present the plot be-
tween σ and m with evaluation metrics, justifying our
choice for σ = 1,m = 256 for the Phantom dataset and
σ = 4.5,m = 256 for LoDoPaD-CT dataset. In Fig. 18,
we show reconstruction with varying σ to study the im-
pact of this parameter. We observe that lower value
of σ leads to smooth reconstruction and a higher value
leads to granular, which can also be anticipated in Fig. 6
where we present the Gaussian Fourier features. The
TV regularization weights (α) are taken from Baguer
et al. (2020). The impact of TV weights is presented in
Fig. ??. We can see that a lower value gives a smooth
reconstruction and a granular reconstruction. Thus, it
needs to be tuned according to the application.

𝛂 = 0.00005𝛂 = 0.05 𝛂 = 0.00035

Figure 16: Visualization of reconstruction at different TV Regulariza-
tion weight (α).

Phantom dataset LoDoPaB-CT dataset

Figure 17: Evaluation metrics for positional encoding parameters: m
(encoded size), and σ (standard deviation of the Gaussian distribution
from which random Fourier feature is generated).

𝜎=1 𝜎=10 𝜎=15

𝜎=0
.1

𝜎=1 𝜎=5

Figure 18: Visualization of reconstruction at different σ of positional
encoding (Gaussian Fourier features).

5. Discussion

5.1. Insights
From the results presented above, we discuss that

neural representations have the capability to produce
qualitatively better reconstructions, with a significant
increase in the PSNR and the SSIM values, particularly
in sparse scenarios. The developed INR approach al-
ready outperforms the data-free baseline DIP, however,
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learning the optimal initialization weights as proposed
in Tancik et al. (2021) should lead to more efficient re-
construction.

Figure 19: Visualization of the sampled angles for different slices of
LoDoPaD-CT dataset.

We gain valuable insights into the selection of projec-
tion angles for achieving higher-quality CT reconstruc-
tion. It is evident from our results that non-uniform
sampling significantly benefits the reconstruction pro-
cess. Furthermore, in Fig. 19, we visualize the sampled
angles that lead to higher PSNR. We observe that sim-
ilar slices exhibit a similar distribution of angles, as in-
dicated by the grouping of these slices into red and blue
boxes. This finding suggests a correlation between the
set of angles and the specific anatomical structures be-
ing reconstructed. Based on this observation, we can
hypothesize that incorporating prior knowledge about
the anatomy into the selection of projection angles, in
the form of a preset angle configuration, might be bene-
ficial for sparse-view CT reconstruction.

5.2. Limitations and Future Work
A key limitation of our study is the assumption of ac-

cess to a pool of projections and using those to draw
conclusions regarding the effectiveness of Active Sam-
pling of angles. However, in real-time CT acquisition
scenarios, such a pool of projections is not readily avail-
able. If a pool of projections is available, it means
that the patient has already undergone radiation, which
drives away from our motivation. Consequently, fu-
ture research should focus on addressing this limitation
by incorporating meta-knowledge learning to dynami-
cally select the most informative angles during each cy-
cle of active sampling. This approach would enable us
to adaptively acquire projections without the need for a
pre-existing pool, aligning with the practical constraints
of low-dose CT imaging. By exploring the integration
of meta-knowledge into the active sampling process, we
can enhance the effectiveness and applicability of our
proposed reconstruction framework in real-world clini-
cal settings.

6. Conclusions

In this work, we design and investigate the efficacy
of Implicit Neural Representation for CT reconstruc-
tion with low-dose CT reconstruction and the role of
active sampling in improving reconstruction. First, we
propose an INR network and training strategy, and then
an active learning framework capable of handling non-
uniform projection sampling to select the best projec-
tions. Through extensive experiments on both synthetic
phantom (Shepp-Logan) and real patient (LoDoPaB-
CT) datasets, we have demonstrated the benefits of ac-
tive sampling in the context of sparse view CT recon-
struction. However, our current framework does not in-
volve the learning of meta-knowledge for selecting the
optimal sampling strategy. While our proposed active
learning framework shows promising results, it is not
straightforward to apply in real-time scenario. To ad-
dress this limitation, we intend to explore the possibil-
ities of meta-learning in the future, aiming to develop
a more robust and adaptable sampling strategy that can
generalize across different datasets and imaging condi-
tions. Overall, our findings highlight the potential of
INR-based reconstruction methods and the significance
of active sampling in CT imaging. By continuing to
refine and expand upon these methodologies, we antic-
ipate further advancements in low-dose CT reconstruc-
tion techniques, ultimately contributing to improved di-
agnostic accuracy and reduced patient radiation expo-
sure.
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Appendix A. Hyperparameters

Table A.6: Hyperparameters for the base INR architecture.
Dataset Loss function Regularization weight Learning rate sigma encoded size MLP hidden layers
Phantom MSELoss 0.0003 0.001 1 256 8
LoDoPaB-CT Poisson 7 0.0005 4.5 256 8
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Abstract

The use of artificial intelligence, in particular deep learning, in computational pathology has enabled the develop-
ment of computer-aided diagnostic tool systems which can help improve diagnostic accuracy and precision. However,
obtaining high-quality pixel-level annotation in histopathology datasets can be very expensive and time-consuming.
Through self-supervised learning meaningful image representation can be learned without the need for any anno-
tations; downstream tasks such as classification can benefit from these learned representations. However, common
end-to-end self-supervised learning approaches cannot be straightforwardly applied to whole-slide images due to
their giga-pixel resolution. In this work, we explore a transformer-based architecture for the hierarchical aggregation
of visual tokens called Hierarchical Image Pyramid Transformer using over 6,000 colorectal biopsy slides from the
ExaMode project. HIPT uses two levels of DINO self-supervised learning to learn and aggregate rich image represen-
tation by taking advantage of the hierarchical structure of visual tokens across varying resolutions found in whole-slide
images. Finally, a lightweight ViT is finetuned for a specified downstream tasks. We compare the performance of
different pretraining regimes of HIPT on a binary and a multiclass classification task, where the best AUC ROC ob-
tained are 0.956 and .897, respectively. For a qualitative evaluation of the embeddings learned by our self-supervised
models, we provide UMAP scatter plots as a visual aid. These plots offer valuable insights into the separability and
discriminative power of the learned features.

Keywords: Computational pathology, self-supervision, DINO, Vision Transformer, HIPT, Colorectal cancer

1. Introduction

The field of pathology is devoted to understanding the
causes of disease (etiology) and the changes in cells,
tissues, and organs that are associated with disease and
give rise to the presenting signs and symptoms (patho-
genesis) in patients. Pathology provides the scientific
foundation for developing rational treatments and effec-
tive preventive measures through understanding the eti-
ology and pathogenesis of the disease, thus providing
the scientific foundation for the practice of medicine
(Vinay Kumar, 2017). In clinical practice, pathology
aims to obtain diagnostically important information in
an objective and reproducible manner from microscopic
images of tissue samples obtained via surgery, biopsy,
or, less commonly, autopsy (Martı́n, 2021; Meijer et al.,
1997). The tissue sample is thinly sliced with a micro-

tome, mounted on a glass slide, and stained. Differ-
ent cellular components can be revealed through differ-
ent staining techniques; the most commonly used stain-
ing technique consists of hematoxylin and eosin (H&E).
Hematoxylin is a basic dye that has affinity for acid (ba-
sophilic) structures of the cell, therefore it mainly stains
the cell nuclei in a blue shade, while eosin is an acidic
dye that binds to cytoplasmic (eosinophilic) structures
of the cell staining them in multiple shades of pink
(Martı́n, 2021; Slaoui et al., 2017). Another used tech-
nique is immunohistochemical (IHC) staining which al-
lows for the detection of specific proteins expressed by
the cells contained in the tissue section, therefore, fa-
cilitating the accurate identification of cells of specific
origin (Ramos-Vara and Miller, 2014).

The information revealed through the examination
of histopathology slides can help clinicians and re-
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searchers to better understand the underlying pathology
of a disease, improve the accuracy of diagnosis, and
monitor the efficacy of treatments. Some techniques
used include measuring morphological characteristics
of cells and tissues, counting cell and tissue compo-
nents, and using advanced methods such as cytometry
and pattern recognition to identify subtle changes in tis-
sue architecture or cell behavior (Meijer et al., 1997).

Computational pathology can be traced back to the
1960s, with the advent of computer technology, allow-
ing for more reliable, easier measurements of cellular
and tissue components and introducing more complex
evaluations of their characteristics (van der Laak et al.,
2021; Meijer et al., 1997). Nowadays, this term does
not only encompass the high-resolution digitization of
histopathology slides, with the first whole-slide scan-
ners introduced to the field about two decades ago, but
also the analysis of these images with computational
tools for detection, segmentation, and diagnosis (Bera
et al., 2019). The digitization of histopathology im-
ages has enabled the retrieval and analysis of informa-
tion invisible to the human eye, which can help im-
prove the accuracy and precision in grading systems and
measurement in biomarker expression for personalized
medicine (Laurinavicius et al., 2012). It also makes pos-
sible the automation of tissue-based diagnosis and quan-
tification, thus potentially improving clinical workflows
(Madabhushi and Lee, 2016). Due to the high resolution
in which they are scanned, with .25 micrometers/pixel
(40X) and .5micrometers/pixel (20X) being common
digitization resolutions, whole-slide images (WSI) are
large in size with one single slide of 20mm x 15mm
scanned at 40X resulting in 80,000 x 60,000 pixels or
4.8Gp per channel (thus WSI being often referenced
as gigapixel images). Research in digital pathology
began employing traditional computer vision methods
with handcrafted features like active contours, tissue
texture features, nuclear shape, and size as described in
Madabhushi and Lee (2016). More recent approaches
have started using artificial intelligence (AI) such as
machine-learning techniques, in particular Deep Learn-
ing (DL), as it allows the generation of robust algo-
rithms that need fewer iterative optimizations for each
dataset compared with methods where parameters are
manually tuned (Abels et al., 2019). The construction of
DL algorithms, rather than by explicit programming or
by using predefined filters, yields powerful, hierarchi-
cal feature representations that, in most cases, outper-
form more traditional image analysis methods (van der
Laak et al., 2021). The use of AI in this field is of spe-
cial interest as whole-slide image scanning technology
produces gigapixel-sized images (van der Laak et al.,
2021), these algorithms can be used as a clinical deci-
sion support tool for precision diagnosis of the patient,
easing the workload of clinicians by flagging suspicious
regions or slides that may contain tumor cells for in-
spection, compute mitotic counts, improve accuracy and

precision of IHC scoring or even apply standardized his-
tological scoring (Abels et al., 2019). Additionally, the
use of such models can reduce inter-observer variability
(van der Laak et al., 2021).

One major obstacle that DL faces is that huge
amounts of data are required; according to van der Laak
et al. (2021) to address this problem, multicentric efforts
have been carried out to increase the size of datasets and
in that way cope with the variability in staining, scan-
ning characteristics and tissue preparation across differ-
ent laboratories. The use of supervised machine learn-
ing techniques, where learning entails the mapping of
a set of input variables with their corresponding out-
put variable to later apply such mapping to predict the
output of unseen data (Cunningham et al., 2008), re-
quires the use of ground truth labels. The ground truth
labels may derive from patient outcome data (pathol-
ogy report, laboratory information, or patient clinical
history), from expert manual annotations of gigapixel
whole-slide images (e.g. identifying cancer from be-
nign tissue)(Abels et al., 2019).

Obtaining adequate, high-quality pixel-level an-
notated datasets can be very expensive and time-
consuming, one strategy to alleviate this burden is
to train algorithms in a weakly supervised manner
where only slide-level labels are used (Lu et al., 2021).
According to Zhou (2018), weak supervision can be
grouped into three main categories:

• Incomplete Supervision: Only a small subset of the
dataset is annotated, the rest remains unlabelled.

• Inexact Supervision: Only coarsed-grained labels
are given, for example in histopathology images
it would be desirable to have labels for every cell
found in the image, but most of the time we have
only WSI-level labels.

• Inaccurate Supervision: The labels available are
not considered completely reliable (careless/weary
annotator or images may be difficult to categorize).

In practice, these three categories are not mutually ex-
clusive and they often occur simultaneously. One ex-
ample of weak supervision is multiple-instance learn-
ing (MIL), where a DL framework operates on bags of
embedding instances and label information is provided
at the bag level but not at the instance level (Carbon-
neau et al., 2018). For example, in histopathological
images, instead of using pixel-level annotations, patch-
level or WSI-level annotations are provided (bag-level
label). So the question arises of how to generate good
instance representation without the need for any label.
Through unsupervised learning, more specifically self-
supervised pretraining, raw input data (images) can be
used to generate meaningful learning signals without
the need for a prior (Ciga et al., 2022). Through pre-
text tasks, self-supervised pretraining can provide richer
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representations than when they are learned through su-
pervised objectives (Caron et al., 2021). Commonly, af-
ter the self-supervised pretraining of the network with
unlabelled data, the network is later finetuned on a
downstream task. The better the self-supervision, the
better the downstream performance (Newell and Deng,
2020). In recent years, there has been a significant ac-
celeration in the progress of self-supervised pretraining,
with methods being able to produce high-quality fea-
tures that are comparable to or outperform those pro-
duced by ImageNet (Deng et al., 2009) pretraining. Fea-
tures learned by ImageNet pretraining may transfer well
to natural images. However, the domain shift to medical
images pose concerns in relation to ImageNet pretrain-
ing, through self-supervised methods one can perform
pretraining on the exact image distribution used for the
downstream task, thus obtaining significant high-level
feature representation of the data.

2. State of the art

2.1. Self-supervised learning methods

Different self-supervised methods for computer vi-
sion have proven their potential use with images with
convolutional neural networks (CNN) and more re-
cently with Vision Transformers. Below a review of
some of these methods is presented.

2.1.1. Momentum Contrast (MoCo)
He et al. (2020) proposed a mechanism for building

dynamic dictionaries for contrastive learning. The train-
ing is done by matching an encoded query to a dictio-
nary of keys via a contrastive loss (Figure 1). The goal
is for the encoded “query” to be similar to its match-
ing ”key” and dissimilar to others when performing a
dictionary look-up. The dictionary is maintained as a
queue of encoded data samples, where the current en-
coded representations of the batch are queued and the
oldest are dequeued. As the dictionary of keys can be
much larger than the mini-batch size and it is grown
on the fly, it keeps encoded keys from preceding mini-
batches. While the parameters in the query-encoder
are updated by backpropagation, the queue set-up does
not allow the key-encoder parameters to be updated by
back propagation nor by just copying the parameters
from the newly-updated query-encoder, otherwise the
key representations that are in the queue belonging to
previous minibatches would become inconsistent rep-
resentations. They solve this issue by implementing a
momentum-based moving average of the query encoder
as the slowly progressing key encoder. Formally speak-
ing the key encoder’s parameters (θk) are updated by
Eqn. 1, where m ∈ [0, 1) is the momentum coefficient
and θq are the query encoder parameters.

θk ← mθk + (1 − m)θq (1)

Figure 1: MoCo trains a visual representation encoder by matching an
encoded query q to a dictionary of encoded keys using a contrastive
loss (He et al., 2020).

This way, even though the old keys in the queue (from
previous mini-batches) were encoded by previous ver-
sions of the key-encoder, the difference among the up-
dates of the key-encoder can be made small. They prove
that a large momentum (m = 0.999) works better than a
smaller value, suggesting that a slowly evolving key en-
coder is relevant to making good use of a queue. After
pretraining for 200 epochs a ResNet-50 encoder on Im-
ageNet, they achieve 60.6% in top-1 classification accu-
racy using linear classification (a fully-connected layer
followed by softmax) on frozen features.

2.1.2. Simple Framework for Contrastive Learning of
Visual Representations (SimCLR)

The self-supervision framework proposed by Chen
et al. (2020) learns representations by maximizing
agreement between differently augmented views of the
same data example via a contrastive loss in the latent
space. It has four main components (see Figure 2):
a data augmentation module that transforms any given
data sample randomly to get two correlated views of the
same example, a base neural network encoder that rep-
resents the augmented views, a small neural network
(in their work they use a multi-layer perceptron with
one hidden layer) that serves as a projection head, to
project the representation into a smaller space, and a
contrastive loss for the contrastive prediction task. The
aim of the task is to identify the positive pair (the aug-
mented views of the same image) given a set of data
samples. The encoder is architecture agnostic, allowing
for any choice of neural network architecture. Unlike
MoCo, SimCLR does not train with a memory bank of
representations instead it trains with large batch sizes
with N ranging from 256 to 8192, since each sample
of a batch yields 2 different augmented views (positive
pair), it treats all other 2(N − 1) augmented samples as
negatives examples, for example: a batch size of 8192,
would give 16382 negative examples per positive pair.
In their work, they prove that image augmentation op-
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erator order is crucial for learning good representations,
concluding that, for a contrastive task, composing a spa-
tial/geometrical transformation with a color distortion
transformation is critical to learn generalizable features,
otherwise, the network might shortcut learn to differ-
entiate different images based on their histogram alone.
Classification accuracy is used as a proxy for represen-
tation quality. Similar to MoCo, they train a linear clas-
sifier on top of the frozen base encoder (ResNet-50) and
achieve 76.5% on top-1 accuracy.

Figure 2: In SimCLR, two separate data augmentations are sampled
from the same family of augmentations. The base encoder, f (·), and
the projection head, g(·), are trained to maximize agreement. After
training, only the encoder, f (·), is used for downstream tasks (Chen
et al., 2020).

2.1.3. Bootstrap Your Own Latent (BYOL)
While MoCo and SimCLR rely on negative pairs,

BYOL (Grill et al., 2020) does not need this, instead
it bootstraps the outputs of a network to serve as tar-
gets for an enhanced representation. BYOL uses an
online network and a target network, that interact and
learn from each other. The online network is trained
to predict the target’s network representation of a dif-
ferent augmented view of the same image. BYOL fol-
lows a similar augmentation regime as SimCLR, with
random crops with random horizontal flips (geometri-
cal transformation), followed by a color distortion (ran-
dom sequence of brightness, contrast, saturation, hue
adjustments, and an optional grayscale conversion) with
a final gaussian blur and solarization. Through ablation
experiments, they show that BYOL is not as sensitive
to the choice of data augmentation as SimCLR; due to
BYOL’s training task, the online network is incentivized
to keep any information represented in the target net-
work.

To avoid collapse they use a slow moving average of
the online network’s parameters as the target network’s
parameters, similar as the momentum encoder in MoCo
but instead of using it to maintain consistent negative
pair representations it is used to produce prediction tar-
gets for stabilizing the bootstrap step; this way, the tar-
get network represents a more stable version of the on-

Figure 3: BYOL’s goal is to learn a representation yθ which can then
be used for downstream tasks. Since the parameters in the target net-
work (in red) are an exponential moving average of the online param-
eters, BYOL learns its representation by predicting previous versions
of its outputs (Grill et al., 2020).

line network. The online network, is built by an en-
coder (any neural network architecture), a projector (a
multilayer perceptron) and a predictor (a multilayer per-
ceptron). The target network has the same encoder and
projector architecture as the online network but no pre-
dictor. The goal is for the online network’s predictor
to match the target’s projection of the different view of
the same image as shown in Figure 3 by minimizing
a similarity loss (MSE). Similar to SimCLR, after pre-
training is finished, only the network’s encoder is used
for downstream tasks. The online network’s encoder is
used for downstream tasks. Using a ResNet-50 encoder,
BYOL reaches 74.3% top-1 classification accuracy on
ImageNet using a linear classification evaluation.

2.1.4. Self-distillation with No Labels (DINO)
Whereas the above-described self-supervised learn-

ing regimes are architecture agnostic and focused on
using CNNs, Caron et al. (2021) explore how Vision
Transformer (ViT) (Dosovitskiy et al., 2020) properties
can be leveraged by self-supervised learning regimes
since the success of Transformers in natural language
processing is due to its use in self-supervised pretrain-
ing (Devlin et al., 2019). They propose a self-distillation
with no labels self-supervised learning paradigm, that
not only can exhibit explicit information about the se-
mantic segmentation of an image when working with
ViT but also works with CNNs by matching the state-
of-the-art with a ResNet-50 encoder.

DINO draws inspiration from BYOL’s framework,
with the difference that both the online (in this case
called student) and the target (called teacher in DINO)
networks are the same architecture (encoder and pro-
jection head) and that cross entropy loss is used as the
similarity loss function. DINO can be thought of as a
Mean Teacher self-distillation, as both teacher and stu-
dent have the same architecture, with no labels (Pham
et al., 2022). Furthermore, since the teacher is being
updated with an exponential moving average(ema) of
the student, it can also be thought of as a codistillation,
as two copies of the same model are trained in parallel
(Anil et al., 2018).

From the same image sample, a set of augmented
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views is built, where two of these views are global
crops containing more than 50% of the image and the
rest are local crops containing less than 50% of the
image. Besides the global/local cropping, the images
are augmented following the BYOL (Grill et al., 2020)
augmentation regime. The student network sees all
crops, while the teacher network only sees the two
global crops, this regime encourages local-to-global
correspondences.

When ViT is used as an encoder, an extra learnable
token, called [CLS] token, is added to the token se-
quence (Dosovitskiy et al., 2020).The [CLS] token ag-
gregates information from the entire token sequence,
therefore its output is the one attached to the projec-
tion head. As observed in Figure 4, different random
transformations of the same image sample x are passed
through each of the networks. By normalizing the net-
work’s output with a softmax operation with tempera-
ture scaling τ, a k-dimensional output probability distri-
bution P(x) is obtained (Eqn.2).

P(x)(i) =
exp(gθ(x)(i)/τ)∑
k exp(gθ(x)(k)/τ)

(2)

Before the softmax operation, the output of the
teacher network is centered, to avoid collapse induced
by a dominant dimension, and sharpened, to avoid col-
lapse induced by uniform distribution output. The cen-
tering of the teacher’s output is done by adding a bias
term to the teacher’s outputs, said bias term is updated
with an exponential moving average of the network’s
outputs, and sharpening is done by simply setting the
teacher’s temperature in the softmax operation to a low
value compared to the student’s temperature.

Figure 4: The teacher and student network (gθt and gθs respectively)
are composed of a backbone encoder f (ViT or ResNet), and of a
projection head h (a 3-layer multi-layer perceptron). The features used
in downstream tasks are the backbone f features. (Caron et al., 2021).

The student network’s parameters are updated by
minimizing the cross entropy loss between these two
distributions. The teacher network is updated in a simi-
lar fashion as in MoCo (Eqn. 1), with the difference that
the momentum coefficient follows a cosine scheduling
regime (in MoCo this value is a constant). With this pa-

rameter update regime, the teacher network constantly
outperforms the student network, thus guiding the train-
ing. Given that the teacher network constantly outper-
forms the student, the encoder that is used for down-
stream tasks is the teacher’s encoder.

Table 1: Top-1 accuracy on linear classification on the validation set
of ImageNet. For the self-supervised methods, the linear classifier is
learnt on frozen features of the encoder.

Method Encoder Architecture Top 1 (%)

Supervised Resnet50 79.3
MoCo Resnet50 60.6
SimCLR Resnet50 76.5
BYOL Resnet50 74.3
DINO Resnet50 75.3
Supervised ViT-S 79.8
BYOL ViT-S 72.7
DINO ViT-S 77.0

In linear classification evaluation, DINO surpasses
the previous methods discussed obtaining a 75.3% top-
1 accuracy when using a ResNet-50 encoder, as shown
in Table 1, Caron et al. (2021) also compare the perfor-
mance of ViT-small as the encoder and show it is al-
most on par with the supervised training accuracy. The
Image-Net features obtained in DINO when using a ViT
as the encoder can be used in a k-NN classifier and ob-
tain a top-1 accuracy performance of 74.5% almost on
par with a linear classifier (77% of top-1 accuracy), this
property only emerges when using DINO with ViT as
the encoder (Caron et al., 2021). Additionally, without
the need for finetuning, the self-attention maps of the
[CLS] token in the different heads of the last layer con-
tain information about the semantic segmentation of an
image.

2.2. Self-Supervised Learning in Digital Pathology
End-to-end approaches cannot straightforwardly be

applied to WSIs, mainly because their gigapixel di-
mension makes them unable to fit into the memory of
modern GPUs. Even switching to central processing
unit (CPU) computation would not resolve this prob-
lem, as a single WSI can easily require tens of giga-
bytes of memory at full resolution (van der Laak et al.,
2021). Another obstacle when working with WSIs is
the low signal-to-noise ratio, where it is possible that
only a small area of the image may contain relevant
information for the image-level label. As discussed
in the Introduction section, MIL can be used to ad-
dress this problem, by detecting non-overlapping tis-
sue patches that contain the true signal (e.g. cancerous
cells) while suppressing the noisy ones (e.g healthy tis-
sue) and then global pooling these instance-level repre-
sentations to obtain a WSI-level embedding (Chen and
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Krishnan, 2021; Ilse et al., 2018; Tellez et al., 2019).
However, common MIL methods only take into account
patterns found in individual patches of tissue, while ig-
noring the spatial relationships among them. To address
this pitfall, Chen et al. (2022) proposed a new ViT-
based architecture called Hierarchical Image Pyramid
Transformer (HIPT), that exploits the natural hierarchi-
cal structure inherent in WSIs. HIPT consists of nested
aggregations of visual tokens of incrementing resolution
coming from two levels of DINO-pretrained ViTs and a
weakly supervised ViT to learn high-resolution image
representations, see Figure 5.

Figure 5: The nested aggregation of visual tokens in different reso-
lution levels allow for representation of fine-grained morphological
features as well as coarser-grained features like tissue-to-tissue rela-
tionships. (Chen et al., 2022).

HIPT exploits the fixed scale at a given magnifica-
tion objective found in WSIs that natural images don’t
posses, therefore the visual tokens extracted using a ViT
allow a consistent comparison of the visual elements
represented. At magnification of 20X, the cell-level ag-
gregation ViT, called ViT256 − 16, as in Dosovitskiy
et al. (2020) works with 256x256 pixel tissue patches,
modelling 16x16 visual tokens that can model different
morphological features and individual cell. The patch-
level aggregation ViT, called ViT4096 − 256, character-
izes the interactions within the tissue microenvironment
by using the [CLS] tokens given by ViT256 − 16 com-
ing from the 256x256 patches contained in a region of
4096x4096. This way, Vision transformers using DINO
pretraining regime are able to learn interpretable his-
tological features, where the different attention heads
learn distinct morphological phenotypes (Chen and Kr-
ishnan, 2021).

As of now, according to Chen and Krishnan (2021)
there is a lack of diverse and well-curated pathology
datasets that would enable generalization across diverse
tissue and organ types in cancer pathology. In this work,
we explore leveraging the work presented by Chen et al.
(2022) where HIPT was pretrained using 10,678 FFPE
H&E stained resection WSIs from The Genome Cancer
Atlas (TCGA) dataset by further training the network on
Radboudumc archival material by expanding the train-
ing domain to biopsy whole-slide images.

3. Material and methods

3.1. Datasets

The datasets used in this project are part of the ExaM-
ode (Extreme-scale Analytics via Multimodal Ontology
Discovery and Enhancement) project, which aims to
provide automatic and semi-automatic methods to im-
prove the efficiency and the effectiveness of the diag-
noses in the pathology domain with the positive effect
of reducing the pathologists’ workload (Menotti L. and
G., 2023). More specifically, the images used in this
work for self-supervised pretraining are 8,868 H&E-
stained colorectal biopsy slides cut from 6,563 paraf-
fin blocks of 3,601 patients taken between the years
2000-2009 from Radboud University Medical Center
(RUMC), Nijmegen, Netherlands. As the diagnoses re-
ports refer to the paraffin blocks and not the individual
slides, the slides from the same block were combined
creating ’packed’ slides.

Another set of 76 colorectal slides from Azienda Os-
pedaliera Cannizaro and Gravina Hospital Caltagirone
ASP, Catania, Italy was used as part of the test set in a
classification downstream task (slide-level weak super-
vision) to test the domain shift robustness of the fea-
tures learned through self-supervised pretraining. This
set had associated reports per slide. The reports were
then labeled by student assistants into classes normal,
hyperplastic polyps, low-grade dysplasia (LGD), high-
grade dysplasia (HGD) and cancer.

Table 2: Data class distribution overview of colorectal biopses.
Blocks (packed slides) from Nijmegen and individual slides from
Catania. LGD:low grade dysplasia, HGD:high grade dysplasia

Medical Center # Images Normal Hyperplastic LGD HGD Cancer

RUMC 6563 3072 850 1505 204 303
Catania 76 13 1 35 16 11

3.1.1. Data Preprocessing
To remove excessive white space found in the WSI

and make sure that pretraining of HIPT is primarily
done in the tissue of the WSI, tissue segmentation and
patch extraction were done following the methodology
proposed by Lu et al. (2021). For the tissue segmen-
tation, the WSI is converted from RGB to HSV color
space, a median blur is applied to blur the edges, then
a binary mask containing the tissue in the WSI is cre-
ated by thresholding the saturation channel. A morpho-
logical closing operation to fill small holes is done to
the resulting mask. The found contours are then fil-
tered based on an area threshold. For patch extraction,
the algorithm crops square patches of a specified size
from within the segmented tissue at a specified magni-
fication. The upper left corner coordinates of the ex-
tracted patches and the slide metadata are stored using
the HDF5 hierarchical data format. For this work, it
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was chosen to extract non-overlapping [4096 × 4096]
regions at 20x(0.5 µm/pixel). Once the coordinates of
these regions were obtained, the pixel regions were ex-
tracted from the WSI, and stored in HDF5 data format.
Inside the HDF5 file, the regions were stored as a chun-
ked dataset of 256 chunks each containing a [256×256]
tissue patch to facilitate its access during pretraining of
the ViT256 − 16, see Figure 6.a) for an overwiew of the
preprocessing pipeline.

Table 3: Total number of 4096 × 4096 whole-slide image regions per
class and per institution. LGD:low grade dysplasia, HGD:high grade
dysplasia.

Institution Class Number of regions

Catania

Normal 236
Hyperplastic 12
LGD 931
HGD 597
Cancer 508

RUMC

Normal 175754
Hyperplastic 29449
LGD 82640
HGD 23010
Cancer 32987

After the preprocessing pipeline described above was
run on the colon WSI datasets, a total of 346,124 regions
were obtained, totaling ∼ 88.6M of [256 × 256] tissue
patches. However, self-supervised pretraining was only
done with the RUMC dataset, leaving 343,840 tissue re-
gions for pretraining of the ViT4096 − 256 and ∼ 88M
tissue patches for pretraining the ViT256−16. The Cata-
nia dataset was only used as a test set in slide-level weak
supervision.

3.2. Proposed Method
The method followed in this work is the one pro-

posed by Chen et al. (2022). It can be separated into
two stages: self-supervised pretraining and slide-level
weak supervision, both of these stages are explained be-
low. Before going into the two stages of the method,
it is essential to provide a formal overview of the Vi-
sion Transformer architecture since it is the backbone
on which HIPT is built. Instead of using convolutional
layers and expanding the field of view with the depth
of the network as CNNs do, the ViT uses self-attention
mechanisms and feed-forward neural networks to cap-
ture global relationships and dependencies within the
visual input. Following Dosovitskiy et al. (2020), an
image x with resolution L × L (or xL where x ∈ RL×L×C ,
where C is the number of channels) is split into a se-
quence of non-overlapping flattened 2D patches of size
l × l, such that xl ∈ RN×(l2×C) where N = L2/l2 is the

number of resulting patches. These patches are then em-
bedded by a linear projection into a vector of size d. An
extra learnable token, named [CLS] token, is prepended
to the sequence of patch embeddings. Even though, the
[CLS] token is not connected to any image patch, its
state at the output of the ViT encoder can be used as the
image representation therefore a classification head is
attached to it when doing classification tasks. Learnable
position embeddings are then added to the patch embed-
dings and [CLS] token to retain positional information.
This sequence of embedded vectors is then processed
by a sequence of cascading standard Transformer en-
coder blocks with multi-head self-attention as proposed
by Vaswani et al. (2017). The self-attention layers up-
date the token representations by looking at the other
token representations with an attention mechanism.

This thesis will now proceed to discuss the two
stages of self-supervised pretraining and the slide-level
weak supervision stage, that form the HIPT architec-
ture. When referring to the different ViT architectures
used throughout the method, the following notation will
be used: n for the number of transformer blocks in the
ViT, h for the number of attention heads in each trans-
former block, and d for the vector dimension of the em-
beddings, this size stays constant through all of the ViT
blocks and is the output vector dimesion of the [CLS]
token of that ViT.

3.2.1. Self-supervised pretraning
As shown by Chen et al. (2022) and explained above

in the State of the art section, HIPT architecture uses
two levels of DINO-based knowledge distillation with
ViT to learn high resolution hierarchical image repre-
sentation. HIPT approaches WSI in a similar way as it
is done in Natural Language Processing, where embed-
dings are aggregated at the character-, word-, sentence-
and paragraph-level to create document representations.

The first level ViT, from here now referred to as
ViT256 − 16, aggregates the information found in [16 ×
16] non-overlapping pixel tokens found in an image
patch of size [256×256], or x256. At 20X magnification,
a bounding box of x16 pixels is a bounding box of 8 × 8
micrometers which encompass visual concepts that are
object-centric in featuring single cells, ViT256 − 16 ag-
gregates these features to capture local clusters of cell-
to-cell interactions. The ViT256 − 16 architecture used
in this work has the next characteristics: n=12, h=6,
d=384.

The DINO pretraining of ViT256 − 16 takes place in
a similar fashion as proposed by Caron et al. (2021), a
student and teacher network with identical architectures
are built and different augmented views of sampled WSI
patches are fed to them. Each WSI patch, x256, is aug-
mented into 10 different views, 2 global crops of size
x224, and 8 local crops of size x96. The teacher network
only sees the global crops whereas the student sees the
ten crops. The following augmentations are randomly
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Figure 6: Overview of the proposed method showing the data preprocessing, the DINO-based self-supervised aggregation layers and the slide level
weak supervision. By using aggregation layers to aggregate visual tokens at varying image resolutions both the tissue microenvironment as well as
the interactions between clusters of cells can be modeled. xL indicates the size of the squared WSI image patch.

applied to the crops: horizontal flip (p=0.5), color jit-
ter (p=0.8), random grayscale (p=0.2), gaussian blur-
ring with a standard deviation of 0.1, solarization with
a threshold of 128 (p=0.2), and normalization. These
augmentations help the model capture essential features
by making the model robust to variations in object ori-
entations, noisy images, lighting conditions, and color
distributions, thus enabling the models to achieve higher
levels of performance and reliability.

The [CLS ]256 (subindex denotes ViT input image res-
olution that is being aggregated at that level) token out-
put vector of size d=384 of the ViT256−16 is then passed
through a projection head consisting of a 3-layer multi-
layer perceptron (MLP) with hidden dimension 2048
and an output dimension of 65,536. Since ViT does not
use any batch normalization, the projection head is also
built without any batch normalization. The output fea-
ture vector of the projection head is centered and sharp-
ened only in the teacher network and then normalized
with a temperature softmax over the feature dimension
in both networks as depicted in Figure 6.b). The distri-
bution similarity of the teacher and student feature vec-
tor is then measured with a cross entropy loss. Through
a stop-gradient operator on the teacher, backpropagation
to minimize this loss is only applied to update the pa-
rameters of the student model with AdamW optimizer.
The teacher parameters are updated through an expo-

nential moving average of the student’s parameters.
The second level ViT, from here now referred to as

ViT4096 − 256, aggregates the feature information from
non-overlapping x256 patches found in an image region
of size [4096× 4096], or x4096, hence its name of patch-
level aggregation ViT in Figure 6.c). ViT4096 − 256
aggregates the cell-to-cell interactions represented in
[CLS ]256 to characterize macro-scale interactions be-
tween clusters of cells and their organization in tissue.
The extracted [CLS ]256 tokens pertaining to the 256
non-overlapping x256 patches within the x4096 region are
reshaped into a 16 × 16 × 384 2D feature grid, this
helps to retain the positional location of the x256 patches
within the x4096 region. The ViT4096 − 256 architecture
used in this work has the next characteristics: n=6, h=6,
d=192.

As for DINO pretraining data augmentation regime,
2 global crops are made with a size of 14 × 14 × 384
and 8 local crops with a size of 6×6×384, retaining the
scale of the crops done for the pretraining of ViT256−16.
As additional data augmentation, horizontal flip (p=0.5)
is applied to the crops. The DINO-based pretraining
of ViT4096 − 256 follows an almost identical approach
as the pretraining of ViT256 − 16 described above, only
difference is that at the beginning of the ViT4096 − 256
architecture the linear embedding layer with added po-
sition embeddings is done to the 256 [CLS ]256 token
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feature vectors to produce a 256 set of 192-dim em-
beddings. This setup intuitively retains the input se-
quence length of tokens of the ViT as the image size
scales, therefore making the computational complexity
of aggregating big WSI regions the same as aggregating
small WSI patches.

3.2.2. Slide-Level Weak Supervision
The last level ViT in HIPT, from here now referred to

as ViTWS I − 4096, aggregates the region-level represen-
tations obtained from ViT4096 − 256. [CLS ]4096 token
aggregation of regions from the same WSI is done via
formulating a slide-level classification task P(y|WS I),
where y is a slide-level label. ViTWS I − 4096 has the
following architecture: n=2, h=3, d=192. Due to not all
x4096 regions obtained during preprocessing being con-
tinuous in the WSI, positional embeddings are ignored.

The whole hierarchical image pyramid transformer
formulation can be written as:

HIPT (xWS I) = ViTWS I − 4096
({

CLS (k)
4096

}M

k=1

)

→ CLS (k)
4096 = ViT4096 − 256

({
CLS ( j)

256

}256

j=1

)

→ CLS ( j)
256 = ViT256 − 16

({
x(i)

16
}256
i=1

)

(3)

where 256 is the sequence length of both non-
overlapping [16x16] pixel tokens found in x256 images
patches and non-overlapping [256x256] patches found
in x4096, and M is the total number of x4096 regions
found in a given WSI. The average number of M in the
dataset used in this work is 52 regions per WSI.

Two slide-level classification tasks were formulated
to finetune ViTWS I − 4096 on the previously extracted
[CLS ]4096 tokens from the pretrained ViT4096 − 256; a
binary classification problem and a 4-class classification
problem. For the binary classification, Normal and Hy-
perplastic colorectal WSI were grouped into a ’Normal’
class, whereas LGD, HGD and cancer colorectal WSI
were grouped into an ’Abnormal’ class. For the 4-class
classification, Normal and Hyperplastic colorectal WSI
were grouped into a ’Normal’ class and the other three
classes were LGD, HGD, and cancer.

The ’packed’ slides from RUMC were split into train
(5116), validation (1321), and test(72) sets. The WSI
from Catania (76) were used exclusively for testing. In
Table 4 the number of colorectal slides from each class
and each center per split are shown.

3.3. Proposed Experiments

Experiment Notation: Several ViT256 − 16 and
ViT4096 − 256 were pretrained for this work, the name
of the datasets that any given ViT has been pretrained
on, whether in this work or in the work from Chen et al.
(2022) will be put before the ViT notation. That being
the case, the ViT256 − 16 and ViT4096 − 256 pretrained

Table 4: Train, validation, and test split done for slide-level weak
supervision. LGD:low grade dysplasia, HGD:high grade dysplasia.

Medical Center Split Class # WSI

RUMC

Training

Normal 2909
Hyperplastic 651
LGD 1188
HGD 146
Cancer 222

Validation

Normal 743
Hyperplastic 184
LGD 291
HGD 43
Cancer 60

Test

Normal 14
Hyperplastic 12
LGD 20
HGD 12
Cancer 14

Catania Test

Normal 13
Hyperplastic 1
LGD 35
HGD 16
Cancer 11

in Chen et al. (2022) from now on will be referenced as
TCGA ViT256 − 16 and TCGA ViT4096 − 256, respec-
tively.

Pretraining ViT256−16 and ViT4096−256 at the same
time is way too computationally expensive, therefore
the pretraining is done in stages.

3.3.1. ViT256 − 16 Self-Supervised pretraining
In the work of Chen et al. (2022), ViT256 − 16 is pre-

trained with 104M tissue patches from TCGA across 33
cancer types and a batch size of 256 for 400,000 iter-
ations (thus only pretraining for 1 epoch). Given that
we have a similar number of colorectal tissue patches
(∼ 88M) extracted from RUMC dataset, it was chosen
to pretrain ViT256 − 16 in this work also for one epoch.
A base learning rate of 0.0005 was used, with the first
10% of the epoch used to warm up to the base learning
rate followed by decay using a cosine schedule.

In the context of this work, two different approaches
for the DINO-based pretraining of ViT256 − 16 were
taken, as depicted in Figure 7.a:

a. TCGA+RUMC ViT256−16: Pretraining ViT256−
16 by finetuning from the available TCGA ViT256−
16 weights.

b. RUMC ViT256 − 16: Pretraining ViT256 − 16 from
random initialization of the network’s weights with
the x256 patches from RUMC.
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After pretraining of ViT256 − 16, inference is run on
the ViT encoder belonging to the teacher network with
a batch size of 256 so all the x256 patches belonging to
the same region x4096 are tokenized in the same forward
pass. The resulting feature tensor of size [256 × 384] is
saved as a .pt file for pretraining of the next level ViT.

ViT256 − 16 is the only ViT in HIPT that will actually
’see’ the image pixels, since the ViTs of the next lev-
els work by aggregating the features extracted from the
transformer of the previous stage.

3.3.2. ViT4096 − 256 Self-Supervised Pretraining
In the work of Chen et al. (2022), ViT4096 − 256

is pretrained with 408,218 tissue patches from TCGA
and a batch size of 256 for 200,000 iterations, mean-
ing that they trained for 125 epochs. This could be in-
terpreted as the ViT4096 − 256 having seen 51,200,000
’unique’ regions. So calculating the number of epochs
the ViT4096 − 256 needs to be trained can be obtained
by dividing 51,200,000 between the number of x4096 re-
gions. We chose to follow this intuition for two reasons:
1) training by following the same number of iterations
reported by Chen et al. (2022) makes the ViT4096 − 256
training batch size dependent and 2) a batch size of 256
was not supported by the available GPU memory in
our workstations. There were 343,825 regions extracted
from RUMC’s colorectal WSI dataset, which results in
having to pretrain ViT4096 − 256 for 149 epochs, for
simplicity this number was rounded up to 150 epochs.
Learning rate scheduling was the same as in ViT256−16
pretraining, where the first 15 epochs were used to warm
up to the base learning rate followed by decay using a
cosine schedule.

It was chosen to work with the extracted [CLS ]256
tokens from the above-described ViT256 − 16 pretrain-
ing schemes. Additionally, we also chose to extract
the [CLS ]256 tokens from TCGA ViT256 − 16 to pre-
train ViT4096 − 256, based on the underlying assump-
tion that the single-cell morphological feature aggrega-
tion learned by ViT256 − 16 can be thought to possess
a certain level of generalizability across various tissue
types, hence only pretraining the ViT4096 − 256, which
learns to aggregate clusters of cell-to-cell interactions,
will still yield meaningful representations. Therefore,
two different approaches per ViT256 − 16 encoder (six
different ViT4096 − 256 pretraining experiments in total)
to perform the DINO-based pretraining of ViT4096−256
were done, as depicted in Figure 7.b:

• Using [CLS ]256 tokens from TCGA ViT256 − 16:

a. RUMC ViT4096 − 256: Pretraining ViT4096 −
256 from random initialization of the net-
work’s weights.

b. TCGA + RUMC ViT4096 − 256: Pretraining
ViT4096−256 by finetuning from the available
TCGA ViT4096 − 256 weights.

Figure 7: Proposed experiments flowchart. Each stage of HIPT is
encased in dotted boxes.

• Using [CLS ]256 tokens from TCGA +

RUMC ViT256 − 16:

a. RUMC ViT4096 − 256: Pretraining ViT4096 −
256 from random initialization of the net-
work’s weights.

b. TCGA + RUMC ViT4096 − 256: Pretraining
ViT4096−256 by finetuning from the available
TCGA ViT4096 − 256 weights.

• Using [CLS ]256 tokens from RUMC ViT256 − 16:

a. RUMC ViT4096 − 256 Pretraining ViT4096 −
256 from random initialization of the net-
work’s weights.

b. TCGA + RUMC ViT4096 − 256 Pretraining
ViT4096 − 256 by finetuning from the avail-
able TCGA ViT4096 − 256 weights.
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After pretraining of ViT4096−256 is done, inference is
run on the ViT encoder belonging to the teacher network
for each x4096 region. All the 192-dim [CLS ]4096 tokens
belonging to regions of the same WSI are then saved in
a .pt file for their use in the slide-level weak supervision.

3.3.3. ViTWS I − 4096 Weak Supervision
In order to have an evaluation baseline, induction was

run on TCGA ViT256 − 16 and TCGA ViT4096 − 256 to
obtain the [CLS ]4096 token representation of the train,
validation, and test sets. ViTWS I − 4096 was trained for
50 epochs using the Adam optimizer with a batch size
of 1 with 32 gradient accumulation steps, and a fixed
learning rate of 0.0002.

For the binary classification cross entropy loss was
used, and for multiclass classification two experiments
were run one using cross entropy loss and another
one using focal loss. This same setup of training one
ViTWS I − 4096 for each classification task (see Fig-
ure 7.c) was used for the 6 different combinations of
ViT256 − 16 + ViT4096 − 256 explained above.

3.3.4. Distributed Training
In order to handle the amount of data in this work,

every pretraining experiment was done across multiple
GPUs at the same time in a process called distributed
data-parallel (DDP) training. This training paradigm
allows for the efficient utilization of computational re-
sources and enables faster training on large datasets.
To use DDP training in PyTorch, the model needs to
be wrapped with PyTorch’s DDP module. This ensures
that the model’s parameters are correctly synchronized
during training across the distributed replicas.

During DDP process initialization, the model is repli-
cated across multiple GPUs and parameter gradients are
organized into buckets to improve communication effi-
ciency. During the forward pass each replica processes
locally a different subset of the training data in a simi-
lar manner as it would happen in single-machine,single-
GPU training. Loss is calculated locally in each of the
processes. During the backward pass, the gradients are
computed independently of the DDP process, DDP uses
autograd hooks registered at construction time to trig-
ger gradient synchronization: once all the gradients in
the same bucket are ready, a collective communication
operation, called all reduce, computes the average of
said gradients across all instances. This way the gra-
dient field of each corresponding parameter across all
DDP processes is the same when the optimizer updates
the weights in each local model.

3.4. Feature evaluation

To qualitatively assess the features learned in the
pretraining of HIPT, we chose to use Uniform Man-
ifold Approximation and Projection (UMAP), a non-
linear dimensionality reduction technique renowned for

visualizing high-dimensional features. By generating
UMAP scatter plots, we can effectively reduce the di-
mensionality of the learned features while preserving
their underlying intrinsic structure, allowing us to vi-
sualize the separability and discriminative power of the
pretrained encoders. It was chosen to plot the [CLS ]256
tokens obtained from the three different ViT256−16 used
in this work, as several tissue types can be found at
WSI and x4096 region level, and furthermore, it might
be harder to give labels to the feature abstraction done
by ViT4096 − 256.

Since the RUMC and Catania datasets only con-
tain WSI-level labels, patch-level features were ex-
tracted from CRC-100K (Kather et al., 2018), a pub-
licly available patch-level labeled dataset with 100,000
non-overlapping x224 image patches at 20X magnifi-
cation with H&E staining of human colorectal cancer
(CRC) and normal tissue. The tissue patches found
in CRC-100K are annotated with the following 9 non-
overlapping tissue classes: adipose, background, debris,
lymphocytes, mucus, smooth muscle, normal colon mu-
cosa, cancer-associated stroma, and colorectal adeno-
carcinoma epithelium.

Following the work of Caron et al. (2021), where they
show that self-supervised ViTs can learn semantic seg-
mentation of the scene layout, we extract and visual-
ize independently the multi-head self-attention from the
two self-supervised ViTs to show the fine-grained visual
concepts such as cell locations and coarse-grained vi-
sual concepts such as broader tumor cellularity learned
by ViT256 − 16 and ViT4096 − 256 respectively. Ad-
ditionally, factorized attention distributions combining
ViT256 − 16 and ViT4096 − 256 attention distributions
are also given. We compare these attention maps to the
tissue segmentations obtained by following the method
proposed by Bokhorst et al. (2023).

4. Results

As stated above, self-supervised pretraining of
ViT256−16 and ViT4096−256 was done with distributed
data-parallel training in PyTorch using NCCL backend
for distributed GPU training.

TCGA + RUMC ViT256 − 16 was trained using 3
NVIDIA A100-40GB with a batch size per GPU of 128.
RUMC ViT256−16 was trained on 2 GeForce RTX 2080
Ti with a batch size per GPU of 32. Each of the 6 dif-
ferent proposed ViT4096−256 pretraining schemes were
trained on 2 GeForce RTX 2080 Ti with a batch size per
GPU of 32.

4.1. Slide-Level Weak Supervision

In this subsection the results obtained in the different
classification tasks will be shown. The training of all the
different 21 classification experiments was done using
only one GPU with the hyperparameters explained in
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section 3.3.3, each classification experiment took two
hours of wall time to complete.

The different experiments will be referred to with
the names of the different combinations of ViT256 −
16 and ViT4096 − 256 encoders. For example, the
evaluation baseline that uses the TCGA ViT256 − 16
and TCGA ViT4096 − 256 for cell-level aggregation
and patch-level aggregation respectively will be called
TCGA ViT256 − 16,TCGA ViT4096 − 256.

4.1.1. Binary Classification
For the binary classification task, it was chosen to

measure accuracy, precision, recall, F1 score, and AUC
ROC (Area Under the Curve of the Receiver Operat-
ing Characteristics). The classification results obtained
by TCGA ViT256−16,TCGA ViT4096−256 experiment
baseline yielded an accuracy of 0.84 with an AUC ROC
of 0.93.

Table 5: Binary classification results. AUC ROC: Area Under the
Curve of the Receiver Operating Characteristics

Experiments Accuracy Precision Recall F1 score AUC ROC

TCGA ViT256 − 16, TCGA ViT4096 − 256 0.84459 0.98851 0.79630 0.88205 0.93194
TCGA ViT256 − 16, TCGA+RUMC ViT4096 − 256 0.87162 0.97849 0.84259 0.90547 0.95602
TCGA ViT256 − 16, RUMC ViT4096 − 256 0.65541 0.96721 0.54630 0.69822 0.92315
TCGA+RUMC ViT256 − 16, TCGA+RUMC ViT4096 − 256 0.83108 0.96629 0.79630 0.87310 0.95394
TCGA+RUMC ViT256 − 16, RUMC ViT4096 − 256 0.90541 0.94340 0.92593 0.93458 0.94444
RUMC ViT256 − 16, TCGA+RUMC ViT4096 − 256 0.72297 0.92405 0.67593 0.78075 0.91042
RUMC ViT256 − 16, RUMC ViT4096 − 256 0.61486 0.94737 0.50000 0.65455 0.84190

When using TCGA ViT256 − 16,TCGA +

RUMC ViT4096 − 256 an improvement in all met-
rics but precision (due to the precision/recall trade-off)
can be observed, being this experiment the one
with the highest AUC ROC (see Figure 8 where all
ROC curves are plotted). Further improvement in
accuracy, recall and F1 score is seen in experiment
TCGA + RUMC ViT256 − 16,RUMC ViT4096 − 256
while still achieving a higher AUC ROC than the
baseline experiment (0.944). A deterioration in
the performance of the binary classifier can be
appreciated when using the RUMC ViT256 − 16
encoder with any combination of the pretrained
ViT4096 − 256 as it can be noted in Figure 8 and in
Table 5. RUMC ViT256 − 16,RUMC ViT4096 − 256
being the experiment with the worst performance
across all metrics. Another experiment where the
performance of the binary classification is low is
TCGA ViT256 − 16,RUMC ViT4096 − 256 where all
obtained metrics are lower than the baseline experiment.

4.1.2. Multiclass Classification
For the multiclass classification task, it was chosen

to measure top-1 accuracy, top-2 accuracy, balanced ac-
curacy, quadratic Cohen’s Kappa, F1 score, and AUC
ROC. For this task, it was chosen to train ViTWS I−4096
with cross entropy loss and with focal loss. The results
of each experiment are shown in Table 6, the results ob-
tained with each loss function will be commented on

Figure 8: Receiver Operating Characteristics curves of the seven bi-
nary classification experiments.

separately, comparison between their performances will
be made in the Discussion Section.

Cross Entropy Loss. The classification results obtained
by TCGA ViT256 − 16,TCGA ViT4096 − 256 experi-
ment baseline yielded a Cohen’s Kappa of 0.68 with a
macroaveraged AUC ROC of 0.86. Figure 9 presents
the ROC curves obtained using the One-vs-Rest (OVR)
approach for multiclass classification, to obtain the
One-vs-Rest ROC of a given class, said class is treated
as the positive class while considering the rest of the
classes as the negative class, once all the OVR ROC
curves are computed their individual AUC ROC is aver-
aged and macro-averaged AUC ROC is obtained.

Figure 9: Performance of the baseline multiclass classification model
trained with cross entropy loss in distinguishing each single class from
the remaining classes. LGD:low grade dysplasia, HGD:high grade
dysplasia.

This baseline classifier holds the highest top-1
accuracy, balanced class accuracy, Cohen’s Kappa,
and F1 score obtained across all experiments per-
formed using cross entropy loss. When using
TCGA+RUMC ViT256−16,TCGA+RUMC ViT4096−
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Figure 10: Performance of the different multiclass classification models trained with cross entropy loss in distinguishing each single class from the
remaining classes. Each row of plots represents a different ViT256 − 16 encoder. LGD:low grade dysplasia, HGD:high grade dysplasia.
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Table 6: Multiclass Classification results. F1 score was calculated per class and then the weighted mean was found. AUC ROC reported is macro
AUC ROC, where AUC ROC is computed independently for each class and all class-wise AUC ROC curves are averaged. AUC ROC: Area Under
the Curve of the Receiver Operating Characteristics

Cross Entropy Loss Focal Loss
Experiment Top-1 Accuracy Top-2 Accuracy Balanced Accuracy Cohen’s Kappa F1 score ROC AUC Top-1 Accuracy Top-2 Accuracy Balanced Accuracy Cohen’s Kappa F1 score AUC ROC

TCGA ViT256 − 16, TCGA ViT4096 − 256 0.63514 0.86486 0.62091 0.68444 0.63023 0.86294 0.69595 0.93243 0.68739 0.71120 0.69381 0.87488
TCGA ViT256 − 16, TCGA+RUMC ViT4096 − 256 0.62838 0.81757 0.58943 0.68432 0.60937 0.85437 0.63514 0.89189 0.59680 0.71594 0.63868 0.85557
TCGA ViT256 − 16, RUMC ViT4096 − 256 0.54054 0.83108 0.52937 0.47907 0.52074 0.82875 0.52703 0.83784 0.53547 0.51661 0.51252 0.82717
TCGA+RUMC ViT256 − 16, TCGA+RUMC ViT4096 − 256 0.57432 0.87162 0.56266 0.56921 0.56147 0.87721 0.70270 0.89865 0.66636 0.73202 0.67887 0.89733
TCGA+RUMC ViT256 − 16, RUMC ViT4096 − 256 0.62162 0.81757 0.58284 0.61056 0.60018 0.86572 0.67568 0.81081 0.61823 0.62896 0.64328 0.85897
RUMC ViT256 − 16, TCGA+RUMC ViT4096 − 256 0.52703 0.72297 0.51278 0.45840 0.50604 0.79295 0.50676 0.72297 0.49510 0.39781 0.48241 0.78382
RUMC ViT256 − 16, RUMC ViT4096 − 256 0.62162 0.81081 0.56643 0.62941 0.61431 0.80694 0.52027 0.69595 0.56594 0.49599 0.50312 0.80065

256 results in an increase in the macro averaged
AUC ROC and in top-2 accuracy. Experiments
TCGA+RUMC ViT256−16,RUMC ViT4096−256 and
TCGA ViT256 − 16,TCGA + RUMC ViT4096 − 256 are
able to achieve a similar AUC ROC performance as the
baseline experiment.

Same as in the binary classification experiments,
the model performance decreases in experiments using
RUMC ViT256 − 16 and in experiment TCGA ViT256 −
16,RUMC ViT4096−256. This decrease in performance
can also be appreciated in Figure 10.b), Figure 10.e),
and Figure 10.f), where the ability of the classifiers to
distinguish between normal vs the rest of the classes is
lower than the other three trained classifiers depicted in
the same Figure 10.

Focal Loss. The classification results obtained by
TCGA ViT256 − 16,TCGA ViT4096 − 256 experiment
baseline yielded a Cohen’s Kappa of 0.71 with a macro
averaged AUC ROC of 0.87. Figure 11 presents the
ROC curves obtained using the One-vs-Rest (OVR) ap-
proach for multiclass classification, high AUC ROC for
Normal vs the rest and Cancer vs the rest can be ob-
served. Similar to the multiclass classifiers trained with
cross entropy loss, this baseline classifier holds most of
the highest performance metrics (top-1 accuracy, top-2
accuracy, balanced class accuracy and F1 score) among
all other focal loss experiments.

Figure 11: Performance of the baseline multiclass classification model
trained with focal loss in distinguishing each single class from the re-
maining classes. LGD:low grade dysplasia, HGD:high grade dyspla-
sia.

TCGA ViT256 − 16,TCGA + RUMC ViT4096 − 256
achieves a similar Cohen’s Kappa and AUC ROC than
the baseline experiment. TCGA + RUMC ViT256 −
16,RUMC ViT4096 − 256 also obtains a similar macro-
averaged AUC ROC. This similarity in AUC ROC in
TCGA ViT256 − 16,TCGA+RUMC ViT4096 − 256 and
TCGA+RUMC ViT256−16,RUMC ViT4096−256 may
be due to the high Normal vs the rest ROC curve exhib-
ited in Figure 12.a) and Figure 12.d), respectively.

When using TCGA + RUMC ViT256 − 16,TCGA +
RUMC ViT4096−256 for the classification task results in
an increase in the macro averaged AUC ROC and in Co-
hen’s Kappa accuracy. Observing the OVR ROC curves
of the baseline experiment in Figure 11 and of TCGA+
RUMC ViT256 − 16,TCGA + RUMC ViT4096 − 256 in
Figure 12.c) we can notice an increase in the ability of
the classifier to distinguish WSI labeled as normal tis-
sue, WSI labeled as containing low grade dysplasia and
WSI labeled as cancer with respect to the baseline ex-
periment.

Once again experiments using RUMC ViT256 − 16
display the worst perfomance with Cohen’ Kappa be-
low 0.5 and macro-averaged AUC ROC of 0.78 and 0.8
in RUMC ViT256 − 16,TCGA + RUMC ViT4096 − 256
and RUMC ViT256 − 16,RUMC ViT4096 − 256 respec-
tively.

4.2. Feature Evaluation

As explained in the Material and methods section, we
chose to use UMAP scatter plots to qualitatively evalu-
ate the features learned by ViT256 − 16. We chose to
extract the features of the 100,000 labeled WSI patches
of the CRC-100K image dataset, since the datasets that
were used for this work only contain WSI-level la-
bels. The UMAP-scatter plots of each of the 3 different
ViT256−16 encoders used for the presented experiments
are shown in Figure 13. Figure 13.a) shows the UMAP
of the features extracted from TCGA ViT256 − 16, each
different class is in a different color, it can be observed
an overlap in the feature projection of cancer-associated
stroma and smooth muscle. In Figure 13.a) the UMAP
of the features extracted from TCGA+RUMC ViT256−
16 displays a more wide distribution of the class clusters
in the UMAP space. Finally, in Figure 13.c) the UMAP
scatter plot of the features from RUMC ViT256 − 16 en-
coder show the biggest overlap between class clusters.
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Figure 12: Performance of the different multiclass classification models trained with focal loss in distinguishing each single class from the remaining
classes. Each row of plots represents a different ViT256 − 16 encoder. LGD:low grade dysplasia, HGD:high grade dysplasia.
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Figure 13: UMAP Visualization of pretrained embeddings from
a) TCGA ViT256 − 16, b)TCGA + RUMC ViT256 − 16 and
c)RUMC ViT256 − 16. ADI:adipose tissue, BACK:background,
DEB:debris (Deb), LYM: lymphocytes, MUC: mucus, MUS: smooth
muscle, NORM: normal colon mucosa (Norm), STR: cancer-
associated stroma, TUM: colorectal adenocarcinoma epithelium.

An image region from the RUMC containing tu-
mor was selected to showcase the multi-head self-
attention visualization of the self-supervised ViT en-
coders. Since the TCGA+RUMC ViT256−16,TCGA+
RUMC ViT4096−256 was the experiment with the high-

est AUC ROC it was chosen to use it for the attention vi-
sualization. The main tumor delineation obtained in the
segmentation mask in Figure 14.b can be appreciated in
the factorized self-attention of TCGA+RUMC ViT256−
16 and TCGA + RUMC ViT4096 − 256 shown in Figure
14.f)

Figure 14: Hierarchical Attention Maps for colorectal cancer. a)Image
region with colorectal cancer, b) segmentation mask obtained from
Bokhorst et al. (2023) method, c) Overlay of segmentation mask on
tissue region, d) Multi-Head Self-Attention of ViT4096−256, e) Multi-
Head Self-Attention of ViT256 −16, f) Factorized self-attention distri-
butions of ViT256 − 16 and ViT4096 − 256.

5. Discussion

Performance improvement in the different HIPT
models trained in this work happens when using the
cell-level aggregation ViT model that was finetuned
from the TCGA checkpoint with the RUMC data. This
may point to considering these weights that have been
pretrained using 10,678 H&E-stained diagnostic slides
across 33 cancer types from TCGA as a good starting
point for the development of cancer-specific encoders.

Before discussing the results of the different classi-
fication experiments, a bit more context on the RUMC
dataset might be useful for understanding them. The
RUMC dataset consists of ’packed’ biopsy slide files
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that contain several WSI cut from the same paraffin
block, in some of these cases the relevant information
for the slide label may be present in only one of the
slides that were packed, therefore making the signal-
to-noise ratio very low, this might explain the low re-
call performance, compared to the high precision one.
This low signal-to-noise ratio can also explain the poor
performance of the HIPT models trained solely on the
RUMC data. Whereas the TCGA dataset is an exten-
sively well-curated dataset of tissue resections where
the WSI are composed of at least 80% tumor nuclei,
hence having a higher signal-to-noise ratio and there-
fore aiding in the correct, discriminative abstraction of
the aggregated token.

After further examining the results obtained in
the binary classification task, an overall perfor-
mance improvement can be noted when finetuning
ViT256 − 16 using RUMC data. Even if an ex-
periment that uses the baseline ViT25616 encoder,
TCGA ViT256 − 16,TCGA + RUMC ViT4096 − 256,
is the one with the highest AUC ROC; TCGA +
RUMC ViT256−16,TCGA+RUMC ViT4096−256 still
has a similar AUC ROC performance too and TCGA +
RUMC ViT256−16,RUMC ViT4096−256 has the high-
est F1 score, recall and accuracy. All binary experi-
ments performed exhibit a high precision, meaning that
even if they miss many positive cases thus yielding a
low recall (as is the case in the baseline experiment and
in TCGA ViT256−16,RUMC ViT4096−256), whenever
a case is marked as Abnormal it is likely to be a true
positive. It can be interpreted as the binary models be-
ing skeptic models: it is unlikely they flag a case to be
abnormal hence missing to flag some abnormal cases,
but when they do, it must have been because of over-
whelming evidence that the case is in fact an abnormal
case.

The OVR ROC curves, in multiclass classification,
provide insights into the model’s ability to correctly
identify a given class while minimizing false positive
predictions across the rest of the classes. In all mul-
ticlass experiments, Normal-vs-the rest and Cancer-vs-
the rest AUC ROC are high meaning that the models are
good at distinguishing these classes from the rest. The
models tend to get confused between LGD and HGD
which are the classes with more samples in the test
set. Two different loss functions were used to train the
ViTWS I − 4096, cross entropy and focal loss. Through
the use of a focusing parameter, the focal loss function
focuses more on the predictions that the model is not
very confident in while down-weighting the loss value
for well-classified or very confident correct predictions,
hence ensuring that predictions on hard examples im-
prove over time rather than the model becoming overly
confident with the easy ones. In most of the experiments
(the ones using RUMC ViT256 − 16 excluded) we no-
tice a significant improvement in the multiclass metrics,
therefore, confirming the focal loss efficiency to address

class imbalance during training.
Seeing that across all classification tasks, the perfor-

mance of the models using RUMC ViT256 − 16 dramat-
ically decreases, we conclude that it is crucial to have a
good ViT256 − 16 encoder to have a good performance
when doing WSI-classification.

The ability of the self-supervised pretrained ViT256 −
16 to successfully capture relevant patterns in the data
can be appreciated in the UMAP scatter plots. In visu-
alizing UMAP scatter plots of pre-extracted ViT256−16
features, the baseline TCGAViT256 − 16 already ex-
hibits a high ability in capturing discriminative features
per class. Clusters per class can be seen even if more
than half of the class are very close to each other in the
represented space, having smooth muscle and cancer-
associated stroma completely overlapping. This could
be interpreted as these classes having a poor patch-level
representation or that these two classes share similar-
ities. Considering the UMAP scatter plot of the fea-
tures encoded by TCGA + RUMC ViT256 − 16, where
these two classes are well differentiated into two sep-
arate clusters but still retain a high level of proxim-
ity to one another, we are inclined to assume that a
combination of both factors may be the case. More-
over, in the UMAP scatter plot of the features en-
coded by TCGA + RUMC ViT256 − 16, we can see
less scattering of each cluster class and higher distri-
bution of the clusters across the UMAP visualization,
which suggests that the self-supervised learning regime
of TCGA + RUMC ViT256 − 16 has captured specific
aspects of the diversity distribution found in colon data.
Following this thread of thought, intuition might tell
us that the RUMC ViT256 − 16 encoder will then have
learned better representations of different tissue types
encountered in the colon and rectum as it has been pre-
trained with only colon data. However, a poor class
cluster differentiation can be noted when looking at the
UMAP scatter plot of the embeddings obtained from the
same images. It is possible that there is not enough tis-
sue type diversity (or it is way too unbalanced) in the
RUMC dataset to make the RUMC ViT256 − 16 learn
meaningful distinctive features. These observations fur-
ther support the notion that using the pretrained TCGA
weights as a starting point for the hierarchical pretrain-
ing of HIPT is a sensitive way to approach the creation
of cancer-specific encoders, due to TCGA ViT256 − 16
and TCGA ViT4096 − 256 possessing a certain level of
generalizability across various tissue types.

Lastly, through factorized attention visualization of
the output of the TCGA+RUMC ViT256 − 16,TCGA+
RUMC ViT4096 − 256 experiment we can observe high
attention areas (in red and orange) that seem to be at-
tending to high tumor cellularity regions as the obtained
segmentation mask shows. However further inspection
of these attention maps has to be done by trained pathol-
ogists to give a correct assessment of the accuracy and
quality of the features being attended by the ViTs in the
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hierarchical pretraining of HIPT.

6. Conclusions

In this work, we explored the use of self-supervised
knowledge in ViTs to obtain hierarchical representa-
tions of gigapixel images through the use of Hierarchi-
cal Image Pyramid Transformer architecture. The im-
portance of variety in the data used for self-supervised
pretraining has proven to be crucial for its good per-
formance in different downstream tasks. It seems to
be possible to obtain semantic segmentation from the
factorized self-attention distributions. The presented
work reaffirms the potential of transformer-based archi-
tectures to model complex, hierarchical relationships in
data which can be extended into other domains of med-
ical imaging/data.

6.1. Future work

One of the main challenges faced in this project was
handling the huge amounts of data we had, which as-
cended to more than 10TB. More efficient ways to store
data or the use of cloud services should be explored.
Another way to tackle the burden of the huge amounts
of data needed for pretraining and in order to mitigate
the low signal-to-noise ratio in datasets where there is
no pixel-level or patch-level labels could be done by
sampling a subset of the x256 patches that represents
the variety of tissue contained in the whole dataset.
This could be done by extracting the features of the
patches with a lightweight pretrained encoder, apply-
ing k-Means to these features, and then sampling a per-
centage of patches from each centroid. This data sam-
pling approach would keep the pretraining method com-
pletely self-supervised where only the number of clus-
ters to be made and the percentage to sample from each
centroid would be given.

The recent release of DINOv2 could be implemented
into the self-supervised hierarchical pretraining of HIPT
architecture. Further ablation studies of the HIPT archi-
tecture could be done by varying the size of the region
image from a range of 1024 to 4096.
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Abstract

The use of structural magnetic resonance imaging (MRI) data has allowed for an in-depth exploration of how the
brain experiences age-related neuroanatomical changes. These transformations occur both locally and network-wide
as it undergoes maturation and aging. Based on these alterations, minimizing the difference between the real and
the chronological age, so-called brain age delta, necessitates accomplishing precise brain age, which can serve as a
biomarker. In recent times, there has been a significant amount of researches conducted in the field of age prediction
utilizing data from brain MRI scans. A multitude of studies have explored utilizing machine learning algorithms
like support vector machines (SVMs) random forests (RFs), and deep learning approaches employing both 2D and
3D imaging modalities. In this thesis, we explore age prediction models based on familiar structural networks using
convolutional neural networks (CNN) with volumetric data from 1,016 healthy subjects aged 50-98 years (ImaGenoma
dataset). The model design incorporates preprocessing techniques to standardize the images, including bias correction,
registration, brain extraction, and intensity normalization, ensuring consistent input for subsequent analysis. We
tested the impact of different architectures on the ImaGenom dataset. Fine-tuning only the prediction block of SFCN
architecture described in Peng et al. (2021a) achieved the best MAE of 3.33 years and r2 coefficient = 0.6713. Overall,
more refined results and an increase in prediction metric was obtained when fine-tuning the hyperparameters of the
networks.

Keywords: Brain MRI, age prediction, healthy subjects, machine learning, convolutional neural networks

1. Introduction

Studies using structural magnetic resonance imaging
(MRI) have shown that the brain experiences significant
age-related neuroanatomical changes over the span of
the life process. One approach utilized by researchers
to determine an individual’s brain age involves quan-
tifying gray matter volume over time. This methodol-
ogy recognizes that as humans age in years they expe-
rience a gradual decrease in gray matter content due to
diverse factors including both natural aging processes
(Good et al., 2001), (Taki et al., 2011) and external en-
vironmental influences (Baxi et al., 2020) or neurode-
generative conditions (Thompson et al., 2003), (Fisher
et al., 2008).

The field of age prediction has passed through many
key milestones which significantly emphasize its po-
tential applications in various domains. (Franke et al.,
2009) introduced an innovative concept known as ”brain

age”. Their methodology involved utilizing a machine
learning algorithm to examine structural brain MRI
data towards estimating one’s chronological age. (Cole
et al., 2010) introduced an innovative approach to pre-
dict brain age. They combined neuroimaging and ma-
chine learning methods in their study and discovered
that differences in how our brains age can be associated
with changes in cognitive abilities and the development
of neurodegenerative conditions. In a study involving a
significant number of healthy individuals, Koutsouleris
et al. (2012) examined the accuracy of predicting brain
age and its connection to schizophrenia. The results of
their investigation indicated that estimating brain age
might have the potential to be used as a biomarker
for neurodevelopmental disorders like schizophrenia. 3
years later, in an exciting breakthrough, Liem et al.
(2015) explored the world of functional connectivity
patterns derived from resting-state functional MRI to
predict brain age. Through their study, they discov-
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ered a remarkable connection between functional con-
nectivity and the passage of time, shedding new light
on how our brains age and the underlying neural mech-
anisms involved. Kaufmann et al. (2017) undertook
a comprehensive investigation by integrating multiple
types of neuroimaging data to predict brain age in a
diverse group of individuals. Their study emphasized
the promising prospects of combining various imaging
techniques, including structural MRI, diffusion MRI,
and functional MRI. This multimodal approach demon-
strated significant potential in enhancing the accuracy
and dependability of brain age prediction models.

Recently, deep learning approaches have gained
prominence in brain age prediction research. In a semi-
nal study, Cole et al. (2019) introduced the BrainAGE
framework, which employed deep neural networks
to estimate brain age based on structural MRI data.
Their research marked a significant milestone, as the
BrainAGE framework surpassed previous methods in
terms of performance and showcased the immense po-
tential of deep learning techniques in accurately pre-
dicting brain age. Nowadays there are a lot of publica-
tions that made a major impact on the field of brain age
prediction, worth noting are (Couvy-Duchesne et al.,
2020), (Peng et al., 2021b), (Barbano et al., 2022) up
to the most recent one published by Zhang et al. (2023).
Some of the aforementioned papers will be exploited in
section 2.

Given the necessity to develop a reliable approach for
accurately predicting brain age and potentially assisting
in the clinical scenario, the main aim of this research
is to develop a robust method for brain age prediction.
This can serve as a baseline for comparing an individ-
ual’s biological age with their chronological age, uncov-
ering disparities that may indicate accelerated aging or
age-related diseases. Our work focused on 2 different
deep-learning architectures. The first architecture tried
was the one described by Yin et al. (2023) where the
last output layer was changed to 2 neurons indicating
the number of binary classification, while the second ar-
chitecture was the SFCN model described by Peng et al.
(2021b).

2. State of the art

Due to its clinical relevance, MRI quantification of
the human brain has been widely investigated. Within
the scope of this research, the methods implemented for
age prediction of the brain can differ in different factors.
These factors include the input data type such as 2D pro-
jections, 3D projections, 3D volumes, and 3D maps of
gray and/or white matter. Another factor is the dataset
used for each of the architectures. All of the meth-
ods based on the training process can be grouped into
2 main categories, machine learning, and deep learning
approaches, all of which have state-of-the-art represen-
tations that can be seen in Table 1.

2.1. Machine learning approaches

Machine learning has become a remarkable tool that
empowers computers to learn from data and make pre-
dictions or decisions without relying on explicit pro-
gramming. At its core, machine learning revolves
around the idea of prediction, wherein algorithms learn
from past data to uncover valuable patterns, relation-
ships, and trends. These insights can then be applied
to anticipate and forecast future outcomes. During the
training phase, the machine learning algorithm learns
from a labeled dataset, where the input features (also
known as predictors or independent variables) are asso-
ciated with known target values (also known as labels
or dependent variables) (Mitchell et al., 2007). Once
the model is trained, it can be used for inference, where
new, unseen data is fed into the model, and the al-
gorithm makes predictions or decisions based on the
learned patterns.

Various publications used different types of input data
reflecting in a different MAE for each method. Com-
monly, as stated in Da Costa et al. (2020) and Baecker
et al. (2021), authors used 3D volume and/or Voxel-
based morphometry data as an input to their models. On
the other hand, Jönemo et al. (2022) utilized 2D pro-
jections of 3D MRI volumes. The paper by Da Costa
et al. (2020) emphasizes the use of shallow machine
learning models and feature engineering techniques to
achieve competitive performance. The work published
by Baecker et al. (2021) compares the effectiveness of
region-based and voxel-based morphometric data in ma-
chine learning models, highlighting the impact of fea-
ture representation choices. Jönemo et al. (2022) intro-
duced an efficient approach by leveraging 2D projec-
tions of 3D MRI volumes, utilizing 2D CNNs for fea-
ture extraction, and reducing computational complex-
ity. These differences showcase the diverse avenues
explored by researchers to improve the accuracy, inter-
pretability, and efficiency of brain age prediction mod-
els.

2.2. Deep learning approaches

Recently, deep learning techniques have made signif-
icant strides showcasing unparalleled levels of predic-
tion accuracy. This innovation is able to outperform
humans in certain scenarios offering valuable support
for healthcare providers who are looking to make criti-
cal clinical decisions, (LeCun et al., 2015), (Cole et al.,
2017), (De Fauw et al., 2018). In the context of predic-
tion, deep learning models excel at capturing complex
patterns and relationships, enabling them to make ac-
curate predictions based on input features. The train-
ing process involves optimizing the model’s weights
and biases to minimize the prediction error and improve
performance (LeCun et al., 2015). One challenge that
produced a great impact on the field of deep learning
was Predictive Analysis Challenge (PAC 2019). The
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challenge specifically focused on utilizing T1-weighted
brain MRIs to predict the age of subjects in multicen-
ter datasets. This challenge included 2 parts: 1) to
achieve the most accurate age prediction, as measured
by mean absolute error (MAE), and (2) to achieve the
best MAE while keeping the Spearman correlation r-
value between the prediction error (brain age delta) and
the actual age below 0.1. Two reviewed papers that took
the 1st and 3d place respectively on this challenge are
(Peng et al., 2021b) and (Couvy-Duchesne et al., 2020).
They achieved an MAE of 2.9 years and 3.33 years
whereas the paper from Da Costa et al. (2020) reached
an MAE of 3.57 years. This paper used machine learn-
ing algorithms while the other twwo used deep learning
architecture.

A notable change in the way loss function is cal-
culated in most architectures is presented in (Barbano
et al., 2022). The authors addressed the challenge of bi-
ases arising from multi-site datasets utilizing leveraging
contrastive learning techniques. By incorporating a con-
trastive loss function, the model learns informative rep-
resentations that mitigate site-specific biases, resulting
in improved generalization capabilities for robust brain
age prediction. On the other hand, the paper published
by Zhang et al. (2023) stands out as the newest contri-
bution in the field of age prediction. This paper focuses
on tackling age-level bias, a critical concern in brain age
prediction.

3. Material and methods

Since SFCN described in Peng et al. (2021b) pro-
vided good results in predicting age from MRI images,
an adaptation of this model is used in the current work
for the purpose of prediction based on 3D volume data.
We also implemented a binary classification model for
our task as a start-up work (Yin et al., 2023).

3.1. Dataset description

3.1.1. ImaGenoma
The dataset used in this work is ImaGenoma dataset

provided by Hospital Universitari de Girona Doctor
Josep Trueta located in Girona, Spain. This dataset con-
sists of T1-weighted and T2-weighted images of adults
aged 50-98 years. It is important to mention that the in-
dividuals participating in this study do not exhibit any
signs of cognitive impairment or conditions that affect
the functioning or structure of their brains. Initially, the
dataset contained 1022 images and after a quality vision
check, we ended up working with 1016 subjects where
610, 204, and 202 were used for training, validation,
and testing respectively. In Figure 1, we can observe a
graphical representation showcasing the distribution of
ages. It can be seen that most of the cases are centered
between the interval of 60 to 70 years old. A few cases
are found in the extremes of the distribution. Together

with the images, an excel file containing the id of the
patients, diet score, age, and sex was provided.

Figure 1: ImaGenoma age distribution.

Given that the images were not preprocessed, the fol-
lowing steps were undertaken to standardize the dataset:
(i) applying bias field correction to all images, (ii) per-
forming non-linear registration to MNI atlas, (iii) skull-
stripping, and (iv) tissue and sub-cortical structures seg-
mentation. More details about the preprocessing steps
can be found in section 3.2.

3.1.2. UK Biobank
One of the deep learning approaches we followed

was trained and tested using two different datasets: UK
Biobank and PAC 2019. The main difference between
them is in age distribution and number of subjects as can
be seen in Table 2 and visualized in Figure 2. The brain
imaging data obtained from the UK Biobank comprises
a collection of multimodal brain scans primarily de-
rived from a predominantly healthy cohort (Miller et al.,
2016). The preprocessing pipeline for the UK Biobank
data is explained in Alfaro-Almagro et al. (2018). The
data release of the UK Biobank includes preprocessed
data, eliminating the need for researchers to repeat the
preprocessing pipeline. Access to the dataset is avail-
able to the researchers who present a project. To man-
age GPU memory requirements, the inputs are pro-
vided in 1mm MNI space and cropped to the central
160x192x160 voxels. Models are trained, validated, and
tested separately using these processed inputs.

Figure 2: Age distribution of different datasets. The UK Biobank (blue
bars) and the PAC 2019 (orange bars)
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Table 1: Overview of the state-of-the-art methods and their respective Mean Absolute Error (MAE) used for brain age prediction.
SVR stands for support vector regression, DTR stands for decision tree regression, VBM stands for voxel-based morphometry, GM stands for gray
matter and SFCN stands for simple fully convolutional network.

Methodology Input Author Dataset
MAE
(years)

Ensemble: SVR+DTR 3D Volume
Machine Learning

Da Costa et al. (2020) PAC 2019 4.57

SVR VBM
Machine Learning
Baecker et al. (2021) UK Biobank 3.69

2D CNN 2D Projections
Machine Learning
Jönemo et al. (2022) UK Biobank 4.38

Inception V1 Priori info: GM
Deep Learning

Couvy-Duchesne et al. (2020) PAC 2019 3.33

SFCN 3D Volume
Deep Learning

Peng et al. (2021b)
UK Biobank
PAC 2019

2.14
2.9

3D Resnet-18 3D Volume
Deep Learning

Barbano et al. (2022) OpenBHB 3.76

3D Resnet-34 3D Volume
Deep Learning

Zhang et al. (2023)

UK Biobank
OASIS
ABIDE

2.55

Table 2: Differences between UK Biobank and PAC 2019 datasets.
Dataset Age Range Age (yrs) Number of Subject Number of

(yrs) Mean+STD Training/Validation/Test Total Sites
UK Biobank 42 − 82 52.7 + 7.5 12949/518/1036 14503 2
PAC 2019 17 − 90 35.9 + 16.2 2199/439/660 2638 17

3.1.3. PAC 2019
The dataset includes both a label-known train-

ing/validation dataset with a total of 2,638 subjects and
a ‘true‘ test set comprising 660 subjects. The labels of
the test set are intentionally unknown from the com-
petition participants, adding an element of uncertainty
and evaluation to the competition. The subjects in the
dataset are derived from 17 different sites. The ma-
jority of the data is based on the work by Cole and
Franke (2017), with the organizers incorporating addi-
tional data from a few new sites. The input images are
cropped to retain the central 160x192x160 voxels, used
within UK Biobank data.

3.2. Preprocessing

Preprocessing plays a vital role in improving the
quality and dependability of trained models. It encom-
passes a range of techniques, including data normaliza-
tion, scaling, and feature extraction, all aimed at prepar-
ing raw data for optimal performance of the models. A
key objective of preprocessing is to address inter-subject
variability, ensuring that the data is uniform. This nor-
malization enables fair and accurate comparisons across
different individuals or samples. By reducing inter-
subject variability through preprocessing, deep learning
models can effectively capture significant patterns and
relationships.

To start implementing different architectures we be-
gan with the analysis of the set of images. Since the
data was coming directly from the scanner, it was de-
cided to perform a preprocessing of them with the hope

of improving the model’s performance. The steps con-
sisted of bias field correction, non-deformable registra-
tion, brain extraction, tissue and sub-cortical structures
segmentation. All of the preprocessing pipeline was
performed using parallel running divided into 40 con-
straints to achieve the best efficiency in time. The de-
scribed preprocessing is depicted in Figure 3.

Figure 3: Visual representation of data preprocessing: a) axial slice
of the original T1-weighted, b) bias field corrected, c) skull stripped
registered image; d-f) CSF, WM, GM volume and g) subcortical struc-
tures

3.2.1. N4 bias field correction
The method we chose to perform bias field correction

was the one presented by Tustison et al. (2010) defined
in SimpleITK library, the current state of art algorithm.It
tackles the issue of uneven intensity bias found in MRI
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images. This bias can arise due to factors like irregu-
larities in the magnetic field or artifacts during acqui-
sition, leading to inconsistencies and distortions in the
data. N4 bias field correction takes a non-parametric
approach to estimate and remove this bias from the im-
age. It achieves this by utilizing a combination of a
low-frequency deformation field and a B-spline-based
approximation to model the bias field. By applying this
correction process, we ensure that the intensity values
across different regions of the image are normalized and
standardized. The output of this process is the bias field
corrected image that will be used as the moving image
in the registration step.

3.2.2. Non-deformable registration and skull-stripping

For the registration of the images, we used the
ICBM 2009c Nonlinear Asymmetric template,
(https://nist.mni.mcgill.ca/icbm-152-nonlinear-atlases-
2009/), visualized in Figure 4. When comparing
symmetric and asymmetric registration approaches,
asymmetric atlases can capture the structural asymme-
try present in the brain, such as differences in the size,
shape, and location of brain regions between the left and
right hemispheres. By considering these asymmetries,
the atlases can provide more precise spatial alignment
and mapping of brain regions. However, it is essential
to ensure the correct orientation of the original images.

Figure 4: MNI template: a) T1 non-linear asymmetric and b) brain
mask.

The preprocessing pipeline was performed using FSL
library (Smith et al., 2004). This library utilizes non-
deformable registration in the MNI space for skull strip-
ping, employs the FAST algorithm for tissue segmenta-
tion, and incorporates the FIRST method for the seg-
mentation of subcortical structures. To register the im-
ages with respect to the MNI template, we used FSL
pairreg function, which uses the skull to maintain the
global scaling of the head. This function does an affine
registration but preserves the scale of the skull. In this
way, we ensure that all the patients have the same in-
tracranial volume. The non-linear registration is used
for skull stripping but the image is not transformed non-
linearly to the MNI space. The images are linearly
transformed to the template.

3.2.3. Tissue segmentation
After having the transformed skull-stripped images

into the MNI space, tissue segmentation is performed.
This step is done using fast algorithm, Zhang et al.
(2001) inside FSL library. The underlying method
relies on a hidden Markov random field model and
utilizes an associated Expectation-Maximization algo-
rithm. The whole process produces 4 outputs for each
patient, background, CSF, GM, and WM images.

3.2.4. Sub-cortical structures segmentation
Another feature included in fsl library is the segmen-

tation of sub-cortical structures using first algorithm,
(Patenaude et al., 2011). The shape and appearance
model used in this approach follows multivariate Gaus-
sian assumptions. The shape is represented by a mean
shape along with modes of variation, which are essen-
tially principal components capturing shape variations.
Using these learned models, the first algorithm explores
linear combinations of shape modes of variation to iden-
tify the most likely shape instance based on the observed
intensities in a T1-weighted image.

3.3. Binary classification pipeline
We started our deep learning area using a binary clas-

sification model. In this study, the training was con-
ducted using a small subset of cases that have extreme
values for the score, resulting in the classification of the
classes as “low“ and “high“ scores, assigned with 0 and
1 respectively. We adopted this classification approach
as a start-up work because classifying data is gener-
ally considered easier than regression. By doing so, we
aimed to demonstrate two important points:

Firstly, we wanted to establish that there are dis-
cernible patterns between brain images and the specific
biological parameters we targeted. This finding would
provide evidence that meaningful relationships exist be-
tween brain imaging and the variables of interest.

Secondly, we aimed to explore and test different train-
ing settings for the subsequent regression problem. By
successfully achieving classification results, we could
gain insights into the best approaches and configura-
tions to be employed when training the model for re-
gression, which involves predicting continuous numeri-
cal values rather than discrete classes.

3.3.1. 3c2d model
The model we constructed from scratch for the binary

classification case is the 3D-CNN architecture presented
by (Yin et al., 2023). A full overview of the training
flow can be seen in Figure 5. The 3D convolutional
neural network (CNN) is composed of three sequen-
tial blocks, each containing a 3D convolutional layer,
a max-pooling layer, a batch normalization layer, and
an optional dropout layer.

Following the convolutional blocks, the fourth block
comprises a global average pooling layer specifically
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Figure 5: Working flow of the binary classification pipeline.

designed for 3D data. This pooling layer reduces the
feature map of size 18 x 18 x 18 x 128 to a pooled repre-
sentation of 128 x 1. Subsequently, the pooled features
are passed through a dense layer and a dropout layer
with a dropout rate of 0.3. In the original design, the
output dense layer had one output neuron to estimate
BA using regression. However, for our adaptation, we
modified the number of output neurons to 2 since we are
now dealing with binary classification. We named this
model ’3c2d’ since it is constructed by 3 convolutional
layers and 2 dense layers.

3.3.2. Loss functions
Mean square error (MSE) loss
It is defined as:

MS E =
1
N
∗

N∑

i

(Yi − FXi ) (1)

where:
- N is the total number of subjects
- Yi are the true ages.
-FXi represents the neural network that outputs the

predicted age directly.
Cross-entropy (CE) loss
The cross-entropy loss function calculates the aver-

age negative log-likelihood of the predicted age class
probabilities. It penalizes the model for deviating from

the true age labels, encouraging it to learn accurate age
predictions. The equation for cross-entropy loss is as
follows:

CE = −
N∑

i

ti · log Fti (2)

where:
- ti is the target value for ith index.
- Fti is the ith scalar value of the model output.

3.3.3. Training and testing
ImaGenoma dataset was divided into 60/20/20 for

training, validation, and test set respectively ensuring
a balanced splitting. In the training phase, we employed
a Stochastic Gradient Descent (SGD) and an Adam op-
timizer. The interval of the age we chose to work on
was [50, 62] and [71, 80]. This was due to the fact that
these intervals present the edges of our distribution of
ages. Also by choosing these extremes, we avoided the
unbalancing problem.

In order to be compatible with the classification ar-
chitecture, we ”binarized” the true ages. This step is
executed if the length of the interval is not 0 and the
binarize option is set to ’true’. The age values corre-
sponding to the lower bound of the interval are set to 0
and the other ones are set to 1. In this way we end up
working with binarized age labels as shown in Figure 6.
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Figure 6: Examples of brain MRI with binarized age scores.

Different combinations of the parameters were con-
ducted whereas the best resulting one was using MSE
loss and SGD optimizer. The learning rate was set to
0.001. A detailed explanation of the results can be found
in Section 4.1.

3.4. Regression deep learning model

In contrast to the binary classification pipeline, in
this section, a deep learning pipeline for regression
is exploited. For this approach, we followed the
best-performing architecture published by Peng et al.
(2021b), SFCN. For the authors, SFCN provided the
best result (MAE 2.14) in predicting age from MRI im-
ages, trained with Uk Biobank data. We tested this
model by adapting their architecture using our dataset.

3.4.1. SFCN model
The SFCN model is structured with seven convolu-

tion blocks. The first five blocks follow a consistent
pattern: a 3D convolution layer, a batch normalization
layer, a max pooling layer, and a ReLU activation layer.
What sets this architecture apart is that it downsamples
the input after each convolution layer. This means that
as the model progresses through the layers, the spatial
dimension of the data reduces rapidly. The input size
is reduced from 160x192x160 to 5x6x5 (voxels) in the
first 5 blocks.

The sixth block of the architecture follows a similar
structure but with some variations. Unlike the previous
blocks, it does not include a max pooling layer. Instead,
it incorporates a 1x1x1 3D convolution layer, which in-
troduces non-linearity while preserving the spatial di-
mensions of the feature map. Following the convolu-
tional layer, a resulting feature map of size 5x6x5 is ob-
tained. This feature map is then processed by an av-
erage pooling layer, which reduces its spatial dimen-
sions while retaining the important features. Subse-
quently, the pooled feature map is fed into an output
layer through a linear transformation, achieved by a
fully connected layer. The input size remains consistent
for both T1 non-linearly registered brains and linearly
registered brains. The dimensions are 160x192x160
voxels. The input data for the deep neural network
model was brain extracted, bias-corrected, and linearly
registered to MNI152 standard space. The head size of
subjects is normalized as a result of the linear registra-
tion.

3.4.2. Training and testing
In the training phase, the authors employed a

Stochastic Gradient Descent (SGD) optimizer, follow-
ing the work by Sutskever et al. (2013), to train their
model on the UK Biobank (UKB) dataset. The objective
was to minimize the Kullback-Leibler divergence loss
function between the predicted probability and a Gaus-
sian distribution. In this distribution, the mean was set
as the true age of each training subject, while the stan-
dard deviation (sigma) was fixed at 1 year specifically
for the UKB dataset. When using PAC 2019 dataset for
testing their approach, sigma was set to 2 denoting a 2-
year age interval. The L2 weight decay coefficient was
0.001. The batch size was 8. The learning rate for the
SGD optimizer was initialized as 0.01, then multiplied
by 0.3 every 30 epochs unless otherwise specified.

3.4.3. Model output and loss function
The predicted probability that the subject’s age falls

into a one-year age interval is represented by 40 digits in
the output layer. To calculate the final prediction, each
age bin’s weighted average is calculated:

pred =
40∑

i

xi · age i (3)

where xi stands for the probability predicted for the
ith age bin and agei stands for the bin centre in the age
interval.

In this particular approach, the age label is not con-
sidered as a single precise value, but rather as a range
represented by a discretized Gaussian probability dis-
tribution centered around the true age. Similarly, the
model’s output is also in the form of a probability dis-
tribution (Figure 7).

Figure 7: An example of soft labels and output propabilities (Peng
et al., 2021b).

For the loss function, the Kullback-Leibler diver-
gence, also known as relative entropy, is used. It rep-
resents a measure of the difference between two proba-
bility distributions. In the context of age prediction, the
KL divergence can be used to quantify the dissimilarity
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between the predicted age distribution and the true age
distribution. The equation for Kullback-Leibler diver-
gence between two probability distributions P and Q is
given by:

KL(P∥Q) =
∑ P(x) ∗ log(P(x))

Q(x)
(4)

where:
- P(x) represents the probability of age x in the true

age distribution.
- Q(x) represents the probability of age x in the pre-

dicted age distribution.
The KL divergence measures the average number of

additional bits needed to represent data from the true
distribution P when using a code based on the predicted
distribution Q. It is a non-negative value, where a lower
KL divergence indicates a closer match between the two
distributions.

In the context of age prediction, minimizing the KL
divergence can be a useful objective to optimize the pre-
diction model and improve the alignment between the
predicted age distribution and the true age distribution.
An example of how the prediction and age labels are
distributed is shown in Figure 8.

Figure 8: Example of a) soft label and b) prediction distribution for
one of the subjects.

3.4.4. Architecture Adaption, Optimiser Choice and
Training

The working pipeline of the model can be seen in Fig-
ure 9. To be compatible with the model requirements
we adapted some changes to our dataset. Our input
data was originally 193x229x193 voxel size. In order
to match the input size the model is expecting, 2 differ-
ent approaches were followed:

1. Change the spatial size to 256x256x256 padding
with 0s.

2. Cropping the field of view (FOV) to 160x192x160.

For the first approach, we used SpatialPad function de-
fined in MONAI library (Cardoso et al., 2022). This
transformation performs padding to the data, symmetric
for all sides or all on one side for each dimension. In our
case, we padded the images to 256x256x256 with 0s in
all sides. We chose this size because of how the con-
volution layers work. In order to make the convolutions
work, the input shape should be divisible by powers of

Figure 9: Overview of the deep learning regression pipeline.

2, which means, 28 = 256. Figure 10 shows an example
image after applying SpatialPad. We can see that the
only change is in the background which now is bigger
in size.

Figure 10: Visualization of one image at different slices after Spatial-
Pad().

The first step applied for the second ap-
proach was to crop the MNI9c registered data to
match the dimensions of the MNI6th template,
(http://bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin6)
which was used for the registration part of Uk Biobank
data and removed offset due to odd mni9c dimensions
by subtracting each dimension by 1. After that, the
data is normalized by diving it with the mean and as a
last step, cropped the FOV to match the expected input
of the CNN to 160x192x160. This approach achieved
better results. This can be due to the normalization part,
where dividing an image that has more 0 values will
give us a smaller intensity value. Figure 11 refers to an
example image after cropping it to 160x192x160.

The first trials made were using SGD optimizer and
the same parameters the authors used in their architec-
tures. After trying Adam optimizer, we observed that
for our dataset Adam worked better (a detailed explana-
tion can be found in section 4.2). For this reason, we
continued all of our experiments using Adam instead of
SGD optimizer.
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Figure 11: Visualization of one image at different slices after cropping
to 160x192x160.

Several experiments were employed for hyper-
parameter tuning during the experimentation process.
These strategies included fine-tuning all layers us-
ing pre-saved weights, inference on the test set, fine-
tuning only the classifier block of the model, initializing
weights using the Xavier initialization technique, (Ku-
mar, 2017), and training from scratch. Another interest-
ing experiment was to fine-tune only the batch normal-
ization layers as suggested by (Kanavati and Tsuneki,
2021). As a last trial, we did a set of freezing and un-
freezing of the blocks. To explore the impact of var-
ious hyper-parameters, all the experiments were con-
ducted, each involving different values of the learning
rate, batch size, and optimizer.

3.5. Metrics analysis
3.5.1. Binary classification problem

Accuracy
In the context of the binary classification pipeline

used in age prediction, accuracy is a metric that mea-
sures the overall correctness of the model’s predic-
tions. It quantifies the proportion of correctly classi-
fied instances out of the total number of instances in the
dataset. The equation for accuracy is given by:

ACC =
T P + T N

T P + T N + FP + FN
(5)

where:
-TP (True Positive) is the number of correctly pre-

dicted positive instances.
-TN (True Negative) is the number of correctly pre-

dicted negative instances.
-FP (False Positive) is the number of instances falsely

predicted as positive (Type I error).
-FN (False Negative) is the number of instances

falsely predicted as negative (Type II error).
For our model, we did an derived version of the accu-

racy. The accuracy is calculated as:

ACC =
correct

number of patients
(6)

In our case if |P − T | < 1 , correct variable is increased
by 1. P denotes predicted and T stands for true.

Sensitivity
Sensitivity (also known as recall) is a metric that

evaluates the model’s ability to correctly identify pos-
itive instances from the actual positive instances in the

dataset. It quantifies the proportion of true positive pre-
dictions out of the total number of actual positive in-
stances. The equation for sensitivity is given by:

S ENS =
T P

T P + FN
(7)

where:
-TP: P=1 & T=1
-FN: P=0 & T=1
-TN: P=0 & T=0
-FP: P=1 & T=0
Specificity
On the other hand, specificity identifies negative in-

stances from the actual negative instances in the dataset.
It quantifies the proportion of true negative predictions
out of the total number of actual negative instances.
Specificity is calculated by:

S PEC =
T N

T N + FP
(8)

3.5.2. Regression problem
Mean absolute error
In the evaluation process of the deep learning model,

we used the mean absolute error (MAE) metric and r-
squared coefficient. MAE provides a measure of the
average absolute difference between the predicted age
and the ground truth age labels, typically expressed in
years. The equation for mean absolute error (MAE) is
given by:

MAE =
1
N
∗
∑∣∣∣xtrue − xpred

∣∣∣ (9)

where:
-N is the total number of samples.
-xtrue represents the true age labels.
-xpred represents the predicted age values.
In our implementation, we calculated MAE as:

MAE =
absolute errors

number of patients
(10)

where absolute errors += |P − T |.
r2 coefficient
The deep learning model was also evaluated using r2

coefficient. Also known as the coefficient of determi-
nation, it measures the proportion of the variance in the
dependent variable (age) that can be explained by the
independent variables (features) in the model. A higher
r2 score suggests that the model successfully explains a
larger proportion of the variance in age, indicating bet-
ter predictive performance. r2 coefficient is calculated
as:

r2 = 1 − SSR
SST

(11)

where:
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-SSR (Sum of Squared Residuals) is the sum of the
squared differences between the true age values and the
predicted ones.

-SST (Total Sum of Squares) is the sum of the
squared differences between the true age values and
their mean.

Figure 12a) refers to a perfect prediction matching
the diagonal. Meanwhile in 12b) we can see one of the
cases out of our trials.

Figure 12: Different cases of r2 coefficient.

3.6. Implementation Details
This thesis was implemented using Jupyter Notebook

and Python programming language. Additional libraries
that were employed include torch, os, pandas, niba-
bel and matplotlib. The visualization of the 3D vol-
umes was done in ITK Snap (Yushkevich et al., 2016).
The bias field correction was done using simpleitk’s im-
plementation of N4 algorithm (Tustison et al., 2010).
Image registration and skull stripping, segmentation of
tissues, and subcortical structures were applied using
fsl anat package introduced by (Smith et al., 2004). The
deep learning models were implemented using PyTorch
(Paszke et al., 2019). 2 NVIDIA-SMI GPUs were used,
12G and 24G respectively whereas CUDA Version was
12.1.

4. Results

In accordance with the aforementioned architectures,
the results section will be organized to include the indi-
cated experiments.

4.1. The performance of 3c2d in ImaGenoma dataset
The first experiment using 3c2d model was choosing

MSE as the loss function and learning rate = 0.01, as
the authors suggested in their publication. To check the
impact of the optimizer the same experiment but with a
different optimizer was repeated.

Taking into consideration that SGD gave better re-
sults, another experiment with a different learning rate
value was conducted. For comparison purposes, CE loss
was tried together with Adam optimizer instead of SGD,
keeping the same value of the learning rate. A full de-
scription of the results and the corresponding parame-
ters can be found in Table 3.

To conclude we can say that the combination of the
3c2d model architecture, SGD optimizer with a learn-
ing rate of 0.001, and MSE loss function demonstrated
superior performance compared to the other results.

4.2. The performance of SFCN on ImaGenoma dataset
4.2.1. Initial experiments

The SFCN (Peng et al. (2021b)) architecture was run
using a series of experiments, exploring different pa-
rameters and methods. A diverse range of methods were
utilized, focusing on the input images obtained through
padding to size 256x256x256 using SpatialPad() and
cropping to 160x192x169 dimensions. A series of ini-
tial experiments were run using both input data, like
finetuning all layer using presaved weights, inferenc-
ing directly on test set, finetuning only the last block of
the architecture, and training from scratch using xavier
initialization method. The impact of the input data as
a result of padding and cropping (detailed explanation
in Section 3.4.4, in these experiments, can be observed
in Table 4. We can see from the table that the model
gave better results (MAE = 5.24 years) in the case when
only the classifier block of the architecture was fine-
tuned. This emphasizes the fact that by fine-tuning only
the last block of the model, it concentrates on learning
task-specific features without modifying the earlier rep-
resentations that have already been learned. This way
it prevents overfitting. All the above experiments were
conducted using SGD optimizer since it gave the best
results for the authors.

The span of the predicted values was improved and
larger when using cropped data. The number of points
passing through the regression line was increased, i.e.
the number of correctly predicted values was higher.

Based on Table 4, different values of parameters were
tried using both types of input data for both of the meth-
ods. This includes different values of learning rate and
optimizers. These results can be found in Table 5.

Deriving from the results of the above table, we ob-
served an improvement in terms of MAE (MAE = 4.52
years) and r2 (r2 = 0.2924) when using Adam as an
optimizer and working with the input data cropped to
160x190x160. This can be due to the fact that the
Adam optimizer is known for its adaptive learning rate
mechanism, leading to faster convergence and improved
performance. Furthermore, cropping the input data to
a smaller size eliminates unnecessary background or
empty space that may not contribute significantly to the
model. Consequently, the model becomes more effec-
tive in capturing the essential information necessary for
accurate age prediction. Based on this, all the next ex-
periments will be conducted keeping unchanged these
parameters.

4.2.2. Finetuning and choosing the best model
Taking inspiration from Table 5, the best-performing

model was found to be finetuning only the classification
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Table 3: The performance of 3c2d model on ImaGenoma Dataset.
Model Epochs Learning rate Loss function Batch size Patience Accuracy Sensitivity Specificity

3c2d(Adam) 300 0.01 MSE 8 30 0.48 0.55 0.34
3c2d(Adam) 100 0.001 CE 4 10 0.57 0.62 0.29
3c2d(SGD) 300 0.01 MSE 8 30 0.59 0.63 0.31
3c2d(SGD) 100 0.001 MSE 4 10 0.76 0.79 0.16

Table 4: Comparison of the results between different input data.
Method SpatialPad() Cropping

MAE(years) r2 MAE (years) r2
Finetune all layers using pre-saved weights 5.78 0.0095 5.88 0.0167

Inference on test set 6.19 0.0993 6.57 0.1800
Finetune only the classification block 7.73 0.8619 5.24 0.0770

Initialize weights using xavier and train from scratch 6.10 0.8207 5.86 0.0168

Table 5: Hyperparameters tuning for finetune all layers model.
lr MAE(years) r2 Optimizer

SpatialPad()
0.001 5.78 0.0095 SGD
0.01 8.11 0.9271 SGD
0.001 5.88 0.0173 Adam

0.0001 7.73 0.8619 SGD
0.0001 7.14 0.6011 Adam

Cropping
0.001 5.88 0.0167 SGD
0.01 5.93 0.0218 SGD
0.001 5.85 0.8255 Adam

0.0001 5.24 0.0770 SGD
0.0001 4.52 0.2924 Adam

(last) block. Building on this result, we further investi-
gated the influence of different learning rates using the
Adam optimizer. Our experiments, presented in Figure
13, provide insights into the impact of various learning
rates on the overall performance of the model. The best
results were met when using a learning rate of 0.00001,
MAE = 3.33 years and r2 = 0.6713.

Figure 13: Distribution of a) MAE and b) r2 using different learning
rates, best model with lr = 1e-05, MAE = 3.33 years and r2 = 0.6713.

All the experiments were conducted with a batch
size of 1 to accommodate the size of the MRI volume
and GPU limitations. However, to get the best out of
the model, a batch size of 3 was utilized. Changing
the batch size did not lead to an improvement in the
model’s performance; in fact, it resulted in a decay of
the model’s performance. The experiment with a larger

batch size showed worse results compared to the ex-
periments conducted with a batch size of 1. This can
be due to the fact that when employing a larger batch
size, the model learns from a combination of samples
that may possess diverse features and characteristics.
The increased variability within the batch can pose chal-
lenges for the model in extracting meaningful patterns
and achieving effective generalization. On the other
hand, a smaller batch size of 1 enables the model to con-
centrate on individual samples and their unique char-
acteristics. Furthermore, using a larger batch size can
introduce noise in the gradient estimation process due
to the combination of multiple samples. This noise can
have a negative impact on the accuracy of parameter up-
dates during training, potentially impeding convergence
or resulting in sub-optimal solutions.

4.2.3. Testing other methods
We explored a recent approach inspired by the

work of Kanavati and Tsuneki (2021), which in-
volved fine-tuning only the batch normalization layers.
The researchers discovered that selectively fine-tuning
the trainable weights of the batch normalization lay-
ers yielded comparable performance to fine-tuning all
weights while achieving faster convergence. In another
trial, we employed a strategy of freezing and unfreez-
ing steps. Initially, we fine-tuned only the classifica-
tion block of the SFCN model for 10 epochs. Subse-
quently, the feature extraction part block was unfrozen
for 3 epochs, and as a last step, we re-fine-tuned the
classification block for an additional 10 epochs. The
objective behind this approach was to train the feature
extraction part for a few epochs, enabling the model to
acquire specific data-related features and prevent strong
overfitting.

The results obtained were better with a value of 0.17
and worse with a value of 0.11 for finetuning batch
normalization layers and set of freezing and unfreez-
ing approaches respectively. Their corresponding Pear-
son correlation coefficient is visualized in Figure 14 and
shown in Table 6.

In summary, among the various trials conducted, the
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Table 6: MAE and r2 for training only the batch normalization layers and freezing/unfreezing the blocks of SFCN architecture.
Method MAE (years) r2

Unfreeze batch normalization layers 4.35 0.4128
Combination of freeze and unfreeze of layers 4.63 0.3281

Figure 14: r2 plot a)for training only the batch normalization layers
and b) freezing/unfreezing the blocks of SFCN architecture.

best-performing model was achieved by fine-tuning the
last block of the architecture using a learning rate of
0.00001 and Adam as the optimizer. This model re-
sulted in an MAE = 3.33 years and r2 = 0.6713. This
particular configuration yielded superior results com-
pared to other experiments. A detailed overview of
the parameter tuning process and the methods employed
can be found in Table 7, providing detailed insights into
the performance and effectiveness of each approach.

4.2.4. Comparison with the state of the art
Deriving from section 2 this part will compare our

results with the ones achieved by previous authors hold-
ing the state of the art. As it can be seen from Table
1, our approach lies in the deep learning area with an
MAE equal to the one achieved by Inception V1. This
approach utilized a priori information taking GM and in
contrast, we used the whole volume to train the mod-
els. Our approach did not outperform the original paper
that used SFCN model. This may be due to the dataset
size, hyperparameter tuning or presaved weights. An
full comparison of the results and the place where our
approach takes place only in deep learning area can be
seen in Table 8.

5. Discussion

The models presented in this thesis focus on predict-
ing age based on brain MRI scans, particularly empha-
sizing the change of brain tissues observed in healthy
individuals. The modality employed for image acquisi-
tion is T1-weighted imaging. By comparing an individ-
ual’s predicted brain age to their chronological age, it
becomes possible to detect early signs of accelerated or
delayed brain aging, indicating potential neurodegener-
ative conditions or cognitive impairments.

Primarily, a binary classification architecture was
constructed from scratch with the goal of differencing

“high“ and “low“ values. By constructing the binary
classification architecture from scratch, it was possible
to have full control over the model’s architecture, in-
cluding the choice of layers, activation functions, and
connectivity patterns. The age labels were binarized be-
fore feeding to the network and the output layers was
changed to 2 neurons indicating the binary classifica-
tion task. Two different loss functions were used, MSE
and CE. We also tested the impact of the optimizer on
the model by hyperparameter tuning between Adam and
SGD optimizer.

The best model resulted to be when using SGD as an
optimizer, a learning rate of 0.001, and MSE as a loss
function. Having a learning rate of 0.001 indicates rel-
atively small steps, which can help the model converge
gradually and avoid overshooting the optimal parameter
values. The loss function and the optimizer also con-
tributed effectively to capturing the discrepancies be-
tween the predicted probabilities and the true binary la-
bels.

Secondly, another deep learning model named SFCN
was implemented. Fine-tuning all layers, inferencing
the test set directly, training from scratch, and finetun-
ing only the classification block were the first experi-
ments. For this models, we used the parameters sug-
gested by the authors in their paper and used 2 different
input data: padding with 0 the input to 256x256x256
and cropping to 160x190x160. The best model resulted
to be the one where you fine-tune the last block of the
architecture. After hyperparameter tuning, the best pa-
rameters resulted to be Adam optimizer with a learning
rate of 0.00001 and input data cropped to the model re-
quirements. This resulted also in the best model of our
experiments. To furthermore investigate and improve
the results we did two other trials based on these param-
eters which were unfreezing and updating the weights
of the batch normalization layers only and doing a set of
freezing and unfreezing of the layers of the architecture.
However, none of them did not surpass the performance
of the best model.

6. Limitations

While the model showcased promising and consistent
outcomes, there are still several limitations that could be
addressed through future research. It’s worth noting that
the model encounters challenges and tends to overfit in
the age range of 60-70 years due to the imbalanced dis-
tribution of the dataset, with a majority of cases falling
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Table 7: The performance of different variations of SFCN model on ImaGenoma Dataset. epochs = 100, loss = KL-Div, patience = 10
Method Learning rate Optimizer Batch size MAE(years) r2

Finetune all layers using pre-saved weights 0.001 SGD 1 5.88 0.0167
Inference on test set 0.001 SGD 1 6.57 0.1800

Finetune only the classification block 0.001 SGD 1 5.24 0.0770
Initialize weights using xavier and train from scratch 0.001 SGD 1 5.86 0.0168

Finetune only the classification block 0.00001 Adam 1 3.33 0.6713
Unfreeze batch normalization layers 0.00001 Adam 1 4.35 0.4128

Combination of freeze and unfreeze of the layers 0.00001 Adam 1 6.63 0.3821
Finetune only the classification block 0.00001 Adam 3 5.05 0.0566

Table 8: Overview of the state-of-the-art and our method in deep learning area.

Methodology Input Author Dataset
MAE
(years)

SFCN 3D Volume
Deep Learning

Peng et al. (2021b)
UK Biobank
PAC 2019

2.14
2.9

3D Resnet-34 3D Volume
Deep Learning

Zhang et al. (2023)

UK Biobank
OASIS
ABIDE

2.55

SFCN 3D Volume
Deep Learning

Our Method ImaGenoma 3.33

Inception V1 Priori info: GM
Deep Learning

Couvy-Duchesne et al. (2020) PAC 2019 3.33

3D Resnet-18 3D Volume
Deep Learning

Barbano et al. (2022) OpenBHB 3.76

within that interval. Furthermore, the dataset used for
training the model is relatively small in size.

When employing complementary task learning, par-
ticularly in the regression aspect, it was observed fluc-
tuations in the KL loss during the training process. Un-
fortunately, in many instances, the model tends to pre-
dict values within a narrow range, resulting in signifi-
cant overfitting to the training data. As a consequence,
the mean absolute error (MAE) was high, as neither the
selection of an appropriate loss function nor the opti-
mization method was properly optimized.

7. Future work

In order to improve the prediction results, enhancing
the registration process and improving skull stripping
techniques could potentially enhance the model’s per-
formance. In addition, including prior information re-
lated to WM and/or GM can improve the pipeline. In-
troducing data augmentation with appropriate transfor-
mations could lead to a more robust method.

Further optimization, includes fine-tuning the num-
ber of encoding/decoding blocks and convolutional lay-
ers, as well as incorporating batch normalization tech-
niques. Exploring different architectures can also con-
tribute to achieving improved results.

Finally, incorporating multi-modal data fusion, and
developing interpretable models would have a great sig-
nificance for better understanding and explainability.

8. Conclusions

In conclusion, the utilization of MRI-based brain age
prediction has yielded promising outcomes in estimat-

ing an individual’s brain age. This study incorporated
two pipelines, specifically a binary classification model
and a SFCN (Simple Fully Convolutional Network)
model, to forecast brain age based on MRI data.

The binary classification model effectively catego-
rized individuals into two groups: younger or older,
based on their brain age. Although this approach pro-
vided valuable insights regarding relative age differ-
ences, it lacked the capability to offer a continuous and
more precise estimation of an individual’s brain age.

In contrast, the SFCN model showcased better perfor-
mance in accurately predicting brain age. Notably, the
model achieved optimal results by fine-tuning only the
classifier block, suggesting that the lower-level feature
extraction layers of the SFCN model already captured
relevant patterns and representations from the MRI data
effectively. By focusing the finetuning process on the
classifier block, the model can effectively adapt to spe-
cific brain age prediction tasks without sacrificing the
learned representations from the lower-level layers.

In summary, the integration of MRI-based brain age
prediction models, especially the successful implemen-
tation of the SFCN model, not only advances our under-
standing of brain aging but also offers distinct clinical
benefits. This technology has the potential to revolu-
tionize clinical practice by providing valuable insights
into brain health, aiding in early detection, and facili-
tating targeted interventions to optimize brain function
and promote healthy aging.
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Abstract

A Large Vessel Occlusions (LVO) is a specific type of acute ischemic stroke. It refers to the complete or partial
blockage of one of the brain’s major arteries. The established treatment for it is an endovasculas thrombectomy (EVT)
which is more effective within 6 hours after the symptoms. Consequently, this time sensitive LVO identification
is crucial to improve the patient outcomes after the episode. This work is focused on mainly two tasks: binary
classification of CTA images as LVO present or absent, and detection of the exact 3D localization of the occlusion
through a bounding box. We work with two datasets: data from the IACTA-EST-2023 challenge that will be used for
the classification problem, and data from the Dr. Josep Trueta Hospital, in Girona, Spain. We will use deep learning
techniques (DL) for both tasks. For the classification part, we propose a comparative analysis between the use of
symmetry of the brain with different strategies, against not using symmetry information when training the DL model.
Results show that the use of symmetry information improves the results. The top performing experiments achieved
84% in accuracy, 88% in specificity, 81% in sensitivity and an AUC of 0.895 on the test set, and 77% accuracy
of inference on the hospital dataset, that was not used for training. For the detection part, we propose the use of
nnDetection framework, which has not been used for this purpose before. The model is trained with data from the
hospital, and obtains promising results in both anterior and posterior circulation occlusions. Results of the detector
show a 97% of sensitivity in the test cases, with approximately 0.15 FPpI. To the best of our knowledge, this is the first
detection proposal for automatic occlusion detection using only CTA images that is not part of commercial software
with undisclosed algorithms.

Keywords: Ischemic Stroke, LVO, Deep Learning, Classification, Detection

1. Introduction

Acute Ischemic Stroke (AIS) denotes a medical con-
dition characterized by the blocking of a cerebral artery,
resulting in the sudden interruption of the blood sup-
ply and subsequent damage to distinct cerebral regions.
It can occur because of a blood clot or plaque buildup
in the arteries supplying nutrients to the brain tissue.
There are two main types of stroke: ischemic, which
accounts for more than 85% of the cases, and hemor-
rhagic. According to Tsao et al. (2022) and the World
Health Organization, 15 million people worldwide suf-
fer a stroke every year, and its prevalence increases with
age. Large Vessel Occlusions (LVO) is a specific type

of AIS and refers to the complete or partial blockage of
one of the brain’s major arteries. LVO, which encom-
passes both anterior and posterior circulation, is respon-
sible for approximately 46% of acute ischemic strokes.
Among these cases, around two-thirds of LVOs occur
in the anterior circulation, primarily affecting the In-
ternal Carotid Artery (ICA) and the Middle Cerebral
Artery (M1). The remaining proportion occurs in the
posterior circulation, considering the Vertebral Artery,
Basilar Artery, and Posterior Cerebral Artery (PCA) —
(see Fig.1a). Another type of occlusion that can occur
is called Tandem, which occurs in less than 10% of the
cases (Sweid et al., 2020) and refers to an occlusion in
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more than one artery: a large blood vessel, such as ICA,
and in an intracranial artery. The damage provoked by
LVOs depends mainly on the location of the occlusion
and on the time of blocking.

According to Martins-Filho et al. (2019), patients suf-
fering from AIS related to an LVO experience the high-
est levels of morbidity and mortality, along with the
lowest probability of achieving arterial recanalization
through a clot-disolving medication, called intravenous
thrombolysis. Nonetheless, recent trials have presented
strong evidence supporting the effectiveness of endovas-
cular mechanical thrombectomy in treating such cases.
Consequently, the timely identification and transfer of
patients with LVO to stroke centers have become im-
perative for facilitating prompt detection and providing
appropriate endovascular treatment. Given the time-
critical nature of mechanical thrombectomy, there is a
need for efficient vascular imaging methods that can
swiftly diagnose LVO (Mayer et al., 2020).

There are several imaging modalities for stroke imag-
ing, being the most primarly Non Contrast Computed
Tomography (NCCT), Computed Tomography Angiog-
raphy (CTA) and Computed Tomography Perfusion
(CTP). NCCT involves taking X-ray images of the brain
without contrast agents in a way that provides informa-
tion about the presence of bleeding, tumors, or other ab-
normalities. This is commonly used as the initial imag-
ing modality for stroke patients since it helps rule out
conditions that can mimic a stroke. Nonetheless, NCCT
is not very sensitive to detecting early signs of stroke
or small infarctions. Then, CTA is used to visualize
the blood vessels in the brain. This imaging modal-
ity involves the injection of contrast dye into the pa-
tient, which helps to highlight the blood vessels (see
Fig.1c). It is a reliable method to detect LVOs and it has
been used to determine if a patient is a good candidate
for a mechanical thrombectomy (Shafaat and Sotoudeh,
2022). Moreover, CTP uses a series of rapid CT scans,
and is primarily used to evaluate the passage of blood
through the tissues. It helps clinicians evaluate the tis-
sue viability and identify areas of reduced blood flow.

As previously stated, endovascular thrombectomy
(EVT) is the established treatment for patients exhibit-
ing stroke symptoms within a 24-hour window, as its
effectiveness diminishes beyond this timeframe. The
value of time becomes increasingly crucial in such
cases. The main goal of the treatment is to reestab-
lish the blood flow as soon as possible, reducing the
risk of permanent damage, improving outcomes after
the episode, and minimizing the impact on the patient’s
neurological function. The optimal time window of this
treatment is considered to be within 6 hours after the on-
set of symptoms. According to Sweid et al. (2020), ev-
ery 30-minute delay decreases the odds for a favourable
outcome by 11%. This is the main reason there have
been improvements in several factors to reduce stroke
care timing, including stroke assessment tools. Despite

the efforts, there is still the need to standardize stroke
detection and triage, which is time-sensitive (Murray
et al., 2020). To streamline this process, the imple-
mentation of automated imaging-based tools for detect-
ing LVO has demonstrated improvements in the tim-
ing of EVT decision-making, ultimately resulting in en-
hanced clinical outcomes. Although some commercial
solutions have addressed this application, their perfor-
mance and utility are difficult to compare since testing
on a common dataset has not been performed. That
is one of the main reasons why, this year, the chal-
lenge IACTA-EST 2023 1, which addresses the use of
CTAs for EVT stroke treatment, is proposed as part of
the 2023 IEEE International Symposium on Biomedical
Imaging (ISBI).

The IACTA-EST challenge deals with several impor-
tant and difficult tasks regarding AIS, which are to pro-
vide a curated imaging dataset of brain CTAs from mul-
tiple clinical sites with evaluation metrics, to determine
the presence or absence of an LVO in CTAs (task 1 of
the challenge), and to obtain the brain reperfusion pre-
diction using CTAs and clinical variables (task 2 of the
challenge).

1.1. Our work

This master thesis is related to the first task of this
challenge, which is to identify the presence of LVO in
CTA images. However, we also want to determine the
exact localization of an LVO based on CTA images. For
this purpose, we will work with two different tasks, as
shown in Fig. 2: binary classification of CTA images
to determine if a patient has or does not have an LVO,
and LVO detection, which consists of determining the
3D localization of a blood clot with a bounding box.
For the first task, we propose conducting a compara-
tive analysis between base deep learning networks em-
ployed for classification purposes, as opposed to incor-
porating brain symmetry as an input into the networks
using two distinct strategies. The outcomes of this task
will be assessed using two datasets: the IACTA-EST
2023 challenge dataset and a dataset obtained from Hos-
pital Dr. Josep Trueta. The latter dataset was meticu-
lously processed and annotated by the authors under the
hospital’s neurologist’s guidance and validation. For the
second task, we propose using a Retina UNet within the
framework of nnDetection Baumgartner et al. (2021),
which, to the best of our knowledge, has not been used
for this purpose before. The approaches in this work for
both tasks show some promising results.

The next sections are organized as follows: Section 2
introduces the current work around these two tasks re-
garding the classification and detection of an LVO. In
Section 3, we provide information about the databases

1https://lgiancauth.github.io/iacta-est-2023/

15.2



Binary classification and detection of large-vessel occlusions in acute ischemic stroke 3

(a) (b) (c)

Figure 1: Brain arterial circulation. (a) Arterial cerebral circulation. Taken from JoeNiekroFoundation (2017). (b) Axial view - CTA of the brain,
(c) Brain extracted from original CTA and intensity processed.

used in this work and the different approaches used, in-
cluding the structure of the experiments and the meth-
ods. The results obtained and the most relevant experi-
ments are shown in Section 4. Finally, we will discuss
and analyze the obtained results in Section 5, and give
conclusions and future work in Section 6.

2. State of the art

In recent years, significant advancements have been
achieved in the application of artificial intelligence (AI)
within the medical field. A recent survey article by
Chavva et al. (2022) highlights the development of di-
verse AI systems catering to various aspects concerning
ischemic strokes. These systems encompass tasks such
as distinguishing strokes from mimics, detecting large
vessel occlusions (LVOs), evaluating the extent of re-
versibility in ischemic injuries, and aiding in diagnos-
tic decision-making for selecting optimal candidates for
endovascular therapy (EVT). Furthermore, several clin-
ically validated software platforms have been specifi-
cally designed for these purposes. Notably, Viz.ai, iS-
chevaView RapidAI, Brainomix AI, MethinksLVO, and
StrokeViewer are among the noteworthy examples men-
tioned by Murray et al. (2020) and Chavva et al. (2022),
demonstrating their utilization in the identification of
LVOs, diagnosis of ischemic or hemorrhagic strokes,
and the assessment of potentially salvageable tissue.

The main issue with the existing software is that it
tends to have problems integrating into a different data
stream. Also, there is a lack of standardization to val-
idate the systems, which makes it difficult to compare
with new algorithms (Chavva et al., 2022). Although AI
can be used in clinical practice for stroke management
in several ways, in this section, we will focus mainly on
two tasks: classification and detection of thrombi caus-
ing the LVO (see Fig.2).

2.1. Classification

Over the last years, the use of deep learning for
thrombus finding and classification has been increas-
ing. An example of an article that uses CTAs for LVO is
Stib et al. (2020) which proposes a 2D approach to clas-
sify the presence or absence of an LVO, taking only the
slices from the skull vertex through the circle of Willis
(see Fig. 1a). They use the CT angiographies’ three
phases (arterial, peak venous, and late venous phases) to
experiment with different combinations. They obtained
an AUC of 0.89, sensitivity of 100% and specificity of
77% using the combination of the three phases. There
is also the use of 4D-CTA for detecting occlusions in
the intracranial anterior circulation, presented by Meijs
et al. (2020). This approach is able to detect patients that
are eligible for endovascular therapy with high numbers
of sensitivity, specificity and AUC: 95%, 92% and 0.98
respectively. However, this method does not provide a
direct localization of the occlusion. Moreover, it uses
4D-CTA, which is less commonly available in hospitals
than CTA.

In the same manner, Barman et al. (2019) presented
the first publication outlining the algorithm and method-
ology for utilizing CTA images in the detection of AIS.
The authors propose DeepSymNet, a convolutional neu-
ral network (CNN) that leverages the brain’s symme-
try to address image classification. Their approach in-
volves working with 3D representations of the brain’s
hemispheres and incorporating inception modules to fa-
cilitate the network’s ability to discern differences be-
tween them. Building upon this work, Czap et al. (2022)
introduced an enhanced version of the same algorithm
by adding symmetrical and nonsymmetrical pathways.
DeepSymNet is currently on its 3rd version, developed
by Giancardo et al. (2023), in which they input two
hemispheres separately into a network composed by 3D
VGG blocks, with shared weights between the two data
paths. The primary objective of their research is to gen-
erate a full segmentation of the stroke core using the
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Figure 2: Differences between the two tasks in this study.

deep learning architecture.
There have also been some articles that use a specific

software from the ones mentioned before to validate
their results and their use in different clinical data. An
example is Luijten et al. (2022), which uses the Nico.lab
algorithm StrokeViewer2 to obtain a binary input con-
sidering if an LVO is detected or not. Their results are
based on detecting the right position of the clot found,
and not based on the binary classification. However,
they showed lower values of sensitivity and specificity
for M2 occlusions. In the same way, Yahav-Dovrat et al.
(2021) used Viz LVO3 in real clinical practice at a com-
prehensive stroke center to determine if a patient has an
LVO, achieving sensitivity of 82%, which is similar to
other studies with the same purposes working with dif-
ferent versions of Viz LVO software, such as Barreira
et al. (2018) and Chatterjee et al. (2019).

2.2. Detection
Based on the articles reviewed for this work, most of

them use already-developed software to have the local-
ization of the thrombus. However, there are few arti-
cles with information about details and explanation of
how this localization is performed. In other cases, re-
searchers use a region of interest or bounding box pro-
vided by experts, using NCCT images or CTAs. This
could be mainly because detection tasks are commonly
associated with the segmentation of the thrombus caus-
ing an LVO. Therefore, the final goal of most of the
work done around this problem is to do a segmentation
of the probable blood clot or thrombus.

One article that deal with segmentation using a pre-
viously obtained ROI, is Lucas et al. (2019). In this
work, the authors compute the ROI on the training data
including all the MCA and ICA clot segmentations plus
a margin of 5 voxels in each direction. Then, they use
this ROI as input of a Unet to obtain the segmentation.

2https://www.nicolab.com/strokeviewer/
3https://www.viz.ai/lvo-ctp

The work proposed by Tolhuisen et al. (2020) is one
of the articles which explains the process of finding the
localization of an LVO on the anterior circulation sys-
tem. They propose two patch-based CNNs based on
AlexNet. The first one focuses on the asymmetry be-
tween the two hemispheres of the brain, and the sec-
ond network focuses on the detection of Hyperdense
Artery Sign (HAS), which is one of the earliest signs
of ischemic stroke, and its attenuation is correlated with
the concentration of red blood cells in the thrombus. If
a patch was classified as having a thrombus, they per-
formed a voxel-wise segmentation for the specific patch.
They obtained promising results, but the volumetric and
spatial agreement of their findings is low. In this ap-
proach, it is also necessary to register all the images -
CTAs and NCCTs- to be able to work with symmetrical
differences.

In the study proposed by Mojtahedi et al. (2022), they
use the StrokeViewer LVO software from Nico.lab to
create a bounding box around the probable location of
the LVO. The system uses both NCCT and CTA images.
After this, they use a dual-modality U-Net for segmen-
tation. There are some cases in which the software used
is not able to find LVO, most of them being M2 type
of occlusions. Another study that uses the same soft-
ware for LVO localization is presented by Bruggeman
et al. (2022), in which the main goal is to test the algo-
rithm given by the vendor in a different clinical dataset.
Nico.lab performed the training and testing with more
than 1000 CTAs. Therefore, detailed information about
it is not publicly available, but they mention they reg-
ister the images to the MNI space and find a bound-
ing box mask, which is considered correct if it’s on the
right hemisphere, and covers part of the exact occlu-
sion. They mainly show problems and the most distal
occlusions. They also show a low rate of false positives
detailing reasons why the system may fail.

The purpose of all these investigations is to identify
occlusions within the anterior circulation system, with
limited emphasis on occlusions in the posterior circu-
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lation. Primarily, the studies predominantly employed
a combination of non-contrast CT (NCCT) and CTA
imaging or solely relied on NCCT. To our knowledge,
scientific literature lacks descriptions of models for au-
tomatic occlusion detection using only CTA images for
anterior and posterior circulation. It is worth noting that
previously mentioned software packages represent ex-
ceptions to this observation. Nonetheless, those encom-
pass undisclosed algorithms.

In the year 2021, Baumgartner et al. (2021) pro-
posed a self-supervising method for medical object de-
tection, called nnDetection, that adapts itself to arbi-
trary medical detection problems, also acting as a stan-
dard interface for different data sets. Its effectiveness
has been demonstrated on other medical imaging tasks.
For instance, challenges such as LUng Nodule Analy-
sis (Luna) and Aneurysim Detection And segMentation
Challenge (ADAM), which uses Time of Flight Mag-
netic Resonance Angiongraphies. They also provide in-
formation guides for the detection task on different or-
gans such as Liver, Pancreas, Prostate, Lung, Colon, etc.

3. Material and methods

3.1. Data

3.1.1. IACTA-EST Dataset
The dataset used for the classification part of this

project is from the Image Analysis for CTA Endovas-
cular Stroke Therapy (IACTA-EST) Challenge, which
aims to provide a curated image dataset from multiple
clinical sites in order to minimize the gap between cur-
rent studies and commercial solutions not being able
to compare results with evaluation metrics. All of the
data used is from the first task of the challenge, phase
1, and contains images after a preprocessing pipeline
that involves: conversion from DICOM to Nifti format,
resampling and registration to a common image space
with rigid transformation, skull stripping, and intensity
values clipped to a range from 0 to 100 Hounsfield Units
(HU). Only LVOs from the anterior circulation system
are considered in the dataset, being them occlusions in
the ICA, M1, M2 or A1 brain vasculature. The dataset
contains 301 cases, from which 142 were classified as
having an LVO and 159 as not having what is consid-
ered an LVO in the challenge. For more details about
image resolution, voxel spacing and slice thickness, re-
fer to Table 1.

3.1.2. ICTUS Dataset - Trueta Hospital
For the detection part of this project, we worked with

a dataset acquired in the Hospital Dr. Josep Trueta,
Girona, Spain. It consists of 321 cases with a valid CTA,
with all the patients having an LVO. The localization
of the occlusions was distributed as follows: 46% M1,
18% M2, 13% ICA, 7% Tandem, 6% Basilar, 5% PCA
occlusions, and 5% corresponding to M3, A2, VA, and

Table 1: Image characteristics of the different datasets.

Dataset Resolution Voxel
Spacing

Slice
Thickness

IACTA-EST 146x182x133 1x1x1 Unknown
Trueta Hospital Classification 146x182x133 1x1x1 0.9
Trueta Hospital Detection 512x512x378 Variable 0.9

extracranial occlusions. After discarding the extracra-
nial occlusions, and cases where there was uncertainty
about the exact localization of the LVO, we were left
with a total of 310 valid cases. All of the examinations
were performed with a Philips Healthcare Ingenuity CT
scanner. More information about the imaging protocol
can be found in Table 1. All the valid cases will be used
for inference in the LVO classification as either present
or absent. Conversely, only 124 cases will be used for
the detection task due to the availability of ground truth
thrombus segmentation obtained by manual annotations
using ITK-snap. These annotations were carried out by
the authors of this master thesis along with the guidance
and validation of an expert neurologist from the Hospi-
tal. The annotations were not done in all of the slices of
the CTA cases but just in the main ones where the size
and shape of the thrombus were appreciated.

3.2. Data pre-processing
For preprocessing the hospital dataset, we performed

different steps according to the task, as graphically
shown in Fig. 3.

• Classification: For the hospital dataset to be used
as an inference set for the classification experi-
ments, we followed the preprocessing detailed in
Giancardo et al. (2023), which has the same steps
as the images of the IACTA-EST challenge used
for training, explained in 3.1.1. The final input of
the network consisted of the image after registra-
tion, cutting of blank spaces, and clipping the brain
intensities between 0-100 HU.

• Detection: For the detection task, we performed
the conversion from DICOM to Nifti format, then
we used fsl (Jenkinson et al., 2012) for the prepro-
cessing. First, we used robustfov to focus on the
skull in the images, given that the original images
show not only the head but also the patient’s upper
body. After this, we used bet for skull stripping.
In the end, we obtained just the brain in the CTA
images. For the next step, we clipped the intensity
values of the brain between 0-200 HU according to
the hospital doctors’ suggestions. We did not reg-
ister or resize the images to use them as input for
the nnDetection framework.

3.3. Methodology
This study is organized into two primary stages. First,

the IACTA-EST dataset from phase 1, task 1, will be
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Figure 3: Preprocessing Pipeline. 1. Image in nifti format. 2. Result after using robustfov. 3. Result of using bet. The next steps change according
to the task. The images highlighted are the final output for each problem. For detection we only perform clipping of intensities, although for
classification, we also register and crop the image.

utilized to train models employing various strategies to
identify the presence of an LVO in CTA images. Addi-
tionally, the hospital dataset will be employed for infer-
ence during this classification phase. The second stage
involves training a detection model using the nnDetec-
tion framework on the hospital dataset to precisely lo-
calize the occlusion within the CTA images.

Furthermore, as part of the comparison process, a
baseline DeepSymNet-V3 classifier proposed by Gian-
cardo et al. (2023) will be trained for binary classifica-
tion. This will allow for a comparison of results with the
proposed networks, which are based on the same prin-
ciple and will be further elucidated below.

In the next paragraphs, we will describe each stage
with the methods proposed, the training process of the
models, and evaluation metrics used to assess their per-
formance.

3.3.1. Classification
For the classification component, we will conduct a

comparative analysis between two approaches to de-
termine the presence or absence of LVO in a CTA
scan. The first approach employs a non-symmetry strat-
egy, while the second approach involves utilizing the
symmetry information from the two brain hemispheres
within the network.

Non-Symmetry approach.
For the non-symmetrical path, we will use the 3D

CTA volumes as input of different CNNs, obtaining a
binary output as LVO present or absent. This is graphy-
cally explained in Fig. 4.

Symmetry approach.
Regarding the symmetry path, we will explore two

strategies:

Figure 4: Non-symmetry approach: 3D CTA is the input of a CNN
network, which will return the output of having or not an LVO.

1. Use a symmetry approach inspired by Barman
et al. (2019) with DeepSymNet and its subsequent
versions, in which, to compare the disparities be-
tween the two brain hemispheres, we employ two
branches having identical architecture, each dedi-
cated to processing a distinct hemisphere. To cap-
ture the disparities between the outputs of these
two branches, we experiment with different ap-
proaches that are summarized in Fig. 5 and de-
scribed below:

• Experimenting with the network used in
each branch sharing weights between the two
paths against having an independent set of
weights (represented in Fig. 5b)
• Using the difference module L-1, as intro-

duced in Barman et al. (2019), which takes
the absolute difference between the high-
level convolution filter outputs corresponding
to each hemisphere. This L-1 module serves
as the input of the CNN classifier, whose
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output will go through a Multi-layer Percep-
tron (MLP) that will be used to learn the in-
formation contained within it, considering it
has crucial information about differences be-
tween the brain hemispheres. See Fig. 5c,
option A.

• Concatenating the outputs of each branch,
representing the different hemispheres, and
using this concatenation as the input to an
MLP, which learns the differences between
the hemispheres. See Fig. 5c, option B.

2. Use a symmetry approach that involves stacking
both hemispheres of the brain and feeding them
into a single network. Additionally, an MLP is in-
corporated before producing the final output. Refer
to Fig. 6 for a clearer depiction of this strategy.

Architectures.
For this study, we compared the performance of three

different networks:

• Resnet-18: It is a convolutional neural network
CNN introduced for the first time in 2015 (He
et al., 2015). The architecture of this network is
shown in Fig. 7. We worked with three different
initialization of weights for this network:

1. Resnet-18 trained from scratch, with random
weight initialization.

2. Resnet-18 pretrained with videos, consider-
ing spatial and temporal components, and 3
input channels (RGB) - (Tran et al., 2018).
Since this network was pretrained with RGB
videos, and we have grayscale images, we
replicated the same input for the three chan-
nels.

3. Resnet-18 pretrained with medical images,
obtained from Chen et al. (2019). The
weights released were trained with data from
different organs such as brain, prostate, liver,
heart, pancreas, etc. This network was pre-
trained with grayscale images, so we did not
perform any adaptation on the input data.

• Densenet121: It is a CNN introduced by Huang
et al. (2017). The architecture of the network is
shown in Fig. 8.

• DeepSymNet-V3: 3D CNN proposed by Gian-
cardo et al. (2023), which receives as input two
images, each one having it’s own path. The model
it’s composed by three 3D VGG blocks, sharing
weights between the two paths. These two paths
are combined by an L1-layer, performing the dif-
ference between the feature map of each branch,
but still preserving the spatial information.

(a) Symmetry approach - Strategy 1: Composed by Module 1, that would deter-
mine if each hemisphere training path would share or not weights between them.
This module produces an output (two feature maps) that feeds into Module 2.
Module 2 will determine how to combine and obtain the difference between the
two hemisphere training paths. This module will return the results of the CNN
classifier with the original number of classes per model. The output from Mod-
ule 2 serves as an input for an MLP Classifier.

(b) Module 1 - Strategy 1: The initial CTA brain volume is divided by hemi-
spheres. Each hemisphere would be the input of a CNN model, having inde-
pendent training paths. In option (A), the CNN models corresponding to each
hemisphere share weights between them. In option (B) each CNN model has
independent weights initialized in the same way .

(c) Module 2 - Strategy 1: Given two feature maps, corresponding to each hemi-
sphere of the brain respectively, option (A) represents the use of L-1 module,
obtaining a feature map with the absolute difference between them, that will
then pass through the CNN classifier. Option (B) represents each path passing
directly through the CNN classifier obtaining an output corresponding to each
branch. For combining the two outputs, in this option, we concatenate them.

Figure 5: Explanation of Symmetry Strategy 1.
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Figure 6: Symmetry approach - Strategy 2: The initial CTA brain volume is divided by hemispheres. Both hemispheres are stacked together,
creating an input of two channels that will be fed into the CNN network. This network will output its original number of output neurons, which
will next be the input of an MLP classifier.

Figure 7: Resnet-18 architecture used in this study. The input will be either the full brain, or the right or left right-flipped hemisphere. All the
weights belonging to the blocks in different shades of blue can be frozen. The CNN classifier that is remarked in the image changes according to
what we need, either to obtain a final prediction, or to obtain what will be the input of an MLP Classifier.

Figure 8: Densenet-121 architecture used in this study. The input will be either the full brain, or the right or left right-flipped hemisphere. All the
weights belonging to the blocks in different shades of blue can be frozen. The CNN classifier that is remarked in the image changes according to
what we need, either to obtain a final prediction, or to obtain what will be the input of an MLP Classifier.
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The CNNs used in this approach have their original
building blocks. Originally, Resnet-18 has 400 output
neurons, and Densenet-121 has 1000. In some cases,
we will use the original classifier and in others, we will
make changes in the CNNs classifier according to our
needs. Regarding the symmetry approach, we will add
an MLP classifier at the end of the different combina-
tions to help the network to learn the differences be-
tween the two brain hemispheres. The MLP input layer
will adapt to the output neurons of the CNNs. The input
layer determines the MLP number of hidden layers and
neurons as shown in Table 2.

Table 2: MLP configuration for symmetry approach, according to the
difference strategy selected.

Model Difference strategy Input Hidden layers Output
Resnet18 L-1 module 512 256 2
Resnet18 concatenation 800 512, 256 2

Densenet121 L-1 module 1000 512, 256 2
Densenet121 concatenation 2000 1000, 512, 256 2

Training plan.
For this classification task, the dataset from the chal-

lenge IACTA-EST described in 3.1.1 will be used for
training. From the available 301 cases, 15% is used for
testing following a balanced positive and negative la-
bel distribution. The remaining 255 cases are used for
train and validation, considering 5-fold cross-validation
experiments. The positive/negative label distribution is
shown in Table 3.

In the initial phase of the experiments, we began
by exploring models following a non-symmetrical path.
This approach involved utilizing a single path for each
network, with the input being the entire brain compris-
ing both hemispheres. We conducted parameter tuning,
testing two optimizers (adam and stochastic gradient de-
scent - sdg) and experimenting with different learning
rates (LR) ranging from 0.01 to 1e-5. The optimal LR
varied depending on the specific model employed; how-
ever, adam optimizer consistently yielded the best re-
sults. Additionally, we analyzed the impact of freezing
different layers in the pretrained networks to identify the
optimal combination of frozen layers for our data. The
findings from this initial phase included the best param-
eters (LR and optimizer) and the most effective combi-
nation of frozen layers for the pretrained models. These
outcomes will be used for the next phase of the experi-
ments.

In the subsequent set of experiments, we built upon

Table 3: Positive/negative label distribution from IACTA-EST chal-
lenge data set.

Labels Train Validation Test Total
0 114 21 24 159
1 102 18 22 142

Total 216 39 46 301

the insights gained from the previous phase - specifi-
cally, the optimal LR and frozen layers combination.
For each network architecture mentioned in section
3.3.1, we explored two sharing weight strategies and
two approaches for obtaining and comparing the differ-
ences between the paths of each brain hemisphere. With
the first symmetry strategy, we considered four distinct
combinations for each architecture configuration. For
the second symmetry strategy, we leveraged the suc-
cessful outcomes of the initial phase, modifying the ar-
chitectures to accommodate 2 input channels instead of
1: we stack the two brain hemispheres instead of each
one going through a different path to then compare and
combine the results. The 2 input channel adaptation was
possible for all cases except for the Resnet-18 pretrained
with videos as we had to give unwanted importance to
just one hemisphere of the brain by replicating it on the
third channel. Therefore, we decided the following con-
figuration for this network: channel 1 - left hemisphere,
channel 2 - left-right flipped hemisphere, channel 3 - the
absolute difference between both hemispheres.

In the final step, we selected the most promis-
ing combinations from the experiments and employed
the Trueta hospital dataset for inference. Within this
dataset, all valid cases were considered as LVO present.
To generate the results from this dataset, we employed
majority voting based on the models trained using 5-
fold cross-validation. Given that the hospital dataset en-
compasses occlusions in both the anterior and posterior
circulation, whereas the training set (from the IACTA-
EST dataset) only contained information about anterior
circulation occlusions, we made the decision to conduct
separate inferences for two categories: all occlusions in
the dataset and anterior occlusions in the data. In the
results section, we will present the performance of the
models at each stage on the testing data (train-val-test
split), as well as their performance on the aforemen-
tioned hospital dataset.

Data Augmentation and network input.
All of the models were trained using the same data

augmentation techniques, consisting of:

• Random flipping (ρ = 0.5) around the x-axis, cor-
responding to the interhemispheric fissure of the
brain.

• Normalization using µ = 0.485 and σ = 0.229.
This step was performed for all the images.

• Randomly chosen motion blur, median blur, or
Gaussian blur, applied with ρ = 0.6.

For validation and testing data, only normalization was
performed. It is worth mentioning that, for the symme-
try approaches we first performed the data augmentation
and then, we separated both hemispheres, right-flipping
the left hemisphere of the brain, to use both brain hemi-
spheres independently as input of the network, as shown
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in Fig. 3. For non-symmetry approaches, we used the
original dimension of the image.

Evaluation metrics.
For this task we will use the common metrics used in

binary classification problems: Specificity, sensitivity,
accuracy, and AUC-ROC. The specificity indicates the
ability of the model to correctly identify healthy cases,
in our case, LVO absent. On the other hand, sensitivity
indicates the ability of the model to correctly identify
diseased cases - LVO present. Accuracy represents the
model’s ability to correctly classify both positive and
negative cases. Moreover, AUC-ROC is relevant since
it allows the assessment of the model’s performance
across various thresholds for a comprehensive evalua-
tion of the model’s sensitivity and specificity trade-off.
This metric is useful in medical problems to evaluate
and optimize false positives and false negatives.

3.3.2. Detection
In the detection part, we use the framework nnDetec-

tion by Baumgartner et al. (2021), which has not been
used before with CTAs, and also, not for this specific
problem of localizing the LVO in a 3D volume. The
instructions to adapt a new dataset are given in their
GitHub repository 4. We followed the instructions pro-
vided there and worked with the docker container of
the framework. For this task, we manually split 10%
of the available training cases to work as the test set.
The framework internally creates a training plan with a
5 fold cross-validation system. The detection algorithm
of nnDetection is based on Retina-UNet, although they
are currently working on adapting other R-CNN detec-
tion networks. The framework expects the ground truth
to be segmentation masks. Due to the complexity and
intricacies of the LVO regions, obtaining precise 3D
segmentations through manual annotations poses sig-
nificant challenges. Despite our efforts, we encoun-
tered difficulties in achieving accurate and consistent
3D segmentations across all three views of our dataset.
The process of manually delineating the LVO regions
in three-dimensional space proved to be highly intri-
cate, time-consuming, and prone to human error. As
a result, we have opted to employ bounding boxes as
an alternative representation for the LVO regions, since
they provide a simplified yet informative approximation
of the region of interest, encompassing the area where
the LVO is most likely to occur. Therefore, we created
bounding boxes around the manually annotated throm-
bus segmentation considering a margin of 2 pixels for
all the cube coordinates. The final ground truth masks
used in the framework consisted of 3D bounding boxes
that enclosed the clot in the CTA image (see Fig. 9). All
cases considered in this task had just one occlusion, and
there were no cases without occlusion.

4https://github.com/MIC-DKFZ/nnDetection

Architecture.
The nnDetection framework uses a RetinaU-Net, pro-

posed by Jaeger et al. (2020), combines the RetinaNet
one-stage detector with the U-Net architecture, which
is commonly used for semantic segmentation. This ar-
chitecture complements object detection with semantic
segmentation without introducing the additional com-
plexity of previously proposed detectors.

Training plan.
This framework automatically creates a training plan

according to the given dataset. It consists of several
steps, including cropping, preprocessing of the input
images, and details about the architecture and the in-
put sizes of the images. For more information about
the parameters optimization, refer to Fig. B.12. Given
that the plan is specifically created based on the train-
ing data, and we did a manual split, we will mention
some important considerations for the model training:
the patch size used is [128 × 160 × 128], and the target
spacing is [0.45001221 0.58886719 0.58886719].

The model was trained with 124 cases, from which
the 10% was used for testing, as explained in the data
section 3.1.2. The data used for training and testing fol-
lowed a similar distribution of occlusion localization,
considering all the available cases.

The output of the nnDetection framework consists
of a dictionary for each test case containing informa-
tion about: predicted bounding boxes, prediction scores,
predicted labels, original size of the raw data, origin of
the image when read by itk, itk spacing and itk direc-
tion.

Data Augmentation.
For the data augmentation of this task, the configu-

ration for transformations was the option ’BaseMore-
Augmentation’, with configurations such as scaling, ro-
tation, changes in brightness, and additive noise. The
configurations were used as default.

Evaluation metrics.
For this detection problem, we will consider Inter-

section over Union (IoU) and sensitivity, based on True
Positives (TP), False Positives (FP), and False Negatives
(FN). The IoU measures the overlap between the pre-
dicted and the ground truth regions of an object or re-
gion of interest (ROI). It ranges between 0 and 1, where
a higher value indicates a better overlap. Given that we
are working with medical data in 3D, we will consider
a correct prediction with an IoU of 0.1 given that this
value respects the clinical need for coarse localization
and exploits the non-overlapping nature of objects in 3D
according to Jaeger et al. (2020).

To obtain the number of TP, FP, and FN, we con-
sidered different confidence predictions and a minimum
IoU of 0.1 with the ground truth to be considered as TP.
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(a) Original label to CTA brain extracted image. (b) Bounding-box to CTA brain extracted image.

Figure 9: Images and segmentation labels for detection problem.

Considering that all of the cases used for this task con-
tained just 1 occlusion, we took the one with the great-
est confidence score in case of finding more than one
TP. For FP, we counted them as 1 if the bounding boxes
showed a large intersection between them.

4. Results

In this section, the performance of the different strate-
gies applied for both classification and detection tasks
are presented.

4.1. Classification

We show the results of the different strategies ap-
plied for binary classification of the CTA images as
LVO present or absent using the IACTA-EST 2023
dataset. All the results presented were obtained with
5-fold cross-validation models. As mentioned in the
Section 3, we studied mainly two CNNs for approach-
ing this task: Resnet-18 and Densenet-121. Consider-
ing Resnet-18, two different pretrained networks were
compared. The first experiment performed consisted on
comparing the network’s performance based on freezing
a different amount of layers to work with the ones that
showed better results in the following experiments. We
did this to consider computational resources used, time
of training and the models’ performance. The results for
the Resnet-18 pretrained with MedicalNet weights, are
shown in Table 4. The same experiment was performed
for the Resnet-18 pretrained with videos, and the results
show a similar tendency. The results of this experiment
are added in the annex, in Table A.8.

Considering these findings, we opted to utilize both
pretrained models (MedicalNet and 3d-videos), along

Table 4: Experiment of Resnet-18 pretrained with MedicalNet
weights, showing the performance of freezing a different amount of
layers. Highlighted results show the best sensitivity and consistent re-
sults in the other metrics.

Frozen layers Accuracy Sensitivity Specificity AUROC
All 0.587 0.227 0.917 0.619
3 0.674 0.455 0.875 0.672
2 0.804 0.682 0.917 0.815
1 0.783 0.546 1.000 0.942

None 0.717 0.682 0.750 0.831

with their two most successful combinations for the sub-
sequent phase. Given that we had several experiments to
try, we performed an extra selection between these two
combinations, to choose the model that suits better our
goals. Based on the results shown in Table 5, we could
not appreciate a significant improvement in not freez-
ing any layer, considering that the network consumes
much more resources and takes longer to train. There-
fore, we determined that the pre-trained models with the
best trade-off between performance and computational
resources and computational time were the ones frozen
until the 2nd layer. Consequently, the following exper-
iments will use both pretrained models with 2 layers
frozen for comparison.

Table 5: Comparison between Resnet-18 pretrained with videos
(Resnet18-Videos) and pretrained with MedicalNet (Resnet18-
Medical), with the best combination of frozen layers.

Model Accuracy Sensitivity Specificity AUROC
Resnet18-Videos-2 0.700 0.600 0.792 0.767

Resnet18-Videos-None 0.691 0.527 0.842 0.792
Resnet18-Medical-2 0.744 0.600 0.875 0.816

Resnet18-Medical-None 0.739 0.591 0.875 0.840

As part of this task, we want to compare the results

15.11



Binary classification and detection of large-vessel occlusions in acute ischemic stroke 12

of exploiting symmetry through the network against not
forcing the model to encounter differences between both
hemispheres of the brain. For the non-symmetry path,
we used a simple approach of classification using the
networks mentioned before, in which the input image is
the whole CTA of the brain. For the symmetrical path,
we proposed two strategies: Srategy 1, as seen in Fig.
5, has 4 combinations to experiment on. The possible
combinations are to share or not weights, and to use L-
1 difference module or concatenate the outputs of each
path. This strategy involves training two separate mod-
els, each dedicated to one hemisphere of the brain, and
subsequently combining the obtained results. Strategy
2 instead, trains just one model, but using both hemi-
spheres of the brain in separate channels. We also com-
pared the results obtained with DeepSymNet-V3, the
baseline from which we got the inspiration for the pro-
posed strategies. The results of these experiments can
be seen in Table 6.

From the Non-symmetry approach, we can see that
Densenet-121 shows the best performance in all the
metrics considered. In the symmetry approach - strat-
egy 1, the results show a tendency for better perfor-
mance of two models: Resnet18-Scratch and Resnet18-
MedicalNet. This can be seen through the different met-
rics considered. The results of the symmetry approach -
strategy 2 show that Resnet18-Videos obtains good and
consistent performance between the metrics considered.

4.1.1. Inference on Trueta’s hospital dataset
As part of our experiments, we tested the best per-

forming models in the Trueta’s hospital dataset, com-
pletely independent of the IACTA-EST challenge data
used for training. The actual label for all the cases is
LVO present, as the dataset did not have any case with-
out LVO. Results of the inference process are shown on
Table 7.

4.2. Detection
In this subsection, we present the results of nnDetec-

tion over 11 cases used just for testing. As mentioned in
Section 3, we had 124 valid cases, from which 10% was
used just for training. The remaining 90% was used for
training and validation. We performed the experiments
with 3 cross-validation folds.

The overall results of the nnDetection model consid-
ering the testing cases, are shown in Fig. 10. Based on
Fig. 10b, we chose a threshold of 0.4 of confidence pre-
diction score to maximize the number of TP and mini-
mize the FP. With this thresholds, 2 folds were able to
find the right localization of the occlusion in all of the
cases, and 1 fold failed in 1, leveraging a general sensi-
tivity of 97%. As for the FPs, 2 models found 1 FP in
two images, and 1 model found 1 FP in one image, lead-
ing to an approximate 0.15 FPpI, as seen in Fig. 10a.

Some of the results obtained from the nnDetection
model are shown in Fig. 11. From the images we

(a) TPR/FppI curve considering the mean results of 3 folds, through different
thresholds of prediction scores.

(b) TPR and FppI rate through different confidence score thresholds.

Figure 10: Results of nnDetection considering the mean results of 3
cross-validation folds.

can appreciate that the bounding box generated can pre-
cisely detect the occlusions. One interesting case is pre-
sented in Fig. 11b, where the model encounters an oc-
clusion that is not actually there. After visually inspect-
ing the image, we can confirm that there is a difference
in contrast following the arteries, that can be confused
with an LVO.

5. Discussion

This study has two main goals: the binary classifi-
cation of CTA images in LVO present/absent, and the
detection considering the exact 3D localization of the
LVO.

5.1. Classification

For the classification part, we propose a comparative
analysis between deep learning networks using informa-
tion about symmetry against not using it.

Existing literature supports the notion that incorporat-
ing symmetry information as input to the network leads
to improved outcomes. This observation stems from the
fact that, in most cases, an LVO primarily affects one
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Table 6: Results of different approaches for binary classification of an LVO. Consider the following abbreviations: S = shared weights, nS = not
shared weights, D = Use of difference module, nD = not using Difference module but concatenation.

Model Accuracy Sensitivity Specificity AUROC
Non-symmetry

Resnet18-Scratch 0.670 0.582 0.750 0.729
Resnet18-Videos 0.700 0.600 0.792 0.767
Resnet18-MedicalNet 0.743 0.600 0.875 0.816
Densenet121 0.791 0.664 0.908 0.877

Symmetry - strategy 1
Resnet18-Scratch-S-D 0.852 0.773 0.925 0.872
Resnet18-Scratch-nS-D 0.843 0.809 0.875 0.895
Resnet18-Scratch-S-nD 0.726 0.718 0.733 0.789
Resnet18-Scratch-nS-nD 0.739 0.709 0.767 0.811
Resnet18-MedicalNet-S-D 0.822 0.745 0.892 0.864
Resnet18-MedicalNet-nS-D 0.774 0.664 0.875 0.813
Resnet18-MedicalNet-S-nD 0.861 0.745 0.967 0.885
Resnet18-MedicalNet-nS-nD 0.857 0.764 0.942 0.899
Resnet18-Videos-S-D 0.783 0.773 0.792 0.874
Resnet18-Videos-nS-D 0.787 0.782 0.792 0.870
Resnet18-Videos-S-nD 0.691 0.655 0.725 0.713
Resnet18-Videos-nS-nD 0.674 0.600 0.742 0.708
Densenet-121-S-D 0.800 0.736 0.858 0.843
Densenet-121-nS-D 0.752 0.618 0.875 0.788
Densenet-121-S-nD 0.743 0.555 0.917 0.813
Densenet-121-nS-nD 0.704 0.573 0.825 0.773

Symmetry - strategy 2
Resnet18-Scratch 0.704 0.573 0.825 0.766
Resnet18-MedicalNet 0.709 0.582 0.825 0.783
Resnet18-Videos 0.757 0.791 0.725 0.858
Densenet-121 0.804 0.664 0.933 0.869

Baseline
DeepSymNet-V3 0.791 0.850 0.727 0.857

Table 7: Accuracy results for Trueta Hospital Data. The results were obtain using the models described for inference, without any pretraining on
this independent dataset.

Model Approach All cases Anterior
circulation

Densenet121 Non-symmetry 0.5387 0.5909
Resnet18-Scratch-S-D Symmetry - strat1 0.6968 0.7727
Resnet18-Scratch-nS-D Symmetry - strat1 0.6677 0.7462

Resnet18-MedicalNet-S-nD Symmetry - strat1 0.4548 0.5075
Resnet18-MedicalNet-nS-nD Symmetry - strat1 0.6226 0.6970

Resnet18-Videos Symmetry - strat2 0.6354 0.6931
DeepSymNet Baseline 0.6419 0.7121

hemisphere of the brain, while the other hemisphere
maintains normal blood circulation. Our experimental
results reinforce this finding, as employing symmetry
consistently enhances performance across all evaluated
metrics. Notably, Resnet18-Scratch exhibits a signifi-
cant approximately 10% enhancement in all categories
following the integration of symmetry during training.

Regarding the use of brain symmetry, we proposed
two distinct strategies and compared them. Both of the
strategies came from the basic idea of dividing the brain
into two hemispheres, with each hemisphere serving as

an input for the network. The first strategy consisted
of having each hemisphere of the brain following its
own training path. From the results in the Table 6 in
the first strategy compartment, comparing the different
combinations proposed, we can see a general tendency
of improvement when sharing weights between the two
networks against not sharing them. Moreover, the num-
bers also show a tendency for improvement when using
the difference module L-1 proposed by Barman et al.
(2019). That is the case for most networks, except for
the Resnet18 pretrained with MedicalNet, which was
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(a) True Positive detection.

(b) False Positive detection.

(c) True Positive detection on an M2 case.

(d) Inference over a posterior circulation image.

Figure 11: Bounding boxes results of nnDetection with a prediction
score of 0.4. The white box located in the right, represents the ground
truth of the occlusion.

used with two frozen layers. This case is particularly in-
teresting because the feature map obtained before the L-
1 module considers spatial information, and in the case
of this pretrained network with frozen layers, the feature
map at this point would probably not have enhanced
differences between the two hemispheres. Therefore,
the network works better with the second approach pro-
posed, which is the concatenation of the outputs of each
network.

The second strategy consisted of using both hemi-
spheres of the brain as two input channels of the net-
work. For these models, we modified the networks for
them to accept the desired input size. Reviewing the re-
sults of Table 6 – Strategy 2 compartment, we can say
that, in general, the first strategy showed better perfor-
mance results. However, there is an interesting result
regarding Resnet18 pretrained with Videos, which also
had two layers frozen. This model shows the second
best AUC, but the most consistent results between accu-
racy, sensitivity and specificity. We could attribute this
to the difference in training for this network, which was
originally pretrained for 3 input channels. Since each
hemisphere corresponds to one input channel, we added
the absolute difference between them in the third chan-
nel. This extra added information could have helped the
model to learn more relevant features.

The highlighted models in Table 6 have similar per-
formance results. It is worth mentioning that the em-
phasized experimets outperformed the DeepsymNet-
V3 baseline for the testing portion of the IACTA-EST
dataset. The model with the most consistent metrics
and the second-best AUC is Resnet18-Scratch-nS-D. It
is also relevant to mention that the pre-trained network
did not significantly improve the general results.

From the best models, we used the combination of
the 5-fold cross-validation results with majority vot-
ing to infer the binary classification of Trueta’s hospi-
tal dataset. The results in Table 7 showed a 77% accu-
racy on correctly classifying CTAs with LVOs as LVO-
present, using a completely independent data. These
results encourage the seeking of information about the
scanners used in the training dataset (IACTA-EST), and
the feasibility of transfer learning for this problem.

5.2. Detection
For finding the exact 3D localization of the occlusion

in CTAs, we used the nnDetection framework. The re-
sults shown in Fig. 10a show that the trained model is
able to detect TPs with a very reasonable FppI rate. Ac-
cording to the results shown in Fig.10b, a threshold that
optimizes the number of TP, minimizing the FP would
be a confidence score of around 0.4.

Something worth analyzing is the localization of the
occlusions in the cases used for testing. The data used
for training this model was distributed in most of M1
cases, followed by M2, ICA, Tandem, Basilar and PCA.
The occlusions in the test cases belonging to M2, ICA
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and Tandem cases correctly detected by the 3 cross-
validated models. For M1 cases, there exist the ap-
pearance of FP with a low general incidence. All of
the occlusions in the test cases correspond to the Ante-
rior Circulation system. Since some cases of Posterior
Circulation were used in the training set, we used the
model for inference of a Basilar occlusion case, from
which we did not have the ground truth mask. How-
ever, by visual inspection we can prove that the model
correctly detected the occlusion, as shown in Fig.11d.
These promising results encourage the study to validate
these results with more data, and with different type of
occlusions.

Some of the drawbacks about using this model is the
computational time it needs. For this dataset, of around
113 CTAs used for training and validation, each fold
took around 6 days to train. Furthermore, the process
of generating outputs for each image during prediction
and inference typically requires approximately 5 min-
utes, not taking into account the additional time required
for preprocessing and cropping that the framework per-
forms automatically. In this study, we only performed 3
out of 5 folds, but for future work, we should perform a
complete validation of all the cases.

6. Conclusions

This master thesis presents two main tasks: binary
classification of CTA images in LVO present/absent,
and detecting the clot in the image using the 3D local-
ization. A comparative analysis is performed in the first
task to determine the best combination of strategies and
architectures to tackle the classification problem. We
determined that the use of brain symmetry helps the net-
work to determine the presence of an LVO in a CTA.
Moreover, the L-1 module for combining the informa-
tion of both hemispheres seems to help to have better re-
sults. However, depending on how the network is learn-
ing the fundamental features of the images, it may work
better to combine them by simple approaches like out-
put concatenation. The best combinations of model and
symmetry approches gives an AUC of 0.87, 85% ac-
curacy, 92% specificity and 77% sensitivity on test set.
On the other side, this model also gives 77% accuracy
on the independent Trueta hospital dataset.

For the second task, we propose the use of nnDetec-
tion for LVO detection. The model trained was able to
find the right localization of the occlusion in all of the
test cases, with a 0.15 FppI rate. This proposal shows
very promising results that, with further experiments
and clinical validation, could be used as a diagnostic
tool for doctors to help with the time-sensitive LVO de-
tection.

For future work, it is necessary to validate the clas-
sification models with more data, and also, to extrap-
olate their use for multi-class classification problems,
which would give information about the brain branch in

which the clot could be found. Also, it would be inter-
esting to measure the impact of transfer learning for this
problem, based on the results obtained on an indepen-
dent dataset with models trained with information from
multiple scanners. As for the detection task, it is nec-
essary to clinically validate the results obtained, and to
use nnDetection with a larger dataset, considering also
less common occlusions for the model to be able to learn
their features and find them.
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Appendix A. Classification

Table A.8: Experiment of Resnet-18 pretrained with Videos, showing
the performance of freezing a different amount of layers. Highlighted
results show the best sensitivity and consistent results in the other met-
rics.

Frozen layers Accuracy Specificity Sensitivity AUROC
All 0.5000 0.7083 0.2727 0.4725
3 0.7609 0.7917 0.7273 0.7320
2 0.7391 0.7917 0.6818 0.7405
1 0.7391 0.7917 0.6818 0.8125

None 0.6739 0.8750 0.4545 0.7850

Appendix B. nnDetection configuration
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Abstract

In recent years, some approaches based on Deep Neural Networks (DNNs) have been developed with the aim of
achieving optimal clinical outcomes through the use of multi-view mass detection techniques in Full Field Digital
Mammograms (FFDMs). Convolutional Neural Networks (CNNs) have been the dominant method for implementing
these techniques. However, transformer models which are mainly based on the Detection Transformer (DETR) have
emerged as a viable alternative to CNNs. In this study, we investigate the benefits of using transformers for multi-view
mass detection in mammographic images, incorporating information from the left and right mammograms as multi-
channel input images. We propose two multi-view mass detection approaches that involve merging a mammogram
with a lesion and a healthy contralateral image from the OPTIMAM Mammography Image Database (OMI-DB). One
of the approaches incorporates a difference image, while the other approach does not. DETR and Deformable DETR
with ResNet-50 as a feature extractor are used for the detection process. The best multi-view technique achieved a
True Positive Rate (TPR) of 87.2% at 0.8 False Positives per Image (FPpI) and an area under the Free Receiving
Operating Characteristic (FROC) curve of 79.9% on FFDMs from Hologic scanners. Furthermore, we present a
single-view approach that demonstrates a significant improvement compared to the multi-view approaches. This
approach achieves a TPR of 91.2% at 0.8 FPpI with an area under the FROC of 83.1%. The single-view models
trained on Hologic images are then used for inference without fine-tuning. This inference is conducted on smaller
datasets that contain FFDMs from the GE scanner, Siemens scanner, and another publicly available dataset known
as VinDr-Mammo (IMS scanner). The best performance is achieved on the images from GE scanner with a TPR of
94.2% at 0.8 FPpI and an area under the FROC of 84.9%.

Keywords: Mammography, Breast Cancer, Computer aided detection, Deep learning, Transformers

1. Introduction

With an estimated 2.3 million new cases (11.7%)
and 684,996 deaths worldwide in 2020, breast can-
cer was the most frequently diagnosed cancer and the
leading cause of cancer deaths in women (Sung et al.,
2021). The likelihood of breast cancer being success-
fully treated increases with early detection of lesions in
the smallest size. Different imaging techniques can be
used to diagnose breast cancer. Although its sensitiv-
ity considerably decreases with increasing breast den-
sity (Kolb et al., 2002), mammography is the standard
imaging technique for breast cancer screening due to
its fast acquisition and cost-effectiveness (Sree et al.,
2011). This technique utilizes low-energy X-rays to
build an image of the breast called a mammogram. For

each breast, two different views are used to detect suspi-
cious lesions like masses which appear as a well-defined
or irregularly shaped area standing out from the sur-
rounding tissue. The cranio-caudal (CC) view is taken
from top to bottom direction, while the medio-lateral
oblique (MLO) view is a side view from a specific an-
gle. Although early cancer detection using screening
mammography has decreased the number of women
who have died of breast cancer by about 40%, man-
ual examination of mammograms is a challenging task
that depends on experience and fatigue level of the ra-
diologist (Wang et al., 2014). Computer-Aided Detec-
tion (CADe) systems have been developed with the goal
of providing radiologists with an additional perspec-
tive, assisting them in improving the accuracy of de-
tection and localization of masses and other abnormal-

16.1



Image Transformers for Multi-view Lesion Detection in Mammography 2

ities. These schemes aim to reduce significant variabil-
ity among different radiologists. As deep learning algo-
rithms have advanced significantly over the last decade,
Convolutional Neural Networks (CNNs) substantially
impacted the development of CADe systems. CNNs
can focus on local features while retaining spatial rela-
tionships, making them an integral component of mod-
ern AI-based medical imaging systems. However, the
inception of Vision Transformers (ViTs) in the work
of Dosovitskiy et al. (2020) made researchers aware
of CNNs primary drawback, their failure to understand
global context or relationships that span across a large
spatial area (Liu et al., 2022). Segmentation and clas-
sification being the most affected areas, transformers
have significantly influenced all fields of medical imag-
ing tasks (Shamshad et al., 2022). However, very lit-
tle work has been done to enhance the performance of
medical image detection by using transformer-based ap-
proaches, which mostly use the Detection Transformer
(DETR) (Zhu et al., 2020).

Unlike radiologists, who combine information from
multiple views of a mammogram to make diagnostic
conclusions, most CADe schemes only use a single
view, which has limited clinical utility (Jones et al.,
2023). Research interest has recently increased in the
development of multi-view CADe systems, which ag-
gregate information extracted from different views, for
lesion detection in mammography. These approaches
perform either bilateral, ipsilateral or simultaneously
both bilateral and ipsilateral analysis of mammographic
images to emulate the radiologists’ reading practice.

This study aims to investigate the benefits of using
transformers for multi-view mass detection in mam-
mographic images, incorporating information from the
left and right mammograms as multi-channel input im-
ages, and to evaluate and compare their performance to
single-image transformers and another traditional object
detection method. Additionally, we analyzed the perfor-
mance of transformers across different attention mecha-
nisms and datasets obtained using different scanners.

The remaining of this paper is organized as follows:
Section 2 summarizes the existing work on mass detec-
tion in mammography including the dataset and tech-
niques used, and findings obtained. Section 3 explains
the dataset, methods and detection networks used in this
project. The results obtained from different experiments
conducted in this study are presented in Section 4. Sec-
tion 5 analyzes and interprets the findings in the context
of existing literature and compares them with previous
studies. Finally, Section 6 summarizes the main find-
ings, and discusses potential future directions or further
improvements.

2. State of the art

The literature on mammogram mass detection can
be categorized into three distinct groups: pure im-

age processing techniques, traditional feature-based ap-
proaches, and deep learning-based approaches. The re-
search started with pure image processing approaches
such as contrast enhancement filters (Petrick et al.,
1996), relative image intensity-based techniques (Heath
and Bowyer, 2000), region-growing techniques (Pet-
rick et al., 1999), and template matching and gradient-
orientation-analysis techniques (te Brake and Karsse-
meijer, 1999). Later, the study moved to machine
learning-based approaches, which depend on hand-
crafted features to detect masses from mammogram im-
ages. Ke et al. (2010) presented a computer vision
system for mass detection, relying on texture features.
Their approach employed bilateral comparison to iden-
tify masses and determine the Region of Interest (ROI).
Texture features such as fractal dimension and two-
dimensional entropy were extracted from the ROI. The
ROIs were then classified as either mass or normal using
Support Vector Machines (SVM). The experiment was
conducted on 106 mammograms, achieving a sensitiv-
ity of 85.11% at 1.44 false positives per image (FPpI).
Rouhi et al. (2015) proposed a mass segmentation tech-
nique that uses region growing and cellular neural net-
work methods. Genetic Algorithm (GA) was applied
to select intensity histogram, shape, and texture fea-
tures from the segmented images. These features were
then used to classify masses into benign and malignant
categories using various classifiers. The experiment
conducted on the DDSM and MIAS datasets demon-
strated a significant sensitivity of 96.87% for classifica-
tion when employing the cellular neural-based segmen-
tation technique. Mughal et al. (2017) applied mathe-
matical morphology to extract and refine masses by gen-
erating a texture image using an entropy filter. Intensity,
texture, and morphological features were extracted from
the detected masses and classified using SVM, decision
tree, K-Nearest Neighbor (KNN), and bagging tree clas-
sifiers. Among these classifiers, SVM achieved the best
results. For the DDSM dataset, SVM achieved a sensi-
tivity, specificity, and accuracy of 98.40%, 97.00%, and
96.9%, respectively. Similarly, for the MIAS dataset,
the SVM classifier yielded a sensitivity, specificity, and
accuracy of 98.00%, 97.00%, and 97.5%, respectively.
Punitha et al. (2018) employed an improved variant of
the region growing technique along with the dragon-fly
optimization method to segment masses. Texture fea-
tures extracted from the detected masses were classi-
fied using a Feed-Forward Network. By using 146 ma-
lignant cases and 154 benign cases from the DDSM,
their approach achieved a sensitivity of 98.1% and a
specificity of 97.8%. Lbachir et al. (2021) proposed
a mass detection and diagnosis system comprising four
sequential steps. In the first stage, the image under-
goes preprocessing to enhance its contrast and eliminate
any unwanted noise. Subsequently, the proposed His-
togram Regions Analysis-based K-means (HRAK) al-
gorithm is employed to segment abnormalities. In the
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third step, texture and shape features, along with the
bagged trees classifier, are used to decrease false pos-
itives. Finally, the abnormalities are classified as malig-
nant or benign using the SVM. Their approach achieved
a TPR of 93.15% at 0.467 FPpI on the MIAS dataset
and a TPR of 90.85% at 0.65 FPpI on the CBIS-DDSM
dataset.

In recent years, there have been notable advance-
ments in the performance of CADe systems. These
improvements primarily stem from the use of various
promising deep-learning models such as Convolutional
Neural Networks (CNNs), transfer learning techniques,
and deep learning-based object detection models. Ribli
et al. (2018) employed the DDSM database, compris-
ing 2620 mammograms obtained from scanned films, to
train a Faster R-CNN model. In their work, the per-
formance of the model was evaluated on the INbreast
dataset, achieving 90.0% TPR at 0.30 FPpI. Agarwal
et al. (2020) assessed the performance of deep learn-
ing technique on the massive mammography dataset
(OMI-DB) for the first time. Their study implemented a
Faster R-CNN framework, which achieved a true pos-
itive rate (TPR) of 87.0% at a false positive per im-
age (FPpI) value of 0.84. The evaluation was con-
ducted on a subset of 7245 images obtained using Ho-
logic scanners. Cao et al. (2020) introduced a new
method for identifying breast masses in mammograms.
They also presented a novel data augmentation tech-
nique to address the issue of overfitting caused by the
limited dataset. Their augmentation technique employs
local elastic deformation, which effectively improved
the performance of their model. However, it should
be noted that this technique takes longer to compute
compared to traditional augmentation methods. To en-
hance the contrast between the breast mass and its sur-
rounding area, they employed a combination of the trun-
cation normalization method and adaptive histogram
equalization. They utilized an improved version of the
RetinaNet called Feature Selective Anchor-Free (FSAF)
(Zhu et al., 2019) for mass detection, achieving a TPR
of 93.0% TPR at 0.50 FPpI on the INbreast dataset.
Su et al. (2022) introduced a double-shot model for
simultaneous mass detection and segmentation, com-
bining the YOLO and Local-Global (LOGO) architec-
tures. This approach leveraged YoloV5 to accurately
locate and crop the breast mass in mammograms and
LOGO to segment the masses while ensuring the preser-
vation of their original shape and position. The pro-
posed model was assessed on the CBIS-DDSM and IN-
breast datasets, achieving a TPR of 95.7% and a mean
average precision of 65.0% on the CBIS-DDSM dataset.
Yu et al. (2023) introduced a patch-based approach for
detecting breast masses, which consisted of three mod-
ules. Firstly, they employed an enhanced Deeplabv3+
model for pre-processing to remove the pectoral mus-
cle. Secondly, they used a multiple-level thresholding
segmentation method to extract candidate mass patches.

Lastly, they employed trained deep learning models to
classify these patches into either breast masses or back-
ground breast tissue. When evaluated on the CBIS-
DDSM dataset, the method achieved a TPR of 87% at
2.86 FPpI. While on the INbreast dataset, the method
achieved a TPR of 96% at a FPpI of 1.29.

The majority of approaches using Deep Neural Net-
works (DNNs) for mammogram analysis are primar-
ily focused on single-view scenarios. Recently, some
approaches based on DNNs have been developed with
the aim of achieving optimal clinical outcomes through
the use of multi-view techniques. Yan et al. (2021)
introduced a multitasking framework for breast mass
detection that combined CC and MLO mammograms.
Their method employed YOLOv3 region proposals with
a Siamese network that fuses patch-level mass vs. non-
mass classification and dual-view mass matching. The
performance of this approach was evaluated on the IN-
breast dataset, achieving a TPR of 96% at 0.26 FPpI.
Yang et al. (2021a) introduced a tri-view mass detec-
tion method known as MommiNet. Their approach in-
corporated a Faster R-CNN network with a Siamese in-
put module and a DeepLab network with a Siamese in-
put module, enabling simultaneous ipsilateral and bi-
lateral analysis on the DDSM dataset. Their approach
achieved a recall rate of 0.8 at 0.5 FPpI, showcasing
its effectiveness. Later, they presented MommiNet-v2
(Yang et al., 2021b) with a new high-resolution network
(HRNet)-based architecture, with the goal of learning
the symmetry and geometry constraints and fully ag-
gregating the information from all views for accurate
mass detection. This method achieved a recall rate of
0.83 at 0.5 FPpI on the DDSM dataset, outperforming
the original MommiNet. Liu et al. (2021) introduced
a multi-view mammogram mass detection framework
called Anatomy-aware Graph Convolutional Network
(AGN). The proposed framework comprised three pri-
mary modules: (i) the Bipartite Graph Convolutional
Network (BGN), which captured the intrinsic geomet-
ric and semantic relations of ipsilateral views; (ii) the
Inception Graph Convolutional Network (IGN), which
modeled the structural similarities of bilateral views;
and (iii) the Correspondence Reasoning Enhancement
Module, aimed at enhancing the representation power
of features. The performance of their approach was as-
sessed on both the DDSM and private datasets, result-
ing in a recall rate of 87.6% at 0.5 FPpI for the DDSM
dataset and 82% at 0.5 FPpI for the private dataset.

The use of transformer-based approaches in breast
imaging and mass detection research is still in its early
stages, as evidenced by their recent appearance in the
literature. Chen et al. (2022) proposed a transformer-
based multi-view approach having local and global
transformer blocks of learning patch relationships in-
dependently and jointly within four mammograms ob-
tained from two different views (CC/MLO) of the left
and right breasts. The proposed technique was eval-
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uated on a private dataset consisting of 949 sets of
mammograms, including 470 malignant and 479 benign
cases. The results showed that their approach outper-
formed state-of-the-art multi-view CNNs, with an AUC
of 0.818. Betancourt Tarifa et al. (2023) proposed
transformer-based models on the OMI-DB dataset for
the first time, employing the Swin transformer as a
backbone multiscale feature extractor. By combining
detection predictions from the transformer and convolu-
tional models, their method outperformed the state-of-
the-art method, with a TPR of 78.1% at 0.1 FPpI on a
subset of 7626 images obtained using Hologic scanners.

3. Material and methods

3.1. Dataset

3.1.1. OPTIMAM mammography database (OMI-DB)
OMI-DB (Halling-Brown et al., 2021) is a vast mam-

mography image database containing over 2.5 million
images from 173,319 women collected from three UK
breast screening centers. The database comprises both
unprocessed and processed FFDMs stored in DICOM
format. The images are accompanied by expert-drawn
ROIs that indicate the location and size of lesions,
along with other relevant attributes. Additionally, the
database includes clinical data related to the images,
such as screening history, previous occurrences of can-
cer, biopsy results, and surgical procedures. The OMI-
DB encompasses images captured by various scan-
ner manufacturers, including Hologic Inc., Siemens,
Philips, and General Electric (GE) Medical Systems.
Each case in the database offers two standard views,
namely the CC and MLO views, for both breasts.

Only the processed FFDMs with finding annotations
are used in this work. The OMI-DB dataset contains
various breast abnormalities, including masses, calcifi-
cations, architectural distortions, focal asymmetries, or
their combinations. Since mass detection is the objec-
tive of this work, only cases with both detected masses
and no abnormalities are taken into consideration. The
training and validation of our single-view and multi-
view mass detection approaches are conducted using
images from Hologic Inc. scanners, as they constitute
the majority of images in the dataset. A total of 3614
FFDMs with detected masses (positive images only)
collected from 1912 patients were employed to train
and validate our single-view technique. For testing pur-
poses, we used 90 images with mass findings acquired
using Siemens scanners from 50 patients, as well as 104
images with mass findings acquired using GE scanners
from 55 patients. The multi-view technique in this study
employed a total of 6576 images collected from 1644
patients, using Hologic scanners. Among these images,
there are 3288 images with detected masses, each paired
with their corresponding contralateral images (repre-
senting normal images from the opposite breast). The

images were selected with a thorough examination to
make sure that any images containing artifacts or unde-
sirable elements (like implants) were excluded from the
analysis.

3.1.2. VinDr-Mammo
VinDr-Mammo (Pham et al.) is a large-scale dataset

of FFDM consisting of 5,000 four-view exams (equiv-
alent to 20,000 DICOM images) collected from two
Vietnamese hospitals, namely Hospital 108 (H108) and
Hanoi Medical University Hospital (HMUH). The ac-
quisition of the images was carried out using three
distinct scanners: Siemens, IMS, and Planmed. The
database provides an overall assessment of the breast
through Breast Imaging Reporting and Data System
(BI-RADS) categories (ranging from 1 to 5) and breast
density levels (classified as A, B, C, or D). Furthermore,
it offers extensive lesion-level annotations by marking
bounding rectangles around breast abnormalities such
as masses, calcifications, asymmetries, and architectural
distortions. These annotations only target abnormalities
classified as BI-RADS 3, 4, or 5, indicating the need for
further examination and follow-up. In this study, 158
FFDMs acquired using IMS scanners from 78 patients
are used for testing the single-view technique. The rea-
son for using only 78 cases is that there are no additional
mass cases available that were acquired using IMS scan-
ners.

3.2. Data preparation and pre-processing
For the single-view approach, the dataset obtained

from the Hologic scanners is divided into training and
validation sets using an 80-20 ratio. The patient-wise
division is performed, ensuring that all mammograms
from a specific case are exclusively assigned to either
the training or validation set. Specific information re-
garding the number of images is presented in Table 1.
Furthermore, three additional datasets are used to test
the single-view approach, as indicated in Table 2. These
datasets include OMI-GE, representing OMI-DB im-
ages acquired from GE scanners; OMI-S, referring to
OMI-DB images obtained from Siemens scanners; and
VinDr-IMS, which denotes VinDr-Mammo images ob-
tained from IMS scanners. Importantly, it should be
noted that these three datasets are not used together for
testing the method; rather, they are employed in sepa-
rate experiments.

In the multi-view approach, 3288 single-channel im-
ages containing detected masses are merged with their
respective normal images from the opposite breast,
yielding a total of 3288 multi-channel images. It is
worth noting that only 3288 images are utilized due to
the lack of contralateral images (with the same episode)
for the remaining mass images. These multi-channel
images are then divided into training and validation sets
based on patients, following the same 80-20 ratio as the
single-view approach.
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Approach Split Cases Images

Training 1550 2890
Single-view Validation 362 724

Total 1912 3614

Training 1315 2630
Multi-view Validation 329 658

Total 1644 3288

Table 1: Summary of training and validation dataset and its corre-
sponding methodology. All images are acquired using Hologic scan-
ners.

Dataset Cases Images

OMI-G 55 104
OMI-S 50 90
VinDr-IMS 78 158

Table 2: Description of the additional datasets used for testing a
single-view approach.

The initial mammograms were in DICOM format,
but they were converted to Portable Network Graph-
ics (PNG) format for further usage. The datasets com-
prised images with high pixel resolutions ranging from
around 64 µm to 108 µm and sizes between 2,000 and
4,000 pixels. To ensure that only relevant information
was provided to the network, the mammograms were
cropped to focus on the breast area of each image. This
cropping process involved applying binary thresholding
to the original image, and then extracting the largest
connected component that represents the breast mask.
The bounding box surrounding this mask was subse-
quently identified and used to crop the image, as de-
picted in Figure 1. Due to limitations in computational
resources, the cropped images were subsequently down-
sampled to a pixel resolution of 200 µm. The images are
normalized, and their intensity is rescaled to 8 bits.

(a) (b) (c)

Figure 1: Cropping breast area: a Original image b Breast mask c
Cropped breast area

3.3. Methodology

Our study is structured into two main approaches: a
single-view approach and a multi-view approach. In the

sections below, the following are described: (i) the ap-
proaches investigated in this work; (ii) the object de-
tection methods; (iii) the training process; and (iv) the
evaluation metrics.

3.3.1. Single-view and multi-view approaches
The single-view approach identifies and locates

masses within the breast using information obtained
from a single mammographic image. It achieves this by
replicating image information from the single channel
into three channels.

The multi-view method uses information from both
the patient’s left and right mammograms, considering
them as multi-channel input image, to identify masses.
This is accomplished by registering the left and right
mammograms, with one of them having a mass (abnor-
mal) and the other without a mass (normal). For each
pair of mammograms, we performed an affine registra-
tion using Elastix, ensuring a global alignment between
the images. The right mammogram was employed as
the fixed image, while the left mammogram was used
as the moving image. It is important to note that both
the moving and fixed images were acquired during the
same visit (episode) and have identical view positions
(either both are CC or both are MLO). The main con-
figuration for this registration involved a 4-level mul-
tiresolution scheme, with mutual information used as
the cost function, adaptive stochastic gradient descent
employed as the optimizer, and a first-order B-spline
utilized as the interpolator. During the final step of reg-
istration, where the pixel correspondences between the
two mammograms are identified, the moving image is
transformed through resampling, which necessitates in-
terpolation. To ensure more accurate alignment of the
overall breast shape, we opted for a B-spline of order
3 as the resampling interpolator. The registration pro-
cess produces two main outputs: the registered image,
which is the transformed version of the moving image,
and the six affine transformation parameters that de-
scribe the spatial adjustments applied during the regis-
tration. In cases where the left mammogram (a moving
image) contains a mass, we performed a point transfor-
mation. This involved applying the affine transforma-
tion parameters learned from the registration process us-
ing Transformix to adjust the coordinates of the ground
truth bounding boxes. The purpose was to ensure that
these coordinates align with the registered image, accu-
rately representing the same anatomical or spatial fea-
tures as shown in Figure 3. This is useful to perform
evaluations or any subsequent analysis on the same spa-
tial coordinate system established by the registration.

Two distinct multi-view mass detection techniques
are employed in this study: one involves the difference
image between the right and registered left mammo-
grams, while the other does not utilize a difference im-
age. Figure 2 illustrates the multi-view mass detection
framework, highlighting these techniques.
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Figure 2: Multi-view mass detection framework

Multi-view technique with difference image
This technique involves combining the fixed image,

the moving registered image, and their absolute dif-
ference to create a composite 3-channel image. This
composite image will then serve as the input for the
detection network. Hence, the process of detecting
masses involves integrating data from both abnormal
and healthy breasts, along with highlighted dissimilar-
ities or changes between them.

Multi-view technique without difference image
This technique involves replicating the information

from an image containing the mass twice and merging
it with the information from a healthy contralateral im-
age. The resulting image consists of three channels,
where two channels contain the replicated information
from the image with the mass, and the remaining chan-
nel contains information from the healthy image, with
the aim of giving more importance to the image with the
lesion, under the hypothesis that this could improve the
detection results. This 3-channel image is then fed into
the object detection network for the detection of masses
in the abnormal breast.

3.3.2. Object detection methods
In this study, we used three object detection networks,

namely Faster R-CNN, Detection Transformer (DETR),
and Deformable Detection Transformer (DDETR). The
primary purpose of employing Faster R-CNN was to es-
tablish a baseline for our datasets. All three methods
were used with a convolutional backbone.

Faster R-CNN
Girshick et al. (2014) proposed a Region-based Con-

volutional Neural Network (R-CNN) which gained a lot
of interest in the computer vision community. The idea
of R-CNN was to use a Selective Search (SS) approach
to propose around 2000 ROIs, which were then fed into
a CNN to extract features. These features were used to

(a) (b) (c)

(d) (e) (f)

Figure 3: Image registration and data preparation for the multi-view
mass detection approach: (a) Fixed image (F) representing the right
mammogram (b) Moving image (M) representing the left mammo-
gram with the ground truth bounding box, which indicates the de-
tected mass (c) Moving registered (M’) with the transformed bound-
ing box (d) Difference image (|F − M′ |) (e) 3-channel image created
by merging F, M’ and |F − M′ | (f) 3-channel image generated by du-
plicating M’ in two channels and merging them with F

classify the images and determine their object bound-
aries using SVM and regression methods. R-CNN was
quickly followed by Fast R-CNN (Girshick, 2015), a
faster and better approach for object detection. Fast
R-CNN used an ROI pooling approach, which shares
the features across the whole image and uses a modi-
fied form of the spatial pyramid pooling method to ex-
tract features in a computationally efficient way. The
problem with Fast R-CNN is that it is still slow because
it needs to perform SS which is computationally time-
consuming. This shortcoming led researchers to come
up with Faster R-CNN (Ren et al., 2016), where the Re-
gion Proposal Network (RPN) is used as a region pro-
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poser without the need for any external mechanism like
SS. In Faster R-CNN, the input image is fed into the
CNN, and the resulting feature map is given to the RPN,
where 9 region boxes (anchors) of different scales and
aspect ratios are used for generating region proposals,
eliminating the need for image pyramids. The RPN gen-
erates a set of proposals, with each proposal assigned a
probability score indicating its likelihood of being an
object, along with the corresponding class or label of
the object. After this, ROI pooling and then an upstream
classifier and bounding box regressor are used, similar
to Fast R-CNN. Figure 4 illustrates the RPN and the
overall pipeline of the Faster R-CNN model.

Figure 4: Flow chart of the Faster R-CNN, depicting both the region
proposal network (RPN) and the overall pipeline.

DETR
Two-stage object detection architectures (like Faster

R-CNN) employ hand-crafted components such as
anchor generation and Non-maximum Suppression
(NMS), which puts them behind the desired level in
terms of speed. Carion et al. (2020) designed the DE-
tection TRansformer (DETR), a much faster technique
trained end-to-end with a set loss function that performs
bipartite matching between predicted and ground-truth
objects, using a transformer encoder-decoder architec-
ture. The DETR model consists of a CNN backbone
(ResNet), which learns a 2D representation of an input
image and produces a set of lower-dimensional features.
These features are then flattened into a 1-dimensional
structure and added to a positional encoding, which is
fed into a transformer encoder. Learned positional em-
beddings, also called object queries, which represent N
(where N is set to be significantly larger than the typical
number of objects in an image) different learnable ob-
jects, are passed to the decoder part of the architecture
to be learned with additional attention. Each output em-
bedding of the decoder is then passed into a shared Feed

Figure 5: Schematic representation of DETR, showing the process
of predicting the final set of detections by combining a CNN with a
transformer architecture

Forward Network (FFN), a 3-layer perceptron with a
ReLU activation function and hidden dimension d, that
predicts either a detection (class and bounding box) or
an ∅ (no object) class. The loss is calculated by com-
puting the bipartite matching loss as shown in Figure 5.

Deformable DETR
DETR eliminates the necessity for hand-crafted el-

ements like anchor generation, but it also faces chal-
lenges such as limited feature spatial resolution, exten-
sive data requirements for training, and slow conver-
gence during training (resulting in extended training pe-
riods). Due to the deficit of transformer components
in processing image feature maps, DETR has a rela-
tively poor performance in detecting small objects. De-
formable DETR (Zhu et al., 2020) is proposed to ad-
dress these problems by combining sparse spatial sam-
pling of deformation convolution and the relation mod-
eling capability of the transformer. Deformable DETR
makes use of multi-scale feature maps to detect objects
at different scales, especially small objects. It also in-
troduces a deformable attention module, which only at-
tends to a small set of key sampling points around refer-
ence points, regardless of the spatial dimension of fea-
ture maps. Hence, it brings down the complexity from
quadratic (in the case of DETR) to linear, saving a lot
of computation cost. However, it is worth mentioning
that this computational cost saving is not always true,
as it depends on the underlying implementation of the
deformable attention module.

3.3.3. Network Training
The detection frameworks were trained using COCO

pre-trained Resnet-50 as the convolutional backbone.
Microsoft Common Objects in Context (COCO) is a
widely used benchmark dataset for the tasks of object
detection, instance segmentation, and image captioning
research. It contains 328,000 images of everyday ob-
jects and humans with bounding box and segmentation
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mask annotations of 91 object categories.
To train Faster R-CNN and DETR, we used Detec-

tron2 (v0.6), a PyTorch-based open-source library in-
troduced by Facebook AI Research (Wu et al., 2019).
This library provides state-of-the-art object detection
and segmentation algorithms. For training DDETR, we
employed MMDetection (v2.28.2), another PyTorch-
based open-source object detection toolset, presented
by Chen et al. (2019). Both Detectron2 and MMDe-
tection offer a wide range of COCO-pretrained models,
training and evaluation tools, and utilities to facilitate
object detection research and applications. Given that
our dataset is not natively supported in Detectron2, we
employed Dataset APIs (DatasetCatalog and Metadata-
Catalog) to enable Detectron2 access our dataset in the
form of a list of standard dataset dictionaries. These
dictionaries, which are the inputs for the Faster R-CNN
and DETR models, contain essential information about
the image such as file name, height, width, ID, and an-
notations. Furthermore, for training DDETR, we re-
structured our dataset into the COCO annotation format,
which is commonly used in object detection tasks. The
Faster R-CNN and DETR models were trained using a
single NVIDIA A30 24 GB GPU, whereas the DDETR
model was trained using a single NVIDIA A40 48 GB
GPU.

In the Faster R-CNN algorithm, the anchors are gen-
erated at a specified pixel location. These anchors are
defined by a base size of 128 pixels, three aspect ra-
tios (0.5, 1.0, and 2.0), and five different scales (0.1,
0.2, 0.5, 1.0, and 2.0), resulting in a total of 15 anchors.
Afterward, the detected bounding boxes undergo a non-
maximum suppression (NMS) technique with a thresh-
old of 0.05. This process ensures that only the most
prominent and non-overlapping bounding box predic-
tions remain, effectively representing masses found in
the mammogram. The initialization of anchor boxes and
NMS is based on the suggestion made by Agarwal et al.
(2020).

Data Preprocessing
The images were adjusted in size, with the height and

width not exceeding 800 and 1333 pixels, respectively,
while maintaining the original aspect ratio as suggested
in Betancourt Tarifa et al. (2023). However, due to
the memory access pattern of deformable convolution,
which can vary spatially and temporally and result in
larger memory usage (Ahn et al., 2020), the maximum
height and width for DDETR were limited to 600 and
1000 pixels, respectively. Furthermore, the pixel values
were normalized to have a mean of zero and a standard
deviation of one.

Data Augmentation
As suggested by Agarwal et al. (2020), during the

training process of the Faster R-CNN-based detector,
we employed only horizontal flip as a data augmenta-
tion. However, when training DETR and DDETR, we

incorporated various data augmentation techniques to
enhance the training process. Every image was sub-
jected to one of the following techniques with a 50%
probability: (i) horizontal flip, (ii) random crop, (iii)
contrast transformation using magnitude values of [0.4,
0.8, 1.5], and (iv) brightness transformation using mag-
nitude values of [0.3, 0.7, 1.3]. These techniques were
suggested by Boutancort et al. (2023). During the train-
ing of Faster R-CNN and DETR models, the Detectron2
framework used its Dataset Mapper module to imple-
ment data augmentation. On the other hand, for training
DDETR, the MMDetection framework’s AutoAugment
class was employed to incorporate data augmentation
techniques.

Training Hyperparameters
All models underwent training in batches consisting

of two images. The Faster R-CNN model was trained
using the stochastic gradient descent (SGD) optimizer,
while both DETR and DDETR models were trained us-
ing the ADAMW optimizer. Performance monitoring
and early stopping were conducted using the mean Av-
erage Precision (mAP) calculated with an IoU threshold
of 0.5. Training parameters used to finetune the detec-
tion models are described in Table 3.

3.3.4. Evaluation Metrics
To evaluate the performance of detection methods,

free receiver operating characteristic (FROC) curves are
used. These curves provide information about the True
Positive Rate (TPR) of the detected masses in relation to
the average number of False Positives per Image (FPpI).
In order to plot the FROC, we varied the threshold of
confidence probability (objectness score) generated by
the network. Only the predicted boxes with confidence
probabilities greater than or equal to a specified thresh-
old are taken into account for each threshold value. A
mass was considered as a true positive (TP) when the
intersection over union (IoU) between the predicted box
and the ground truth box was 10% or higher according
to the criterion established in Agarwal et al. (2020).
Masses that were not detected by the model are con-
sidered as false negatives (FNs), whereas all other pre-
dicted boxes with an IoU less than 10% are considered
as false positives (FPs) for the image. When dealing
with mammograms containing multiple masses, the IoU
is computed individually for each ground truth box. The
True Positive Rate (TPR) is calculated by using equa-
tion 1, where TP represents the total number of true
positives, and FN represents the total number of false
negatives in validation or testing images.

TPR =
T P

T P + FN
(1)

The calculation of FPpI involves summing the count
of false positives (FPs) in each image and dividing this
sum by the total number of images. The FROC curves
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Detection Method Approach Learning rate Epochs

Single-view 5 × 10−5 32
Faster R-CNN Multi-view with difference image 2.5 × 10−5 35

Multi-view without difference image 1.25 × 10−5 35

Single-view 2.5 × 10−5 32
DETR Multi-view with difference image 2.5 × 10−5 35

Multi-view without difference image 2.5 × 10−5 30

Single-view 1.25 × 10−5 28
DDETR Multi-view with difference image 1.25 × 10−5 28

Multi-view without difference image 1.25 × 10−5 28

Table 3: Training Parameters

were analyzed to obtain two performance measures: (i)
the True Positive Rate (TPR) at a False Positive per Im-
age (FPpI) value of 0.8, and (ii) the Area Under the
Curve (AUC) within the range of FPpI values from 0
to 1. Both of these performance measures are in line
with the ones in Agarwal et al. (2020).

4. Results

This section presents the performance of the trained
mass detection models in four separate parts. Initially,
we showcase the results obtained using a single-view
approach for different datasets. The subsequent two sec-
tions present the results achieved through a multi-view
technique, one involving a difference image and the
other without it. Finally, comparisons between single-
view and multi-view approaches are presented in terms
of AUC and TPR differences.

4.1. Mass detection with single-view technique
The FROC curves for various datasets employed in

this technique are reported in Figure 6, Figure 7, and
Figure 8, illustrating the effectiveness of Faster R-CNN,
DETR, and DDETR models, respectively. Performance
results of these models are also presented in Table 4. In
a study conducted by Agarwal et al. (2020), they re-
ported a TPR of 0.87 at 0.84 FPpI. In comparison, our
baseline model achieved a TPR of 0.877 at 0.8 FPpI.
These results demonstrate that we were successful in
replicating the method and results of Agarwal et al.
(2020). Therefore, it can serve as a baseline for com-
parison with our proposed methodologies.

It can be observed that DETR and DDETR outper-
formed our baseline model on all datasets except VinDr-
IMS. Among the datasets used for evaluation, Faster R-
CNN exhibits the best performance on the Hologic im-
ages, DETR performs the best on the OMI-GE dataset,
and DDETR shows superior performance on the OMI-S
dataset. On the other hand, when it comes to the VinDr-
IMS dataset, all models showcased the lowest perfor-
mance. It is worth noting that the DETR model trained

on the Hologic dataset exhibited a higher TPR on the
OMI-GE dataset when compared to the validation set of
Hologic. Similarly, the DDETR model trained on the
Hologic dataset demonstrated a higher TPR on both the
OMI-GE and OMI-S datasets compared to the valida-
tion set of Hologic.

Figure 6: FROC curves of Faster R-CNN on different datasets with
single-view approach

Figure 7: FROC curves of DETR on different datasets with single-
view approach
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Figure 8: FROC curves of DDETR on different datasets with single-
view approach

Model Database TPR at 0.8 FPpI AUC

Hologic 87.7% 76.8%
Faster R-CNN OMI-GE 86.3% 76.1%

OMI-S 83.9% 74.9%
VinDr-IMS 79.4% 66.8%

Hologic 89.3% 80.0%
DETR OMI-GE 94.2% 84.9%

OMI-S 88.9% 83.4%
VinDr-IMS 74.7% 63.1%

Hologic 91.2% 83.1%
DDETR OMI-GE 91.3% 85.0%

OMI-S 92.2% 85.2%
VinDr-IMS 75% 62.9%

Table 4: Performance of trained models using a single-view approach
on different datasets. The Hologic dataset serves as the validation set,
whereas the OMI-S, OMI-GE, and VinDr-IMS datasets are employed
as the test sets. Highest performance for each model is marked in
bold.

In Figure 9, examples of single-view mass detection
results given by the three detection models are shown.
The predictions generated by the models are filtered,
where only predicted boxes with a confidence probabil-
ity of 0.3 or higher are kept. It is evident that DDETR
robustly predicts masses without generating false pos-
itives, whereas both Faster R-CNN and DETR models
exhibit instances of false positive detections.

4.2. Mass detection with multi-view technique involv-
ing a difference image

This approach is evaluated only on the Hologic
dataset and the FROC curves of all experimented detec-
tors are reported in Figure 10. When compared to the
performance achieved through a single-view approach
on the Hologic dataset, all detectors exhibit lower per-
formance in this approach. Once more, the performance
of DDETR followed by DETR outperforms that of the

baseline model, as shown in Table5.

4.3. Mass detection with multi-view technique without
involving a difference image

Figure 11 presents the FROC curves of all models
trained using the multi-view technique without involv-
ing a difference image. Evaluation of the models is only
conducted on the Hologic dataset, and in comparison to
the performance obtained using a single-view approach,
they achieved lower performance. However, there is
a significant improvement in performance when com-
pared to the multi-view technique that incorporates the
difference image. As demonstrated in Table 5, the per-
formance of DDETR followed by DETR surpasses that
of the baseline model, similar to both the single-view
technique and the multi-view technique involving the
difference image.

4.4. Comparisons between single-view and multi-view
approaches

For every combination of single-view and multi-view
methods, the differences in AUC (∆AUC) and TPR
(∆TPR) were assessed as shown in Table 6. For each de-
tection model, the difference between the performance
achieved by the multi-view technique involving a dif-
ference image and the single-view technique is sig-
nificantly higher, indicating that the multi-view tech-
nique involving a difference image has the lowest per-
formance. On the other hand, the difference between
the performance achieved by the multi-view technique
without involving a difference image and the single-
view technique is comparatively lower, suggesting that
the multi-view technique without involving a difference
image has a relatively lower performance.

5. Discussion

In this study, multi-view mass detection in mam-
mographic images, incorporating information from the
left and right mammograms as multi-channel input im-
ages is investigated by using transformer-based detec-
tion heads. It has been demonstrated that incorporating
the difference image as one of the input image chan-
nels leads to a reduction in detection performance. This
decrease in performance could be attributed to several
factors. The difference image contains pixel-level in-
tensity variations between the mammogram with a mass
and the healthy mammogram. By using the difference
image as a separate channel, we may lose valuable in-
formation present in the original left and right mammo-
grams. This loss of information can lead to a decrease in
performance. The difference image may also introduce
additional noise or irrelevant features into the input data.
This can negatively impact the model’s ability to learn
meaningful patterns and discriminate between mass and

16.10



Image Transformers for Multi-view Lesion Detection in Mammography 11

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9: Examples of mass detection results obtained from Hologic images: a and e are images with groundtruth bounding box; b and f are images
with predicted boxes using Faster R-CNN; c and g are images with predicted boxes using DETR; d and f are images with predicted box using
DDETR. TP detection is represented by yellow bounding box, FP detection is represented by blue bounding box.

Model Approach TPR at 0.8 FPpI AUC

Faster R-CNN Multi-view with difference image 72.5% 63.5%
Multi-view without difference image 83.0% 72.7%

DETR Multi-view with difference image 74.7% 64.9%
Multi-view without difference image 85.0% 76.1%

DDETR Multi-view with difference image 77.7% 67.9%
Multi-view without difference image 87.2% 79.9%

Table 5: Performance of trained models using a multi-view approach

healthy tissue regions. Furthermore, if the difference be-
tween the left and right mammograms is not consistent
across different cases, the model may struggle to effec-
tively utilize the difference image. This can result in
a less informative representation for distinguishing be-
tween mass and healthy regions.

With the aim to give greater importance to the im-
age with lesion, under the hypothesis that this could en-

hance detection results, an assessment is conducted on
a multi-view technique that combines information from
the image with a mass replicated in two channels, along
with information from a healthy image represented in
one channel. This technique potentially improved de-
tection performance and demonstrated the significance
of the lesion image. However, the performance of this
technique is still below that of the single-view tech-
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Model Approach ∆TPR ∆AUC

Faster R-CNN Multi-view with difference image -15.2% -13.3%
Multi-view without difference image -4.7% -4.1%

DETR Multi-view with difference image -14.6% -15.1%
Multi-view without difference image -4.3% -3.9%

DDETR Multi-view with difference image -13.5% -15.2%
Multi-view without difference image -4.0% -3.2%

Table 6: Difference in TPR and AUC of multi-view approaches compared to the single-view approach

Figure 10: FROC curves of detectors using the multi-view technique
with a difference image

Figure 11: FROC curves of detectors using the multi-view technique
without a difference image

nique. The healthy breast channel might contain fea-
tures or patterns that are unrelated to the task of mass
detection. As a result, the performance of the model
might decrease because it is attempting to consider in-
formation that is not beneficial for identifying masses.
Implementing a multi-view approach based on ensem-
ble methods might improve the performance of mass de-
tection models.

In this study, it has also been shown that the Faster
R-CNN, DETR, DDETR models, pre-trained on COCO

dataset, can be fine-tuned to detect masses in FFDMS.
This demonstrated that both CNN and transformer-
based models will benefit from pretrained weights
(Caron et al., 2021; Raghu et al., 2019; Taher et al.,
2021). In both single-view and multi-view approaches,
DDETR outperformed both DETR and Faster R-CNN
counterparts. This is due to the use of multi-scale
feature maps by DDETR to detect objects at differ-
ent scales, especially small objects like subtle or occult
masses as OMI-DB contains masses with different con-
spicuity levels (Betancourt Tarifa et al., 2023). On the
other hand, DETR and Faster R-CNN exhibit relatively
poor performance in detecting small objects. Further-
more, DETR achieved lower performance compared to
DDETR due to its high dependence on abundant train-
ing data, similar to Vision Transformer (ViT).

In the single-view technique, transformer-based de-
tection heads performed better than Faster R-CNN dur-
ing inference on OMI-GE and OMI-S without finetun-
ing as demonstrated in Matsoukas (2021). In all detec-
tion models, lowest detection performance was obtained
on VinDr-IMS dataset. This is because VinDr-IMS has
low contrast compared to the Hologic dataset. Enhanc-
ing the contrast of VinDr-IMS using techniques like his-
togram matching might benefit the inference process.

In this study, transformer-based backbones such as
Swin and deeper Convolutional backbones like ResNet-
101 were not used. Exploring these as an alterna-
tive feature extractors could potentially enhance the
detection performance. Additionally, incorporating
novel transformer-based detection heads like Hybrid
Deformable DETR (H-DETR) (Jia et al., 2023) may fur-
ther improve the detection results.

6. Conclusions

This study explores the detection of masses in mam-
mographic images using a multi-view approach, where
information from both left and right mammograms
is merged into a multi-channel input image. Two
transformer-based detectors are used on the large-
scale mammography dataset OMI-DB, and two differ-
ent multi-view mass detection approaches are assessed,
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one involving a difference image and the other exclud-
ing a difference image. It is indicated that incorporating
the difference image as an input image channel results
in a decline in detection performance. Furthermore,
the study reveals that the conventional single-view ap-
proach exhibits superior performance compared to both
of the proposed multi-view approaches.

The study demonstrated that transformer-based mod-
els, which were originally pre-trained on natural im-
ages, can be fine-tuned and effectively adapted for the
purpose of detecting masses in mammograms. The
transformer-based detectors showcased superior perfor-
mance compared to their convolutional counterparts,
and DDETR appeared to be the most robust model for
detecting masses. Using the single-view model trained
on Hologic images, inference is conducted on smaller
datasets without the need for fine-tuning. This infer-
ence showcased improved performance on datasets with
a contrast level similar to that of Hologic images.

Our future work will involve the implementation of
a multi-view mass detection approach based on en-
semble methods to effectively leverage the complemen-
tary information provided by different views, aiming to
achieve improved accuracy and robustness in the detec-
tion process. It would be also interesting to explore
transformer-based backbones as a multi-scale feature
extractor and deeper convolutional backbones as they
exhibited better performance than shallower backbones
in Betancourt Tarifa et al. (2023). Furthermore, an in-
vestigation would be performed into novel transformer-
based object detectors.
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Abstract

Generative models have been used as an alternative data augmentation technique to counter the data scarcity problem
faced in the medical imaging field. Diffusion models have gathered special attention due to their innovative genera-
tion approach, the high quality of the generated images and their relatively less complex training process compared
with GANs. Still, the implementation of such models in the medical domain remains at early stages. In this work,
we propose exploring the use of diffusion models for the generation of high quality full-field digital mammograms
using state-of-the-art conditional diffusion pipelines. Additionally, we propose using stable diffusion models for the
inpainting of synthetic lesions on healthy mammograms. We introduce MAM-E, a pipeline of generative models for
high quality mammography synthesis controlled by a text prompt and capable of generating synthetic lesions on spe-
cific sections of the breast. Finally, we provide quantitative and qualitative assessment of the generated images and
easy-to-use graphical user interfaces for mammography synthesis.
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1. Introduction

Artificial intelligence has gained important attention
in the last decade in essentially all aspects of human
life. Thanks to the increasing data availability neural
networks have played a key role on unveiling unsolved
challenges, redefining AI research, and discovering new
technological boundaries and applications.

A field that has attracted special recent attention is the
generation of synthetic data, with the notable popular-
ity of AI tools such as ChatGPT and DALL-E. Specifi-
cally in the imaging domain, generative models (GMs)
started to gain notability in 2014 due to the impressive
generative power of Generative Adversarial Networks
(GANs). According to Yann LeCun, an important voice
in the DL community, GANs were ”..the most inter-
esting idea in the last 10 years”, as mentioned in his
keynote at the Neural Information Processing Systems
conference (NIPS) 2016 in Barcelona.

In the following years the appearance of new archi-
tectures and DL techniques, such as the rise of atten-
tion and transformers (Vaswani et al., 2017), further im-
proved the generation capabilities and photorealism of

the generated images in the natural imaging domain1.
At the same time, researchers started to introduce these
synthetic generation techniques into the medical imag-
ing domain.

Contrary to natural images, medical images suffer
from a data scarcity problem. Medical images are inher-
ently more expensive than natural images due to their
acquisition, processing and labeling procedure. More-
over, they are subject to more privacy and data protec-
tion concerns and, for some rare medical cases, images
are difficult to find or suffer from underrepresentation,
which leads to a subsequent data unbalance problem.
All these issues dramatically reduce the volume of med-
ical data available for the training of DL models, which
limits the models performance and holds back the devel-
opment of CAD systems, compared with non-medical
imaging applications.

To counter this issue, GMs have been used to com-
plement traditional data augmentation techniques and
expand medical datasets, aiming to improve CAD mod-

1We refer as natural images to non-medical images, such as those
included in large-scale datasets like ImageNet and LAION-B5. Other
authors like Pinaya et al. (2022) have used this term.
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Figure 1: MAM-E: a synthetic mammogram generation tool.

els performance. Until a couple of years, GANs were
the state-of-the-art (SOTA) for synthetic image genera-
tion tasks due to their high image quality and impressive
photorealism. Nevertheless, some important limitations
and drawbacks are inherent to these models. Due to its
generator-discriminator architecture, GANs training is
notoriously unstable and can be difficult to converge, as
well as suffering from low diversity generation due to
mode collapse issues (Kazerouni et al., 2023).

These issues make the use of GAN-like architectures
challenging in some research domains. This is spe-
cially crucial for medical data, as medical diagnosis can
highly depend on subtle changes in the organs appear-
ance reflected in the images, changing the prediction of
a CAD system (Müller-Franzes et al., 2022).

In 2021 diffusion models (DMs) captured the spot-
light of the GMs community after the publication
of OpenAI’s belligerent article Diffusion models beat
GANs on Image Synthesis by Dhariwal and Nichol
(2021). Inspired by non-equilibrium thermodynamics,
diffusion models rely on the idea that data distributions
can be learned by iteratively destroying input informa-
tion, adding certain noise, and then tasking a DL model
to learn how to remove it in a denoising process, follow-
ing a Markov chain.

Since the breakthrough of DMs, a great number of ap-
plications and research papers for natural images have
been published to explore this new image generation

principle. Results have shown promising improvements
to the image generation task that continues to outper-
form GANs-like pipelines. Two main enhancements on
traditional DM architectures are latent diffusion (LD),
introducing the use of a latent space for higher image
resolution, and stable diffusion models (SD) for addi-
tional input during training and inference for a more
controlled generation process.

The medical image community has started to imple-
ment these improvements to generate high quality, high
fidelity and realistic medical images, crucial character-
istics for CAD systems development. Nevertheless, to
the moment of publication of this work, the use of dif-
fusion models in the medical imaging field continues at
early stages. Even though a number of works have been
published for the generation of several medical imaging
modalities, such as brain MRI and chest X-ray, there is
still no implementation of DM techniques for mammo-
graphic image synthesis.

1.1. Project description

The objective of this master thesis project is to ex-
plore the use of diffusion models for the generation of
high-resolution mammographic images and to develop
a synthesis pipeline using SOTA conditional diffusion
models. This pipeline was developed using stable dif-
fusion, a diffusion model technique that uses both con-
ditioning, to control the image generation, and a latent
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space to allow high-resolution without requiring large
computational resources. The generated images are for
presentation, meaning that their appearance and pixel
intensities are meant for radiologist inspection, with the
limitations on resolution and pixel depth inherent to the
current state of diffusion pipelines.

The pipeline can be separated in two main tasks:
healthy mammogram generation and lesion inpainting.
For the first task, the generation process is controlled
(or guided) using text conditioning with the description
of the image using common mammography characteris-
tics such as view position, laterality, breast density and
breast area. For the second task we use an stable dif-
fusion inpainting model designed to generate synthetic
lesions in desired regions of the a mammogram.

We introduce MAM-E, a pipeline of generative mod-
els for high quality mammographic image synthesize,
capable of generating images based on a text prompt,
and also capable of generating lesions on a specific sec-
tion of the breast. We selected the name after DALL-E,
OpenAI’s famous image generation tool for natural im-
ages presented by Ramesh et al. (2021), as we aimed to
create a graphical user interface (GUI) similar to DALL-
E to allow user personalization of the generated image
based on customizable settings.

2. State of the art

2.1. Diffusion on medical imaging

Several relevant works have explored the implemen-
tation of diffusion models for synthetic medical images
generation. Dorjsembe et al. (2022) proposed using the
original pipeline of diffusion models on computer vi-
sion, introduced by Ho et al. (2020) called denoising
diffusion probabilistic models (DDPM), for the genera-
tion of high-quality MRI of brain tumors, being the first
attempt to investigate diffusion models for 3D medical
images. This vanilla model was able to reproduce SOTA
results, outperforming the baseline models based on 3D
GANs.

A further improvement for synthetic brain MRI gen-
eration was presented by Pinaya et al. (2022), who
used a Latent Diffusion model (LDM) to generate high-
resolution 3D brain images. The use of a LDMs al-
lowed increasing the image resolution from 64x64x64
to 160x224x160 without requiring more GPU memory
usage or overall training time. More about latent diffu-
sion will be explained in section 3.3.3. To assess the per-
formance of the model and the quality of the synthetic
images two main metrics were computed, the Fréchet
Inception Distance (FID) for fidelity, and the MS-SSIM
for diversity. In both cases DMs metrics ourperformed
GANs results.

The first implementation of stable diffusion for med-
ical images, the closest to our work, was introduced by
(Chambon et al., 2022) who proposed a model for chest

X-ray generation. Their model, named RoentGen, was
able to create visually convincing, diverse chest X-rays,
and the output could be controlled by using text prompts
with radiology-specific language. Similar to the work of
Pinaya et al., the FID and MS-SSIM metrics were com-
puted although no comparison with GAN-based models
was made. A key characteristic of this work is the use
of pretrained weights coming from the Hugging Face
Hub. Instead of training from scratch the network, their
suggestion was to fine-tune specific parts of the network
to adapt to this new domain. This DM fine-tuning ap-
proach is called Dreambooth and was first introduced
by Ruiz et al. (2023).

The only work we found for lesion inpainting using
DM was made for brain MRI by Rouzrokh et al. (2022)
from Mayo Clinic. They developed a DDPM to exe-
cute several inpainting tasks, like generating lesions or
healthy tissue, on slices of the 3D volumes in various
sequences. Their model was capable of generate realis-
tic tumoral lesions and tumor-free brain tissue, although
the performance of the model was only assessed visu-
ally.

2.2. Generative models for mammography

Despite the absence of DM-based model for mam-
mography, other GMs, specially GANs, have been used
for several tasks. Wu et al. (2018) tried to tackle the
data scarcity and unbalance problem by using class-
conditional GANs to synthetically augment mammo-
gram datasets. They focused on training a model for
contextual in-filling to synthetize lesions onto healthy
screening mammograms. Then, they used this model
to generate synthetic images to improve the AUC of a
ResNet50 lesion classifier from 0.887 with traditional
augmentation to 0.896 with GAN-generated data aug-
mentation.

A full-field digital mammogram (FFDM) generation
approach was performed by Korkinof et al. (2019) us-
ing GANs as well. Special attention was given to sta-
bilize the GAN training by using stabilization meth-
ods and progressive training. The dataset consisted of
around 450K images in both MLO and CC view, and
they trained the network with a final image size of
1280x1024. The final size used represented a training
stability problem even after using the stabilization tech-
niques. The generated images were only conditioned on
the mammogram view. The training was done using 8
V100 GPUs of 16 GB each training for about 70 hours
of total training. The trained model was able to gen-
erate highly realistic, high resolution synthetic images
in appearance, although no quantitative assessment of
the fidelity, diversity and radiologist opinion was con-
ducted.
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3. Material and methods

3.1. Datasets

We decided to use two datasets for the training of the
stable diffusion models (SDMs) to consider different pa-
tient populations and mammography unit vendors.

3.1.1. OMI-DB
We used a subset of the OPTIMAM Mammogra-

phy Image Database (OMI-DB), consisting of around
140k images from several UK breast screening centers
(Halling-Brown et al., 2021), various scanner manufac-
turers and with different image views. The dataset is
composed of images with and without lesions (benign,
malignant and interval-cancers), and expert annotations
are included in the respective cases. Most of the images
are available in both raw and in for presentation for-
mat, giving us a total number of 77, 035 images suitable
for our generation purpose, distributed among 5, 982 pa-
tients. The images were available in DICOM files and
its respective metadata was provided in a JSON file for-
mat.

Given that the dataset included images from several
protocols, such as screening, biopsy and lesion magnifi-
cation, an extensive image filtering was conducted. The
criteria used for the selection of images were the follow-
ing:

1. No special imaging protocol allowed. E.g. mag-
nification and biopsy images. (∼ 27k images re-
moved)

2. No breast implants (∼ 3K images removed)
3. Only CC and MLO view positions (∼ 500 images

removed)
4. Only images coming from the Hologic mammog-

raphy units. (∼ 8K images removed)

From the criteria above, only criterion 1 is unavoid-
able, as we strictly require FFDM. Criteria 2-4 were set
to keep a diverse yet uniform data distribution which
would be easier for a GM to learn. The generation of
minority cases as breast implant mammograms or un-
common mammographic views (such as exaggerated
craniocaudal views) were considered out-of-the-scope
of this project and let for future work. Because only
Hologic images were used the dataset subset is called
OMI-H.

The OMI-DB dataset includes metadata at the patient
and image level in JSON file format. This information
can be accessed using a Python library specifically de-
signed for this dataset. The metadata includes basic DI-
COM information (laterality, view, pixel size, etc.) and
clinical information such as patient status, lesion opin-
ion, biopsy results, and more.

3.1.2. VinDr-Mammo
A second dataset called VinDr-Mammo composed of

FFDM with breast-level assessment and extensive le-
sion annotation was also used. It consists of 5,000 mam-
mography exams, each with 4 standard views (CC and
MLO for both lateralities), coming from two primary
hospitals from Vietnam, giving a total of 20,000 images
in DICOM files (Nguyen et al., 2023). Metadata of each
image consisting of both technical and clinical informa-
tion were also available in a CSV file.

In this case, the only image filtering step performed
was to keep images coming exclusively from SIEMENS
scanners to avoid learning very different data distribu-
tions.

Table 1: Distribution of cases for both datasets.

OMI-H VinDr Combined
Healthy 33,643 13,942 47,585
With lesion 6,908 1,533 8,441
Total 40,551 15,475 56,026

3.2. Data preparation and preprocessing

Both datasets were subject to similar preparation and
preprocessing steps. First, all images were saved to
PNG format to ensure faster access and less memory
usage. Secondly, given the DM architecture used (de-
scribed in section 3.3.4) the images were saved in RGB
format, repeating for each RGB channels the single-
channel mammograms, resulting in a visually gray-level
image. The original image intensities saved with uint16
datatype were scaled to a [0, 255] range with a reduced
uint8 datatype.

Figure 2: Resizing and cropping of an OMI-H mammogram. The
same process was conducted for VinDr mammograms.

Additionally, in order to use the pretrained weights
available for SD, the images were resized to a 512x512
square using bilineal interpolation and center cropping
as shown in figure 2. Finally images with right later-
ality (R) were horizontally flipped so all images have
the breast region in the same side, which can potentially
facilitate the learning of the data distribution.
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(a) ”a mammogram in MLO view with small area” (b) ”a mammogram in CC view with big area”

(c) ”a mammogram in CC view with very low density” (d) ”a mammogram in MLO view with very high density”

Figure 3: Examples of training mammograms (real) and their respective text prompts for OMI-H (a-b) and VinDr (c-d).

3.2.1. Task one: healthy image generation
For the first task the healthy images were saved in

separated directories, one for each dataset. A text
prompt with the description of the image was created
and saved along with the image ID in a JSON file. In
the case of the OMI-H dataset we created a prompt with
the image view and breast area size information. Ex-
amples of prompts and their corresponding images are
shown in figures 3a and 3b.

To compute the breast area size we first obtained a
breast mask using the intensity information of the image
and then applying a threshold to separate background
and breast tissue. After getting the breast mask we com-

puted the ratio of pixels in the mask compared with the
total image. Finally, we define a criteria for three differ-
ent breast area sizes which can be found in table 2a.

Table 2: Criteria for breast area size and breast density.

(a) Pixel ratio prompt assignment.

Breast area size
Small ratio <0.4
Medium 0.4 <ratio <0.6
Big ratio >0.6

(b) BI-RADS breast density.

Breast density
Very low Density A
Low Density B
High Density C
Very high Density D
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For the VinDr dataset, we decided not to compute
the breast area and, instead, included the breast density
information for the prompt description. Breast density
was available in BI-RADS scale so we needed to trans-
form this information in a semantically easier text value.
We classified the density BI-RADS following the cri-
teria in table 2b. Examples of some images and their
prompts can be found in figure 3c and 3d.

3.2.2. Task 2: Lesion inpainting
The second task requires mammograms with con-

firmed lesions only. Consequently we stored the se-
lected mammograms in separated directories, one for
each dataset. Then, using the bounding boxes coor-
dinates available in the metadata, binary masks were
generated. Naturally, due to the resizing and cropping
preprocessing performed previously, the original coor-
dinates required a proper redefinition using simple geo-
metrical properties.

The binary mask has a pixel value of 255 inside of
the bounding box and zero elsewhere. Figure 4 show an
example of a mask overlapping a OMI-H mammogram.
Because the SD architecture used for the inpainting task
requires an input text prompt for the generation, a toy
prompt with ”a mammogram with a lesion” text was
used for all training images.

Figure 4: A OMI-H mammogram with a lesion overlapping with its
corresponding bounding box mask.

3.3. Diffusion models

The original diffusion model idea was presented by
Sohl-Dickstein et al. (2015) and consisted on using a
Markov chain2 to gradually convert one known distri-
bution (e.g. Gaussian distribution) into another (tar-
get distribution). Inspired by non-equilibrium statisti-
cal physics, the main idea is to systematically and iter-
atively destroy structure in a data distribution through
a process called forward diffusion. Then, the reverse
diffusion process is learned and used to restore struc-
ture in data, creating therefore a generative model that
implicitly has learned the data distribution.

2Defined as a sequence of stochastic events whose time steps de-
pend on the previous one.

The first practical implementation of the DM premise
on images was developed by Ho et al. (2020) introduc-
ing Denoising diffusion probabilistic models (DDPM).
In this framework, the data is destroyed by adding Gaus-
sian noise to the image in an iterative fashion described
by the Markov chain as shown in figure 5. The total
number of diffusion timesteps T is defined by the user
but initial experiments were performed with T = 1000.
To learn the reverse process a encoder-decoder-like neu-
ral network (such as a UNet) is used to carry on the de-
noising process.

Figure 5: Markov chain of the forward and reverse diffusion process.

A vanilla DM has three main components:

1. Noise scheduler: to add noise in the forward pro-
cess.

2. UNet: to denoise in the reverse process.
3. Timestep encoder: to encode the timestep t.

3.3.1. Forward diffusion process
Let x0 be the original image and xt the noisy version

of that image at time t. For the forward diffusion we can
define the Markov chain process as

q(x1:T |x0) = ΠT
t=1q(xt |xt−1), (1)

where q is a probability distribution from which the
noisy version of the image at time t can be sampled,
given xt−1. The proposal of the DDPM framework is to
define q as a Gaussian (normal) distribution given by

q(xt |xt−1) = N(xt;
√

1 − βt xt−1, βtI), (2)

where xt is the output of the distribution sampling,√
1 − βt xt−1 is the mean and β the variance of the distri-

bution. Therefore the sampling of the next noisy version
of the image is essentially controlled by β, as its value
affects both the mean and the variance of the sampling
distribution. Selecting the manner in which β changes
through time is called beta scheduling and is control by
the noise scheduler. In figures 6a and 6c two examples
of beta scheduling are shown.

Thanks to the additive properties of Gaussian distri-
butions, we can obtain a noisy image at any timestep t
directly by rewriting the sampling distribution 2 as

q(xt |x0) = N(xt;
√
α̃t x0, (1 − α̃)I), (3)

with α̃t = Π
t
s=1as and αt = 1 − βt, where α can be in-

terpreted as measure of much information from the pre-
vious image is being kept during the diffusion process.
The importance of α̃t, and therefore of βt, can be un-
derstand by looking at figure 6. For t values close to 0
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(a) Linear beta schedule (b) Linear mean and variance

(c) Scaled beta schedule (d) Scaled mean and variance

Figure 6: Linear and scaled beta schedulers (left) and their ef-
fects on the mean (blue) and variance (orange) of the noise
sampling distributions (right).

the distribution from which we sample have µ ≈ 1 and
σ ≈ 0, meaning that the sample images are every similar
to the original image. On the other hand, for large t val-
ues where µ ≈ 0 and σ ≈ 1 the distribution is close to
a standard normal distribution (SND) and the sampled
image will be essentially pure Gaussian noise.

Finally, to be able to define the training goal in the
reverse diffusion process, we express the sampling from
the probability distribution in equation 3 using the repa-
rameterization trick (Kingma and Welling, 2022). The
reparameterization trick allows us to write the genera-
tion of a sample X from a normal distribution N(µ, σ)
as X = µ + σZ, where Z ∼ N(0, 1), i.d. Z was sampled
from a SND. With this, the forward diffusion sampling
process can be expressed by

xt =
√
α̃t x0 +

√
1 − α̃tϵ, (4)

where ϵ ∼ N(0, 1). The stochastic variable epsilon (ϵ)
in equation 4 is crucial to understand the reverse diffu-
sion process as it is basically the prediction target of the
UNet.

3.3.2. Reverse diffusion process
The reconstruction of the data destroyed by noise can

be done using a UNet that has learned to denoise the
images. Formally, the reverse process is also a Markov
chain that can be defined in a similar way as

pθ(x0:T ) = p(xT )ΠT
t=1 pθ(xt−1|xt), (5)

where pθ is the learned probability distribution from
which the denoised images are sampled at each timestep
t. θ indicates that the distribution is parameterized as it
was learned by the UNet. This also explains why the
term p(xT ) has no subscript θ as it is the starting point
of the reverse process, i.e. pure Gaussian noise.

Assuming that p can also be modeled as a normal
distribution, it can be expressed as

pθ(xt−1|xt) = N(xt−1; µθ(xt, t),Σθ(xt, t)), (6)

where µθ and Σθ are the learnable mean and variance of
the reverse sampling distribution. To reduce the train-
ing complexity, and because it showed to give similar
results, Σθ = βI, therefore only µθ has to be learned.
Sadly, due to limitations of space in this report, the com-
plete formulation of the optimization of the usual varia-
tional bound on negative log likelihood cannot be fully
described. Key considerations of this formulation are
given instead.

The first consideration is that µθ can be computed as

µθ(xt, t) =
1√
αT

(xt − β√
1 − α̃t

ϵθ(xt, t)), (7)

where the key is to notice that we only need to predict
ϵθ to predict µθ.

The second consideration is that the term we need to
optimize, and which consequently defines the loss func-
tion of our UNet, is

L = ∥ϵ − ϵθ∥2, (8)

where epsilon (ϵ) is the same Gaussian noise we de-
fined in equation 4, sampled from a Gaussian distribu-
tion ϵ ∼ N(0, 1), and ϵθ is the output of the UNet. In
other words, the UNet objective is to implicitly learn
the data distribution by predicting the scaled Gaussian
noise ϵ added to the images at timestep t.

Finally, to include the timestep as an additional input
to the Unet, a timestep encoder is used to embed this in-
formation and use it during training. More information
will be given in section 3.3.4.

3.3.3. Latent diffusion
Image size is one of the main constrains when train-

ing generative models. Medical images usually require
high resolution, specially in the case of mammograms
where the sizes go up to 3 or 4 thousand pixels per
image side. Training a DM for such sizes would re-
quire large computational resources and extensive train-
ing time.

Latent diffusion tries to solve this issue by using en-
coders to compress images from their original sizes in
the image space into a smaller representation in the la-
tent space. The motivation behind this is that images
usually contain redundant information and an encoder
can produce a smaller representation that can later be
reconstructed back using a decoder.

An example of this is shown in figure 7, where an
original image of 512x512 pixels is compressed to 4 la-
tent representations of 64x64 using a Variational Au-
toencoder (VAE), reducing 16 times its original shape
(Kingma and Welling, 2022).
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(a) Latent representations.

(b) The original image and its reconstruction.

Figure 7: Example of the latent space representation of an image and
its reconstruction.

Consequently, as introduced by Rombach et al.
(2022), in latent diffusion the diffusion processed (de-
scribed in the previous section) is performed on the
latent representations rather than the original images.
This allows using diffusion pipelines with lower mem-
ory usage, fewer layers in the UNet, and faster training
and generation.

There exist different types of encoders that can be
used and the selection criteria reside mainly on the type
of images and their task. Chambon et al. (2022) found
that a pretrained VAE on natural images can have good
perform in medical images as well. For this reason we
decided to use a VAE for our work, obtaining visually
successful encoding for mammograms as shown in fig-
ure 7b. More information on the model architecture can
be found in section 3.4.

3.3.4. Stable diffusion
Pure latent diffusion does not include conditioning at

training or inference time, and synthetic images are gen-
erated from the learned distribution, depending on the
starting Gaussian noise. Stable diffusion is an improve-
ment to Rombach et al. (2022) work, in which text con-
ditioning is added to the model for additional control on
the generation process.

In stable diffusion the text conditioning is a prompt
with the description of the image. To create a numeric
representation of the prompt we use a pretrained trans-
former called CLIP (Radford et al., 2021). CLIP, which
stands for Contrastive Language-Image Pre-training,
maps both text and images into the same representa-
tional space, allowing comparison and similarity quan-
tification between them (Frans et al., 2021). In other
words, CLIP allows us to compare images and text.

CLIP first uses a subword-based tokenizer to convert
any prompt text to a fixed 77 tokens length. Then, the
CLIP encoder sends each token into a 768-dimensional

vector, which lives in the image-text CLIP space. The
CLIP embedded text is then used in the attention layers
of the UNet through a cross-attention mechanism. More
details are given in section 3.4.

3.3.5. Fine-tuning SD: DreamBooth
In 2022 Stability AI and LAION made the pre-

trained weights of Rombach et al. (2022) model pub-
licly available, which allowed the GM community to
train domain-specific fine-tuned SD models. Neverthe-
less, fine-tuning a large text-to-image model and teach-
ing it new concepts can be challenging and one can
face several difficulties such as catastrophic forgetting3,
overfitting and low image generation diversity.

Ruiz et al. (2023) presented an approach for fine-
tuning SD called DreamBooth. They proposed using
only a few images of the new subject with its respective
text prompt, to train the model using a small learning
rate. Additionally, if the subject semantically exists in
the model domain, prior generation images can be in-
cluded for the training. This allows the binding of the
new subject to a new unique identifier in the text em-
bedding space, as well as a learned representation in the
pretrained data distribution.

This fine-tuning technique has been tried for chest X-
ray by Chambon et al. (2022) and showed promising
results on adapting the SD domain into their images to
generate high-fidelity and diverse images thanks to the
control given by the text prompt.

3.4. Task 1: Normal mammogram synthesis

We propose putting together all the pieces presented
above and adapting the Dreambooth fine-tuning tech-
nique for mammograpic images generation, using the
pretrained stable-diffusion-v1-5 model as baseline, pub-
licly available in the Hugging Face model hub reposi-
tory.

For each dataset we decided to train a separate model
using only healthy images, as each dataset contains in-
dependent semantic information in the prompt and be-
cause the intensity ranges and image details differ be-
tween populations. This means that we trained separate
models for Siemens and Hologic mammograms. Ad-
ditionally, we decided to train a combined model with
images of both vendors, adding in the prompt text the
vendor’s name.

Our SD pipeline has three independent models that
could potentially be trained at the same time. Given
the good performance of the VAE encoder on mammo-
grams, we decided to keep it frozen an train only the
CLIP text encoder and the UNet weights. The three
models are summarized as follows:

3This means the model forgetting previous information and con-
cepts.
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Figure 8: Training pipeline for full mammogram generation. UNet architecture from the original stable diffusion paper (Rombach et al., 2022).

1. VAE as image encoder (frozen): Pretrained with
LAION-b5

2. CLIP text encoder: CLIP ViT large using a ViT-
L/14 Transformer architecture from Open AI.

3. UNet: Pretrained with LAION-b5.

The pretrained VAE model inputs RGB 512x512 and
outputs latent representations of 64x64x4, just as shown
in figure 7.

3.4.1. Training
The UNet architecture is the original SD UNet pro-

posed by Rombach et al. (2022) and its presented in
figure 8. The network has 4 2D down- and upsam-
pling blocks. Except for the last downsampling block
(and its corresponding upsampling block) all blocks are
composed of two ResNet blocks and two Transformer
blocks, one after the other. The timestep embedding is
added to the ResNet blocks whereas the text embedding
is added through cross attention into the Transformer
blocks. For the last downblock (and first upblock) only
the timestep information is fed.

One training step can be summarized as follows:

1. Sample a batch of images x0 ∼ q(x0)
2. Encode x0 into the latent space
3. Sample a random timestep from a uniform distri-

bution t ∼ U(1, ...,T )
4. Sample random Gaussian noise from a normal dis-

tribution ϵ ∼ N(0, I)
5. Create xt by adding noise to the batch images x0

using the noise ϵ and timestep t.
6. Take a optimization step in the direction of the gra-

dient ∇θ∥ϵ − ϵθ(xt, t)∥

7. Repeat

We notice that, contrary to what is popularly believed,
the DM training process does not consist on denoising
the same image in a sequential order. This confusion
comes from the way the diffusion process is presented
as a Markov chain in figure 5. Instead, the training en-
compasses three stochastic processes by randomly sam-
pling the main components of the diffusion process: the
original image x0, the Gaussian noise ϵ and the timestep
t. By doing so we avoid the overfitting of the network
on the sequential way the images are given and focuses
on the denosing process per se.

The CLIP text encoder and the UNet parameters are
updated simultaneously at each training step using an
AdamW optimizer, with the MSE as loss function de-
scribed in equation 8.

The main training hyperparameters (HP) are the fol-
lowing:

• Batch size: We ranged from 8, 16, 32, 64, 128 and
256.

• Training steps: Experiments ranged from 1k up to
16k.

• Learning rate: We explore three main values 1e−6,
1e−5, 1e−4.

Other HP that were not changed include: constant
lr schedule, Adam weight decay and epsilon, gradi-
ent clipping and dropping the last incomplete batch per
epoch. All detailed HP information can be found in
the configuration file of each experiment in the GitHub
repository.
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We generated 4 sample images every 100 or 200
training steps to track the performance of the models, as
well as the training loss. This was loaded to the cloud
using Weights and Biases (WandB) logging tool. Ad-
ditionally all models were uploaded to the authors per-
sonal Hugging Face repository and are publicly avail-
able.

3.4.2. Inference: image generation
With the UNet prediction we can denoise pure Gaus-

sian noise and generate new mammograms. The proce-
dure is as follow:

1. Sample random Gaussian noise ϵ ∼ N(0, I)
2. for t = T, ...1 do:
3. z ∼ N(0, I) if t > 1 else z = 0
4. xt−1 =

1√
αT

(xt − β√
1−α̃t
ϵθ(xt, t)) + σtz

5. end for
6. Decode image using VAE

First, random Gaussian noise is sampled as starting
point. Then the denoising process is repeated for T
steps. The loop consists on using the predicted noise
ϵθ to compute the distribution mean using equation 7.
By adding σtz to this mean term we are essentially sam-
pling from the learned data distribution of the reverse
diffusion process. After the denoising process is fin-
ished the image is send back to the image space using
the VAE decoder.

The inference process has two main HP to consider:
number of timsteps T and the guidance scale. First, the
number of timesteps T will depend on the type of sam-
pling method that we use for denosing. The traditional
DDPM sampling requires around 100 steps to generate
good quality images, which is time consuming and rep-
resent a bottleneck in the image generation. The best
alternative we found is to use the DPM-solver proposed
by Lu et al. (2022), which allows fast diffusion sampling
with only 20 steps for good quality image generation. In
the result section we show how the change of T affects
the image quality.

The second HP is called the guidance scale. Even
though the SD architecture uses cross attention in sev-
eral parts of the network, so the generation process
focuses on the text prompt, in reality this is still not
enough and the model tends to ignore the text prompt
at inference time. To solve this issue Ho and Salimans
(2022) proposed a technique called classifier-free guid-
ance.

In essence, classifier-free guidance consists on gen-
erating two noise predictions ϵ at each step, one us-
ing the prompt (ϵtext) and one without it (ϵ f ree). Then,
the difference between the prompt-generated noise and
the free-generated noise is computed. This difference
can be considered as a vector in the image distribution
space, which points in the direction of the image with
text. As such, we can scale this vector and sum it to

the free-generated noise to force it to go more in the
direction of the prompt text. This geometrical trick is
illustrated in figure 9.

Figure 9: Classifier-free guidance geometrical interpretation. As the
guidance scale increases, the image is pushed further in the prompt
direction.

Formally, the scaling factor is called guidance scale
and the formulation can be summarized as follows:

ϵθ = ϵ f ree + guidance ∗ (ϵtext − ϵ f ree). (9)

3.5. Task 2: mammographic lesion inpainting
The SD pipeline described for task 1 can be modified

in some key aspects to be able to perform the inpainting
task. We propose using the modified DreamBooth fine-
tuning pipeline to inpaint lesion in a designated region
of the breast. To the knowledge of the authors, this is
the first work to use SD fine-tuning for lesion inpainting
in medical images.

Figure 10: Inpainting training pipeline. The same UNet as in the SD
pipeline in figure 8 is used.

At the dataloader level, for each batch two new ele-
ments are added per example: the mask and a masked
version of the original image. The masked version
means that the pixel values inside of the bounding box
are set to zero.

At training time, first both the image and the masked
image are encoded using the latent space. Also the mask
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must be reshaped to the latent representation size. The
rest of the diffusion process remains the same, only one
crucial difference is made: instead of feeding the latent
representation only to the UNet, the latent representa-
tion, the mask, and the masked latent representation are
stacked into one tensor. This new input is then fed to
the UNet, as well as the encoded timestep and prompt
text as in a traditional SD. This process is described in
figure 10.

This small change in the training process allows the
network to pay attention only to the pixels inside the
mask, as the pixel outside of it are always provided. The
rest of the pipeline follows the same principles as the
ones we described for task one.

3.6. Complete MAM-E pipeline
The models used in task 1 and task 2 can be put to-

gether in a sequential order so that a full synthetic mam-
mogram with lesion can be generated. Figure 11

3.7. Resources management
Having three large models loaded at the same time,

and enabling the gradient tracking for two of them for
training, can represent a dramatic increase of GPU and
processor resources. Thankfully there exist a handful of
techniques and frameworks to reduce this demand and
fit the training in a GPU memory of circa 20 GB with
an efficient batch size of 256.

First, we used mixed precision using the fp16 arith-
metic, and the revision model (model version) specifi-
cally for that precision. When training in the (Ampere)
A30 or A40 GPU we activate the bf16 precision, with
no improvement in the time or apparent quality of the
training.

We also used lighter version of the AdamW opti-
mizer, the 8-bit AdamW optimizer by Bitsnadbytes. Ad-
ditionally, because our three models use attention lay-
ers, we made us of the Xformers efficient memory us-
age for transformers which speeds the training time and
decreases the GPU usage.

To achieve the 256 batch size in one single GPU we
used gradient accumulation, a technique that consists on
computing the gradient for a mini-batch without updat-
ing the model variables, for a set number of times, sum-
ming the gradients. By doing so, the general batch size
is accumulated an essentially the batch size increases.
In our case, using a mini-batch size of 16, and 16 gra-
dient accumulation steps the accumulated batch size is
256. This technique, although clever comes with an in-
crease in training time.

Gradient checkpointing is another technique to use
the CPU processors power to help release some GPU
memory at the expenses of a slower training. Gra-
dient checkpointing saves strategically selected activa-
tions throughout the computational graph of the model
tensors so only a fraction of the activations need to be
re-computed for the gradients.

Finally one can simply set the optimizer gradients to
None instead of zero after the weights update have been
completed. This will in general have lower memory
footprint, and can modestly improve performance.

Most of these techniques can be implemented directly
using Hugging Face Accelerate library and framework
for distributed training and resources management.

3.8. Assessment
The assessment of generative models depends on the

application of the synthetic images and it may not be
straightforward as in other DL models. While it is pos-
sible to observe the changes in the loss values during
training, the loss curve rapidly converges to a specific
region and no further difference is notice. It is specially
difficult to see any substantial loss differences when per-
forming DreamBooth fine-tuning.

Regardless of the apparent plateaued loss function,
the semantics learned by the model are continuously
changing during training. One possible way to keep
track of the model training performance is to log exam-
ples of synthetic images every several steps to see this
semantic changes.

At inference time there exists other types of assess-
ment and they can be categorized as follows:

• Qualitative assessment: Focusing on the visual ap-
pearance of the mammograms.

• Quantitative assessment: Computing metrics to at-
test the diversity and fidelity of the generated im-
ages, as well as generation time.

• Quantitative CAD assessment: Exploring the po-
tential benefits of synthetic images on CAD sys-
tems performance.

3.8.1. Qualitative assessment
We performed two types of visual assessment. First,

an overall simple visualization of the images to see any
clear inconsistency (noise remnants, anatomical irregu-
larities).

Then, we assessed the quality of the images by ask-
ing a radiologist with 30 years of experience to rate 53
mammograms, with a 50/50 real-synthetic ratio, in a
scale from 0 to 4, using the following criteria:

• 0: Definitely real

• 1: Probably real

• 2: Not sure

• 3: Probably synthetic

• 4: Definitely synthetic.

These results were then converted to probabilities to
be able to obtain a ROC curve and its respective area.
The main objective is to attest the radiologist’s ability
to differentiate synthetic mammograms apart from real
ones.
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Figure 11: The complete MAM-E pipeline combining task 1 and task 2 pipelines. In dark green, the inputs needed for a full synthetic mammogram
generation with lesion. In light green the optional input for lesion inpaining on real images, overriding task 1. In red, the outputs of each task.

3.8.2. Quantitative assessment
Generative models are expected to have two main

characteristics: generation diversity and fidelity to the
original dataset. There exists metrics to quantitatively
assess them.

Generation diversity can be computed using the pair-
wise Multi-scale structural similarity index metric (MS-
SSIM). If a pair of synthetic images are sampled, a low
MS-SSIM value would mean that the compared images
are not structurally similar and, therefore, implies diver-
sity.

Fidelity can be calculated using the Fréchet Incep-
tion Distance (FID), a metric first proposed for GAN-
generated image quality assessment by Heusel et al.
(2018). FID captures the similarity of generated images
to real ones by comparing the statistics of a collection
of synthetic images and a collection of real images.

Formally, the activation vector from the last pooling
layer of a ImageNet-pretrained Inception V3 is com-
puted for a set of real and synthetic images. This
2048-vector is called the feature vector and contains
computer-vision-specific information of the images.
The FID consists, then, on calculating the Fréchet dis-
tance between the Multivariate Gaussian distribution of
both population, synthetic and real. This is done by
sampling N examples from each distribution. N is rec-
ommended to be 10, 000 for the best approximation, al-
though some works suggest using a lower N number can
also be representative of the distribution.

Notwithstanding, the use of the FID metric is contro-
versial and even discoraged. Chong and Forsyth (2020)
found that the FID is biased towards the generative
model and should not be used. Moreover, given that
no other work has explored the FID for FFDM genera-
tion we decided not to compute the FID and assess the
image fidelity based on the radiological expert visual

assessment of the previous section.
Finally, generation time has to be assessed as the de-

noising time of DM is one of its main drawbacks. Gen-
eration time is closely tied to other inference HP like the
guidance scale or the prompt length and order.

3.8.3. Quantitative CAD assessment
The performance of the generative models and the

utility of the images for training CAD models can be
assessed using CAD pipelines and referring to the effect
of adding synthetic images during training.

We decided to collaborate with a master thesis defen-
dant, Sam-Millan (2023) from the ViCOROB lab and
whose works are included in the proceedings of this
year.

Sam-Millan et al. worked on explainability AI (EAI)
for patch classification and full-field mammogram le-
sion classification. Specifically for FF mammogram
classification problem, the EAI system explores which
regions of the image are more relevant for the classifi-
cation task. A heatmap of these regions importance is
generated for several EAI methods. It is expected that
the lesion region captures the main attention.

We asked the authors to create heatmaps of a healthy
real mammogram with a synthetic inpainted lesion to
assess if the classifier is focusing on the synthetic lesion
region.

For more details on any of these methods refer to the
corresponding report.

4. Results

4.1. Training unconditional model

The first experiments were conducted on uncondi-
tional diffusion models, meaning that no text prompt
guidance was used as input. This first steps were vital
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for the building of the conditional models later on. Vi-
sual assessment of the generated images during training
time is presented in this section.

4.1.1. Image space: vanilla DM
The first trial consisted on generating 64x64 mam-

mograms to observe the evolution and behavior of DM
while trained from scratch using mammograms.

Figure 12: Training evolution of the vanilla image space diffusion
model at 1k, 2k, 3k and 4k timesteps. This corresponds to epoch 1,
16, 3 and 50.

The corresponding loss and log-loss function of this
vanilla DM are presented in figure 13.

Figure 13: On the top: Loss of the vanilla DM training for 6k
steps. On the bottom: the corresponding log loss.

This vanilla DM training helped us to make two ini-
tial main considerations. First, it allowed us to assess

the training of a diffusion model from scratch and how
the denoising process can effectively generate meaning-
ful images after the first 2k training steps, as figure 12
shows.

Secondly, we observe that the loss function rapidly
reaches a plateau, which show how fast the loss ob-
jective can be minimized in diffusion. Nevertheless, as
seen in the log-loss, the function fluctuates in a specific
range. This is a common behavior of DM losses, which
tend to reach a stability region where the loss varies and
then slowly starts to decrease as the denoising process
is learned.

4.1.2. Latent space diffusion

Figure 14: Training evolution of only one latent representation at
epoch 1, 16, 36 and 50.

The second group of experiments consisted on send-
ing the images to the latent space and implement the
diffusion process on the latent representations. Figure
14 shows the latent denoising process for one channel
(there are 4) of the latent representation.

It can be seen that the denoising process is more dif-
ficult and slower in the latent space. After 50 epochs
the latent image still presents remnants of the original
Gaussian noise. In contrast, in the image space the im-
age present almost no signs of Gaussian noise after the
same number of training epochs are completed.

This behavior is expected as the prediction objective
of the UNet in the image space consists of predicting
a 64x64 one-channel ϵ matrix. On the other hand, the
prediction objective in the latent spaces is a 54x54 four-
channel ϵ matrix, 4 times bigger representation, which
represents a more challenging objective to train.

4.1.3. Unconditional pretrained models
We solved the issue of denoising the mammograms

latent representation using a pretrained unconditional
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(a) Training evolution of the diffusion process on an unconditional pretrained model at epoch 1, 3, 6 and 10.

(b) Training evolution of the diffusion process on a conditional pretrained model trained with Hologic images at epoch 1, 3, 6 and 10. The prompt is: ”a mammogram
in MLO view with small area”.

(c) Training evolution of the diffusion process on a conditional pretrained model trained with Siemens images at epoch 1, 3, 6 and 10. The prompt is: ”a mammogram
in CC view with high density”.

(d) Training evolution of the diffusion process on a conditional pretrained model trained with both Siemens and Hologic images at epoch 1, 3, 7 and 40. The prompt
is: ”a siemens mammogram in MLO view with high density and small area”.

Figure 15: Training evolution for several diffusion processes.

latent diffusion model and fine-tuning it. Figure 15a
shows the evolution of the diffusion process as the train-
ing steps progress. It can be seen that from the first

epoch the generated image has essentially no signs of
residual Gaussian noise, although the synthetic image
does not resemble a mammogram. This implies that
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the pretrained model has already learned how to denoise
images and that the new task is to learn a new concept
(a mammogram) and find its representation in the data
distribution of the model.

We can also notice that in only 3 epochs the model
has already learned the fundamental characteristics of
a mammogram and can generate realistic images. In
the following epochs the model focuses on improving
smaller details on the image, like the edges of the breast
and the details of the breast parenchyma.

4.2. Fine-tuning conditional models: DreamBooth
The training of the conditional model using prompt

text can be shown in figure 15b for the Hologic dataset
and 15c for the Siemens dataset.

First, we observe that the conditional model, besides
learning the anatomical structure and form of a mam-
mogram, pushes the generated image in the direction
of the text prompt semantics as the training process in-
creases. In the case of the Hologic training, in figure
15b we can see that the mammogram reduces its shape
in accordance to the area described in the prompt text.

In the case of the Siemens example in figure 15c, the
image view starts in a tiled position similar to MLO but
it is slowly corrected to match with the prompt descrip-
tion, that is a CC view. Similarly, the apparent breast
density is kept high, in accordance to the input prompt.

Therefore we can acknowledge that a conditional
model, thanks to the combined training of the CLIP text
encoder and the UNet, learns to modify the generated
image to better match the generated pair image-prompt
similarly to how they are paired in the training set.

4.3. Fusion MAM-E: combined datasets
The combination of both datasets allowed us to train a

model we called Fusion MAM-E. Besides allowing us
to also select the vendor type of the generated mammo-
gram, this model allowed us to extrapolate the charac-
teristics of one dataset to the other. This means that, e.g.
the breast density of the Hologic mammograms could be
controlled, even though this information was not avail-
able in the Hologic dataset.

Figure 15d show some training samples generated at
different epochs. During the first epoch, the model gen-
erates a synthetic images with in the correct view but
with large breast area and low breast density. We ob-
serve how, as the training process advances, the breast
area shrinks and the breast density augments, in accor-
dance with the prompt. Also, the image intensities and
overall texture starts to be more similar to a Siemens
mammogram.

It is also valuable to remark the gray background
present during the first training epochs of the fusion
model. The complete removal of this feature, shifting it
into a black background, required 40 training epochs, a
considerable difference with the other conditional mod-
els. This is expected as the fusion model incorporates

more semantic concepts to the CLIP text encoder that
have to be learned, as well as a larger image dataset.

4.4. Quantitative assessment

All synthetic examples above, even though logged
during training time, naturally involves a inference
pipeline. As explained in section 3.4.2 there are two
main HP that have to be tuned during inference.

First, the denosing steps T must be set. In our case,
because we used the DPM-solver of Lu et al. (2022)
we only needed, in general, 24 timesteps for denoising.
This usually means an average time of 2 seconds for
the denoising of one sample. In some cases, due to the
increase of the guidance scale, the number of T steps
must be increased to completely remove the noise. The
longest generation samples that we run used T = 50,
needing maximum 4 seconds to denoise.

Figure 16: Guidance effect on the generation output. From
upper-left to lower-bottom the guidance varies in a range from
1 to 4. Prompt: ”A siemens mammogram in MLO view with
small area and very high density”.

The guidance scale, on the other hand, played a more
crucial role in the quality and diversity of the generated
images. Figure 16 shows the effect of the guidance scale
on the image generation.

First, we observe that a guidance scale of 1 does not
suffice for a meaningful generation. This is a com-
mon behavior for stable diffusion pipelines, as the im-
age must be pushed further in the prompt direction (fig-
ure 9). It can be seen that the increase in the guidance
value not only generates a more meaningful image, but
also adjusts the characteristics of the mammogram to
better match the text prompt. For example, at guidance
2, the mammogram still presents low breast density. In

17.15



MAM-E: Mammographic synthetic image generation with diffusion models 16

the following 3 and 4 guidance values the breast density
increases, as well as the overall quality of the image.

Nevertheless, there exists a trade-off between prompt
fidelity and generation diversity. If the guidance scale is
high, the generated images may all look similar, creat-
ing some kind of ”mode collapse” for DM.

To quantitatively assess this phenomenon, we com-
puted the MS-SSIM metric for different guidance scale
values. The mean and standard deviation of the MS-
SSIM value among 20 images of the same prompt and
guidance value were computed and are shown in table
3. The experiment was repeated for the two vendors and
the fusion model. The prompt was randomly selected
for each model.

Table 3: Guidance scale effect on the MS-SSIM of the three SD mod-
els. The lower the MS-SSIM the higher the image diversity.

Hologic Siemens Fusion
Guidance Mean↓ STD Mean↓ STD Mean↓ STD

4 0.29 0.16 0.38 0.19 0.37 0.14
5 0.34 0.16 0.36 0.17 0.44 0.16
6 0.38 0.12 0.41 0.17 0.51 0.15
7 0.38 0.1 0.34 0.17 0.49 0.19
8 0.43 0.11 0.42 0.2 0.53 0.14
9 0.42 0.13 0.43 0.16 0.44 0.17

10 0.49 0.12 0.41 0.13 0.6 0.11
11 0.5 0.12 0.47 0.17 0.51 0.14
12 0.52 0.11 0.46 0.16 0.47 0.12
13 0.48 0.1 0.42 0.16 0.51 0.17
14 0.5 0.11 0.4 0.18 0.47 0.14

From these results, it can be seen that, overall, the
higher the guidance value the lower the generation di-
versity, as the MS-SSIM value decreases. This suggests
that the value of the guidance scale must be carefully
selected as a very low value will generate low quality
images but with high diversity. Conversely, a high guid-
ance value (above 6) will generate a mammogram more
faithful to the prompt description but with low diversity.

Also, we attest that the optimum guidance scale will
depend on the model, so empirical experiments using
the MS-SSIM metric are encouraged.

4.5. Qualitative visual assessment
A more formal visual assessment was performed with

the radiological evaluation of 53 synthetic image by a
radiologists. The results of the test are summarized as
a ROC curve in figure 17. The shape of the ROC curve
bears resemblance to the random guess curve, suggest-
ing that the radiologists cannot easily identify the dif-
ference between real and synthetic images. Moreover,
the AUROC value obtained by the radiologist for this
synthetic classification task was 0.49.

4.6. Quantitative CAD assessment
The heatmaps of six Explainability AI methods, com-

puted by Sam et al., were obtained for a healthy mam-
mogram with an inpainted synthetic lesion. All six

Figure 17: ROC curve of radiological assessment.

methods can be found in Sam-Millan’s thesis report.
here we present only three methods: gradcam, saliency
and occlusion, with their respective heatmaps in figure
18.

(a) Inpainted synthetic lesion. (b) Gradcam heatmap.

(c) Saliency heatmap. (d) Occlusion heatmap.

Figure 18: Explainability AI methods heatmaps of synthetic
lesion over real healthy mammogram.

All three maps show that the classification method
used by Sam et al. focuses on the synthetic lesion to
make the prediction. This means that this CAD system
is sensible to the presence of the lesion, which suggests
that it may contain a pixel distribution similar to those
present in real images.

4.7. MAM-E Graphical user interfaces
We decided to build GUIs to make the pipelines of

both tasks available and easy to use to the public. Our
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Figure 19: MAM-E for lesion drawing.

GUIs can run in remote servers and be accessible on
the web thanks to the GradIO, an open-source Python
package for rapid generation of visual interface of ML
models, by Abid et al. (2019).

We developed five GUIs, one for each of our main
diffusion pipelines. Two were designed for the con-
ditional generation of mammograms of the original
Siemens and Hologic datasets separately, with their own
prompt characteristics. Similarly, one pipeline was cre-
ated for the fusion of both datasets and it is presented as
example in figure 1. In these three cases, the personal-
ization options are set fixed and the user can only pick
from the available options. Nevertheless, we added the
option of a negative prompt, which allows the user to
further personalize the generation.

The idea of the negative prompt is to specify some
features that would like to avoid. For instance, in the
cases when a synthetic image presents a gray or white
background, a negative prompt of ”white background”
or ”no black background” has shown to make the back-
gorund black.

In the case of the inpainting task, the GUIs has the op-
tion to upload the image that will be inpainted, although
a default image is available. An interactive drawing
brush is then activated, with which a lesion can be in-
painted in any part of the mammogram, as shown in fig-
ure 19.

Given that the pretrained weights are available in the
Hugigng Face personal repository of the first author,
and that the code to run the GUI interface is publicly

available in the GitHub repository of the same author-
ship, all five GUIs can be run with graphic cards of
around 4 GB of GPU memory capacity.

5. Discussion and conclusions

We can encompass the results of this master thesis
in three main blocks. The first block consists on ex-
ploring the implementation of diffusion models for dig-
ital mammography synthesis. The results of the vanilla
and pure latent diffusion pipelines show that DM can
be adapted for synthetic mammography generation, and
that the data distribution of such images can be learned
from scratch, although it would require a large dataset
and long training time. Indeed, it follows that even
though training a DM with one-channel 64x64 images
is possible, training a similar model but with four-
channels 64x64 latent representations requires more im-
ages, GPU resources and time.

Secondly, we found that fine-tuning a SD model pre-
trained on natural images with mammographic images
is feasible and that the objective of the training process
reduces to shift the learned data distribution from a non-
medical one into the correspondent to our mammogra-
phy datasets, individually for each mammography unit
vendor or combined. This means that we can profit from
the essential diffusion properties learned by pretrained
natural models which, after trained with huge datasets
and for long periods of time, have mastered to denoise
images well.
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Moreover, we found that stable diffusion text condi-
tioning is a suitable generative model implementation
to synthesize mammograms with specific characteris-
tics and properties, giving the possibility to control sev-
eral aspects of it, such as vendor, view, breast density
and breast area. Stable diffusion also opened the pos-
sibility of extrapolating characteristics of one dataset
into another, thanks to the control given by the CLIP
text encoder through attention layers in the UNet, and
at inference time by applying classifier-free guidance.
We also found that SD can be modified for inpainting
of synthetic lesions over healthy mammograms. The
developed pipeline essentially only requires the modi-
fication of the input latent representation to include a
mask to focus the generation process only in that region.
All these models inference pipelines were made acces-
sible and ready-to-use through GU interfaces, and the
weights and code was made available through personal
repositories.

Thirdly, we found initial evidence that the synthetic
images coming from our implementation of SD could
potentially be used for CAD systems in need of spe-
cific image characteristics or with the presence of le-
sions. A radiological assessment showed that the initial
image quality can be compared with real mammograms
and the use of explainability AI models helped to ex-
plore the behavior of a classification model when tested
with our synthetic images with the help of heatmaps.

5.1. Limitations

The first clear limitation of this work is the resolu-
tion and pixel depth of the synthetic mammograms. Al-
though at the moment of publication of this work there
are some improvements on the SD model for using pre-
trained weights for 768x768 resolution images, we de-
cided to develop a pipeline first on 512x512 images.
This limited resolution reduces the use of our synthetic
images on CAD system that require higher resolution,
such as micro-calcification detection. The pixel depth
was also reduced from its original 16 bits to 8 bits to
match the pretrained model requirements. This reduc-
tion losses some information in the images and reduces
the overall contrast.

Despite the extensive visual assessments perform on
the synthetic images, quantitative assessments remained
limited in this work. Even though widely used fidelity
and diversity metrics, such as the FID score, are being
discouraged due apparent model bias, they can still be
helpful during training to complement the training per-
formance monitoring. This way, e.g. the model can be
stopped or the learning rate can be modified if the gen-
eration diversity decreases.

Furthermore, even though some of the SD hyperpa-
rameters, such as learning rate and batch size, were
changed to explore their effect on the training perfor-
mance, this work did not prioritized HP tuning and lim-

ited itself to HP used in other medical and non-medical
DreamBooth implementations.

An important limitation of this work is the lack of
deep exploration of the effect of our synthetic images
on CAD systems. Even though the assessment of EAI
models can give some insights, it is required to train
complete CAD pipelines with and without synthetic im-
ages to analyze performance changes.

5.2. Future work

Acknowledging the limitations cited above, we plan
to explore the use of quantitative metrics during training
time, as well as an extensive and organized grid search
of the optimal HP for our tasks.

After the release of the pretrained weights for
768x768 resolution images, we expect to perform mini-
mal changes in our current pipeline to allow higher res-
olution mammography generation.

Additionally, even though the task 1 and task 2
pipelines can be combined manually by directly loading
the synthetic or real images into the MAM-E drawing
tool, we plan to combine this pipeline to fully automa-
tize the generation process in one single GUI.

To assess the training performance of a CAD sys-
tem using synthetic mammograms, we have started talks
with the authors of another ViCOROB lab thesis defen-
dant (Mekonnen et al.) to train a Fast RCNN architec-
ture for lesion detection and bounding box prediction.
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José Estépar, R., Schmidt-Richberg, A., Veiga, C. (Eds.), Image
Analysis for Moving Organ, Breast, and Thoracic Images. Springer
International Publishing, Cham. volume 11040, pp. 98–106. Series
Title: Lecture Notes in Computer Science.

17.19



17.20



Medical Imaging and Applications

Master Thesis, June 2023

Domain specific data augmentation and deep learning architectures for automatic
segmentation of the myocardium in delayed enhancement MRI

Gonzalo Esteban Mosquera Rojas, Alain Lalande, Sarah Leclerc

Medical Image Processing team, Institute of Molecular Chemistry of the University of Burgundy (ICMUB), UMR CNRS 6302
University of Burgundy, Dijon, France

Abstract

Delayed Enhancement (DE) cardiovascular MRI is an imaging technique that is acquired some minutes after the
injection of a contrast agent. Automatic segmentation on such images is a topic that has raised a lot of attention
in the medical imaging community, since it is strongly involved in myocardium viability assessment, which refers
to the amount of tissue that recovered its functionality after undergoing revascularization therapy due to a previous
event of myocardial infarction (MI). It has been previously found that automatic segmentation models struggle a
lot to segment the myocardium when they face cases of MI, since these areas usually showcase an irregular and
heterogeneous aspect in terms of shape and intensity, and can also partially obstruct the view of this structure. To
overcome this issue, we propose an image processing based data augmentation algorithm where we create synthetic
cases of myocardial infarction from healthy ones. The algorithm relies on prior information extracted from an external
dataset where MI cases are available, and is able to automatically generate new MI samples with varying size, type
and location. The method can be applied under two different scenarios: a fixed generation and an adaptive one. In
the first scenario, the training dataset is enlarged with any previously defined rate whereas in the second the algorithm
collects feedback during model training and perform the data augmentation exclusively on difficult cases. We evaluate
the impact of approaching the problem under two data scenarios, single modality and multi modality. In this latter,
information from kinetic (CINE) MRI, which is an image that is also acquired along DE in a typical cardiovascular
examination, is also exploited by the model, and the extracted features are fused at an intermediate step. The results
show that addressing the problem in a multi modal fashion and adding the data augmentation algorithm leads to a
more consistent segmentation of the myocardium in DE MRI, as the model is able to relate the MI areas with the
myocardium, thus increasing its overall robustness to pathology specific local pattern perturbations.

Keywords: Cardiac imaging, myocardial infarction, delayed enhancement MRI, image segmentation, data
augmentation

1. Introduction

According to the World’s Health Organization
(WHO), cardiovascular diseases (CVDs) are one of the
main causes of global mortality. In 2005, they ac-
counted for 17 out of 58 million worldwide deaths, from
which 7.6 million were due to coronary heart disease
(CHD) (Mendis et al., 2011).

Myocardial infarction (MI), also known as heart at-
tack, is one of the ways in which CHD can appear
(Mendis et al., 2011). This condition refers to the dam-
age or death of a certain portion of the heart muscle

(myocardium) due to an unexpected interruption or de-
crease of blood supply (ischemia), which is caused by
blocks in the coronary arteries. Although they can vary
widely among patients, the symptoms of MI typically
include chest pain that can spread up to other parts of
the body, as well as a general sensation of fatigue and
discomfort. Myocardial infarction can be divided in five
different groups depending on pathological, clinical and
prognostic factors (Thygesen et al., 2012).

MI of type 1, also known as spontaneous MI, is as-
sociated with atherosclerotic plaque rupture, generating
thrombus in one or several coronary arteries. This con-
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dition can be caused by the presence of Coronary Artery
Disease (CAD), but not necessarily. Type 2, or MI sec-
ondary to an ischemic imbalance, as it name suggests,
occurs due to a disparity between oxygen supply and de-
mand caused from underlying pathological conditions
different to CAD, e.g, hypertension, respiratory failure,
anemia, etc. MI of type 3 is considered responsible of
cardiac death. Typically, patients would present symp-
toms associated with myocardial ischemia, but they die
before any blood tests or analyses can be performed. MI
of type 4 is subdivided in two categories: 4a and 4b. The
first one is related to percutaneous coronary intervention
(PCI), while the second is liked to stent thrombosis. The
5th type of MI is related to coronary artery bypass graft-
ing (CABG) (Thygesen et al., 2012).

Nowadays, there are several strategies used in medi-
cal practice for MI diagnosis, namely, analysis of elec-
trocardiogram (ECG), tracking of the levels of biomark-
ers that could suggest potential myocardial tissue dam-
age or death, and medical imaging. This latter embod-
ies different techniques which include echocardiogra-
phy, scintigraphy, magnetic resonance imaging (MRI),
and computer tomography (CT) (Thygesen et al., 2012).

After the heart has suffered from an event of MI, it
is essential to evaluate the viability of the myocardium
(Lalande et al., 2020). According to Thomson et al.
(2004), one of the defacto definitions of viability is “re-
covery of contractile function following revasculariza-
tion”, being revascularization the name of a group of
procedures whose goal is to restore blood flow from
blocked arteries. In medical practice, there are two main
cardiac MRI techniques for evaluating the structure and
function of the heart, namely, kinetic (CINE) and DE
(Delayed Enhancement) MRI. The latter, as its name
suggests, is performed some minutes after the injection
of a contrast agent (Lalande et al., 2020). Due to its na-
ture, CINE MRI is more suitable for performing heart
motion and contraction analysis both locally and glob-
ally, whereas DE MRI provides useful insights to assess
myocardial tissue damage, since the contrast agent al-
lows these areas to be highlighted. These images are
typically acquired in a short axis view, which is one of
the standard imaging planes for cardiac MRI. In this
type of view, the imaging plane is positioned perpen-
dicular to the long axis of the heart, slicing through the
ventricles at various levels from base to apex, thus al-
lowing a thorough assessment of the heart structure.

The analysis of the MI extent implicitly requires the
segmentation of the myocardium in DE MRI, which
then involves the segmentation of the left ventricle cav-
ity. This is a topic that has raised a lot of attention in
the Medical Image Analysis community, since it can be
very challenging due to different factors such as arti-
facts and noise in the image, but most importantly due
to the varying contrast between normal and abnormal
myocardial tissue, since the MI appearance ranges from
being bright and well defined to being subtle and hetero-

geneous in some other cases. International challenges
such as EMIDEC in 2020 validate the current need of
having reliable and robust automatic methods to per-
form this task.

When assessing myocardial viability, both MRI
modalities can offer complementary information, result-
ing in a thorough evaluation of the state of the heart that
takes into account both its anatomical and functional as-
pects. In the work of Ouadah et al. (2022) they found it
useful to cross information from both modalities for the
segmentation of the myocardium in DE-MRI by using
an intermediate fusion scheme, and also determined that
the model struggled to segment cases in which myocar-
dial infarction was present.

The main objective of this work was to build a deep
learning based robust pipeline that could improve the
overall quality of the segmentation of the myocardium
in DE-MRI in order to make useful for clinical appli-
cation. The problem was addressed under the follow-
ing scheme: first, we propose and implement a data
augmentation algorithm in which synthetic myocardial
infarction samples are created on healthy myocardium
with the goal of providing the segmentation models with
diverse pathological data so that they can further learn
from patterns in these cases. Secondly, the algorithm is
applied under two scenarios: fixed and adaptive. In the
first one, the training set is enlarged at different rates and
then fed to the segmentation model. On the other hand,
the adaptive data augmentation, as it name suggests, dy-
namically gets feedback from the model during training
to identify the cases where it is struggling the most and
new synthetic data samples are created from these par-
ticular cases.

The work is validated on single modality and multi
modality settings, using a modified version of the tradi-
tional UNet architecture proposed by Ronneberger et al.
(2015), and an intermediate-fusion UNet architecture
investigated in the work of Ouadah et al. (2022), respec-
tively. These two architectures were defined as the base-
line models for the whole study. In the final part of the
work, some additional experiments were done using the
nnUNet framework, proposed by Isensee et al. (2021),
to perform the segmentation task. This was done with
the goal of evaluating the performance of the framework
itself, which has proven to be quite robust for medical
image segmentation, but also to extract some useful in-
sights to define future directions of work to further in-
crease the robustness of the pipeline for this particular
application.

2. State of the art

Semantic segmentation is typically defined as the
process of dividing an image in a group of regions that
correspond to objects of interest. In the cardiac imaging
field, these regions are associated to important anatomi-
cal structures such as the ventricles, myocardium, coro-
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nary arteries, etc. In order to differentiate such objects,
the segmentation process involves performing a thor-
ough analysis of the image in terms of shape, pixel in-
tensity and texture.

Image segmentation plays a key role in cardiology
since it allows doctors to do a much more in-detail as-
sessment of the heart function, e.g, measuring ventricu-
lar volume, ejection fraction, myocardial viability, wall
motion, etc. Therefore, it has been a topic of great inter-
est for researchers in the medical imaging domain, with
the goal of providing computer-based solutions that can
be robust and reliable for clinicians to use in daily prac-
tice.

The following subsections aim to present the litera-
ture revised in the development of this work in order to
understand the current state of the art of deep learning
based methods for the segmentation task within the field
of cardiac imaging.

2.1. CINE MRI segmentation
In the work of Petitjean and Dacher (2011), a com-

prehensive review of segmentation methods in short
axis cardiac MRI was presented. The revised models
were classified in two main categories, namely, meth-
ods based on none or weak priors, and methods based
on strong priors. The first group consisted on image and
pixel classification based methods, as well as deforma-
tion models. On the other hand, the second category
included shape prior based deformable models, active
shape and appearance models, and atlas based methods.
They conclude that, in general, the results for left ven-
tricle segmentation are satisfactory for mid ventricular
slices, and the improvement is rather constrained to fo-
cusing on the basal and apical ones.

Nonetheless, the problem of automatic segmentation
of cardiac structures in CINE MRI has also been a re-
search topic in the deep learning field. One of the
most well-known challenges in this regard is the Auto-
mated Cardiac Diagnosis Challenge (ACDC) proposed
by Bernard et al. (2018) within the framework of the
MICCAI conference 2017 edition. The dataset is com-
posed of sequences acquired from 150 patients, ob-
tained over 6 years with MRI scanners with 1.5T and
3.0T of magnetic strength. The dataset is evenly dis-
tributed in 5 classes, namely, patients with normal car-
diac anatomy and function (NOR), patients with a sys-
tolic heart failure with infarction (MINF), patients with
dilated cardiomyopathy (DCM), patients with hyper-
trophic cardiomiopathy (HCM) and patients with abnor-
mal right ventricle (ARV). Therefore, the competition
also aimed to address the problem of classification of
the examinations. From the total amount of samples,
100 and 50 are left for training and testing purposes, re-
spectively (Bernard et al., 2018).

From the results of the challenge, the work of Isensee
et al. (2018) consistently obtained the first place. For the
segmentation task, their strategy consisted on using an

ensemble of 2D and 3D models, which correspond to
modified versions of the traditional UNet architecture,
proposed by Ronneberger et al. (2015). They addressed
the problem of varying data resolution by resampling
the volumes according to each model as a preprocessing
step (Isensee et al., 2018). The 3D model was composed
by two paths, one for context aggregation and another
one for localization. Both are linked at different scales
with the goal of merging contextual features with local
ones. Models in both dimensions are completely equiv-
alent and just change the dimension-dependent opera-
tions accordingly (Isensee et al., 2018). They obtained
a mean Dice score of 0.967, 0.946, and 0.896 for the
left ventricular cavity, right ventricular cavity and my-
ocardium, respectively, in the end diastolic phase, and a
score of 0.928, 0.904 and 0.919 for the same respective
structures in the end systolic phase.

In the same competition, the work of Zotti et al.
(2018) ranked second. The main strength of their
pipeline lies on the segmentation architecture itself. The
model, which they call “GridNet” is an extension of
UNet. It consists of three columns and five rows. In
each row, features are extracted at different scales. The
scale from row n corresponds to a down sampled ver-
sion of scale n-1 by a factor of two. In the case of
the columns, these contain convolutional operations to
compute features at several resolution levels. However,
the last column is used for aggregating the previously
computed features in ascending resolution. The out-
put from the last column is then concatenated with a
shape prior model, which they generated by estimating
the probability of a 3D location to belong to any of the
classes of interest (Zotti et al., 2018). They obtained
a mean Dice score of 0.964, 0.934, and 0.886 for the
left ventricular cavity, right ventricular cavity and my-
ocardium, respectively, in the end diastolic phase, and a
score of 0.912, 0.885 and 0.919 for the same respective
structures in the end systolic phase.

In general, most of the teams that took part of the
challenge based their pipelines on the UNet architecture
in its 2D and 3D versions and proposed their own modi-
fications either in the pre-processing, postprocessing or
the architecture itself. However, a few teams used some
other approaches to tackle the problem. For instance,
in the work of Rohé et al. (2018) they propose the use
of a Stationary Velocity Field newtork (SVFNet), which
learns and predicts the deformation between pairs of im-
ages. Their approach consists on aligning all images to
a common position, then registering template images to
their corresponding target through the SVF Net, and fi-
nally propagating the labels and fuse them to get the
final prediction. The method of Wolterink et al. (2018)
is based on a CNN that uses dilated convolutions. Fi-
nally, the work of Tziritas and Grinias (2017) tackled
the segmentation problem with an opimized version of
Markov Random Fields (MRF).
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2.2. DE MRI segmentation addressed as a single
modality approach

Although CINE and DE MRI share some intrinsic
characteristics, segmentation on this latter is quite chal-
lenging due to the fact that it might have lower spa-
tial resolution and scar regions (which are within the
myocardium) usually showcase an irregular and hetero-
geneous aspect in terms of shape, intensity and size.
These limitations have made DE MRI segmentation a
process that requires manual intervention by trained ex-
perts, which is both time consuming and subject to inter
and intra observer variability. Therefore, this topic has
raised a lot of attention in the deep learning community,
with the main goal of building automatic methods that
can perform this task in a robust and accurate fashion.

One of the most popular challenges for DE-MRI
segmentation is EMIDEC, proposed by Lalande et al.
(2020) within the MICCAI conference in its 2020 edi-
tion. The dataset is composed of 150 DE-MRI exam-
inations in short axis orientation with its correspond-
ing ground truth and a text file with clinical information
from each patient. From the total amount of available
exams, one third of them correspond to normal cases
and two thirds to patients with acute MI. The challenge
involved both segmentation and classification tasks. For
the first one, the main goal was to delineate the my-
ocardium, infarction tissue and permanent microvascu-
lar obstruction area (PMO).

From the results of the challenge, which were re-
ported by Lalande et al. (2022), the work of Zhang
(2021) consistently ranked in the first place for the seg-
mentation task in all the structures of interest. Their
pipeline consists on a cascaded CNN which is divided
in two parts. In the first one, they unroll the volume
to their corresponding slices and feed it to a 2D UNet
in order to obtain what they call a “coarse segmenta-
tion”, which has been learned from intra slice informa-
tion (Zhang, 2021). In the second stage, the original in-
put is concatenated with the coarse segmentation results
and they are then fed to a 3D UNet. With this strategy,
they make sure that the segmentation results are more
robust and accurate since the whole pipeline is also be-
ing able to learn inter-slice variability and spatial con-
text from the original volumes. They obtained a Dice
score of 0.879, 0.712, and 0.785 for the myocardium,
infarction area and PMO, respectively. The implemen-
tation of this method was based on the nnUNet frame-
work, proposed by Isensee et al. (2021). In summary,
this is a deep learning segmentation method that is able
to configure itself in all the stages that involve solving
this task, namely, preprocessing, network architecture,
training procedure and postprocessing (Isensee et al.,
2021). In terms of the segmentation architecture, it of-
fers the 2D and 3D versions of the UNet. For the lat-
ter, a low and full resolution are available depending on
dataset findings, and also a cascaded version in which
a first 3D network learns from downsampled data, and

then the predictions are upsambled back to the original
resolution and concatenated (in one-hot encoding form)
with the original data (Isensee et al., 2021).

Within the framework of EMIDEC challenge, the
work of Yang and Wang (2021) was also revised. It
consists on a hybrid version of the UNet architecture in
which they replace the encoder and the decoder parts
for an squeeze and excitation residual (SE-REs) module
and a selective kernel (SK) block, respectively. The first
module allows the model to learn from existing relation-
ships between feature channels and focus the training
on those who are the most informative, whereas the sec-
ond block dynamically changes the receptive field size
to capture feature information at multiple scales. Since
their segmentation network is 2D, they extract inter slice
features by creating an image where the three neighbor-
ing slices from a given slice are stacked and fed into the
model. They obtained a Dice score of 0.855, 0.628 and
0.610 for the myocardium, infarction area and PMO, re-
spectively.

2.3. DE-MRI segmentation addressed as a multi-
modality approach

In a typical MRI exam, both CINE and DE proto-
cols are acquired. Therefore, when doctors need to ana-
lyze DE MRI, they usually extract some supporting in-
formation from its paired CINE image, where anatom-
ical structures, such as the myocardium, are more visi-
ble(Dikici et al., 2004). It is thus natural to think that,
in accordance to medical practice, leveraging from the
information of CINE MRI might have a positive impact
when building automatic segmentation pipelines on DE
MRI.

In the work of Dikici et al. (2004), whose goal was
to perform a quantification of non-viable tissue in DE
MRI, they perform an automatic segmentation on the
corresponding CINE MRI and use it as a segmentation
prior that is iteratively deformed to maximize the over-
lap with the correct segmentation on DE MRI. This fit-
ting is done through an affine registration procedure that
includes translation, shearing and scaling operations.
Finally, they perform the myocardial pixels classifica-
tion (viable vs non-viable) using an SVM classifier.

The method proposed by Ciofolo et al. (2008) con-
sists on three main stages. In the first one, a geometrical
template is initialized for each of the DE MRI slices and
then deformed to match a previously defined model for
the myocardium contour. Then, a 3D mesh is built from
the myocardium contours of CINE MRI. They propose
the use of a 3D mesh since it allows to represent both the
myocardium geometry and thickness. In the final step,
the mesh is registered to the 2D space of the contours
found in the first stage.

Even though are image processing based solutions,
there are also a few that used deep learning. For in-
stance, in the EMIDEC challenge, the segmentation
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pipeline of Huellebrand et al. (2021) proposed three dif-
ferent CNN-based models. One of them was merely
trained on the challenge data, the other one was pre-
viously trained on an external dataset of 100 DE-MRI
examinations and the third, which achieved the best re-
sults, is based on a hybrid mixture model and uses both
the additional and challenge data for training. In all the
experiments they conducted, the common factor was the
use of transfer learning, as they used as baseline a pre-
trained CNN for the segmentation of CINE-MRI on the
ACDC challenge, and it proved to have a positive im-
pact on the final segmentation results.

In the work of Ouadah et al. (2022), the task of
DE MRI segmentation was addressed by the concept
of data fusion between CINE and DE MRI. Their goal
was to evaluate whether adding information from CINE
was beneficial for the segmentation on DE, and if so,
which data fusion approach performed best. The an-
alyzed strategies included input, output, layers, inter-
mediate and self supervised module adaptation fusion.
Their results showed that leveraging from a clearer spa-
tial and boundaries information in CINE had a positive
effect on the structures segmentation on DE, and also
the UNet with an intermediate fusion scheme (which
they called “DualUNet”) showed to perform best. This
fusion scheme was inspired by the work of Xue et al.
(2020), where T1 and T1 flipped brain scan images were
fused, before the decoding path, for stroke lesion seg-
mentation.

2.4. Data augmentation strategies in cardiac MRI seg-
mentation

Although deep learning based segmentation methods
have shown promising results in a variety of different
applications, they do need big amounts of data in order
to generalize well. This is quite problematic in the field
of medical imaging, since the amount of available data
is generally limited, and the annotation task is complex
and costly.

Data augmentation emerged as a technique to solve
the above mentioned problem. As it name suggests,
it involves generating new data samples by applying
several transformations on the existing one. Some of
the most common transformations reported in the liter-
ature include rotations, translations, scaling and defor-
mations. Additionally, there is a group of deep learn-
ing methods, commonly known as generative models,
which can automatically create synthetic images, and
thus have also been used as data augmentation tools.

There have been some previous works where data
augmentation has been used for the task of segmentation
in cardiac MRI. For instance, Chen et al. (2022) pro-
posed an adversarial data augmentation pipeline. Gen-
erally speaking, this concept refers to the process of ap-
plying a set of different perturbations on the original im-
ages to try to fool the model. In a posterior step, these

augmented data samples are used during training to al-
low the model to learn from a more varied version of the
data and make it robust to perturbations. Their method
can dynamically optimize all the transformation param-
eters and thus produce result that are realistic and plau-
sible in typical medical imaging setups.

Lin et al. (2020) proposed a shape-based data aug-
mentation algorithm where they learn different repre-
sentations of the left ventricle and capture structural
relationships between shapes. In summary, given a
dataset of images with their corresponding left ventri-
cle contours, one image is selected as reference and the
contours of the rest are deformed to match the refer-
ence one. The transformation parameters are stored and
taken as shape features. In posterior steps, new shapes
are generated from an orthonormal feature basis that is
computed based on eigenvector analysis on the correla-
tion matrix of shape features (Lin et al., 2020).

Finally, Skandarani et al. (2020) proposed the use
of Variational Autoencoders and Generative Adversar-
ial Networks (GANs), originally proposed by Good-
fellow et al. (2020), for generating realistic synthetic
MRI. Their results show that training Convolutional
Neural Networks with the data generated by their model
achieved competitive performance with respect to other
traditional techniques.

3. Material and methods

3.1. Datasets
3.1.1. CINEDE dataset

CINEDE was the main dataset source of this work,
i.e., where the segmentation models were built upon.
It consists of CINE and DE MRI examinations of 124
patients, as shown in figure 1. The exams were ac-

Figure 1: CINE and DE MRI slices corresponding to the same patient.

quired in the University Hospital of Dijon, France, us-
ing 1.5T and 3T magnets (Siemens Medical Solution,
Erlangen, Germany), with a phased toracic coil. DE-
MRI was acquired 10 minutes after the injection of a
gadolinium-based contrast agent at a concentration of
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0.1 or 0.2 mmol/kg. The final volumes are generated
in NIFTI format, and represent a short axis view of the
left ventricle, covering basal, middle and apical slices,
and with a number of slices per volume that varies be-
tween 7 and 12, with a total of 984 2D slices. The
median voxel spacing in x,y, and z axes for the CINE
and DE modalities are [1.36719, 1.36719, 10]mm3 and
[1.875, 1.875, 10]mm3, respectively. All images have
their corresponding manual annotations (ground truth)
with two labels: left ventricle cavity and myocardium,
and were acquired with a short axis view of the heart.

The dataset in itself is quite challenging since it rep-
resents cases from five different contitions:

• Dilated cardiomyopathy (CMD), associated with
an enlargement and weakening of the ventricles.

• Normal MRI exams (NOR)

• Myocarditis (MYO), which refers to the inflama-
tion of the myocardium.

• Other pathologies (OTH), associated with rare dis-
eases with low presence in the dataset.

• Myocardial infarction (VIA), referring to the death
of a certain portion of the myocardium tissue.

• Hyperthrophic cardiomiopathy (CMH), associated
with an abnomal high thickness of the my-
ocardium.

This diversity in the dataset translates to large set of dis-
tinct features that the model must learn as they might
have impact on how the anatomical structures appear,
thus increasing the difficulty of the segmentation task.
Moreover, as figure 2 depicts, the samples distribution
among different classes is uneven.
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Figure 2: CINEDE dataset class distribution.

3.1.2. EMIDEC dataset
EMIDEC is an auxiliary dataset that was used for

the extraction of prior information that is fed into our
data augmentation algorithm, proposed by Lalande et al.
(2020) within the framework of the automatic evalua-
tion of myocardial infarction from DE MRI challenge.
It consists of 150 DE MRI examinations with a text
file that contains clinical information from the patient,
and the corresponding ground truth image that maps
four labels: left ventricle cavity, myocardium, myocar-
dial infarction and persistent microvascular obstruction
(MVO) area. The acquistion protocols were similar to
those from CINEDE. The data samples distribution be-
tween normal and pathological cases is one third and
two thirds, respectively. All abnormal cases correspond
to patients with acute myocardial infarction. The pixel
spacing of the examinations ranges from 1.25 x 1.25
mm2 to 2x2 mm2, the slices have a thickness of 8 mm
and the distance between slices is 10 mm(Lalande et al.,
2020).

3.2. Method

Figure 3 presents a summary of the steps that were
performed to approach the target problem, which are
described in the following sections.

3.2.1. Data preprocessing
Generally speaking, data preprocessing plays a cru-

cial role when training deep learning models, since they
require data to be as clean as possible for an effec-
tive learning process. For this particular problem, the
preprocessed consisted of several stages. First, images
were normalized within the rage of 0-255. Afterwards,
the labels of raw images were converted to integer val-
ues, since they were initially reported as floating num-
bers. In third place, the orientation of all images was
fixed to left posterior inferior (LPI). As a fourth step, the
size of both images in a given pair were made equal by
zero-padding the smaller one. Afterwards, the spatial
correspondence between the two modalities was uni-
formed with the goal of having consistent contextual
information across modalities. This was achieved by
resizing all images to match the median voxel spacing
of DE MRI, as it is the target modality in this study. As
a final step, CINE MRI was registered to DE MRI to
make them suitable for fusion based deep learning ar-
chitectures under the multi modality setting.

3.2.2. Segmentation architectures
The problem was addressed under two different sce-

narios: single and multi modality. As their name sug-
gest, in the first one only the information from the tar-
get modality (DE-MRI) was taken into account, while in
the second one CINE-MRI was also considered, so the
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Figure 3: General workflow summary.

data becomes of paired nature. For the single modal-
ity approach, the UNet architecture, proposed by Ron-
neberger et al. (2015), was used. Batch normalization
layers were added in the building blocks of the network.

For the multi-modality approach, the “DualUNet”
architecture, which was investigated in the work of
Ouadah et al. (2022), was used. This architecture con-
sists on a modified version of the original UNet but it
allows to do data fusion between the CINE and DE MRI
at an intermediate step. As the figure 4 shows, one inde-
pendent UNet like encoder path is used for each modal-
ity in order to extract separate distinct features. The out-
put of the convolution blocks at level i are combined
through a fusion block in which several operations take
place, as depicted in figure 5. First, both feature maps
are stacked, then fusion features are calculated through
a 3D convolutional layer, and the result is taken back to
the original feature map dimension via squeeze opera-
tion.

For the final additional experiments, the segmentation
task was also tackled using a customized version of the
nnUNet framework from Isensee et al. (2021) in both
single modality and multi modality settings.

3.2.3. Extraction of prior information from EMIDEC
dataset

Ouadah et al. (2022) found that segmentation mod-
els tend to have the worst performance in cases where
myocardial infarction is present. Hence, in this work
we propose a data augmentation algorithm in which
synthetic infarction cases are generated from images of
healthy patients. Afterwards, these newly created im-
ages are added to the training set and are fed to the
segmentation models, with the goal of guiding them to-
wards a better learning of this anatomical structure.

The algorithm feeds itself from some prior informa-
tion in terms of type, location, area and intensity in order
to generate cases that are as much realistic as possible.
These priors are extracted from the pathological cases of
EMIDEC dataset, which, as mentioned in section 3.1.2,
completely correspond to MI cases. The steps for eval-
uating the priors were the following:

Type: In an algorithmic point of view, the myocardial
infarction was constrained to have two types: it either
crosses the whole myocardium (transmural MI, called
TMI hereinafter) or not (non-transmural MI, called

NTMI hereinafter). Figure 6 shows an example of the
masks for these two types of MI.

Figure 6: Examples of transmural and non transmural MI. Dark gray:
left ventricle cavity, light gray: myocardium, white: myocardial in-
farction.

Location: To understand the typical location of MI
on real world data cases, all images from EMIDEC
dataset were divided in four equal parts or “quadrants”,
being quadrant 1,2,3 and 4 the ones in the top left,
top right, bottom left and bottom right location, respec-
tively. In order to do a thorough analysis in this regard,
a modified version of the “Bull’s Eye Plot” was con-
structed for the EMIDEC dataset. Generally, this is a
figure composed by four concentric circles that are di-
vided so as to represent the 17 segments of the heart pro-
posed by Cerqueira et al. (2002), and it is used to study
heart functioning features such as myocardial perfusion
and wall motion. Each portion of the graph is colored
following a heat map that is generated with all the per
segment values of the cardiac feature that is being ana-
lyzed.

The modified version of the Bull’s Eye plot is pre-
sented in figure 7. The yellow ring is a control structure
that represents the total amount of the population in the
dataset. The rest of rings represent, from the innermost
to the outermost, the basal, mid and apical slices of the
examination volumes, respectively. These are divided
in four parts, which correspond to the four quadrants
that were defined for the extraction of location priors.
This sums up to a total of 13 parts, as opposed to the
17 present in the traditional plot. The main goal with
modifying the graph was to do a more generic analysis

18.7



Domain specific data augmentation and deep learning architectures for automatic segmentation of the myocardium in
delayed enhancement MRI 8

Figure 4: DualUNet architecture.

Figure 5: Fusion block of DualUNet architecture.

at the slice level rather than at the segment level. The
color of each portion of the plot represents the amount
of patients within the EMIDEC dataset for which most
of the myocardial infarction was located at a given slice
view and quadrant. From the graph it can be seen that,
although there is a higher prevalence of the MI in the
first quadrant and mid and basal slices, the color varia-
tion is rather subtle, which means that the difference is
not big enough to robustly establish a location pattern
of the MI structure. Hence, based on this evidence, it
was decided to keep the location prior of the algorithm
as a random variable that can take values between 1 and
4 with equal probability.

Size: The size prior was defined in terms of which
percentage of the total amount of myocardium corre-
sponded to infarction tissue. The distribution of this
quantity over all patients is depicted in figure 8. It can
be seen that, for 50% of the patients, which is the inter
quartile range of the box plot, the MI tissue occupied
between 12% to 29% of the myocardium. However, for
setting the priors in the data augmentation algorithm,
most of the possible range of values were taken into ac-
count. As a result, the size prior for the MI was defined
as a portion of the total myocardium that ranges from
10% to 50%, with equal probability of selection.

Figure 7: Modified Bull’s Eye plot for EMIDEC dataset.
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Figure 8: Distribution of the percentage myocardium area affected by
MI in EMIDEC dataset.

Intensity: Once the myocardium mask is generated
using the above mentioned priors, the corresponding
perturbation must be done on the MRI to generate the
synthetic image that is to be used to enlarge the train-
ing set and provide the models with more samples of
MI. For each of the MRI examinations on CINEDE, the
intensity of the MI area was defined as the mean inten-
sity of the left ventricle cavity plus a prior knowledge
value. This value is sampled from a generated normal
distribution whose mean is the average of the differ-
ences between the maximum intensity value of the MI
(red contour on figure 9) minus the mean value of the
left ventricle cavity (blue contour on figure 9) across the
entire pathological cases on EMIDEC dataset, with the
goal of extracting contrast information between those
two anatomical structures. The selection of a normal
distribution is done to ensure a consistent MI shape in
terms of intensity, and the starting value is selected as
the mean intensity of the left ventricle since it was also
found that the MI is always brighter.

Figure 9: Example of pathological case on EMIDEC dataset (Lalande
et al., 2020). The red and blue contours correspond to the MI and left
ventricle cavity, respectively.

3.2.4. Data augmentation approach
Once the priors are defined, the data augmentation

algorithm consists of the following steps:
Initialization: Given the original image and its cor-

responding ground truth as inputs, the type and loca-
tion of MI are defined as a random number picked from
the range {1, 2} and {1, 2, 3, 4}, respectively. The size of
the MI corresponds to a percentage sampled randomly
from a uniform distribution within the range [0.1,0.5].
The algorithm then calculates the effective MI size as
a multiplication of the total myocardium pixels by the
percentage that was randomly sampled.

Extraction of contours: As a second step, the con-
tours for the left ventricle cavity and the myocardium
are extracted, as shown on image b from figure 10.

Division of contours in quadrants: Once the con-
tours have been extracted successfully, four binary im-
ages are generated, which contain the parts of both con-
tours that fall within the range of coordinates of the pre-
viously defined quadrants. As a final step, the binary
image where the MI is to be generated is kept, as de-
picted in image c from figure 10

Definition of boundary points: As a fourth step, one
random pair of coordinates from the left ventricle cavity
contour, located within the selected quadrant, is chosen
as the starting point (start CV) for generating the MI
shape. Afterwards, the algorithm selects the left ventri-
cle cavity end point (end CV) as the one whose distance
with start CV is the closest to the effective MI size. This
is a design simplification that was set since the size prior
is quite flexible and has a big range of possible values,
thus it was not a constraint to exactly match the total ex-
pected size, as the main objective is to generate different
shapes of MI for the segmentation models to learn from
them. The starting and end points of the myocardium
(start myo and end myo, respectively) correspond to the
closest points (measured in euclidean distance) to start
CV and end CV, respectively. The result from this step
is presented in image d from figure 10, where the white
arrows indicate the four boundary points.

MI contour generation (TMI): As a first step, all
the coordinate pairs falling between the start and ending
points of each structure (myocardium and left ventricle
cavity) are given the label 3 (corresponding to MI), and
the results are shown in image e from figure 10. In order
to close the contour, one line is traced between start LV
and start myo and another one between end LV and end
myo, as demonstrated by image f in figure 10. This is
done through Bresenham’s line algorithm, proposed by
Bresenham (1965), which is widely used in computer
graphics to draw lines between two points in a discrete
grid. In summary, the main idea of the algorithm is to
make decisions on whether to step horizontally or verti-
cally at each pixel in order to get the closest approxima-
tion to the ideal line. In algorithm 1 a pseudo code of
this method is presented for the case in which the line
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Figure 10: Step-by-step summary of the data augmentation algorithm for a case of MI type 1, a: original DE MRI, b: detection of contours,
c: selection of working quadrant, d: definition of boundary points, e: coloring of points within the boundaries range, f: contour closing with
Bresenham’s algorithm, g: contour filling, h: generation of MI in DE MRI.

goes from left to right and has a slope between 0 and 1.
It can be observed the decision variable D gets updated
in every iteration of the loop and its value allows the al-
gorithm to decide whether to increment the y variable
by one or leave it unchanged. At the end of each itera-
tion, the image is assigned the label of the MI to close
the contour. All the other line cases can be covered with
subtle modifications of this pseudo code.

MI contour generation (NTMI): Once the four
boundary points have been calculated, only start CV
and end CV are kept, and the points belonging to the
CV contour and falling between them are assigned label
3. Since this type of MI does not cross the entire my-
ocardium, the second pair of points are no longer part of
the myocardium contour. However, start myo and end
myo are used as a guide, and all the points of the line
that would be traced between them if it was a TMI are
stored in an array called candidate points.

For this type of MI the variable thickness is created.
This is defined as a percentage of the total myocardium
width, and is automatically sampled from a random dis-
tribution that ranges between [0.2,0.8]. This quantity is
then multiplied by the myocardium width to get the ef-
fective desired width of the MI to be created. Hence, the
end coordinate pairs in this case are those from candi-
date points whose distance is the closest to the desired
width.

Similarly to TMI, a line is traced between starting and
end points of both sides of the shape. However, since the

Algorithm 1 Bresenham’s line algorithm applied to
close MI contour

function Bresenham(image, x0, y0, x1, y1)
being (x0, y0) and (x1, y1) (start CV, end CV) or

(start myo, end myo)
∆x← x1 − x0
∆y← y1 − y0
D← 2∆y − ∆x
x← x0
y← y0
image(x, y)← 3 ▷ Assigns MI label to close

contour
while x < x1 do

if D < 0 then
D← D + 2∆y

else
y← y + 1
D← D + 2(∆y − ∆x)

end if
image(x, y)← 3 ▷ Assigns MI label to close

contour
end while

end function
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end points are no longer part of the myocardium contour
in this case, a connection between them must be gener-
ated. Due to the randomness of the algorithm, it cannot
be assured that the connection using a line will be plau-
sible at all times. Therefore, in order to close the con-
tour, Breadth First Search (BFS) algorithm is employed,
whose pseudo code is presented in algorithm 2. In sum-
mary, the method receives as input the graph of all pos-
sible vertices and the starting point. Then, a queue and
a set are created to process the explored nodes and keep
track of the visited ones, respectively. The queue is ini-
tialized with the starting point, and through the itera-
tions of the algorithm it gets filled with all the neigh-
bors of the current node that is being explored. When a
node is explored, it is popped out of the queue and the
next one to be explored is selected following the FIFO
(first in, first out) logic. The algorithm finishes when
all nodes have been explored (the queue is empty). This
FIFO logic ensures that vertices closer to the source ver-
tex are visited before vertices farther away. Therefore,
the algorithm is able to find the shortest path between
any two points of a given graph, and that is the reason
why it was selected for closing the contour of the NTMI.
An example of an intermediate generated path from the
BFS algorithm for NTMI is shown in figure 11

Figure 11: BFS generated path for closing contour of NTMI.

Creation of MI mask: Once the contour is closed, it
is filled and the final MI is generated, as shown in image
g from figure 10.

Generation of MI perturbation on the MRI: Fol-
lowing the rule described in the intensity priors section,
the MI is generated as the mean value of the left ven-
tricle cavity plus the prior knowledge value, which is
a sampled value from a generated normal distribution
whose mean is the average of the differences between
the maximum intensity value of the MI minus the mean
value of the left ventricle cavity across the entire patho-
logical cases on EMIDEC dataset. As a final step, some
blurring was applied with the goal of smoothing the in-
tensity variations in the borders of the myocardium. In
order to generate this effect, the blurring was applied on

Algorithm 2 BFS algorithm
function BFS(Graph, start)

Create an empty queue Q
Create a set to keep track of visited vertices
Enqueue the start vertex into Q
Add the start vertex to the visited set or array
while Q is not empty do

current vertex← dequeue from Q
for neighbor in neighbors list of

current vertex do
if neighbor is not visited then

Add neighbor to the set of visited
vertices
Enqueue neighbor into Q

end if
end for

end while
end function

the area delimited by a dilated mask (for one iteration)
of the myocardium using a 3x3 kernel. The final result
of the algorithm is depicted in image h from figure 10.

3.3. Experiments
The experimentation protocols for this work where

defined as follows:

• Single modality baseline, which corresponds to
training the modified UNet for the target task.

• Multi modality baseline, which corresponds to
training the DualUNet for the target task.

• Evaluation of the proposed data augmentation
algorithm, which refers to measuring the impact
of applying the data augmentation under two dif-
ferent scenarios: random and adaptive, which are
explained in detail in the next section.

• Further pushing the work towards a more ro-
bust pipeline: The last part of the work consisted
on using the nnUNet framework for the segmenta-
tion task in both single modality and multi modal-
ity (at input level) versions, since this framework
has proven to be quite robust for different segmen-
tation tasks regardless of the type of data used.
Therefore, these experiments were performed to
assess how such a framework behaves with our
target segmentation task, and extract some useful
insights on future directions of work to make the
overall pipeline more robust.

3.4. Training details
3.4.1. 5-Fold cross validation

All the experiments were done using 5 fold-cross val-
idation. Within each fold the data was split in the fol-
lowing way: 60% for training, 20% for validation and
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20% for testing. The splits were made in such a way
that the classes were equally distributed.

3.4.2. Application of the proposed augmentation algo-
rithm

Random augmentation: This strategy refers to ran-
domly enlarging the training dataset at different rates,
e.g, 50%, 100% and 200% and evaluating its impact on
the segmentation performance for both single modality
and multi modality approaches.

Adaptive augmentation: In this case, the augmenta-
tion was applied by getting feedback of the model train-
ing, e.g, monitoring the cases in which it struggled the
most. This criterion of “struggle” was defined as any
case for which the myocardium Dice score was less than
0.8. The main idea behind this strategy is summarized
in algorithm 3.

Algorithm 3 Adaptive data augmentation (ADA)
function ADA

di f f icult cases← []
for fold in range(5) do

Train model
Recover test set metrics in test metrics array
for DS C myo in test metrics do

di f f cases f old ← []
if DS C myo < 0.8 then

Append DS C myo to
di f f cases f old

end if
end for
Append di f f cases f old to di f f icult cases

end for
for fold in range(5) do

Augment di f f icult cases[ f old]
Train model

end for
end function

3.4.3. Auxiliary data augmentation techniques
On top of the proposed data augmentation algorithm,

some other typical transformations were randomly ap-
plied to the data, namely, horizontal and vertical flips,
rotations, random brightness contrast, random gamma
(change the image contrast by raising its intensity val-
ues to the gamma power), and Contrast Limited Adap-
tive Histogram Equalization (CLAHE) with clip limit
equal to 2 and grid size of (8,8).

3.4.4. Optimization
Throughout the experiments, an initial phase of hy-

perparameter tuning was always performed. The sweep
included the following parameters:

• Loss function, which was varied between Dice
Loss and Focal Dice Loss (a weighted average be-
tween the Focal and Dice loss).

• The selected optimizer was ADAM, proposed by
Kingma and Ba (2014), with a learning rate vary-
ing randomly between 10−1 and 10−5, and a weight
decay fixed at 10−5.

• Batch size, which varied between 4, 8 and 16.

• Early stopping, which was set with a patience of 20
epochs with a maximum number of 200 epochs.

The parameters for which the best results were consis-
tently obtained in the baseline architectures were the
following: Focal Dice Loss, ADAM optimizer with a
learning rate of 3−4, weight decay of 10−5 and a batch
size of 8. A step scheduler was fixed during all training
experiments, which decreased the learning rate every 5
epochs by a multiplicative factor of 0.95.

With regards to the nnUNet framework, the follow-
ing experiments were made: the number of epochs was
limited to 200, and the splits were redesigned according
to the k-fold strategy explained in section 3.4.1. The
loss function was also varied between Dice and Cross
Entropy loss and TopK Dice loss. The best results were
obtained with the first one.

3.4.5. Postprocessing
Once the segmentation masks were generated, the

postprocessing for all experiments consisted of two sim-
ple steps: extraction of the largest area component and
holes filling.

3.4.6. Implementation
The pipeline was implemented using Python 3.9.1,

PyTorch 2.0 and CUDA 11.8 in Linux OS. For manag-
ing NIFTI files, the library nibabel 5.1.0 was used. For
image processing tasks, the libraries OpenCV 4.7, Pil-
low 9.5.0 and scikit image 0.20.0 were used. The loss
functions used for training the architectures were pro-
vided by MONAI 1.1.0 library.

All the training experiments were performed using
NVIDIA Tesla V100 DGXS GPUs with 32 GB of RAM
memory, provided by mésocentre de calcul de Franche-
Comté, Besançon, France.

3.5. Metrics and statistic analysis of the results

3.5.1. Dice Score
The Dice score is one of the most commonly used

metrics for evaluating the performance of image seg-
mentation pipelines. It measures the overlap between
predicted segmentation mask (PR) and the ground truth
(GT). As presented in equation 1, the Dice score is
mathematically defined as 2 times the intersection of
both GT and PR (which refers to the effective overlap),
divided by the total amount of pixels in both predicted
mask and ground truth.

DS C =
2 ∗ |GT ∩ PR|
|GT | + |PR| (1)
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This quantity ranges from 0 (no match) to 1 (perfect
match). Some of its main advantages are that it is sensi-
tive to true positive matches, robust to class imbalance,
has an intuitive interpretation and it is differentiable,
which makes it suitable to be used as a training loss
function. Considering these benefits, the Dice score is
selected as the main evaluation metric for all the experi-
ments and astages of this work, which includes training
optimization and models comparison.

3.5.2. Hausdorff distance
The Hausdorff distance is also a common metric used

when evaluating image segmentation results. It typi-
cally quantifies the dissimilarity between two sets of
points or shapes (contours), by measuring the maximum
distance between any point in one set and its nearest
point in the other set. In the context of image segmen-
tation, this translates to assessing to which extent the
predicted mask deviates from the ground truth with re-
spect to shape and spatial arrangement. The smaller the
Hausdorff distance, the better the alignment between the
prediction and the ground truth.

Although this metric offers a different and useful per-
spective on the segmentation performance, the eval-
uation is focused at the contour level, its interpreta-
tion is less straightforward when the structures of in-
terest are delimited by two contours (as in the case in
the myocardium, which is bordered by epicardium and
endocardium). Therefore, it is used in this work as
an auxiliary local metric to provide a comprehensive
overview of the pipeline performance exclusively in the
final stage.

3.5.3. Statistical tests
For the segmentation results, the Dice scores are

reported with standard deviations, and, in the final
stage of methods comparison, the hausdorff distance
is also reported. Similarly, to evaluate the effective-
ness of applying our data augmentation algorithm to
improve the segmentation of the target structure (DE
myocardium), Wilcoxon signed-rank test, proposed by
Wilcoxon (1992) is used in the final experiments. This
method was selected since it allows to test the null hy-
pothesis that two dependent samples (before and after
the algorithm), which are not normally distributed (as in
this case), come from the same distribution. If rejected,
this means there is sufficient statistical evidence to con-
clude that the samples are different, and therefore that
the algorithm had a meaningful impact on the metrics.

4. Results

4.1. Single modality

As explained in section 3, the first set of experiments
were done under a single modality scenario i.e., only

using image information from DE MRI. The segmenta-
tion architecture was a traditional UNet, adding batch
normalization layers.

The first experiments consisted on evaluating the ef-
fect of our data augmentation algorithm in its fixed ver-
sion, i.e, performing the augmentation at fixed rates. Ta-
bles 1 and 2 present the mean validation and test Dice
score, respectively, with their corresponding standard
deviation. “DA - percentage %”, stands for data aug-
mentation applied at a given rate, e.g, “DA - 100 %”
means that for any given image, a synthetic one with
the presence of myocardial infarction was also created.

By doing an overview of both tables, it can be noted
that the generalization capability of the model is good,
since the Dice score is either maintained or has a slight
variation (either decrease or increase) between the val-
idation and test stages. It can also be noticed that the
data augmentation algorithm generates an increase in
the myocardium Dice score. In terms of the validation
set, it increases up to 100% DA, and then slightly de-
creases. In the case of the test set, the metric is di-
rectly proportional to the amount of data applied, i.e,
the higher the amount of data augmentation, the higher
the Dice score. It should be duly noted that, in the
validation set, the standard deviation of the metric con-
tinuously decreases when more data is available (up to
100%). In the case of the test set, the standard devia-
tion of the metric only decreases at 200% DA, which
also happens to be the scenario under which the model
performs the best, with a Dice score of 0.845 ± 0.052.
With regards to the left ventricle cavity, the Dice score
is higher in all cases where data augmentation was ap-
plied, with respect to the one where it was not. For
this case, the best performance was also encountered at
200% DA, with a Dice score of 0.943 ± 0.034.

When doing a case-by-case analysis, it was found that
most of the times the algorithm was able to notoriously
improve the segmentation on the structure of interest
(the myocardium), as shown by the signal areas of figure
12. However, the segmentation performance dropped
slightly in a few cases, as shown in the signaled areas of
figure 13.

The last experiment that was performed in a single
modality setting was applying adaptive data augmenta-
tion. The results for this procedure are presented in ta-
ble 3. It can be noted that for both validation and tests
sets, the segmentation performance of both structures
was improved when adding the data augmentation al-
gorithm, and the standard deviation also decreased, al-
though it was lower than the one obtained with data aug-
mentation at a rate of 200%.

4.2. Multi modality
The same group of experiments done in single modal-

ity were also performed under the multi modality ap-
proach, which consisted on using DualUNet as a seg-
mentation architecture, in which data from CINE and
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Table 1: Validation set mean Dice score and standard deviation for single modality approach at different fixed data augmentation (DA) rates.

Modality Structure UNet UNet - 50% DA UNet - 100% DA UNet - 200% DA

DE CV 0.933 ± 0.059 0.939 ± 0.040 0.939 ± 0.038 0.936 ± 0.074
MYO 0.826 ± 0.071 0.838 ± 0.056 0.844 ± 0.052 0.843 ± 0.055

Table 2: Test set mean Dice score and standard deviation for the single modality approach at different data augmentation (DA) rates.

Modality Structure UNet UNet - 50% DA UNet - 100% DA UNet - 200% DA

DE CV 0.936 ± 0.044 0.938 ± 0.041 0.938 ± 0.053 0.943 ± 0.034
MYO 0.834 ± 0.056 0.838 ± 0.065 0.844 ± 0.058 0.845 ± 0.052

Figure 12: Visual example of a higher segmentation performance for the single-modality model after applying data augmentation. From left to
right: ground truth, prediction of model without data augmentation, prediction of model with best data augmentation rate (200%). Left ventricle
cavity and myocardium are presented in blue and red, respectively.

Figure 13: Example of a lower segmentation performance for the single-modality model after applying data augmentation. From left to right:
ground truth, prediction of model without data augmentation, prediction of model with best data augmentation rate (200%). Left ventricle cavity
and myocardium are presented in blue and red, respectively.

Table 3: Training and validation Dice scores for single modality segmentation trained without and with adaptive data augmentation (ADA).

Set Modality Structure UNet UNet - ADA

Validation DE CV 0.933 ± 0.059 0.936 ± 0.051
MYO 0.826 ± 0.071 0.841 ± 0.053

Test DE CV 0.936 ± 0.044 0.940 ± 0.035
MYO 0.834 ± 0.056 0.843 ± 0.051

DE modalities are fused at an intermediate step and the
segmentation performance can be recovered for both,
although bigger emphasis will be done in the modality
of interest (DE MRI).

Table 4 and table 5 present the mean Dice score and

its corresponding standard deviation for the validation
and test sets, respectively. It can be noted that, similarly
to the single-modality approach, the model generaliza-
tion performance is good, as the segmentation metric
remains the same or has slight variations (increase or
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decrease) across all modalities and structures. Further-
more, it can be observed that, in terms of the segmen-
tation performance for DE MRI, the model consistently
gets higher Dice score and lower standard deviation as
the data augmentation rate also increases. However, it
reaches a plateau at 100%, after which the Dice score
decreases and the standard deviation increases. The best
performance in the test set is thus obtained when the
DualUNet is trained on a dataset with 100% data aug-
mentation, for which the Dice score is 0.856 ± 0.046.

Interestingly, it can be observed that, in the case of
CINE modality, there is also an increase in the segmen-
tation performance on the myocardium and the left ven-
tricle cavity when the augmentation rate is 100%.

Figure 14: Examples of higher segmentation performance for the
multi-modality model after applying data augmentation. From top
to bottom : ground truth, prediction of model without data augmenta-
tion, prediction of model with the best data augmentation rate (100%).
Left ventricle cavity and myocardium are presented in blue and red,
respectively.

Throughout a case specific analysis, it was found that,
in 89 out of 124 cases (71.77%), the Dice score was
higher after applying the data augmentation algorithm.
One example of this higher performance is presented
in figure 14. When focusing on the areas selected by
the arrows, it can be noted that the data augmentation
algorithm indeed makes the model learn from different
myocardial infarction shapes, thus making it capable of
delineating the myocardium contour much more thor-
oughly, covering areas corresponding to myocardial in-
farction that were missed before applying the algorithm.

In the cases in which the Dice was lower, the visual
difference was in general difficult to spot. Figure 15
presents examples of such cases, and it can be observed

Figure 15: Examples of lower segmentation performance for the
multi-modality model after applying data augmentation. From top to
bottom : ground truth, prediction of model without data augmentation,
prediction of model with the best data augmentation rate (100%).Left
ventricle cavity and myocardium are presented in blue and red, re-
spectively.

that in the area selected by the arrow, there is a slightly
worse segmentation of the myocardium as it becomes
thicker (taking some area that should have been delim-
ited as left ventricle cavity). A second experiment was
performed applying adaptive data augmentation based
on the received training feedback from the model, and
the results are reported in table 6. Once again, it can be
easily seen that, for all structures of DE MRI modality,
the Dice score is higher and the standard deviation is
lower for both validation and test sets compared to no
DA, but it is lower than the one obtained with the best
fixed rate data augmentation strategy (100%).

4.3. Single vs Multi modality
Based on the information presented on tables 2 and

5, it can be seen that the performance of the best
models for the myocardium segmentation under single
and multi modality approaches are 0.845 ± 0.052 and
0.856 ± 0.040, respectively. Under Wilcoxon test, the
null hypothesis that both results came from the same
distribution was rejected (pvalue < 10−5), thus imply-
ing that the metrics difference is statistically signifi-
cant and crossing information between CINE and DE
modalities had a positive impact on the segmentation
on DE myocardium. Figure 16 shows an example of
the visual performance under the two scenarios, and it
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Table 4: Validation set mean Dice score and standard deviation for multi modality approach at different data augmentation (DA) rates.

Modality Structure DualUNet DualUNet - 50% DA DualUNet - 100% DA DualUNet - 200% DA

CINE CV 0.948 ± 0.011 0.946 ± 0.012 0.947 ± 0.015 0.949 ± 0.012
MYO 0.841 ± 0.029 0.841 ± 0.029 0.849 ± 0.027 0.847 ± 0.029

DE CV 0.942 ± 0.028 0.942 ± 0.028 0.944 ± 0.029 0.945 ± 0.027
MYO 0.843 ± 0.045 0.848 ± 0.044 0.852 ± 0.045 0.853 ± 0.038

Table 5: Test set mean Dice score and standard deviation for multi modality approach at different augmentation (DA) rates.

Modality Structure DualUNet DualUNet - 50% DA DualUNet - 100% DA DualUNet - 200% DA

CINE CV 0.946 ± 0.021 0.947 ± 0.012 0.948 ± 0.013 0.947 ± 0.012
MYO 0.837 ± 0.037 0.841 ± 0.033 0.848 ± 0.031 0.846 ± 0.028

DE CV 0.942 ± 0.032 0.942 ± 0.027 0.945 ± 0.028 0.945 ± 0.027
MYO 0.845 ± 0.044 0.847 ± 0.046 0.856 ± 0.040 0.852 ± 0.042

Table 6: Training and validation Dice scores for multi modality segmentation trained without and with adaptive data augmentation (ADA).

Set Modality Structure DualUNet DualUNet - ADA

Validation
CINE CV 0.948 ± 0.011 0.948 ± 0.012

MYO 0.841 ± 0.029 0.844 ± 0.029

DE CV 0.942 ± 0.028 0.945 ± 0.027
MYO 0.843 ± 0.045 0.851 ± 0.040

Test
CINE CV 0.946 ± 0.021 0.949 ± 0.011

MYO 0.837 ± 0.037 0.848 ± 0.029

DE CV 0.942 ± 0.032 0.944 ± 0.027
MYO 0.845 ± 0.044 0.853 ± 0.039

Figure 16: Example of segmentation performance under single and multi modality approaches. Left ventricle cavity and myocardium are presented
in blue and red, respectively.

is clearly observed that in the multi-modality approach
a more consistent segmentation of the myocardium is
produced, thus this pipeline (DualUNet trained at 100%
enlarged dataset, hereinafter called “DualUNet100”), is
deemed to be the overall best performing method for the
segmentation of the myocardium in DE MRI.

4.4. Best model further results

The final experiment in this stage consisted on com-
paring DualUNet vs DualUNet100. Table 7 shows the

segmentation results for these two methods in terms of
both metrics: Dice score and Hausdorff distance. It
can be seen that, for the validation and test sets, the
myocardium segmentation Dice score is consistently
higher after applying the data augmentation strategy,
and the standard deviation is also smaller. This differ-
ence was proven to be statistically significant, under a
Wilcoxon test with pvalue < 10−5. In terms of the Haus-
dorff distance, since the region of interest is bordered
by two contours, namely, epicardium (CV) and endo-

18.16



Domain specific data augmentation and deep learning architectures for automatic segmentation of the myocardium in
delayed enhancement MRI 17

Table 7: Training and validation mean Dice score and Hausdorff distance of the best standalone model (DualUNet) and after applying the best data
augmentation (DA) strategy (DualUNet100). DSC: Dice score.

Set Modality Structure DualUNet DSC DualUNet
(100 % DA) DSC

DualUNet HD
(mm)

DualUNet
(100 % DA) HD

(mm)

Validation
CINE CV 0.948 ± 0.011 0.947 ± 0.015 6.36 ± 3.54 6.39 ± 4.65

MYO 0.841 ± 0.029 0.849 ± 0.027 6.51 ± 1.71 6.01 ± 1.41

DE CV 0.942 ± 0.028 0.944 ± 0.029 5.67 ± 1.93 6.03 ± 2.58
MYO 0.843 ± 0.045 0.852 ± 0.045 6.09 ± 2.03 6.02 ± 1.85

Test
CINE CV 0.946 ± 0.021 0.948 ± 0.013 6.39 ± 4.64 5.73 ± 2.12

MYO 0.837 ± 0.037 0.848 ± 0.031 6.49 ± 1.78 6.51 ± 1.71

DE CV 0.942 ± 0.032 0.945 ± 0.028 5.73 ± 2.12 5.77 ± 2.23
MYO 0.845 ± 0.044 0.856 ± 0.040 6.08 ± 1.75 5.90 ± 1.93

cardium (MYO), they both have to be taken into ac-
count. It can be observed that, in the test set, the Haus-
dorff distance is slightly lower for the endocardium and
slightly higher for the epicardium, although the increase
difference is higher than the decrease one, this might in-
dicate that, overall the segmentation performance at the
contour level is approximately maintained.

With the goal of performing a more extensive study,
the segmentation performance of cases corresponding
to the VIA class (myocardial infarction) was analyzed.
It was hypothesized that, if the proposed data augmen-
tation was working as expected, it should be able to re-
duce the outliers for the cases classified as myocardial
infarction, since the synthetic data that is generated aims
to provide the models with more samples of this partic-
ular condition to improve the segmentation of the my-
ocardium.

Figure 17 shows the distribution of the myocardium
Dice score before and after applying the data augmenta-
tion algorithm. As expected, the overall distribution of
the metric went up, and two of the three outliers were
eliminated. Although the worst one was not removed,
its score improved significantly.

The DualUNet architecture that was used for the
multi-modality approach was investigated in the work
of Ouadah et al. (2022), and they achieved a mean my-
ocardium test set Dice score of 0.81±0.06. On the other
hand, in this study we obtained a mean myocardium test
set Dice score of 0.845±0.044 and 0.856±0.040 on the
best model without and with our data augmentation al-
gorithm, respectively, which is in both cases substan-
tially higher and more concentrated around the mean
value, which gives evidence of an increase of robustness
of the overall pipeline.

4.5. nnUNet framework results

With the goal of getting some insights on how to fur-
ther improve the results on the myocardium segmenta-
tion and construct a more robust pipeline, in the last part
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Figure 17: Myocardium Dice Score distribution on myocardial infarc-
tion cases before and after applying data augmentation.

of the work some experiments were done to assess the
performance of the nnUNet framework for this partic-
ular task in both single modality and multi modality,
which is done at the input level, i.e., the CINE modal-
ity is added as an extra channel of the target one (DE).
Table 8 presents a summary of the mean Dice score and
Hausdorff distance for all structures on both validation
and test sets. Based on the results from table 8, it can be
seen that, in the test phase, the results for multi modal-
ity are slightly worse than those of single modality, spe-
cially in terms of the Hausdorff distance.

Also, when compared to DualUNet100, the results of
nnUNet are better in both metrics (higher Dice score
and lower Hausdorff distance), although the Dice score
standard deviation is higher, which could give some
signs of higher variability. It should be duly noted that
the nnUNet was trained without data augmentation, i.e.,
our data augmentation algorithm was not applied due to
time restrictions.
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Table 8: nnUNet framework results. DSC: Dice score.

Set Modality Structure nnUNet DSC nnUNet HD (mm)
Single modality Multimodality Single modality Multi modality

Validation DE CV 0.949 ± 0.030 0.949 ± 0.028 3.65 ± 1.94 3.61 ± 1.68
MYO 0.861 ± 0.051 0.863 ± 0.045 3.64 ± 1.19 3.61 ± 1.24

Test DE CV 0.950 ± 0.029 0.949 ± 0.028 3.55 ± 1.82 3.60 ± 1.59
MYO 0.862 ± 0.054 0.862 ± 0.045 3.58 ± 0.99 3.60 ± 1.10

5. Discussion

In this study, we have proposed an image processing
based data augmentation algorithm that, taking some
prior knowledge extracted from an external dataset, is
able to create synthetic infarction cases to allow deep
learning models to further learn from this condition as
there is generally scarcity of such type of data, and it
was previously found that segmentation models strug-
gled a lot when segmenting the myocardium in such
cases.

The proposed data augmentation approach works un-
der two possible scenarios: fixed, and adaptive. In
the first one, the training dataset is enlarged at a given
amount, whereas in the second, feedback from the
model is obtained while training. This feedback con-
sists on tracking the samples on which the segmentation
performance was low, and then only creating synthetic
MI on those particular cases.

The first set of experiments were performed under the
single modality approach. This was done using a tradi-
tional UNet with batch normalization layers as segmen-
tation model. Afterwards, the data augmentation algo-
rithm was applied at fixed rates, namely, 50%, 100%,
and 200%. Augmenting data at 100% means that for
every case in the dataset, a new one with the presence
of synthetic MI was also created. According to the re-
sults presented in tables 1 and 2, it could be noticed that
the segmentation performance on the myocardium was
higher as more artificial data was available, the best re-
sult being obtained at a rate of 200%. As evidenced
in table 3, the adaptive data augmentation strategy of-
fered an increase of the Dice score of the myocardium,
but this was lesser than the increase generated with the
200% strategy.

In a similar fashion, the results of the multi-modality
approach reported on tables 4 and 5 show that the my-
ocardium test Dice score consistently improved when
increasing the percentage of data augmentation up to
100%, where it reached a plateau state and decreased
with higher augmentation rates. Once again, the results
were also improved with the adaptive data augmenta-
tion strategy, but to a smaller extent when comparing it
to the 100% dataset enlargement.

In both single and multi modality scenarios it was
possible to notice that the models have a good gener-
alization capability, as the mean test Dice score across
all 5 folds is generally maintained or has slight changes

with respect to the validation one. Furthermore, the vi-
sual results shown in figures 12 and 14 demonstrate that
adding the data augmentation algorithm had an effec-
tive impact on allowing the segmentation models to bet-
ter delineate the myocardium area, completing the con-
tours as in the case of single modality and providing
more accurate segmentations that include the myocar-
dial infarction areas that had been previously missed in
the multi-modality case.

Nonetheless, there are a few cases where the seg-
mentation performance is lower after applying the al-
gorithm, such as the cases reported in figures 13 and 15,
where the myocardium area gets thicker than it should
(thus classifying left ventricle cavity pixels as part of
the myocardium). Further investigation should be done
in order to limit this minority cases. Future work should
be focused on tuning the most optimal range of values
for these parameters to make the learning of myocardial
infarction more robust, which also includes investigat-
ing more possible intensity patterns when creating the
myocardial infarction on DE MRI.

When comparing single vs multi-modality approach,
it was found that this latter consistently outperformed
the first in both structures (myocardium and left ven-
tricle cavity). Figure 16 proved that, in general, using
information from CINE modality has a positive impact
on the segmentation of the myocardium.

We obtained significantly better test results when
compared to the work of Ouadah et al. (2022), where
the same dataset and architecture was used. This gives
clear evidence of the increase of robustness of the seg-
mentation achievable with the addition of the data aug-
mentation algorithm.

As an added value of our work, we have extended
the study by assessing the segmentation performance of
new deep learning frameworks such as nnUNet in both
single modality and multi modality approaches in our
dataset. After doing some modifications on the frame-
work, such as the design of cross-validation training
splits and loss function to use, it was found that the per-
formance of the multi modality approach, which is done
at the input level (adding the second modality as a chan-
nel of the target one), was slightly worse than the one of
single modality. This is in agreement with the conclu-
sions of the work of Ouadah et al. (2022), where they
found that an input fusion UNet had a worse segmenta-
tion performance than a single modality UNet.
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The results reported in section 4.5 showcase the high
potentials of the nnUNet for segmentation tasks. As
shown in table 8, the method got a higher Dice score
for the myocardium than DualUNet with data augmen-
tation. Although the difference is not much, and the
nnUNet results have higher variability, this is quite an
interesting finding since it opens up the doors for future
work within this field of research, which should be di-
rected towards adding our data augmentation algorithm
into the nnUNet framework. Although this step is not
trivial, we hypothesize that it would generate quite a ro-
bust pipeline for the segmentation of the myocardium
of DE MRI, since we proved that the data augmenta-
tion algorithm improved the performance and robust-
ness of the selected architectures during this work, and
since the nnUNet is already packed with powerful tech-
niques for automatic data preprocessing, feeding it with
a more diverse range of data where myocardial infarc-
tion is present will most likely have a positive effect.

The addition of the data augmentation could be done
at a fixed rate, but it could even be more interesting to
further explore the adaptive version, as it was proven
that this strategy managed to increase the segmentation
results and uses less data, thus having a lower com-
putational cost. As noted in the nnUNet experiments,
the multi modality approach (which is done at the input
level), was slightly worse than the single modality one.
Therefore, as a first step, the adding of the data aug-
mentation should be done in a single modality setting.
Nonetheless, there is also room for improvement in a
multi modality approach, since the nnUNet framework
could be further modified to support data fusion at an
intermediate step (as in DualUNet), and given the fact
that both architectures are UNet based, it is likely that
the effect of the data augmentation will be as positive as
it was proven to be on DualUNet.

6. Conclusions

In this work, we have proposed a data augmentation
algorithm where we create synthetic myocardial infarc-
tion shapes to allow deep learning models to further
learn from pathological cases and improve the segmen-
tation of the myocardium on Delayed Enhacement MRI.
We proved that the method made the overall pipeline
more robust, obtaining higher scores and less variability
when compared to a previous work in this application.
We have shown that the algorithm can be applied under
two different strategies, and both of them managed to
improve the segmentation results. We have also done
some additional experiments assessing the performance
of newer frameworks such as nnUNet, and our findings
suggest some future work in this regard, such as adding
our data augmentation algorithm within the framework,
either under the fixed or adaptive scenario, or as a hybrid
of both, and also adding the DualUNet fusion scheme.

Some other lines of future work include further explor-
ing the tuning of the parameters of our data augmenta-
tion algorithm, and extending the study in 3D.
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Abstract

Accurate 3D modeling of human organs plays a crucial role in building computational phantoms for virtual imag-
ing trials. However, generating anatomically plausible reconstructions of organ surfaces from computed tomography
(CT) scans remains challenging for many structures in the human body. This challenge is particularly evident when
dealing with the large intestine. In this study, we leverage recent advancements in geometric deep learning (DL) and
denoising diffusion probabilistic models (DDPMs) to refine the segmentation results of the large intestine. We begin
by representing the organ as point clouds sampled from the surface of the 3D segmentation mask. Subsequently, we
employ a hierarchical variational autoencoder (VAE) to obtain global and local latent representations of the organ’s
shape. We train two conditional denoising diffusion models in the hierarchical latent space to perform shape refine-
ment. To further enhance our method, we incorporate a state-of-the-art surface reconstruction model, allowing us to
generate smooth meshes from the obtained complete point clouds. Experimental results demonstrate the effective-
ness of our approach in capturing both the global distribution of the organ’s shape and its fine details. Our complete
refinement pipeline demonstrates remarkable enhancements in surface representation compared to the initial segmen-
tation, reducing the Chamfer distance by 70%, the Hausdorff distance by 32%, and the Earth Mover’s distance by
6%. By combining geometric DL, DDPMs, and advanced surface reconstruction techniques, our proposed method
offers a promising solution for accurately modeling the large intestine’s surface and can easily be extended to other
anatomical structures.

Keywords: Large intestine modeling, 3D shape refinement, Computational phantom

1. Introduction

In the field of virtual imaging trials, developing re-
alistic digital phantoms is crucial because they serve as
the virtual patients on which the simulated studies can
be conducted. Combined with imaging and diagnostic
simulation tools, they provide researchers with the abil-
ity to conduct iterative experiments involving limitless
parameter combinations, alleviating concerns about po-
tential side effects such as excessive radiation exposure.
(Segars et al. (2013)). Computational phantoms have
been widely used for many applications such as radia-
tion dosimetry (Hesterman et al. (2017)) and radiother-
apy (Wang et al. (2016)). In addition, compared to clin-
ically generated data, these models can provide pixel-
level ground truth, can be used to generate unlimited
diverse data, and suffer fewer privacy and regulatory is-

sues. Therefore, they are very useful to train and eval-
uate deep learning algorithms (Chen et al. (2022)). A
typical pipeline for building computerized patient mod-
els includes collecting imaging data of real patients,
segmenting the selected organs, and finally converting
the generated masks to an easily deformable mathe-
matical representation such as polygon meshes (Segars
et al. (2010)). The segmentation step is the most crit-
ical part of this process and its results significantlyaf-
fect the quality of the generated phantoms. For this pur-
pose, early studies predominantly employed either man-
ual contouring (Segars et al. (2010)) or conventional
image processing-based segmentation algorithms, such
as thresholding (Lee et al. (2007)), whereas recent ap-
proaches are shifting towards deep learning-based seg-
mentation techniques (Dahal et al. (2023)).
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Manual segmentation of numerous anatomical struc-
tures from 3D CT volumes is both subjective and time-
consuming making its application to multiple patients
impractical. Classical image processing methods of-
ten require manual refinement or hand-crafted post-
processing pipelines that are organ-specific, rendering
them inconvenient for constructing whole-body human
phantoms with over a hundred structures. The advent
of deep learning-based segmentation algorithms, cou-
pled with the growing availability of radiological im-
ages, has led to the emergence of various deep learning-
based medical image segmentation approaches, some
of which can segment a considerably large number
of organs such as TotalSegmentator (Wasserthal et al.
(2022)). Even though these methods significantly out-
perform their traditional counterparts, the challenge
of medical image segmentation is still far from being
solved (Cerrolaza et al. (2019)). Current DL algorithms
are based on volumetric CNN models such as U-Nets
(Ronneberger et al. (2015)) which can accurately re-
cover organ volumes but struggle in obtaining accurate
surface representations due to multiple factors. These
models do not take shape constraints into consideration
and they output discrete voxel grids which lead to dis-
cretization effects when converted to surface representa-
tions, resulting in anatomically inaccurate shapes (Yang
et al. (2022), Raju et al. (2022)).

Some organs suffer from these issues more than oth-
ers. The large intestine is one of the hardest organs to
accurately reconstruct from CT scans due to its com-
plex characteristics: the low contrast between the soft
tissue of the intestine and its surroundings and the high
heterogeneity of its filling, the high variability of the
organ’s shape, size, and appearance between different
patients, the proximity to other abdominal organs with
low-contrast boundaries, and the filling status of the or-
gan that can highly affect its shape (Wang et al. (2022)).
Under these conditions, U-Nets tend to generate incom-
plete segmentation masks that often incorporate sec-
tions of adjacent organs such as the small intestine, or
organs that exhibit similar features such as the presence
of air in the stomach.

While there has been limited research conducted on
the topic of 3D shape completion and refinement in
medical imaging, it is a widely explored problem in
other domains including autonomous driving, robotics,
and manufacturing. In these fields, Li-DAR sensors
are commonly used to detect shapes, which often re-
sult in sparse, noisy, and partial shapes represented as
point clouds. Consequently, it becomes crucial to de-
velop tools for shape completion, denoising, and re-
finement. Notably, a significant breakthrough has been
achieved in processing such data through the introduc-
tion of PointNets, which are deep networks specifically
designed for point cloud data (Qi et al. (2017)). Ad-
ditionally, denoising diffusion probabilistic models (Ho
et al. (2020)) have demonstrated remarkable outcomes

(a) (b)

Figure 1: Example CT slice (a) and the corresponding large intestine
contours (b) illustrating the heterogeneity of filling and the indistinct
boundaries of the organ.

Figure 2: Coronal projections of the large intestine across different
patients. Note the contrasting shape, size, and appearance with the
standard textbook representation.

in completing missing data, whether it pertains to 1D
signals like speech, 2D representations like images, or
3D structures such as object shapes. This research aims
to leverage the advancements made in the aforemen-
tioned areas of deep learning to address the issue of
inaccurate surface reconstructions of the large intestine
resulting from a volumetric segmentation model. In par-
ticular, we represent the shapes as point clouds and train
latent denoising diffusion models with PointNet-based
backbones, conditioned on the partial shapes of the or-
gan, to generate complete shapes as outputs. We also
benefit from a modern surface reconstruction method to
represent the final outputs as polygon meshes, which is
a preferred representation in computational phantoms.

2. State of The Art

2.1. Multi-organ Segmentation from CT Scans: The
Large Intestine Problem

In recent years, researchers have conducted numerous
studies addressing the issue of multi-organ segmenta-
tion from CT scans, including the large intestine. Some
notable studies include those by Liu et al. (2020) and
Weston et al. (2020). More recently, Wasserthal et al.
(2022) used a large dataset of 1024 CT scans along with
the state-of-the-art medical image segmentation frame-
work nn-Unet (Isensee et al. (2021)) to segment 104
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Reference Model output Overlap

Figure 3: Examples of erroneous TotalSegmentator results with the
corresponding references annotated by a physician. The segmentation
failures include false positives included from other organs (upper row)
and missing components (lower row).

anatomical structures. However, these studies primarily
rely on volumetric CNNs, which do not take geometric
features into consideration. Consequently, they strug-
gle to accurately reconstruct the surface of the large in-
testine, even if the volume is successfully recovered.
These failures are directly related to the previously men-
tioned complex characteristics of this organ’s surface
and filling as illustrated in Fig. 1 and Fig. 2. An in-
spection of TotalSegmentator’s results on new CT scans
revealed that the segmentation masks are often discon-
nected, partial, or contain portions of other structures
(Fig. 3).

Oda et al. (2021) proposed a solution by convert-
ing segmented intestinal regions into a graph repre-
sentation and then reconstructing the regions using a
graph-based algorithm. Although qualitative evaluation
demonstrated improved surface reconstruction, quanti-
tative results were limited, and the method lacks the
adaptability to other organs. Wang et al. (2022) pro-
pose BowelNet, a two-stage segmentation approach for
the intestinal region. The first stage uses a CNN trained
with fully labeled data to segment the bowel region,
whereas the second stage employs another CNN trained
with both partially and fully labeled data to refine the
segmentation by incorporating geometric information.
Instead of injecting shape information into a volumetric
model, our study focuses on applying geometric mod-
els, designed specifically for 3D shape learning, to ad-
dress the problem of inaccurate large intestine surface
reconstruction.

2.2. 3D Shape Representations in Medical Imaging

Unlike 2D images, which are commonly represented
as 2D matrices, 3D objects lack an established method
for representation, with various approaches used in the
literature indicating the absence of a singular standard
in this domain. Here we describe the most widely used
3D shape representations in medical imaging.

2.2.1. Voxel Grids
Voxel-based volumes are the most common represen-

tation in medical imaging. Objects are annotated on dis-
crete grids stored in 3D matrices, with each voxel indi-
cating whether the corresponding volume is occupied
by an object or not. This expands upon the 2D pixel
grid representation of 2D images and enables the use
of CNNs with 3D convolutions. The BowelNet model
mentioned earlier employed voxel grids to represent the
organs of the intestinal region.

2.2.2. Meshes
This involves representing a 3D object as a collection

of interconnected polygons, typically triangles. For in-
stance, Kong et al. (2021) propose a novel approach that
uses a graph convolutional neural network to predict
deformation on mesh vertices from a pre-defined mesh
template and reconstruct multiple anatomical structures
in a 3D image volume.

2.2.3. Point Clouds
In this setting, a 3D object is represented as a set of

unordered points in 3D space, sampled from its outer
surface, with each point having a set of associated fea-
tures such as its coordinates in space or the compo-
nents of its surface normal. Cai et al. (2019) introduce
an end-to-end shape learning architecture that generates
organ point clouds starting from deep features. Then
the model is optimized to further refine the generated
clouds using a novel adversarial shape learning loss.
This model is trained alongside a CNN-based segmen-
tation model for multi-task learning.

2.2.4. Implicit Representations
Implicit functions provide alternative representations

for shapes, such as signed distance functions (SDFs)
and occupancy maps. SDFs map points in 3D space
to their closest distance to the object’s surface, where
a positive distance is used for points outside the object
of interest and a negative distance is used for those
inside it. Raju et al. (2022) utilize SDFs to model organ
shapes, proposing a deep implicit statistical shape
model for smooth surface generation. Occupancy maps
indicate the likelihood of object occupancy in 3D grids.
Yang et al. (2022) introduce ImplicitAtlas, which learns
multiple organ templates of an organ that undergo
non-rigid deformations and outputs occupancy maps.

Because the objective of this work is to train prob-
abilistic generative models, point clouds represent an
ideal representation (Zeng et al. (2022)). Compared to
their counterparts, they are more compact and flexible,
they can capture complex 3D shapes and model the dis-
tribution of geometric properties with fewer memory
and computational resources. Therefore, we use point
clouds as a 3D shape representation in this work.
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Figure 4: PointNet architecture. The classification network takes n points as input and applies input and feature transformations before aggregating
point features using max pooling. The output is a classification score for m classes. The segmentation network is an extension of the classification
network which concatenates global and local features before outputting per-point scores. Reproduced from Qi et al. (2017).

2.3. Deep Learning on Point Clouds

2.3.1. PointNets
Early deep learning techniques, like CNNs and Re-

current Neural Networks (RNNs), have been applied to
point clouds for tasks like recognition and completion
(Liu et al. (2019a), Fan and Yang (2019)). However,
these methods require regularizing the point clouds
which can be computationally demanding. To address
this, Qi et al. (2017a) introduced PointNet, a deep ar-
chitecture specifically designed for unordered data such
as point clouds. PointNet processes each point indepen-
dently and aggregates the learned features to create a
global feature vector representing the entire cloud. The
architecture of the vanilla PointNet model is depicted in
Fig 4. PointNet++ (Qi et al. (2017b)) improved upon
this architecture by using hierarchical feature learning,
applying PointNets to small clusters of points to learn
local features, and then feeding them to other PointNets
for learning higher-level features from larger clusters.
The network incorporates farthest-point sampling to se-
lect informative points and a multi-scale grouping strat-
egy to aggregate features across different scales.

PointNets are memory-efficient but require structur-
ing the data for neighbor querying and dynamic kernel
computation due to irregular point distances. Liu et al.
(2019b) introduced Point-Voxel CNN (PVCNN) to ad-
dress this by combining PointNets’ memory efficiency
with the regularity of voxel-based models. PVCNN is
based on a new primitive operation called Point-Voxel
Convolution (PVConv), which includes a point branch
for learning local features using MLPs and a voxel
branch for learning coarse features using 3D convolu-
tions.

Deep models for point cloud processing have been
explored in medical imaging. For instance, Balsiger
et al. (2019) propose a point cloud-based approach to
refine peripheral nervous system segmentations. The
method employs a CNN to segment the nervous system
and extract image information from an MRN volume.

Then point clouds are extracted from the mask’s surface
and the xyz-coordinates of each point are concatenated
with its deep image features. Later, a PointCNN (Li
et al. (2018)) is used to classify each point as foreground
or background, refining the segmentation by eliminating
the noise. However, this method does not address false
negatives missed by the segmentation network. In con-
trast, we propose to use generative models that can gen-
erate new points to fill the missing parts in the organ’s
shape representation.

2.3.2. Generative Point-Diffusion Models
Denoising diffusion probabilistic models (DDPMs)

(Ho et al. (2020)) have shown great potential in point
cloud generation. They are designed to model the prob-
ability distribution of the 3D shapes in the dataset. Dur-
ing training, noise is gradually introduced to a clean
shape and the model learns to predict the noise added
at each step, minimizing the difference between the pre-
dicted and actual noise levels. At inference, the model
denoises a diffused shape iteratively until a clean ver-
sion is obtained (Luo and Hu (2021), Nichol et al.
(2022)). Recent studies suggest performing the gen-
eration process in a latent space (Vahdat et al. (2021),
Chou et al. (2022)). The latent Point Diffusion Model
(LION) by Zeng et al. (2022) is a proposal for a hierar-
chical point diffusion model. LION utilizes a variational
autoencoder (VAE) with a hierarchical latent space,
combining global and local representations. By train-
ing diffusion models in this smoother latent space, the
model can better capture shape distributions and gen-
erate higher-quality shapes. LION has achieved state-
of-the-art performance on various benchmarks and can
be extended to other applications such as text-to-shape
generation.

2.3.3. Point-Diffusion Models for Shape Refinement
Although PointNet-based diffusion models were

widely explored for point cloud generation, little work
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has been done for point cloud completion and refine-
ment. Zhou et al. (2021) propose a unified PVCNN-
based architecture named Point-Voxel Diffusion (PVD)
for both generation and completion. In this setting,
shape completion is formulated as a conditional gen-
eration problem where the partial input shape is fixed
and only the remaining points are diffused. In this
case, the DDPM learns to model the missing parts in
the data. Lyu et al. (2021) introduce a Point Diffusion-
Refinement (PDR) approach that consists of a Condi-
tional Generation Network (CGNet) and a ReFinement
Network (RFNet). CGNet is a conditional DDPM that
produces a coarse complete point cloud guided by its
partial input, while RFNet densifies the generated point
cloud for further quality improvement. The two net-
works use a dual-path architecture based on PointNet++
for efficient feature extraction from partial shapes and
accurate manipulation of 3D point locations.

Friedrich et al. (2023) use PVD’s shape completion
method to generate 3D skull implants. The model is
trained to generate a complete skull shape starting from
a defective one. During the diffusion process, only
the points belonging to the implant are modified, while
those belonging to the defective structure remain un-
changed. Finally, the defective shape is subtracted from
the generated complete one to obtain the shape of the
implant. In contrast to this work, our focus is on a de-
formable internal organ characterized by more intricate
shapes and higher diversity across patients rather than
the skull, which is a rigid anatomical structure with nu-
merous fixed landmarks. Additionally, while this work
only aims to fill the missing parts in the organ, we are
also interested in reducing the false positives included
from other organs.

2.4. Contributions of This Work
This study focuses on the refinement of erroneous

large intestine 3D surfaces. The contributions of this
work can be summarized as follows:

- To the best of our knowledge, we are the first to
tackle this problem as a conditional point cloud
generation task.

- We construct a dataset consisting of pairs of 3D
large intestine shapes. Each pair includes an erro-
neous shape generated by a deep learning model
and the corresponding ground truth.

- Drawing inspiration from LION and PDR, we in-
troduce a novel method for point cloud refinement.
Our approach involves training conditional point-
diffusion models within a hierarchical latent space.

- Different from PDR which relies on a second net-
work (RFNet), we propose a simple point cloud
post-processing pipeline that effectively increases
the density and smooths out the noisy clouds be-
fore performing surface reconstruction.

TotalSeg PET/CT CAP Total
Train 216 55 134 405

Validation 32 6 23 61
Test 60 14 38 112
Total 308 75 195 578

Table 1: Dataset final shape counts and split.

3. Material and Methods

3.1. Dataset
We created a dataset that includes pairs of erroneous

and correct 3D shapes of the large intestine encoded as
voxel grids, polygon meshes and point clouds. Our data
include one public and two private datasets.

3.1.1. TotalSegmentator Dataset
Wasserthal et al. (2022) provide a public dataset of

1024 CT scans with reference masks for the large in-
testine (referred to as ”colon”). This class includes the
colon (transverse, ascending, descending, and sigmoid),
the cecum and the rectum. The dataset contains various
CT types, some of which lack the large intestine entirely
(e.g., head CTs) or only contain parts of it. We per-
formed connected component analysis to determine the
number of components in each mask. Using organ vol-
ume distributions derived from the provided reference
masks, we established a set of rules to extract the useful
cases:

- Cases with a stomach volume lower than 50ml and
a urinary bladder volume of 0ml are eliminated,
thus ensuring the upper and lower bounds of the
intestine are present.

- Outlier cases with large intestine volume lower
than 400ml or higher than 1500ml are eliminated.

- Binary closing operations were performed to
close small disconnections in the remaining cases
that have more than two components (Back-
ground+large intestine).

- From the remaining cases, only those with two
connected components are kept.

The number of remaining cases after the selection pro-
cess is 308.

3.1.2. Duke PET/CT Dataset
The set comprises 112 CT volumes from Duke

Hospital patients’ Positron Emission Tomography and
Computed Tomography (PET/CT) scans. We used To-
talSegmentator’s pre-trained model to obtain segmenta-
tion masks for the large intestine. Further analysis for
extracting the successful cases involved removing com-
ponents smaller than 500 voxels and applying binary
closing to address minor disconnections. The remaining
cases with more than two components were excluded,
resulting in 75 remaining cases.
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3.1.3. Duke CAP Dataset
The set includes 269 Chest Abdomen Pelvis (CAP)

CT scans from Duke Hospital patients. The samples
underwent the same pipeline as the PET/CT cases.
Additionally, a physician refined 34 cases with incorrect
masks resulting in a total of 195 cases.

3.1.4. Partial Shape Synthesis
To train a model that refines erroneous organ shapes,

we need a dataset of example failure cases that will be
used as model inputs together with the corresponding
correct shapes which will be used as the target out-
puts. Having the previously selected correct shapes,
we needed to generate synthetic erroneous masks that
mimic the behavior of TotalSegmentator’s failures. For
this purpose, we built a weak 3D full-resolution U-
Net model by training nn-Unet for 30 epochs using 30
images randomly selected from our TotalSegmentator
subset. After computing dice scores between the ref-
erences and the model’s outputs, a visual inspection
was performed on cases with dice scores below 0.2.
It was noted that certain instances had remarkably de-
ficient masks, unlikely to be produced by a properly
trained deep learning model. These masks were substi-
tuted with their respective complete counterparts. This
serves a twofold purpose: enhancing the faithfulness
of the synthetic shapes to TotalSegmentator’s outputs
while teaching the model to accurately reconstruct cor-
rect shapes when provided as conditions.

3.1.5. Point Cloud Extraction
After obtaining the pairs of erroneous and reference

masks, we run the marching cubes algorithm (Lorensen
and Cline (1987)) to extract the organ surfaces repre-
sented as polygon meshes. Later, we use the Pois-
son disk sampling algorithm (Yuksel (2015)) to sam-
ple point clouds of 2048 points from the surfaces of the
meshes. This algorithm extracts points such that each
point has approximately the same distance to the neigh-
boring points. Finally, we normalize the dataset glob-
ally to [-1, 1] using the mean and standard deviation
calculated over all shapes in the training set.

We split the data into approximately 70% for training,
10% for validation, and 20% for testing. The final num-
bers of shapes in each set after the split are summarized
in table 1.

3.2. Problem Statement
Inspired by Lyu et al. (2021), we formulate our prob-

lem as a conditional 3D shape generation task. A 3D
point cloud sampled from the surface of a segmentation
mask is represented by N points with xyz-coordinates
in the 3D space: x ∈ RN×3, We assume the dataset D
is composed of M data pairs {(xi, ci)|1 ≤ i ≤ M} where
xi is the ith reference point cloud and ci is the corre-
sponding erroneous point cloud generated by the weak

U-Net model. The goal is to create a conditional model
that generates a complete shape yi, that represents an
anatomically plausible shape of a large intestine, using
the partial input ci as a conditioner. Note that the gen-
erated shape yi is as close as possible but does not nec-
essarily match the reference shape xi. Moreover, due
to the stochastic nature of the generation process, the
model can produce diverse shapes for different queries
with the same conditioner.

3.3. Conditional Generation Network
As a first step, we trained the Conditional Genera-

tive Network (CGNet) of PDR on our dataset which will
serve as our baseline. Assuming pintestine is the distribu-
tion of the complete large intestine shapes xi and platent

is the latent distribution representing a standard Gaus-
sian in RN×3, CGNet is designed as a DDPM that con-
sists of two processes:

- The forward diffusion process: a Markov chain
that adds noise gradually to the clean data distribu-
tion pintestine using Gaussian kernels of fixed vari-
ances in T time steps. Variances are fixed such that
at the final step T, the shapes belong to the standard
Gaussian distribution platent. This process does not
depend on the conditioner.

- The reverse diffusion process: a Markov chain
implemented as a neural network that predicts and
eliminates the noise added during the forward pro-
cess. This process is conditioned on the erroneous
shape c. It starts with a sample xT from platent

and gradually denoises it to obtain a clean shape
x0 from pintestine.

A detailed mathematical formulation of the conditional
diffusion procedure is given in Appendix A.

CGNet employs two parallel encoder-decoder net-
works, namely a condition feature extraction subnet and
a denoise subnet. These networks have a shared ar-
chitecture based on PointNet++. The condition feature
extraction subnet extracts multi-level features from the
partial input c, while the denoise subnet estimates the
noise introduced to the input xt at time step t. In ad-
dition, a two-stage PointNet is used to extract vector-
structured global features from the conditioner c. The
time step t is embedded into a feature vector using
the Transformer’s positional embedding (Vaswani et al.
(2017)). The global features and the encoded time
step are injected into every level of the denoise sub-
net through shared MLPs. The features extracted by the
condition feature extraction subnet are inserted into the
parallel level of the denoise subnet via feature transfer
modules. The architecture uses attention modules to ag-
gregate the features from the neighboring points to the
centers of the clusters in the PointNet++ layers. The
variances βt used during the diffusion process are de-
fined using a linear scheduler.
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Figure 5: Latent conditional point cloud refinement framework: surface meshes are extracted from the reference and erroneous organ masks using
the marching cubes algorithm and point clouds are sampled from both surfaces using Poisson disk sampling. The shapes are encoded into a global
and a local representation via two VAE encoders. Two DDPMs are trained to model the distributions of global and local representations of the
complete shapes conditioned on the partial shapes’ latent representations. The clean shape is reconstructed to the original space via the VAE’s
decoder. After post-processing, Point-E’s deep implicit model is used to reconstruct a polygon mesh that can be voxelized into a 3D mask.

To make the model work on our dataset we in-
troduced some modifications to the default hyper-
parameters provided by PDR’s authors. We used a time
embedding of size 128. The depths of all MLPs in the
decoders were increased to 3 and the number of neigh-
bors K used for clustering in all PointNet++ layers was
set to 10. The number of features of the conditioner
(other than the xyz-coordinates) was set to 0. Since we
are only training on a single class, the class condition-
ing mechanism was removed. We trained the model for
8000 epochs with a learning rate of 5×10−4 and a batch
size of 16.

3.4. Latent Conditional Point-Diffusion Network

To improve the refinement performance, we propose
to shift the conditional generation process to a latent
space. The inspiration behind this lies in the high com-
plexity and variability of the large intestine’s shapes
which make it challenging for the DDPM to model
their distribution accurately in the original space. We
propose to train a VAE that encodes both partial and
complete shapes into a unified smoother latent space
consisting of a vector-valued global representation and
a point cloud-structured local representation. Subse-
quently, two DDPMs are trained to model the distribu-
tions of complete shape latents conditioned on the rep-
resentations of partial shapes. This enables the disen-
tanglement of high-level features related to the overall
appearance of the organ from the low-level features ex-
pressing the fine details, which makes it easier for the
DDPMs to model the underlying distributions. Finally,
the VAE’s decoder combines both representations to re-

construct the complete shape in the original space. The
overall design of our complete framework is illustrated
in Fig. 5.

3.4.1. Hierarchical Latent Shape Encoding
For the latent shape encoding, we adapt the approach

proposed by Zeng et al. (2022). Taking a pair of shapes
(x, c) from the training set D, the VAE’s first encoder
learns a global latent representation (zx, zc) ∈ (RDz )2

where Dz is the size of the latent vector. The second
encoder learns a local latent representation (hx, hc) ∈
(RN×(3+Dh))2. In other words, hx and hc are latent point
clouds of N points, each carrying its xyz-coordinates
and Dh additional features. By structuring the local
latents as point clouds we benefit from the advantages
of using this representation in training DDPMs as men-
tioned in section 2.2.

The VAE consists of two encoders and a decoder all
based on the PVCNN architecture. The global encoder
takes a 3D point cloud s ∈ {x, c} as input and encodes
it into a global latent vector zs of size Dz. The local
encoder takes the point cloud s as input and its global
representation zs as a condition and generates the corre-
sponding local representation hs consisting of N latent
points in R3 with Dh features. The VAE’s decoder takes
hs as input and zs as a condition and reconstructs the
shape s back to the original space.

The VAE is trained by maximizing a modified ver-
sion of the variational lower bound on the data log-
likelihood (ELBO). The loss function combines the
data log-likelihood (controlling the shape reconstruc-
tion quality) with the Kullback-Leibler (KL) regulariza-

19.7



Large Intestine 3D Shape Refinement Using Conditional Latent Point Diffusion Models 8

tion (controlling the priors of the latents) with respect to
both hs and zs. The KL terms of the loss are weighted
by two hyperparameters λz and λh. The VAE is initial-
ized as an identity mapper between the original space,
the latent space, and the output to avoid the divergence
of the reconstruction loss at the early epochs of train-
ing by scaling the variances of the encoders towards 0
and weighting the skip connections accordingly. During
the training, the KL weights are annealed linearly until
a maximum weight is reached. By increasing the KL
weights, the priors of the latents p(zs) and p(hs) con-
verge towards a standard Gaussian, making the latent
space smoother and more regular, at the cost of increas-
ing reconstruction error.

We fine-tuned the default hyperparameters provided
by Zeng et al. (2022) according to our use case. We set
Dz to 256 and Dh to 4. The maximum values of both λz

and λh were set to 0.4. To initialize the VAE weights,
the variance offset parameter was set to 12 and the skip
connections’ weight was set to 0.02. The class condi-
tioning mechanism was removed since we are training
on a single class. We trained the model using Adam
optimizer with a batch size of 32 and a learning rate of
10−3 for 8000 epochs while saving the weights every
2000 epochs. Note that the VAE is trained using both
partial and complete shapes since both shapes need to
be encoded to the latent space for training the DDPMs.

3.4.2. Latent Conditional Point Generation
While freezing the weights of the VAE, we trained

two conditional DDPMs in the hierarchical latent space.
A first DDPM with parameters ξ was trained on the
global latent encodings zx conditioned on zc. A sec-
ond DDPM with parameters ϕ was trained on the lo-
cal latent encodings hx conditioned on both hc and zx.
Similarly to section 3.3, the models are trained by mini-
mizing the difference between the actual noise added to
the reference latent encodings and the noise predicted
by the DDPMs. The loss functions of the first DDPM
can be written as:

L(ξ) = Ei∼U([M]),t∼U([T ]),ϵ∼N(0,I)
∥∥∥ϵ − ϵξ(zi

x,t, t, z
i
c)
∥∥∥2

where U([M]) represents the uniform distribution over
{1, 2,...,M}, U([T ]) represents the uniform distribution
over {1, 2,...,T}, zi

x,t is the diffused global latent repre-
sentation of the shape xi after t diffusion steps, zi

c is the
global representation of the corresponding conditioner
ci, ϵ is the actual noise and ϵξ is the noise predicted by
the model.
Similarly, the loss function of the second DDPM is de-
fined as:

L(ϕ) = Ei∼U([M]),t∼U([T ]),ϵ∼N(0,I)
∥∥∥ϵ − ϵϕ(hi

x,t, t, h
i
c, z

i
x,0)

∥∥∥2

where hi
x,t is the diffused local latent representation of

the shape xi after t diffusion steps, hi
c is the local repre-

sentation of the corresponding conditioner ci, zi
x,0 is the

clean global representation of xi, ϵ is the actual noise
and ϵϕ is the noise predicted by the model. The fixed
diffusion variances are defined using a linear scheduler
for both models. Note that during this process, the la-
tent encodings of the conditioner (zc, hc) are only used
to extract features that are embedded into the diffusion
models to guide the denoising process and they are not
diffused.

The global DDPM is implemented as a ResNet with
8 squeeze-and-excitation residual blocks. The network
takes a diffused global latent vector zx,t as input and the
time step t and the erroneous shape’s latent zc as condi-
tions and outputs the predicted noise. The local DDPM
uses the same architecture as the CGNet from section
3.3 with two parallel subnets for condition feature ex-
traction and denoising. The additional PointNet used
for extracting global features in the baseline model is re-
moved since we rely on the global representation of the
complete shape generated by the global DDPM. This
network takes the noisy local representation of a refer-
ence shape hx,t as input, it is conditioned on the corre-
sponding local latent of the conditioner hc, the time step
t, and the clean global latent zx,0 and it outputs the pre-
dicted noise. In both networks, the diffusion step t is
encoded using the same positional embedding mecha-
nism used in the baseline.

At inference, the erroneous shape c is encoded into its
latent representations (zc, hc), and two noisy inputs zx,T

and hx,T are sampled from a normal Gaussian distribu-
tion. First, the reverse diffusion process is performed
on zx,T using the global DDPM to obtain a clean global
representation zx,0. Later, the local DDPM is used to run
the reverse diffusion process on hx,T to obtain a clean lo-
cal representation hx,0 using both hc and the generated
zx,0 as conditions. Finally, the resulting representations
are decoded back to the original space via the VAE’s
decoder. This inference process is depicted in Fig. 6.

We used a 256-dimensional time embedding and
1000 diffusion steps in both models. We set the dropout
of the ResNet layers to 0.2. Different from the base-
line CGNet, the ReLU activation function is replaced by
Swish (Ramachandran et al. (2017)). Based on the fea-
ture size of our local latent representations, the number
of the partial input features is set to 4 and the feature
dimension of the output is set to 7. The DDPMs are
trained in parallel using Adam optimizer with a batch
size of 10 and a learning rate of 2 × 10−4 for 16000
epochs. The remaining training hyperparameters are set
to the default values provided by Zeng et al. (2022).

3.5. Point Cloud Post-Processing

The output of the generative model tends to be sparse
and noisy which effects negatively the performance of
the surface reconstruction. To address this issue we pro-
pose a simple point cloud post-processing pipeline con-
sisting of the following steps:
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Figure 6: Inference pipeline:
The erroneous shape c is en-
coded into latent representations
(zc, hc), and noisy inputs zx,T and
hx,T are sampled. Reverse dif-
fusion processes are applied us-
ing the global and local represen-
tations of c as conditions to ob-
tain clean representations zx,0 and
hx,0. These representations are
then decoded back to the original
space using the VAE’s decoder.

- The point cloud is first renormalized back to the
original scale.

- The cloud is smoothed using a variant of the Mov-
ing Least Square algorithm with a smoothing fac-
tor of 0.2.

- The cloud is densified by adding new points under
the assumption that all points in a local neighbor-
hood are within a specified distance of each other.
If any neighbor exceeds the target distance, the
connecting edge is divided and a new point is in-
serted at the midpoint. We use a target distance of
10 mm and a neighborhood size of 10 points. We
apply this process for one iteration.

- Outlier removal is applied such that all points hav-
ing less than 5 neighbors within a radius of 15 mm
are removed.

Note that after this process, the resulting point clouds
will have different numbers of points depending on the
quality of the raw generated output.

3.6. Surface Reconstruction

Since the goal is to generate organs for computa-
tional phantoms that are usually represented as poly-
gon meshes, we extend our method with a deep
implicit model for point-cloud-to-mesh reconstruction
(pc2mesh) proposed within the Point-E framework
(Nichol et al. (2022)). This model uses an encoder-
decoder Transformer architecture and predicts SDFs
based on the input point clouds. The mesh is obtained
by applying the marching cubes algorithm on the gener-
ated SDF map. The model is trained with 2.4M meshes.
In our experiments, we used the provided pre-trained
weights and a grid size of 128 × 128 × 128 with a batch
size of 1024 points. Point clouds were normalized to
[-0.5, 0.5] before being fed to the model. The recon-
structed meshes can then be binarized to obtain a voxel
grid.

4. Results

4.1. Evaluation Metrics
4.1.1. Chamfer Distance

Chamfer Distance (CD) is the most frequently used
metric for evaluating 3D shape completion perfor-
mance. CD tries to find the minimum distance between
two sets of points. For a reference shape X and a gen-
erated shape Y, the Chamfer distance between the two
shapes is defined as follows:

CD(X,Y) =
1
|X|

∑

x∈X

min
y∈Y
∥x − y∥22 +

1
|Y |

∑

y∈Y
min
x∈X
∥y − x∥22

CD provides information about the overall similarity
and alignment between the two point clouds as well as
information about local similarity since it relies on pair-
wise distances between individual points.

4.1.2. Hausdorff Distance
The Hausdorff distance (HD) provides a measure of

the largest dissimilarity between the two point clouds. It
measures the maximum distance of a point in one cloud
to its nearest point in the other cloud. Formally, the
Hausdorff distance between X and Y is defined as:

HD(X,Y) = max
{

sup
x∈X

inf
y∈Y
∥x − y∥, sup

y∈Y
inf
x∈X
∥y − x∥

}

where sup represents the supremum and inf the infi-
mum. This metric highlights the worst-case scenario
and provides an upper bound on the error between the
completed and reference point clouds.

4.1.3. Earth Mover Distance
The Earth Mover distance (EMD), also known as the

Wasserstein distance, is a metric used to quantify the
dissimilarity between two point clouds. It measures the
minimum cost required to transform one point cloud
into another, where each point is treated as a mass that
needs to be moved. Given two point clouds, X and Y ,
with N points each, the EMD can be computed using
the following formula:

EMD(X,Y) = min
γ:Y←→X

∑

y∈Y
∥y − γ(y)∥2
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VAE training

VAE input Latent points

Figure 7: Latent points evolution during the VAE training.

Figure 8: Reconstruction quality evaluation during
the VAE training in terms of F1-Score.

where γ is a bijection between the point clouds X and
Y. EMD accounts for both the global geometry and the
mass distribution of the points.

CD, HD and EMD collectively enable the assessment
of completeness, geometric accuracy, and distribution
fidelity between the generated point clouds and the ref-
erence shapes.

4.1.4. F1-Score
To evaluate the point cloud reconstruction perfor-

mance of the VAE we used the F1-score, as proposed
by Tatarchenko et al. (2019). It combines precision
and recall, representing the reconstruction’s accuracy
and completeness respectively. The F1-score can be ad-
justed using a distance threshold (d) to control its strict-
ness. For a reference shape X and a reconstructed shape
Y, it is defined as:

F1d(X,Y) = 2 × Pd(X,Y)Rd(X,Y)
Pd(X,Y) + Rd(X,Y)

where P is the precision:

Pd(X,Y) =
1
|Y |

∑

y∈Y
[min

x∈X
∥x − y∥ < d]

and R is the recall:

Pd(X,Y) =
1
|X|

∑

x∈X

[min
y∈Y
∥x − y∥ < d]

4.2. Latent Shape Encoding and Reconstruction
As explained in section 3.4.1, there is a trade-off be-

tween the regularization of the latent space and the re-
construction performance of the hierarchical VAE. Fig.
7 illustrates an example of how the latent points evolve
during the VAE training. We analyzed the reconstruc-
tion performance on our test set for different check-
points of the VAE to choose the weights to be used for

training the DDPMs. The boxplots in Fig 8 summarize
the reconstruction performance of the VAE per epoch in
terms of F1-score. A threshold of d=5mm was used to
compute the metric1.

As expected, during the early epochs of the training
the latent points have a similar shape to the input re-
sulting in a good reconstruction performance reflected
in the high F1-score, but the complex distribution of
these latent points is not convenient for training the
DDPMs. As the training continues, the latent points
start to exhibit smoother and more regularized distri-
butions that approach a standard Gaussian at the lat-
est epochs, which is preferred for training the DDPMs.
But the reconstruction performance decreases as indi-
cated by the lower F1-score means and higher disper-
sion. Based on the results shown above and a quali-
tative evaluation of the reconstruction performance and
the smoothness of the latent points, the weights of the
VAE at epoch 6000 were used for training the DDPMs
in the next stage. A more detailed study on the impact
of the selected weights is presented in section 4.7.2.

4.3. Point Cloud Refinement

After running the inference pipeline using both
CGNet and our proposed latent conditional point dif-
fusion model on our synthetic test set, we summarize
the results of point cloud refinement obtained in terms
of CD, HD, and EMD in table 2. We also report the
metrics obtained initially between the complete and the
erroneous shapes (used as model conditions) for refer-
ence. Fig 9 shows examples of refined large intestine
point clouds using both models.

1Note that the F1−score interval was cropped to [0.95,1] to better
visualize the difference between the plots.
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Reference Condition CGNet Ours OursCGNetConditionReference

Figure 9: Examples of the shape refinement results

Model CD ↓ HD ↓ EMD ↓
Init 1396 ± 2615 84.01 ± 59 9430 ± 7150
CGNet 449 ± 853 57.18 ± 32 9294 ± 4940
Ours 388 ± 681 56.44 ± 31 9666 ± 4855

Table 2: Shape refinement results on the test set.

We can see that both the CGNet and our proposed
latent conditional point-diffusion model exhibit signifi-
cant improvements in the surface reconstruction perfor-
mance compared to the starting point with our model
outperforming CGNet with a 13.95% improvement in
CD and 1.29% in HD on average, indicating higher
performance in handing local errors and a better align-
ment with the reference shapes. In contrast, the CGNet
demonstrates superior performance compared to our
pipeline in terms of EMD. This indicates that the shapes
generated by our model exhibit lower visual qual-
ity and less uniform density. Furthermore, the latent
model demonstrates reduced dispersion, as indicated
by the lower standard deviation for all metrics indicat-
ing higher stability. Qualitatively, our method accu-
rately captures the overall distribution of large intestine
shapes, generating anatomically acceptable results. It
effectively completes missing parts and eliminates false
positives in certain scenarios. In addition, when given
a complete shape as a condition, we can see that both
models accurately reconstruct the complete point cloud.
However, shapes generated by the latent model tend to
be noisier and sparser compared to CGNet as reflected
in the higher EMD values. Additionally, the model
struggles to remove adjacent or attached false positives
but often combines them with the correct segments gen-
erating a more plausible connected representation of a
large intestine. Occasionally, the model fails to connect
organ segments.

4.4. Surface Reconstruction

The generated point clouds of both CGNet and our
model were post-processed using the pipeline proposed
in section 3.5. The point clouds were then given as
input to Point-E’s point-cloud-to-mesh model to gen-
erate the corresponding polygon meshes. To evaluate
the performance, we sampled 50000 points from the
mesh surfaces and computed CD, HD, and EMD2 be-
tween the generated and the reference meshes. The re-
sults are summarized in table 3. Examples of the post-
processed point clouds and the corresponding recon-
structed meshes are shown in Fig. 10.

Model CD ↓ HD ↓ EMD ↓
Init 1400 ± 2620 84.22 ± 58 9767 ± 6995
CGNet 463 ± 871 57.13 ± 32 9273 ± 4950
Ours 409 ± 716 56.43 ± 31 9096 ± 4836

Table 3: Shape refinement results after surface reconstruction.

Reference Condition Output Post-processed Mesh

Figure 10: Example results of post-processed point clouds and the
corresponding reconstructed meshes.

22048 Points were used to compute EMD due to GPU memory
limits.
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Representation Model CD ↓ HD ↓ EMD ↓
Point clouds TotalSeg 579 ± 938 93.62 ± 137 6545 ± 3697

TotalSeg+CGNet 318 ± 588 75.03 ± 130 9011 ± 5071
TotalSeg+Ours 220 ± 321 73.16 ± 132 8691 ± 3080

Meshes TotalSeg 571 ± 929 93.97 ± 137 6916 ± 3766
TotalSeg+CGNet 313 ± 543 74.81 ± 131 8432 ± 4543
TotalSeg+Ours 230 ± 346 72.46 ± 132 7893 ± 3144

Table 4: Shape refinement results on TotalSegmentator cases

After applying post-processing and surface recon-
struction, our method maintains high performance
across all metrics. Notably, our model outperforms
CGNet in all metrics, including EMD, indicating the
effectiveness of our post-processing and mesh recon-
struction pipeline in reducing the noise and sparsity of
the generated point clouds. This highlights the abil-
ity of our pipeline in modeling the distribution of the
large intestine’s shape in terms of global appearance,
local details, and density uniformity. Additionally, vi-
sual inspection reveals that the post-processed point
clouds exhibit smoother and denser characteristics com-
pared to the raw ones. The reconstructed meshes ex-
hibit high quality and preserve fine details. In fact,
they are less affected by discretization compared to the
reference meshes generated from the binary segmenta-
tion masks. However, in case of adhesion between the
colon’s walls, the generated mesh does not accurately
represent this phenomenon. Instead, the adhesive seg-
ments are merged into a single, larger tube. It should
be noted that this error is inherited from the training
set, where applying the marching cubes algorithm to the
voxelized mask produces the same defect (refer to the
reference mesh of the lower row in Fig. 10).

Additional qualitative results are reported in Ap-
pendix B.

4.5. TotalSegmentator Refinement

Following the evaluation of our proposed pipeline
on the synthetic test set, we further conducted an ex-
periment to assess its performance on real-world data.
Specifically, we examined its ability to handle fail-
ure cases generated by the state-of-the-art segmenta-
tion model, TotalSegmentator. Along with our synthetic
dataset, we acquired a set of 20 additional CT scans
(8 CAP and 12 PET/CT) and generated the segmenta-
tion masks of the large intestine using TotalSegmentator
which will serve as our conditioner input of the model.
A physician refined the segmentation masks generating
the corresponding reference masks. Our pipeline was
applied to this dataset using both CGNet and the latent
conditional point diffusion model. Table 4 shows the re-
finement performance of the raw generated point clouds
and the reconstructed meshes. Visual examples of the
generated shapes can be found in Appendix C.

The results demonstrate significant improvement of
the proposed method in refining the large intestine’s sur-
face compared to the segmentation results of TotalSeg-
mentator. On average, we achieved a 62.32% improve-
ment in CD and a 2.15% improvement in HD, outper-
forming CGNet in both metrics. However, it is worth
noting that both our proposed method and CGNet ex-
hibit poor EMD results compared to TotalSegmentator,
although our model still outperforms CGNet in this met-
ric. The qualitative evaluation confirms that the obser-
vations made on the synthetic set (accurate distribution
modeling, noise elimination in certain cases, and failure
scenarios) are consistent with real-world cases.

4.6. Computational Time Analysis

The VAE’s training time was 38 hours distributed
on 2 NVIDIA RTX A6000 GPUs whereas the train-
ing of the DDPMs lasted for 63 hours distributed on 4
NVIDIA RTX A6000 GPUs. We computed an estima-
tion of the average inference time of each component
of our refinement pipeline on a set of 20 samples. The
results are shown in table 5.

Process Computational time (s)
Marching cubes 4.39 ± 3.5
Poisson disk sampling 0.09 ± 0.0
VAE+DDPM inference 96.83 ± 1.8
Post-processing 0.44 ± 0.1
Point-E pc2mesh 9.80 ± 2.2
Complete pipeline 111.555 ± 4.5

Table 5: Average computational time required for each process.

On average, the entire pipeline can be executed in less
than 2 minutes for a single case. It is worth noting that
the latent DDPM sampling process consumed the most
time, as expected, due to the execution of 1000 reverse
diffusion steps for each of the two diffusion models. It
is important to highlight that the process was individ-
ually applied to each sample. Processing the clouds
in batches during the execution of the reverse diffu-
sion processes and the mesh reconstruction could sig-
nificantly decrease the average time for a larger set of
samples.
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Model CD ↓ HD ↓ EMD ↓
A 431 ±715 55.45 ±30 11364 ±4731
B 455 ±785 57.44 ±33 9674 ±5321

Table 6: Shape refinement results for the uniform sampling-based
model (A) and Poisson disk sampling-based model (B).

Reference Condition Raw Output Mesh
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Figure 11: An example illustrating the impact of the point sampling
strategy on the generated point clouds.

4.7. Ablation Study
4.7.1. Point Sampling Strategy

We studied the impact of using Poisson disk sam-
pling to extract the points from the mesh surfaces com-
pared to uniformly sampling points based on triangle
area. We trained two models A and B where in A we
sample the points uniformly and in B we use Poisson
disk sampling. The VAEs of both models were trained
for 6000 epochs whereas the DDPMs were trained for
10000 epochs. The results on the test set are calculated
after reconstructing the mesh surfaces and are summa-
rized in table 6. An example of the generated results is
shown in Fig. 11.

The results show that the uniform sampling-based
model slightly outperforms the Poisson disk-based
model in terms of CD and HD whereas the latter
achieves better EMD. As illustrated in Fig 11, The
point clouds sampled uniformly exhibit heterogeneous
density across the surface whereas the ones sampled
using the Poisson disk sampling are more uniform.
The results of the model trained with uniformly sam-
pled clouds suffer more dispersion in the generated
point clouds compared to the Poisson disk-based model,
which impacts negatively the quality of the generated
meshes explaining the poor performance in terms of
EMD.

4.7.2. Latent Space Smoothness Impact
To evaluate the impact of the selected VAE’s weights

on the generation process, we trained three latent
DDPMs C, D, and E using the VAE weights saved at
epochs 4000, 6000, and 8000 respectively. The gener-
ation metrics obtained on the raw point clouds are re-
ported in table 7. Example shapes generated using the
different models are illustrated in Fig 12.

Model CD ↓ HD ↓ EMD ↓
C 422 ± 847 55.99 ±32 10231 ±4913
D 388 ±681 56.44 ±31 9666 ±4855
E 411 ±821 54.25 ±32 9972±4975

Table 7: Experimental results on latent space smoothness impact on
the generated organ point clouds.

Reference Condition Model DModel C Model E

Figure 12: Examples illustrating the impact of latent space smooth-
ness on the generated organ point clouds.

The results show that the model trained with the VAE
weights of epoch 8000 outperformed the other mod-
els in terms of both CD and EMD whereas the model
trained with the VAE weights at epoch 6000 achieves
the lowest HD among the three models. The qualitative
evaluation revealed that by extending the VAE’s training
time (therefore smoothing the latent space), the DDPMs
capture better the distribution of the shapes and the or-
gans generated are more compact and connected. How-
ever, the reconstruction quality decreases, and the gen-
erated shapes tend to be noisier. Overall, using the VAE
weights at epoch 6000 balances the trade-off between
the latent space smoothness and the reconstruction per-
formance.

4.7.3. Post-processing

To assess the impact of the proposed post-processing
pipeline, we generated meshes using both the raw and
the post-processed point clouds and we report the re-
sults we obtained in table 8. This study was conducted
on the results of the model trained with VAE weights at
epoch 8000 which exhibit more noise, sparsity, and out-
liers. Examples of the generated meshes from the raw
and post-processed clouds are illustrated in Fig 13.

While the performance metrics do not exhibit a sub-
stantial difference, the qualitative evaluation highlights
the benefits of post-processing. The meshes gener-
ated after post-processing are smoother and suffer fewer
holes and noise along their surfaces, which is more com-
patible with the anatomy of the large intestine’s walls
primarily consisting of soft tissues.
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Post-process CD ↓ HD ↓ EMD ↓
Before 427 ±837 54.07 ±32 9344 ±4914
After 431 ±849 54.05 ±32 9253 ±5032

Table 8: Mesh reconstruction results before and after post-processing.
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Figure 13: Examples illustrating the impact of post-processing on the
reconstructed meshes.

4.7.4. Data Augmentation
To address the problem of small dataset size, we im-

plemented a simple data augmentation pipeline based
on rigid 3D transformations. We use a scaling factor
of up to 10% of the original size, a rotation around the
z-axis of up to 10°, and a translation of up to 0.1 units
in the normalized space. We apply this pipeline to train
both the VAE and DDPMs of a new model (Ours-Aug).
The quantitative results computed from the generated
point clouds are represented in table 9. Figure 14 illus-
trates examples generated using this model.

Compared to the models trained without data aug-
mentation, we can see that this model performs bet-
ter in addressing some of the issues encountered in the
previous models, such as reducing false positives and
generating shapes that closely match the corresponding
reference shapes, resulting in minimized HD. However,
the generated shapes exhibit more dispersion and noise
and can generate errors that were not commonly seen in
the previous models, such as the presence of links be-
tween the cecum and the rectosigmoid junction, leading
to higher EMD and CD values.

5. Discussion

In this study, we investigated the application of ge-
ometric deep learning techniques and denoising diffu-
sion models to refine erroneous segmentation masks of
the large intestine. These masks were generated by a
volumetric segmentation model and exhibit multiple is-
sues such as missing parts or noise. We approached
the problem as a conditional point cloud generation task
and proposed a latent conditional point diffusion model
for point cloud refinement. Our pipeline involves sam-
pling point clouds from the organ’s surfaces and encod-
ing the shapes into a smoother latent space consisting

Model CD ↓ HD ↓ EMD ↓
Ours-Aug 449 ± 814 54.62 ± 32 11019 ± 4874

Table 9: Shape refinement results of the model trained with data aug-
mentation

Reference Condition Ours-Aug

Figure 14: Example shapes generated by the model trained with data
augmentation.

of a global and a local representation using a hierar-
chical VAE’s encoder. Two DDPMs are then trained in
this latent space to perform point cloud refinement. The
generated latent point clouds are then decoded back to
the original space using the VAE’s decoder before being
post-processed. Finally, a surface mesh is reconstructed
using a modern deep implicit model.

By comparing our proposed method to CGNet, we
observed that training the DDPMs in a hierarchical la-
tent space yields significant advantages in modeling
shape distributions, particularly in capturing fine de-
tails. Our method demonstrates superior local perfor-
mance by effectively handling the false positives, while
CGNet tends to produce anatomically inaccurate de-
tails, such as including small branches in some sections
of the colon. Furthermore, our method demonstrated
fine-grained precision in shape completion and consis-
tent proximity of the completed points to the reference.
Our conclusions were reinforced by the study on the
impact of latent space smoothness, which showed that
models trained in smoother spaces better preserved the
organ’s anatomy. However, it’s important to note that
CGNet generated denser and more uniform point clouds
compared to the latent model which tended to gener-
ate noisier and sparser point clouds. This phenomenon
is attributed to the encoding and decoding process be-
tween the original and latent spaces.

Our proposed post-processing and mesh reconstruc-
tion methods effectively resolved this issue, producing
high-quality meshes with detailed structures and min-
imal noise. Further fine-tuning of the post-processing
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parameters could enhance the shape quality. Addition-
ally, using Poisson disk sampling for point extraction re-
sulted in outputs with more uniform point density across
the organ’s surface. This finding suggests that enforc-
ing uniformity in the input enables the model to learn
evenly distributed points, capturing the characteristic of
even distances between points as a feature of the desired
output.

Unlike Balsiger et al. (2019) who suggests using a
point classification network to eliminate background
points in the segmentation result, our method utilizes
generative deep learning. This enabled our model to
generate new parts and complete partial and discon-
nected shapes obtained from the segmentation model.
Friedrich et al. (2023), on the other hand, adopted
PVD’s architecture (Zhou et al. (2021)) for generating
skull implants. Their method assumes that the con-
ditioner is entirely contained within the target shape
and maintains it fixed throughout the diffusion process.
However, in our case, the conditioner may contain noise
and fragments of other organs, rendering the use of such
techniques impractical since the false positive points
will still be present in the output. To overcome this
issue, we employed the CGNet architecture introduced
by Lyu et al. (2021). Unlike the model used in PVD,
CGNet does not fix the partial shape but rather extracts
its features to guide the generation process. By adopting
this strategy, our model successfully eliminated noisy
components from the masks in several cases.

We applied our pipeline to outputs generated by To-
talSegmentator, a well-known model that was trained
on one of the largest imaging datasets. Compared to
the corresponding masks refined by a physician, we no-
ticed a significant improvement in the surface represen-
tation performance. Additionally, the qualitative eval-
uation showed consistency with the results obtained on
our test set indicating the faithfulness of our synthetic
dataset to the actual outputs of the model and the gen-
eralizability of our model to new cases. On the other
hand, the model resulted in higher EMD values com-
pared to TotalSegmentator’s output. Besides model fail-
ures, this observation can be attributed to several fac-
tors. For instance, the cases included in this set suffered
mostly from local problems such as disconnections or
small parts included from the other organs and EMD
does not quantify well local dissimilarity. Moreover,
the reference and TotalSegmentator’s point clouds were
both generated using the same procedure (an applica-
tion of the marching cubes algorithm followed by Pois-
son disk sampling) which explains the higher similarity
between the density distributions of both sets.

5.1. Limitations
Despite demonstrating promising results, our method

for large intestine segmentation refinement still has cer-
tain limitations. Firstly, the model encounters difficul-
ties in effectively eliminating false positives that are

closely adjacent or attached to the actual segments of
the organ. This challenge arises because PointNet’s lay-
ers classify these points as neighbors of nearby true pos-
itives, leading to their inclusion in the clusters and the
contribution of their features to the generation process.

Secondly, the model occasionally struggles to con-
nect segments of the large intestine, particularly when
the missing portion lies in the rectosigmoid junction.
Besides, the model can produce anatomically inaccu-
rate shapes when the partial input is complex or exhibits
multiple curvatures. This phenomenon is attributed to
the high variability in the organ’s shapes across patients
and even within the same patient, due to its dynamic fill-
ing process. Expanding the size of the training set may
help the model to adequately cover the complex distri-
bution of the organ’s shape.

Additionally, the generated shapes do not always
align perfectly with the ground truth and may inter-
sect with neighboring organs, preventing the 3D model
from fitting in the corresponding computerized phan-
tom. This limitation arises because the current model
is only guided by the partial shape provided as a condi-
tioner, lacking crucial contextual information about the
surrounding organs.

5.2. Future Work
In future work, addressing the problem of false posi-

tives can be achieved through further engineering of the
neighborhood definition hyperparameters and attention
modules within the CGNet model. These enhancements
would enable the model to better distinguish between
true positives and false positives, ultimately improving
the refinement process.

To address the challenge of limited data availability,
one approach is to acquire more scans to increase diver-
sity. Additionally, a better selection of the data augmen-
tation parameters and sampling multiple partial shapes
from the same segmentation mask would prove benefi-
cial in providing the model with a more comprehensive
understanding of organ shape distribution and potential
segmentation model failures.

To avoid intersecting with neighboring organs and
improve the accuracy of the generated shapes, extract-
ing landmarks from the neighboring organs and using
them as a second condition of the generative models can
be explored. This approach would help the model re-
strict the region of generation and ensure better spatial
alignment with the patient’s phantom.

Expanding the model to handle multiple organs can
be accomplished by including their shapes to the dataset
as an additional class. However, the model cannot dis-
tinguish between organs if both masks are included in
the same data sample, extending the model with point
classification heads would make the model label-aware
and enable it to refine multiple organs simultaneously.

Currently, we depend on a separate pre-trained
model, Point-E, for mesh reconstruction. To enhance
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the reconstruction performance, we could fine-tune the
model on our data. Another viable approach would be
modifying the decoder of the VAE to directly output
signed distance functions. This adjustment would sim-
plify the process of mesh reconstruction, avoiding the
generation of sparse and noisy point clouds.

By implementing these solutions, we aim to enhance
the model’s performance in terms of false positive elim-
ination, dataset diversity, refinement of multiple organs,
and mesh reconstruction quality.

6. Conclusions

We have presented an end-to-end automatic pipeline
for refining 3D shapes of the large intestine, which
improves the surface reconstruction of the organ start-
ing from an erroneous segmentation. Our method is
based on geometric deep learning and denoising diffu-
sion probabilistic models. We formulate the refinement
process as a conditional point cloud generation prob-
lem performed in a hierarchical latent space. Through
a comprehensive evaluation of the method on both our
synthetic test set and real-world cases, our approach
has demonstrated promising results both quantitatively
and qualitatively. The refined 3D shapes exhibited im-
proved surface reconstruction and enhanced anatomical
accuracy compared to the outputs of the segmentation
model. This study validates the effectiveness of utiliz-
ing geometric DL and DDPMs in enhancing the surface
reconstruction of deformable anatomical structures, us-
ing the large intestine as an example.

Our method opens up possibilities for further im-
provement and can be extended to multiple applications
that could enhance the quality of computerized phan-
toms. Future work includes incorporating additional
contextual information from neighboring structures to
restrict the generation region and expanding the model
to perform label-aware refinement of multiple organs.
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Appendix A. Denoising Diffusion Probabilistic models: Mathematical formulation

Assuming a dataset D of M shape pairs (xi, ci), DDPMs are designed in two steps. The forward diffusion process
is implemented as a Markov chain with a fixed variance schedule which adds noise to the input iteratively in a total of
T time steps. In the following formulation the superscript i is omitted for simplicity:

q(x1:T |x0) :=
T∏

t=1

q(xt |xt−1) (A.1)

where q(xt |xt−1) is a Gaussian kernel defined as:

q(xt |xt−1) := N(xt;
√

1 − βt xt−1, βtI) (A.2)

The variances βt are selected such that the chain converges to a normal Gaussian distribution at step T, q(xT ) ≃
N(xT ; 0, I).

From eq. A.1 we can see that this process is recursive and the value at time step t depends on the previous steps 0
through t−1. To avoid calculating all the intermediate steps, a closed-form expression is given for obtaining the noisy
shape xt at any step t depending on only the clean shape x0. This expression is defined as:

q(xt |x0) = N(xt;αt x0, σ
2
t I) (A.3)

where αt =

√∏t
s=1(1 − βs) and σt =

√
1 − α2

t .

The reverse diffusion process is implemented as a second parameterized Marcov process with parameters θ that
inverts the forward diffusion, conditioned on the partial shape c:

pθ(x0:T−1|xT , c) =
T∏

t=1

pθ(xt−1|xt, c) (A.4)

with:
pθ(xt−1|xt, c) = N(xt−1; µθ(xt, c, t), ρ2

t I) (A.5)

where the mean µθ(xt, c, t) is learned by the network and ρ2
t are time step-dependent fixed variances.

To simplify the objective function used to train the model, the mean and variances in eq. A.5 are reformulated as
follows:

µθ(xt, c, t) =
1√

1 − βt
(xt − βt√

1 − α2
t

ϵθ(xt, c, t)) (A.6)

ρ2
t =

1 − αt−1

1 − αt
βt (A.7)

The network in this case takes the noisy input xt ∼ q(xt |x0), a diffusion step t and a partial point cloud as a condition c
and predicts ϵθ(xt, c, t) in A.6. Intuitively, ϵ is the actual noise added to the clean shape to obtain xt and ϵθ is the noise
predicted by the model. The simplified loss function is given in eq. A.8.

L(θ) = Ei∼U([M]),t∼U([T ]),ϵ∼N(0,I)
∥∥∥ϵ − ϵθ(αt xi

t + σtϵ, t, ci)
∥∥∥2

(A.8)

where U([M]) represents the uniform distribution over {1, 2,...,M}, U([T ]) represents the uniform distribution over
{1, 2,...,T}.

At inference, ancestral sampling is performed in an iterative fashion to generate the complete shape. First, xT is
obtained by sampling fromN(0, I) then xT−1 through x1 are iteratively drawn from pθ(xt−1|xt, c) (eq. A.5) until a clean
shape x0 is obtained. Note that we only sample a data pair (xi, ci) from the training set, a time step t, and Gaussian
noise ϵ at each training step. In other words, the iterative sampling approach is not performed during training.
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Appendix B. Additional Qualitative Results

Appendix B.1. Output Diversity for The Same Input

To investigate the stochasticity of the model, we generated different outputs using the same conditioner for a set of
cases. Fig. B.15 illustrates example results for two cases.

Reference Condition Output 5Output 4Output 3Output 2Output 1

Figure B.15: Examples of different outputs generated using the same condition.

The evaluation revealed that given the same conditioner, the model preserves the global appearance of the outputs
and generates shapes that differ in fine details which is consistent with the dynamic filling status of the organ. This
observation indicates the fidelity of the model to its input and its stability.

Appendix B.2. Global-Conditioned Generation

To test the nature of the features that the VAE is encoding, we conduct an experiment where we only condition the
ResNet-based DDPM on the global latent representations of the erroneous masks whereas we use an unconditioned
PVCNN model for the local DDPM. We train the model for 8000 epochs. Examples of the generated shapes can be
seen in Fig B.16

Reference Output OutputReference OutputReference

Figure B.16: Example outputs of the model trained using the global conditioning only.

The results show that the generated shapes differ largely in the details such as curvatures, thickness, and point
positions compared to the reference but exhibit certain similarities in the overall appearance which confirms that the
global latent representations are encoding coarse-level features that express the global appearance of the shape.
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Appendix C. TotalSegmentator Refinement

Reference TotalSeg TotalSeg + CGNet  TotalSeg + Ours

Figure C.17: Examples of TotalSegmentator outputs and their refinement results.
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Abstract

In recent years, significant advancements have been made in the field of computer vision, particularly in the area
of image generation. A notable breakthrough has come in the form of diffusion probabilistic models, which have
shown impressive capabilities in generating high-quality images from textual input. These models, such as DALL-E
2, Imagen, and Stable Diffusion, have revolutionized the way we perceive the connection between text and visual data.
However, the systematic evaluation of these models in the medical domain, where image data often consists of three-
dimensional volumes, remains limited.3D or 2D Synthetic images have significant potential in preserving privacy in
artificial intelligence applications and can serve as a means to enhance small datasets. In this study, we explore the
utilization of latent diffusion models in synthesizing medical imaging data, specifically focusing on breast imaging
in dynamic contrast-enhanced MRIs. Our approach involves generating three-dimensional volumes of pre-contrast
MRIs and subsequently synthesizing two-dimensional post-contrast slices. To quantitatively assess the performance
of the synthesized images, we incorporate measurements and expert evaluations from medical professionals who rate
the quality of the post-contrast synthesized images. Our results demonstrate the effectiveness of diffusion probabilistic
models in generating realistic medical imaging data, offering new possibilities for privacy preservation in AI and data
augmentation in the medical field.

Keywords:
Breast MRI, Synthetic image generation, Diffusion models, Image to image generation, Breast cancer diagnosis

1. Introduction

Cancer, a pressing and growing global concern,
stands as a prominent contributor to morbidity and mor-
tality, currently causing one in six deaths worldwide
Ferlay et al. (2018). Within this somber context, breast
cancer emerges as a matter of utmost significance. With
an annual incidence of over 2 million new cases, breast
cancer constituted 11.6% of all cancer cases in 2018,
affecting 24.2% of women. This alarming prevalence
positions breast cancer as the most frequently diag-
nosed cancer and the leading cause of mortality (6.6%)
among women on a global scale Wild C.P. (2020). Deep
learning models have played a crucial role in signif-
icant breakthroughs in various domains such as natu-
ral language processing and computer vision. These
achievements can be attributed to the extensive train-
ing of these models with diverse datasets. In addition,
the generation of synthetic medical data offers a promis-

ing and viable alternative, enabling large-scale research
to be conducted effectively while preserving the pri-
vacy of the patients Jordon et al. (2022), Wang et al.
(2021). This approach allows for meaningful explo-
ration and analysis while mitigating concerns regarding
the privacy and security of sensitive data. Some publicly
available datasets have grown to contain millions of im-
ages and text sentences, contributing to the improved
performance of deep neural networks in these domains.
Deng et al. (2009). Significant advancements were wit-
nessed in medical image analysis through the utilization
of deep neural networks to address various tasks, includ-
ing segmentation, structure detection, and computer-
aided diagnosis. Magnetic Resonance Imaging (MRI)
has revolutionized the detection of breast lesions, show-
casing remarkable advancements in the field of medi-
cal image analysis. These advancements include the de-
velopment and application of deep neural networks for
tasks such as accurate segmentation of breast structures,
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precise detection of abnormalities, and computer-aided
diagnosis, leading to improved diagnostic accuracy and
patient care. Shen et al. (2017). However, one cur-
rent limitation of medical imaging projects is the lack
of availability of large datasets. Additionally, acquiring
high-quality breast MRI images poses challenges due to
long scan times, motion artifacts, the need for contrast
agents, and high acquisition costs. This master’s thesis
focuses on the development and evaluation of two inter-
connected methodologies that leverage diffusion models
to generate Dynamic Contrast-Enhanced (DCE) breast
MRI imaging. DCE breast MRI is a widely used imag-
ing technique that provides valuable information for the
diagnosis and characterization of breast lesions. DCE
breast MRI offers several advantages over other imag-
ing modalities, such as mammography or ultrasound, as
it can detect subtle changes in blood flow and vascular
permeability, aiding in the detection and assessment of
breast lesions Mann et al. (2019).In DCE breast MRI,
the choice of contrast agent and its administration pro-
tocol is crucial. Gadolinium-based contrast agents are
commonly used, administered intravenously, to capture
the enhancement pattern over time. Different imaging
sequences, such as T1-weighted or T2-weighted, pro-
vide valuable information about lesion morphology and
tissue characteristics. Another important fact is the res-
olution plays a vital role where higher spatial resolution
allows the detection of smaller lesions and improves
lesion characterization. To illustrate the concepts dis-
cussed, in Figure 1 an example of a DCE breast MRI can
be visualized. Figure 1 shows a set of images represent-
ing the pre-contrast, post-contrast, and contrast uptake
curve. Contrast uptake patterns and wash-in/wash-out
rates offer valuable insights into the characteristics of a
lesion. Kuhl et al. (2005) proposed a widely used classi-
fication scheme that categorizes breast masses based on
the shape of their contrast-time intensity curves. The
classification scheme indicates that breast masses ex-
hibiting a gradual increase, in contrast, uptake (Type I
pattern) are more likely to be benign, while masses with
rapid contrast uptake and wash-out (Type III) are more
likely to be malignant. Lesions displaying a plateau en-
hancement pattern (Type II) fall in an intermediate cat-
egory.

The first part of the thesis addresses the generation
of high-resolution synthetic pre-contrast 3D breast MRI
images using diffusion models. Synthetic pre-contrast
3D breast MRI images are essential in establishing base-
line characteristics of breast lesions, providing crucial
information for accurate diagnosis and treatment plan-
ning. However, acquiring high-quality breast MRI im-
ages for every patient is often impractical or resource-
intensive. Synthetic imaging techniques offer a promis-
ing solution by enabling the generation of realistic and
high-fidelity images, bridging the gap between limited
imaging resources and the increasing demand for ac-
curate diagnostic tools. Later we focus on addressing

Figure 1: Tumor MR enhancement patterns (Elster).

the need for post-contrast images, which play a crucial
role in evaluating the enhancement patterns of breast
lesions. Traditional post-contrast imaging requires the
administration of contrast agents, which can be inva-
sive and time-consuming. Our objective is to develop
a methodology that can generate synthetic post-contrast
2D images from the pre-contrast images, eliminating the
need for additional contrast agent administration which
is used to enhance the visibility of tumors, lesions, in-
flammations, and blood vessels. Additionally to have
diverse synthetic post-contrast to increase the limited
amount of data.

The ultimate goal of this research is to contribute to
the field of medical imaging and improve patient care by
developing and evaluating the methodologies for gener-
ating synthetic pre-contrast 3D breast MRI images and
synthetic post-contrast 2D images from the obtained
synthetic pre-contrast images. The subsequent chapters
of this thesis will provide a detailed explanation of the
methodology, experimental setup, results, and discus-
sions of the development and evaluation of the proposed
techniques. Additionally, the limitations and future di-
rections of this research will be explored, paving the
way for further advancements in breast MRI imaging.

2. Related Work

The success of different types of generative models
in various fields has fueled further research and explo-
ration of their potential applications across various cre-
ative, entertainment, and data-driven fields. Following
this the medical domain has shown persistent interest in
harnessing the success of latent diffusion models, rec-
ognizing their potential for a diverse range of appli-
cations. The scarcity of medical data, particularly in
the form of 3D CT and MRI data, has posed a signifi-
cant limitation in the progress and innovation of medi-
cal imaging and analysis techniques. Generative Adver-
sarial Networks (GANs) on the other hand have gained
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widespread usage across diverse domains for generat-
ing synthetic images both medical and non-medical do-
mains Creswell et al. (2018), Kwon et al. (2019). To
mitigate the problem of computational expenses, A hi-
erarchical 3D Generative Adversarial Network (GAN)
was proposed by Sun et al. (2022), allowing the gen-
eration of realistic 3D thorax CT and brain MRI im-
ages with resolutions of up to 256 × 256 × 256 voxels.
The approach involved generating a low-resolution ver-
sion of the image and using it as a reference to gener-
ate high-resolution sub-volumes. Still, GANs have the
limitation of their instability during training, often fail-
ing to converge and struggling to capture the full range
of variability in the generated data. This issue, com-
monly referred to as mode collapse results in generat-
ing diverse samples Kodali et al. (2017). Dhariwal and
Nichol (2021) showed that diffusion models can achieve
image sample quality superior to the current state-of-
the-art generative models. But there is a relatively small
community of researchers dedicated to exploring diffu-
sion and latent diffusion models for the generation of
synthetic 3D medical data. Three-Dimensional Medical
Image Synthesis with Denoising Diffusion Probabilistic
Models by Dorjsembe et al. (2022) demonstrated how
3D brain images are generated with the help of Diffu-
sion probabilistic models. This work presents the first
attempt to investigate the DDPM to enable 3D medi-
cal image synthesis. They utilized their approach on
1500 contrast-enhanced anonymized T1 images which
is comparatively a small dataset. But their generated
samples performed similarly to the GAN-based models
with an MS-SSIM Wang et al. (2003) score of 0.8241.
There is one publication that has utilized diffusion mod-
els in the latent space to generate 3D MRI data using
a comprehensive database of brain scansPinaya et al.
(2022). They used the UK Biobank datasetSudlow et al.
(2015) which has 31740 MRI images. They were able
to sample high-quality images with sharp details and re-
alistic textures compared to VAE-GANs, and LSGAN2.
In addition to generation diversity, they outperformed
the other models with MS-SSIM of 0.65 and 4-G-R-
SSIM (Rouse and Hemami (2008),Chen et al. (2006))
of 0.3883. Despite the existence of studies focusing
on synthetic brain and other organ generation, the re-
search on synthetic 3D breast MRI generation remains
relatively limited. A recent work ”Medical Diffusion:
Denoising Diffusion Probabilistic Models for 3D Med-
ical Image Generation” by Khader et al. (2022) was the
only available work found for 3D breast MRI synthe-
sis. To encode images into a meaningful latent rep-
resentation, they have adapted VQ-GAN’s Esser et al.
(2021) latent representation. Along with other medi-
cal data, The authors of the study evaluated their model
by utilizing a breast cancer MRI dataset Saha et al.
(2018) as the same dataset used in our project which
aligns with the dataset employed in our project. Un-
like synthetic medical data generation, there are several

works out there that demonstrate and facilitate the need
for contrast synthesis. Grant-Jacob et al. (2021) ex-
plored the transformation in magnetic resonance imag-
ing via Deep learning using data from a single asymp-
tomatic patient where out of various image-to-image
translation models pix2pix Isola et al. (2017) yielded
better results. Another work on the synthesis of post-
contrast T1-weighted MRI for tumor response assess-
ment in neuro-oncology Preetha et al. (2021) reported
that cGAN based on pix2pix achieved SSIM score of
0.818 which is higher than 3D CNN based UNet. Costa
et al. (2017) proposed an approach that learns to gen-
erate eye fundus images through the data. The authors
matched real eye fundus images with their proper vessel
tree and trained them to train retinal vessel segmentation
images. Then, the model was trained the interpretation
from the vessel tree to a generated retinal image.

Overall, In the context of breast imaging, there is
not much available prior work for synthesis. To ad-
dress this gap and achieve our objective, we propose a
synthetic breast MRI image generation process utiliz-
ing established latent diffusion models. Our study fo-
cuses on investigating the influence of various param-
eters and settings on the quality and performance of
synthesized images. We particularly emphasize the ap-
plication of latent diffusion models, including autoen-
coders with VQ-VAE/KL-regularization. Additionally,
we adopt the widely acknowledged pix2pix architecture
for the post-contrast generation of 2D breast MRI slices.

3. Material and methods

3.1. Data Acquisition

The breast cancer MRI dataset utilized in this study
is sourced from the publicly available dataset Saha
et al. (2018). The dataset is a retrospective collection
from a single institution and comprises 922 patients di-
agnosed with biopsy-confirmed invasive breast cancer.
The data covers a span of over a decade, providing a
comprehensive representation of cases during that pe-
riod. The dataset was curated to support research in
the field of breast cancer diagnosis and characterization
using MRI imaging. Pre-operative dynamic contrast-
enhanced (DCE)-MRI data were obtained from Picture
Archiving and Communication Systems (PACS) and de-
identified for release in The Cancer Imaging Archive
(TCIA). The dataset consists of axial breast MRI im-
ages acquired using 1.5T or 3T scanners with patients
in the prone position. The DICOM format contains sev-
eral MRI sequences, including a non-fat saturated T1-
weighted sequence, a fat-saturated gradient echo T1-
weighted pre-contrast sequence, and typically three to
four post-contrast sequences. The DCE-MRI images
were annotated by radiologists, indicating the locations
of lesions within the breast.
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3.2. Data Pre-processing

The breast cancer dataset was first preprocessed by
stacking all the DICOM sequences of each patient into a
single nifti volume. This merging was performed while
preserving the original spacing and orientation of the
sequences. Afterwards, all images were resampled to
a voxel spacing according to the first volume (0.803
mm, 0.803 mm, 1 mm) and then using the correspond-
ing annotated ROI that outlined the breast to crop out
a region of interest of only the breast out of the chest.
Different orientation conventions commonly used in the
context of three-dimensional (3D) MRI images RAI
(Right-Anterior-Inferior), LPI (Left-Posterior-Inferior)
were found. These views represent different coordinate
systems that define the spatial orientation of the image
slices within the 3D volume. As using a consistent ori-
entation across all images ensures that the information
is aligned consistently for the diffusion model, all the
images were reoriented to the RAI orientation. The pre-
processing steps described in this work were derived
from the methods proposed by Khaled et al. (2021) in
their study, where they utilized the same dataset. The
images were then split into two halves, such that the left
and the right breast were on separate images. By split-
ting the volumes the dataset was a total of 1844 separate
volumes in the end. In Figure 2, the breast cropping pro-
cess for patient 1 is illustrated.

Figure 2: Breast ROI cropping and splitting visualization for Patient
1 on the Middle Slice along Axial Plane.

Finally, the images were resized to a uniform shape
of 64x64x32, 96x96x64, and 128x128x96 voxels based
on the different experiments. All the images were min-
max normalized to the range between -1 and 1. The pre-
processing steps were done for the pre to post-contrast
synthesis involved extracting the middle slice consist-
ing of the lesions along a specified z-axis(axial) figure
3 from each sequence of both pre and post-contrast im-
ages. The middle slice in MRI is often considered im-
portant in medical imaging, particularly in the context
of lesion analysis. This is because the middle slice is
typically chosen to represent the central portion of the
anatomy being imaged, providing a representative view
of the structures and abnormalities within the region of
interest. Subsequently, the extracted slice was cropped
to isolate the breast region, if present, thereby focusing
on that specific area of interest. The normalization pro-
cess was followed by global normalization.

Global Normalization: In global normalization, pre-
contrast sequences are normalized together, and the in-

Figure 3: Sample of an Extracted middle slice of post-contrast with
visibly enhanced regions.

tensity values of the voxels from the post-contrast se-
quences are normalized together. The intensity val-
ues of the voxels across the pre-contrast and post-
contrast sequences are adjusted to their respective com-
mon scale, Finally, the resulting cropped slices were
saved as PNG files. In the context of using the pix2pix

Figure 4: : Sample training Pair of Pre and Post-contrast(Global Nor-
malization)

architecture Isola et al. (2017) for contrast synthesis, the
input images consist of a set of pre-contrast images and
their corresponding post-contrast images. To facilitate
the training and translation process, these paired im-
ages are arranged in a specific format where the pre-
contrast image is stacked adjacent to the corresponding
post-contrast image. The resulting combined image ex-
hibits a side-by-side configuration, where the left part
of the combined image represents the pre-contrast in-
put image, and the right part represents the correspond-
ing post-contrast target image 4. As a result, the model
receives a pair of real input and real target aiming to
generate a fake target. During training the data was
augmented by applying the ColorJitter transformation,
with a specific emphasis on contrast. Contrast - refers to
the difference in brightness between the image’s light-
est and darkest areas. This data augmentation technique
introduced random color variations to the images, en-
hancing the contrast component. During training, all
the images were resized to the size of 256x256 pixels.

3.3. Architechture
DCE MRI synthetic Generation utilizes the Latent

Diffusion Model (LDM) Rombach et al. (2022) for gen-
erating synthetic pre-contrast 3D MRI images. The fo-
cus is on generating both pre and post-contrast images.
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Figure 5: Schematic concept of the synthetic Dynamic Contrast breast MRI Generation.

The middle slices of MRI images are considered cru-
cial for capturing important details about the lesion. Ex-
tracted pre and post-contrast 2D middle slices are paired
for image-to-image translation. This approach allows
the generation of synthetic post-contrast images. Over-
all, the proposed architecture combines the Latent Dif-
fusion Model, and image-to-image translation to gen-
erate high-quality synthetic 3D pre-contrast and post-
contrast 2D MRI images, effectively capturing the de-
sired information and enhancing the representation of
contrast-enhanced regions. Figure 5 shows the architec-
ture of the proposed method. data.

3.3.1. Latent Diffusion Model

Figure 6: Latent Diffusion model Architecture

In order to generate 3D high-resolution images LDM
was used, which is a two-step approach. Firstly, an
encoder model is trained to encode the input images,
producing a latent representation. Then, the diffusion
probabilistic model is trained using this latent represen-
tation to generate synthetic images with its generative
properties. This process involves training an encoder
to extract meaningful information from the input data,
which is then utilized by the diffusion model for image
synthesis. During the encoding of the image, it adds
additional channel numbers that represent the number

of channels or feature maps present in the input data.
It represents the dimensionality of the input data in the
channel axis. MONAI (Medical Open Network for AI)
framework developed by the MONAI community Con-
sortium (2022) was used for implementing the diffusion
and Latent diffusion model in our project. The encoder
and diffusion components from MONAI provided a ro-
bust foundation for our research, enabling us to effec-
tively model and generate synthetic medical images. To
obtain the latent representation 2 encoder architectures
were explored. Figure 6 shows a generic architecture
of LDM used for this project. In the following, back-
ground information on the Vector Quantised-Variational
Autoencoder Van Den Oord et al. (2017), KL encoder
Pinaya et al. (2022), and Denoising diffusion probabilis-
tic model Sohl-Dickstein et al. (2015) are given.

VQ-VAE: The VQVAE (Vector Quantised-
Variational Autoencoder) is a generative model
that combines concepts from variational autoencoders
(VAEs) and vector quantization. It consists of an
encoder network, a decoder network, and a codebook
of discrete latent vectors(vector quantizer). The goal
of the VQVAE is to learn a compressed representation
of input data that captures the salient features. The
VQVAE is trained using a combination of reconstruc-
tion loss and quantization loss. The implementation
of the VQVAE was done in MONAI framework based
on Van Den Oord et al. (2017). Different numbers of
embedding dimensions were explored in order to get the
proper reconstruction of the images including 3, 8, 16,
and 32. Figure 7 shows the number of channels and the
containing morphological attributes of an input image
after encoding it with an embedding dim of 16 along
each channel. During training the VQ-VAE model
for reconstruction showed great performance with
embedding dim greater than 16. While integrating with
the diffusion model, it collapsed and gave nan values
for the prediction. The prediction showed improvement
with an embedding dimension of 3; however, the
reconstruction was poor, and the prediction lacked
coherence or logical consistency with the diffusion
model. Thus VQ-VAE was not part of the final pipeline
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and its integration was left for future work.

Figure 7: Sample encoded image with embedding dimension of
16. (i.e if the image is 128x128x96,the embedded image will be of
16x32x32x24)

KL Encoder: The autoencoder model is trained in an
adversarial manner following Esser et al. (2021). The
implementation of the KL encoder is an adaptation of
Pinaya et al. (2022), where they use LDM to generate
synthetic Brain MRI. The AutoencoderKL model con-
sists of an encoder and a decoder. The encoder takes in-
put data and maps it to a lower-dimensional latent space
representation, while the decoder reconstructs the origi-
nal input data from the latent space representation. The
compression model was an essential step to allow us to
scale to high-resolution medical images. The Autoen-
coderKL model uses multiple loss functions for training
with a combination of L1 loss, perceptual loss Zhang
et al. (2018), a patch-based adversarial objective Wang
et al. (2018), and a KL regularization of the latent space.
The encoder maps the breast image to a latent represen-
tation with a size of 24 × 24 × 16, 32 × 32 × 24 de-
pending on the different-sized experiment. The channel
dimension of the latent embedding is set to 3, indicating
that each atomic element in the latent space has a vector
of three values. In a study conducted by Khader et al.
(2022). on medical diffusion, it was observed that using
a smaller compression factor of 4 resulted in a more pre-
cise reconstruction of anatomical features. Thus, in our
experiments, we kept the compression factor of 4 (i.e.,
images of size 1287x128x96 have a latent dimension of
32x32x24)

Diffusion model: Diffusion models, as proposed by
Sohl-Dickstein et al. (2015), are probabilistic models
that refer to a parameterized Markov chain specifically
designed to learn a data distribution, denoted as p(x).
Its objective is to generate samples that closely match
the given data distribution p(x) within a finite time
frame. These models achieve this by iteratively re-
moving noise from a normally distributed variable. In
essence, the learning process involves reversing a fixed
Markov Chain of length T (Pinaya et al., 2022).

• Forward Diffusion Process: In the forward diffu-
sion process we take an MRI image x0 and con-

tinuously destroy the structural integrity by adding
Gaussian noise for increasing timesteps T such that
they move out or move away from their existing
subspace which is a normal/gaussian distribution
as shown in Figure 8. Typically done using a fixed
linear variance scheduler. So, given the data at
time step t − 1, q(xt |xt − 1) known as forward dif-
fusion kernel, represents the normal distribution of
the data at timestep t. The distribution q in the for-
ward diffusion process is defined as Markov Chain
given by equation 1.

q(xt |xt−1, x0) = N(xt;
√

1 − βt xt−1, βtI) (1)

• Reverse Diffusion process: The idea is to reverse
the forward diffusion process can be visualized in
Figure 8. The reverse process is modeled as an-
other Markov chain, aiming to reconstruct the orig-
inal input x0 from the noisy version. Through it-
erative learning, this reverse chain learns to undo
the effects of the noise and restore the MRI im-
age to its original form. So, given the data at time
step t, it models the probability of the previous data
point xt−1 so that the data distribution p(xt − 1|xt),
known as reverse diffusion kernel can be inferred
to recover the original input from the noisy data.

Figure 8: The directed Diffusion graphical model from Ho et al.
(2020).

• Adding Noise: The DDPM paper describes a cor-
ruption process that adds a small amount of noise
for every ’timestep’. Given xt−1 for some timestep,
we can get the next (slightly more noisy) version
xt with equation 1. Where, we take xt−1, scale it
by

√
1 − βt and add noise scaled by βt. This β is

defined for every t according to some schedule and
determines how much noise is added per timestep.
Now, we don’t necessarily want to do this opera-
tion 500 times to get x500 so we have another for-
mula to get xt for any t given x0 (Hug). Initially,
the noisy x is mostly x (

√
ᾱt = 1) but over time the

contribution of x drops, and the noise component
can be visualized in Figure 9.

q(xt |x0) = N(xt;
√
ᾱtx0,

√
(1 − ᾱt)I) (2)

The neural network used to model the noise is typ-
ically chosen to be a U-NetRonneberger et al. (2015),
Khader et al. (2022). In order to support 3D data, 2D
convolutions were replaced by 3D convolutions. The
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Figure 9: Noising across different timesteps.

implementation of the U-net model was accomplished
using MONAI. Where the Noise Scheduler compo-
nent was incorporated into the diffusion model. We
utilized a DDPMScheduler, which allows us to con-
figure the diffusion process with 1000 timesteps and
a scaled_linear profile for the beta values. This
particular profile, proposed in Rombach et al. (2022)
work on ”High-Resolution Image Synthesis with La-
tent Diffusion Models,” yielded superior outcomes com-
pared to the linear profile originally introduced in the
DDPM’s paper. We set the parameters beta_start and
beta_end to define the range of beta values, which play
a pivotal role in determining the intensity of noise added
to the images.

To generate synthetic images, first, the autoencoder
model was trained on the whole dataset with the desired
size in our case the 2 different input sizes 128x128x96,
and 96x96x64 voxels. The diffusion model expects the
input to be normalized in the range of -1, 1 (Ho et al.,
2020) so, the latent representation was also closer to this
range. Once the encoder model is trained and knows
how to encode and decode, this was used to train the
diffusion model to generate the 3D synthetic volumes.

3.3.2. Pre to Post Contrast Synthesis
To generate fake post-contrast breast MRI images

the architecture of Isola et al. (2017), ”Image-to-Image
Translation with Conditional Adversarial Networks”
was followed. The pix2pix model is mainly based on
the concept of cGAN (conditional generative adversar-
ial network), which combines a generator network and
a discriminator network. The objective of the pix2pix
model is to learn a mapping between a source image x
and a random noisy image z to generate the correspond-
ing target image y, denoted as x, z→ y. The discrimina-
tor network is trained to distinguish between real target
images y given the source image x and fake target im-
ages generated by the generator. The objective function
of the pix2pix model represents the loss or error that

measures the difference between the generated images
and the real target images, guiding the training process
to improve the quality and realism of the generated out-
puts as follows.

LPix2Pix(G,D) = Ex,y[log D(x, y)]
+ Ex,z[log(1 − D(x,G(x, z)))] (3)

In the following, background information on the Gener-
ator and the Discriminator of pix2pix is given.

• U-net Generator : The generator of the pix2pix
cGAN is a modified U-Net Ronneberger et al.
(2015). A U-Net consists of an encoder (down-
sampler) and a decoder (upsampler). During the
downsampling phase, spatial information is pro-
gressively extracted and passed from one convo-
lutional block to the next, culminating in the bot-
tleneck region. Upsampling, on the other hand,
begins from the bottleneck and involves transpose
convolutional blocks that expand the information
while incorporating details from the corresponding
downsampling blocks. This concatenation of in-
formation enables the network to learn and gener-
ate a more accurate output by leveraging the com-
bined knowledge from different scales of the input
data. The U-Net architecture allows for capturing
both low-level and high-level features in the image
translation process. It helps to preserve the spatial
information and improve the overall performance.

• Markovian Discriminator Architecture: The dis-
criminator network in pix2pix employs a Patch-
GAN architecture, which performs image classifi-
cation at the patch level. Instead of classifying the
entire image as real or fake, it assesses the authen-
ticity of the N × N image patch. The discriminator
is run convolutionally across the image with 70×70
patches, averaging all responses to provide the fi-
nal output. The discriminator has fewer parameters
compared to the generator, it is effectively faster.

The generator and discriminator are trained in an adver-
sarial manner. The generator aims to minimize the ad-
versarial loss, which encourages the generated images
to be classified as real by the discriminator as illustrated
in Figure 10. Additionally, a pixel-wise loss L1 is used
to enforce pixel-level similarity between the generated
and real images. The L1 loss with a λ factor of 100
is added to the cross entropy loss. According to Isola
et al. (2017) this yields better results. The combined
loss guides the learning process and facilitates the gen-
eration of realistic synthetic post-contrast MRI images.

3.4. Experiments
To use the latent representation of VQ-VAE different

numbers of latent channels were used for the reconstruc-
tion and the in this case the larger number the better the
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Figure 10: Diagram illustrating the process for training the Pix2Pix
network

reconstruction was. A latent channel of 16 yielded bet-
ter results than the one with 8 or 3. For LDM both en-
coder and diffusion models are trained on NVIDIA A40
with 46 GB graphics processing unit (GPU) RAM card
with a batch size of 4 for 150K iterations. To address
memory limitations and enhance the training process in
the diffusion model, we employed gradient accumula-
tion techniques by accumulating gradients over multi-
ple smaller batches. Both models took approximately
4 days to finish training. The KL encoder was trained
in 2 different data sizes 96x96x64, and 128x128x96
voxels. It is important to emphasize that the autoen-
coder must undergo training using data that matches the
same size as the data it will be used within the diffu-
sion model. Given that contrast synthesis operates in
a two-dimensional context, the approach of employing
available pre-trained weights from the pix2pix model
was conceived. But as those models are trained for
specific pair of natural images it wasn’t feasible to use
them for medical imaging. The Pix2Pix was trained us-
ing an NVIDIA A30 with a 24 GB graphics processing
unit (GPU) RAM card for approximately 2 hours with a
batch size of 16,8 and 4 for 500 epochs.

3.5. Experimental Setup
The software implementation for this project utilized

various tools and technologies. The core framework
employed was MONAI (Medical Open Network for
AI) version 1.1.0, which is a Python-based open-source
framework specifically designed for medical imaging
tasks. The implementation was done in Python version
3.8.16. Visual Studio Code (VSCode) was used as the
IDE for development. The implementation was carried
out on a Linux operating system. The NVIDIA A40
46GB GPU and NVIDIA A30 24GB GPU were used
for accelerated computations during training and infer-
ence.

4. Results

Even though we do not have any prior work to com-
pare any metrics to evaluate the synthetically generated
3D volumes we have used multi-scale structural simi-
larity metric (MS-SSIM) wang2003multiscale to eval-
uate the diversity of our LDM model. MS-SSIM is a

Figure 11: Visualization of Middle Axial slice of Generated
128x128x96 (height, width, depth) synthetic MRI volumes with
LDM.

more advanced form of SSIM, performed at multiple
scales through a multi-step downsampling process. We
averaged 50 synthetic sample pairs of the same dataset.
Higher MS-SSIM scores indicate the similarity between
the generated synthetic images is similar. Conversely,
lower MS-SSIM scores suggest a lower resemblance be-
tween the synthetic images. Thus a lower MS-SSIM
demonstrates the model is capable of generating more
diverse images. In Mao et al. (2017) the GAN model,
with its high MS-SSIM score of 0.999, lacks the ca-
pability to generate diverse images. Consequently, the
synthetic images produced by the GAN model often ap-
pear identical. Table 1 shows the MS-SSIM scores of
LDM for experimented sizes where we have lower MS-
SSIM scores similar to the original images.

Table 1: MS-SSIM scores for synthetic images with LDM and real
images.

Modality Image Size MS-SSIM
(Height, width, depth)

LDM 96x96x64 0.54 ± 0.08
LDM 128x128x96 0.57 ± 0.15

Real Images 128x128x96 0.49 ± 0.10

Figure 12: Visualization of Middle Axial slice of Generated 64x64x32
(height, width, depth) synthetic MRI volumes with DDPM.

For the contrast synthesis, we calculated structural
similarity (SSIM) (Yao et al., 2021) between the syn-
thetic post-contrast and its ground truth expressed in
equation 4.

SSIM(I,G) =
(2µIµG +C1)(2σIG +C2)

(µ2
I + µ

2
G +C1)(σ2

I + σ
2
G +C2)

(4)
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Figure 13: Visualization of Middle Axial slice of Generated 96x96x64
(height, width, depth) synthetic MRI volumes with LDM.

Figure 14: Real and generated post contrast with their corresponding
pre Contrast.

In addition, to quantify the performance of the gener-
ated images we calculate the Peak Signal-to-Noise Ra-
tio (PSNR) for all the generated images. The PSNR is
a metric that quantifies the quality of an image by mea-
suring the ratio of the maximum possible signal power
to the power of the noise in the image, defined as

PS NR = 10log10


max2(I,G)

1
N×MΣM,N(I(m, n) −G(m, n))2

 (5)

where N and M represent the total number of rows and
columns of pixels, and m and n represent the pixels
in each row and column respectively, the expression
’max(I, G)’ refers to the maximum intensity value be-
tween the actual ground-truth image I and the generated
image G. A greater number represents higher accuracy
of the generated image. In Table ?? the PSNR and SSIM
scores can be seen.

Table 2: Comparison of SSIM and PSNR values for different modali-
ties

Modality SSIM PSNR (dB)
Pix2pix 0.76 26.49

Pix2pix + Data augmentation 0.80 29.53

To further quantify the results in terms of diversity
and if the generated post-contrast images can take the
spot of the real post-contrast we evaluated the images
by a radiologist with 30 years of experience. The expert
was shown 30 pairs of Real and fake post-contrast im-
ages from the test set and was told to identify the real

post-contrast from them. The evaluation consisted of 3
quotas as part of the evaluation: 1)Realistic only minor
unrealistic errors, 2) Can’t differentiate if fake or real,
and 3)Not realistic. Out of the 30 image pairs the radi-
ologist considered 9 fake images as real and for 10 pairs
it was not decidable for either fake or real Figure 15 vi-
sualizes assessment. Generated synthetic post-contrast
images from the test set are illustrated in Figure 14.

Figure 15: Quantitative evaluation of the image synthesis for 30 test
cases.

5. Discussion

In our project, we encountered several challenges that
affected the performance of the LDM. These challenges
were primarily attributed to limitations in data avail-
ability and resizing techniques employed during prepro-
cessing. Training the model with a very small dataset
was a major challenge that hindered the encoder mod-
els’ ability to effectively understand the patterns in the
data for encoding. The encoded representations lacked
accuracy and couldn’t capture the complex details found
in the original images16.

Figure 16: Recontruction of the axial plane with KL encoder

To facilitate training with the available computational
resources the images were resized to a smaller volume
from 64 × 64 × 32 upto 128 × 128 × 96 voxels. How-
ever, this downsizing process introduced its own set of
issues. Firstly, downsampling the images caused a loss
of essential finer details, leading to a noticeable degra-
dation in the quality of the generated images. The re-

20.9



Synthetic Dynamic Contrast Enhanced Breast MRI Generation 10

sizing method, as opposed to cropping, further exac-
erbated the anatomical loss of the images, resulting in
a significant impact on the overall image fidelity. To
address these limitations, it would be beneficial to con-
sider cropping the images to their desired size instead of
resizing them. This approach would preserve more in-
formation and resolution, enabling both the encoder and
the diffusion model to better learn the underlying data
distribution. By mitigating the loss of essential details
caused by resizing, the resulting images are expected
to exhibit improved reconstruction quality. In (Pinaya
et al., 2022) this autoencoder worked very well in terms
of reconstruction having the benefit of a large dataset
and optimal size while preserving the original resolu-
tion. The VQ-VAE reconstruction exhibited realistic re-
construction compared to the Kl encoder 17. However,
it was observed that the latent distribution of the VQ-
VAE did not align with the expected distribution of the
diffusion model. As a result, the VQ-VAE failed to ef-
fectively learn during training and provided unrealistic
predictions.

Figure 17: Recontruction of axial plane with VQ-VAE

The images generated with DDPM showed finer and
more realistic details than LDM in this case, still, it was
not possible to generate the images on a bigger scale as
DDPM is highly computationally expensive. One recent
work Khader et al. (2022) that takes the latent represen-
tation of the VQ GAN for breast with the same dataset
provided better reconstruction and due to computational
complexity and time limitation. One of the major diffi-
culties encountered in the post-contrast synthesis task
was the extensive similarity observed between the pre-
contrast and post-contrast images. The goal is to en-
sure that the similarity between the generated (fake)
post-contrast images and the real post-contrast images is
higher compared to the similarity between the original
pre-contrast and post-contrast images. In Figure 18 we
can see that the peak signal-to-noise ratio between pre-
contrast and post-contrast and fake post-contrast and
real post-contrast is quite close but the fake post vs real
post is higher. In addition to, access to a small set of data
for training a GAN, this model was performed to cap-
ture the similar presence of contrastive areas. The per-
formance improved with data augmentation. Another
thing to mention in some cases the fake image exhibits
contrast in different areas of the image which clearly
didn’t show similarity with the ground truth. But during
the visual assessment with the radiologist, some cases

which were different from the actual post-contrast con-
sidered as the real ones. This again can be considered
as a benefit of this synthetic generation where it had the
ability to generate diverse images while still being in the
context.

Figure 18: Box plot for PSNR score between pre and real post-
contrast and fake and real post-contrast.

The development of synthetic DCE breast MRI gen-
eration involves combining two methods, with the inten-
tion of utilizing synthetic pre-contrast images to gener-
ate synthetic post-contrast images. However, this inte-
gration proved challenging due to the smaller size and
lack of anatomical detail in the synthetically generated
3D images and left for future work.

5.1. Future Work

Due to limited time and computational resources, en-
coders with larger-sized images were not possible. To
address this issue, we plan to employ mixed precision
techniques and gradient checkpointing to optimize the
training process and enable the use of larger images.
Additionally, we aim to enhance the realism of the
generated MRI volumes by experimenting with differ-
ent parameter settings. Furthermore, we intend to ex-
tend our methodology to fully incorporate 3D image-to-
image translation techniques, allowing us to work with
3D volumes for more comprehensive transformations.
Moreover, we will explore the implementation of the
latent representation from the VQ GAN to improve re-
construction quality and make a comparative analysis
with existing approaches.

6. Conclusions

In this paper, we explored the implementation of the
synthetic breast MRI image generation process using
existing diffusion models with an emphasis on latent
diffusion models(encoders in particular VQ-VAE/ KL-
Encoder) with the extension of contrast synthesis where
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we investigated the impact of different parameters and
settings on the synthesized images’ quality and per-
formance. Despite the limitations posed by the exist-
ing literature, dataset size, and computational resources,
our method was able to yield fruitful results and suc-
cessfully generate synthetic 3D and 2D MRI images.
The generated images showcased promising potential in
capturing relevant anatomical structures and contextual
information. While further improvements are necessary
to address the challenges we encountered, our approach
demonstrates the feasibility and value of synthetic im-
age generation in the field of medical imaging. This
opens up possibilities for future research and develop-
ment in improving the quality and applicability of syn-
thetic MRI images for various clinical applications.
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Abstract

Thyroid nodule classification is crucial for the accurate diagnosis and management of thyroid diseases. However,
visual classification by physicians has limitations, including time consumption, potential inaccuracies, and the
risk of subjecting patients to unnecessary and stressful Fine Needle Aspirations (FNAs). Moreover, inter- and
intraobserver variabilities further complicate the process.

In this study, Deep Learning (DL) models are explored for thyroid nodule classification based on 2D ultrasound
(US) images. The ”Attention-Densenet121” network, developed in previous work, is optimized to improve its
performance. The objective of reducing unnecessary FNA procedures is addressed. The Bethesda score was
utilized as the groundtruth, and the nodules were classified as requiring FNA or not requiring FNA.

Two configurations of the network, namely the mono-input and multi-input settings, are investigated considering
the two different orientations of US images of thyroid nodules. A carefully constructed dataset of US images is
utilized for model training and evaluation. The models are assessed based on their accuracy, F1-score, sensitivity,
and specificity. The model with the highest specificity, aligning with the primary objective, is considered the
best. Additionally, different fusion strategies were employed with the multi-input model to explore the combined
features from both image planes.

The results highlight the effectiveness of the mono-input models in accurately identifying samples from the
negative class with high specificity. Conversely, the multi-input models demonstrate high sensitivity in correctly
recognizing samples from the positive class. The trade-off between specificity and sensitivity is discussed, em-
phasizing the importance of achieving a balance for accurate classification.

To gain interpretability, heatmaps generated using different post-hoc explainability (XAI) algorithms are em-
ployed, shedding light on the models’ understanding of nodule localization. Additionally, the analysis examines
the impact of dataset characteristics and model metrics on performance.

In conclusion, this study introduces DL models for thyroid nodule classification with the primary objective
of reducing unnecessary FNA procedures. The importance of dataset construction and model optimization is
emphasized as crucial factors in achieving reliable and accurate results. The findings of this research contribute
to the development of diagnostic models that can improve patient care by minimizing the need for unnecessary
procedures and promoting more efficient and targeted medical interventions.

Keywords: Thyroid nodules, Deep Learning, Binary classification, Fusion strategies, Explainability, Bethesda
score

1. Introduction

The thyroid gland, a vitally important organ situ-
ated at the base of the neck, has the primary func-
tion of regulating metabolism through the production
of various hormones. A common condition that can
affect this gland is the formation of thyroid nodules,
which are abnormal growths within the gland. Al-

though most of these nodules are benign, a small
percentage, estimated to be between 5 % and 15 %,
can be cancerous (Hayat et al., 2007). This poten-
tial for malignancy underscores the necessity for ef-
fective diagnostic tools to facilitate appropriate thera-
peutic management.

One such diagnostic tool is Fine Needle Aspira-
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tion (FNA), a minimally invasive procedure that in-
volves the use of a thin, hollow needle to extract cells
from the thyroid nodule for microscopic examination.
Despite its limitation of leading to some unnecessary
procedures due to the prevalence of benign nodules,
FNA remains a crucial diagnostic approach. It en-
ables clinicians to estimate the likelihood of malig-
nancy and subsequently plan suitable treatment strate-
gies (Cooper, 2009).

Ultrasound (US) serves as the primary imaging
modality for the examination of the thyroid gland,
prized for its non-invasive nature, affordability, and
provision of real-time imaging. However, US imag-
ing is not without challenges, including the potential
for inter-observer variability and a dependence on the
skill level of the operator for both acquisition and in-
terpretation of images (Hoang et al., 2018).

To address these challenges and standardize the
ultrasound analysis of thyroid nodules, the Thyroid
Imaging Reporting and Data System (TIRADS) was
developed (Grant et al., 2015). This system assigns a
score from 1 to 5 to nodules based on their ultrasound
characteristics, with higher scores indicating a height-
ened risk of malignancy.

In parallel, the Bethesda System for Reporting Thy-
roid Cytopathology offers a standardized classifica-
tion for FNA results, providing specific recommen-
dations for each of its six categories (Cibas and Ali,
2009). However, despite these systematic advances,
a significant number of benign nodules still undergo
unnecessary FNAs, causing patient discomfort and in-
creasing healthcare costs (Schnadig, 2018).

To address the issue of unnecessary FNAs, a previ-
ous internship led to the development of a Computer-
Aided Diagnosis (CAD) system that utilizes Deep
Convolutional Neural Networks (DNNs). This sys-
tem sought to automate the prediction of unnecessary
FNAs, using the Bethesda score as the ground truth,
with the aim of improving the management of thyroid
nodules and enhancing patient care.

For a medical diagnosis system to gain the trust of
physicians, technicians, and patients, it must demon-
strate transparency, comprehensibility, and explain-
ability. Ideally, such a system should provide a clear
rationale behind its decision-making process to all
stakeholders involved (Singh et al., 2020). However,
despite their effectiveness, the challenge with Deep
Learning (DL) models often lies in the opacity of their
inner workings. In particular, the weights of the neu-
rons are not directly interpretable, which can hinder
understanding and trust in these models (Meyes et al.,
2020).

To bridge this gap and associate the outputs of the
previously developed model with the fundamental de-
scriptors used by clinicians for image interpretation
and diagnosis, gradient-based explainable AI tech-
niques such as Grad-CAM were employed to gener-
ate heat-maps (Selvaraju et al., 2017). These visual

tools aimed to illustrate the model’s decision-making
process during diagnosis prediction. However, upon
presenting these visual maps to physicians, feedback
indicated that the activated regions in the resultant
heatmaps did not correctly focus on the relevant areas
of the nodule.

The main contributions of the following work in-
clude:

1. The undertaking of a comparative analysis of
mono-input and multi-input DL models: This
work provides a comprehensive evaluation of
such models for thyroid nodule classification
from US images, highlighting distinctive perfor-
mance characteristics.

2. The employment of explainable AI techniques for
model decision interpretation: Explainable AI
techniques like Grad-CAM have been utilized to
produce heatmaps, offering intuitive visualiza-
tion of DL models’ decision-making process.

3. The comparison of different explainable AI
technique-generated heatmaps: A comparison
of heatmaps generated through various explain-
able AI techniques has been conducted, uncover-
ing the strengths and weaknesses of each method
within this specific context.

4. The thorough translation of the model’s architec-
ture from Tensorflow to PyTorch: In alignment
with the supervising institution’s ongoing initia-
tive to construct a proprietary DL models train-
ing library, the previously developed model’s
codebase was carefully translated from Tensor-
flow to PyTorch.

2. State of the art

The problem of thyroid nodule classification us-
ing DL algorithms techniques has drawn significant
attention in recent years. The use of US imaging
has proven highly effective in the detection of these
nodules, and DL models, in particular, have shown
promising results in automating their classification as
benign or malignant. However, despite their impres-
sive performance, the complexity and ’black box’ na-
ture of these models make it difficult to understand
the rationale behind their predictions, leading to trust
and adoption issues, especially in high-stakes domains
like healthcare.

The explainability or interpretability, of DL mod-
els, is a key consideration being delved into. This
refers to the ability to comprehend the inner workings
of a model, and it is especially vital in medical ap-
plications where the impact of model predictions can
directly shape clinical decisions and patient outcomes
(Holzinger et al., 2019). Consequently, an increasing
focus on the development of methods to enhance the
interpretability of these models has been witnessed in
the field.
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Dataset Description FNA not required FNA required

Baseline Initial reference dataset. 242 213
Baseline chu Contains only images from private sources. 242 124
Enlarged Augmented version of the ”Baseline” dataset. 417 335
Enlarged chu Augmented version of the ”Baseline chu” dataset. 417 246
Multi-view Dataset specially curated for training the Multi-Input network. 328 170
Validation set Dataset reserved for validation during training on the entire

Baseline and Enlarged datasets.
24 20

Test set Dataset designated specifically for inference purposes 20 20
Multi-view val set Dataset reserved for validation during training on the entire

Multi-view dataset.
36 28

Multi-view test set Test dataset specifically utilized for inference purposes in the
Multi-Input network.

36 28

Table 1: Summary of dataset subsets used in this study. Each subset was generated based on different criteria, such as the source of the images,
and the need for an FNA procedure. The columns ”FNA not required” and ”FNA required” indicate the number of images in each subset that
were assigned these labels based on the Bethesda score. The images belonging to the validation and test sets were chosen randomly while
ensuring a balanced distribution of samples across the different classes.

In the following sections, the current state-of-the-
art in DL models designed for thyroid nodule clas-
sification from US images, as well as the explainabil-
ity techniques developed to enhance interpretability in
this specific context, will be explored.

2.1. Classification of malign nodules from 2D US thy-
roid images using DNNs

Numerous studies have been conducted in the field
of DL with regard to the classification of thyroid nod-
ules using US images. Buda et al. (2019) proposed a
DL algorithm that uses thyroid US images to provide
management recommendations for thyroid nodules
observed in US images. The algorithm was trained
on a robust dataset comprising 1377 thyroid nodules
from 1230 patients. The ground truth for each image
was established based on the risk of malignancy, as
determined by the TIRADS score. A multi-task DNN
was trained to recommend biopsies for thyroid nod-
ules, using two axial US images as inputs. The algo-
rithm’s sensitivity and specificity were compared with
the consensus of three experts from the American Col-
lege of Radiology (ACR) TIRADS committee, as well
as nine other radiologists. For a test set of 99 nodules,
the proposed system achieved a sensitivity of 87 %,
on par with the expert consensus and surpassing five
out of the nine radiologists. The algorithm’s speci-
ficity was 52 %, similar to the expert consensus and
exceeding that of seven out of the nine other radiolo-
gists.

Chi et al. (2017) introduced another DL-based sys-
tem for categorizing thyroid nodules using US images,
with the TIRADS score serving as the groundtruth.
To ensure accuracy, the US images were initially pro-
cessed to adjust their scale and eliminate any arti-
facts. A pre-existing GoogLeNet (Szegedy et al.,
2015) model was then refined using these processed
images, which enables enhanced feature extraction.
These derived features were then inputted into a

Cost-sensitive Random Forest classifier to categorize
the images as either ”malignant” or ”benign”. The
experimental findings demonstrated that the refined
GoogLeNet model delivered exceptional classifica-
tion performance. It reached a classification accuracy
of 98.29 %, a sensitivity of 99.10 %, and a speci-
ficity of 93.90 % when using an open-access database.
Furthermore, it achieved a classification accuracy of
96.34 %, a sensitivity of 86 %, and a specificity of 99
% when using images from their local health region
database.

In their research focusing on limited US thyroid im-
age datasets, Zhu et al. 2017 highlighted the impor-
tance of implementing data augmentation techniques.
They conducted a comparison between conventional
methods and a specialized Convolutional Neural Net-
work (CNN) designed for data augmentation. The
process encompassed pre-processing steps to extract
the region of interest (ROI), data augmentation via
both standard procedures and a compact CNN, and
classification of thyroid nodules into benign or ma-
lignant categories through transfer learning that lever-
aged a pre-trained residual network. This network was
fine-tuned using three distinct datasets: the original,
the traditionally augmented, and the CNN-augmented
dataset. The results indicated that their approach, uti-
lizing a CNN for data augmentation, yielded a supe-
rior accuracy rate of 93.75 %, comparable to other rel-
evant methods.

2.2. Towards explainability in DL for classification in
thyroid nodule images

To understand how a DL model makes predictions
about whether a nodule is benign or malignant, it is
essential to incorporate explainability techniques into
the pipeline of a CAD system. In this regard, Yang
et al. (2022) first trained a ResNet18 (He et al., 2016)
model to predict the benign or malignant nature of a
thyroid nodule. They then used a Grad-CAM algo-
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rithm to generate heatmaps that would highlight sensi-
tive regions in an ultrasound image during the learning
process. This method enabled the extraction and anal-
ysis of shape features from these sensitive regions.
The results revealed marked differences between be-
nign and malignant thyroid nodules, indicating that
the shape features of sensitive regions significantly as-
sist in diagnosis.

In the study conducted by Kong et al. (2022),
an Attribute-Aware Interpretation Learning (AAIL)
model for thyroid ultrasound diagnosis was proposed.
The AAIL model is composed of two modules: an At-
tribute Properties Discovery module and an Attribute-
Global Feature Fusion module. The former module
is designed to extract the key attributes of thyroid US
images, while the latter is used to integrate these ex-
tracted attributes with the global features of the im-
ages. The AAIL model was trained on a dataset of
thyroid US images along with their corresponding la-
bels based on the TIRADS score. The experimental
outcomes indicated that the AAIL model surpassed
traditional machine learning models in terms of di-
agnostic performance. Furthermore, the AAIL model
was able to provide interpretable results, aiding doc-
tors in gaining a better understanding of the diagnostic
process.

Similarly, Deng et al. (2022) introduced a multi-
task attention network, guided by clinical knowledge,
to analyze thyroid nodules. The network initially clas-
sifies each descriptor within the ACR TIRADS lex-
icon. These individual descriptor scores are subse-
quently combined to generate a comprehensive risk
score for the nodule. This consolidated risk score is
then utilized to categorize the nodule as either be-
nign or malignant. The proposed methodology was
assessed using a dataset comprising 1,000 US images,
yielding an accuracy of 93.55 %, a sensitivity of 93.8
%, and a specificity of 93.14 %.

Likewise, Manh et al. (2022) presented the Multi-
Attribute Attention Network (MAAN), as an innova-
tive approach for the interpretative diagnosis of thy-
roid nodules within US images. MAAN incorporates
an attention mechanism enabling the model to dis-
cern the significance of various image features in di-
agnostic evaluations. This attention mechanism al-
lows MAAN to concentrate on the most informa-
tive aspects within each image, thereby enhancing di-
agnostic precision while simultaneously offering in-
sights into the foundational causes of the nodules.
MAAN underwent evaluation using a dataset com-
prising 1,000 ultrasound images of thyroid nodules,
yielding an impressive accuracy rate of 95.2 %, on par
with the precision of human experts.

The present work differentiates itself from previ-
ous studies by incorporating the Bethesda score as
the ground truth for thyroid nodule classification,
which aligns with the objective of reducing unnec-
essary FNA procedures. Furthermore, in addressing

the limitations of the TIRADS in identifying rele-
vant image features, this study emphasizes the need
for more insightful post hoc explainability methods to
gain deeper insights into the diagnostic process.

3. Material and methods

3.1. Dataset
A comprehensive summary of the dataset is pro-

vided in Table 1. This table aims to provide a clear
overview of the composition and scope of each subset
within the dataset.

The global dataset utilized in this study consists
of various subsets of thyroid nodule images, all of
which are extracted in JPEG (Joint Photographic Ex-
perts Group) format. In this study, the images are
saved in JPEG format as they are screen captures from
US scanners. The total number of US thyroid nodules
in the dataset is 747. These images were sourced from
two different hospitals in France: the Hospital of Di-
jon and the Hospital of Bastia. Two distinct scanners
were used in the acquisition of these images, specifi-
cally the Aixplorer and Canon. Consequently, the im-
age sizes differ based on the scanner used, with di-
mensions of 1440 x 1080 pixels and 1260 x 960 pixels
for the Aixplorer and Canon scanners, respectively.
Also, each thyroid nodule is typically represented in
two orientations, with both axial and sagittal views
acquired per case. This approach ensures a thorough
evaluation of each nodule.

Importantly, all images were annotated by experts,
and, following a visual examination based on the
TIRADS criteria, an FNA procedure was conducted
for each case involved in this study. This examina-
tion led to the categorization of the images into two
labels: ”FNA not required” and ”FNA required”, as
determined by the Bethesda score referenced in Sec-
tion 1. The former label was assigned to 461 images,
and the latter to 286 images.

In an effort to ensure a more balanced dataset, an
additional 89 publicly available thyroid nodule im-
ages, which were annotated and identified as malig-
nant, were incorporated (Dasmehdi and Xtr, 2017).
This decision to use this public dataset was made de-
spite the potential for adding noise to the model’s
training process, given that the images from this
dataset have a lower image size of 348 x 272 pixels.

3.1.1. Subsets
In the process of creating these distinct subsets,

meticulous care was taken to separate the images
based on the assigned Bethesda score. This score, de-
termined through expert annotation, results from a cy-
topathological examination of thyroid nodules.

Additionally, each image’s orientation, axial or
sagittal, was annotated manually. Given that each thy-
roid nodule is typically represented in both orienta-
tions, this distinction was imperative for a comprehen-
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sive evaluation of each nodule. This careful annota-
tion process ensured that the subsets were accurately
formed, reflecting the specific characteristics of each
image, such as its Bethesda score and orientation.

This process allowed for a systematic classification
and separation of images, thereby facilitating the cre-
ation of well-defined subsets tailored to the specific
requirements of the training pipeline.

The initial experiments utilized a dataset similar
to the one used in the preceding internship, herein
referred to as the ”Baseline” dataset. Since then,
new images have been collected, resulting in an ex-
panded dataset that combines the baseline dataset with
these newly acquired images, forming the ”Enlarged”
dataset. It is worth noting that the most recent images
were sourced exclusively from the Hospital of Bastia,
where the Canon scanner was used to acquire these
images.

On the other hand, as the focus shifts to considering
only images sourced privately, two new subsets were
created by excluding images from the public dataset
as referenced in Section 3.1. These two subsets are
derivatives of the ”Baseline” and ”Enlarged” datasets.

Furthermore, a dedicated subset, named the ”Multi-
view” dataset, was built for the purpose of training
a multi-input network. This subset comprises solely
pairs of images, each consisting of an axial and its
corresponding sagittal view. Accompanying this sub-
set are its respective ”validation” and ”test” sets.

3.2. Pre-processing

Given the difference between the US scanners from
which the images were collected, as referenced in Sec-
tion 3.1, some image enhancement techniques were
deemed necessary to ensure consistency and unifor-
mity in size and exposure, as well as to eliminate arti-
facts present in the images that might hamper the net-
work’s learning process. An example of a raw image
from the provided dataset is shown in figure 1.

The pre-processing pipeline is outlined below:
Cropping: As an initial step, the US images were

systematically cropped to remove unnecessary in-
formation, leaving only the data produced by the
US waves. These images, as mentioned in Section
3.1, are screen captures and initially presented in a
three-channel format. They were first converted into
grayscale. Then, by sequentially scanning the rows
and columns of each grayscale image, boundaries
were identified where the average pixel intensity ex-
ceeded a predetermined threshold. This threshold sig-
nified the beginning of significant visual content. The
rightmost limit within the threshold was also identi-
fied to establish the image’s boundaries. The images
were subsequently cropped based on these determined
limits, effectively eliminating the black borders and
ensuring that only relevant information was retained.

Removing Artifacts: The images in the dataset
contained a scale bar that needed to be removed in

order to focus exclusively on the thyroid information.
Following the cropping operation, a binary image was
subsequently generated from the grayscale image us-
ing a thresholding operation. From this binary image,
all object contours or shapes were identified, with the
longest one, presumed to be the scale bar, selected for
elimination. A binary mask was then created using
this contour and slightly expanded to ensure the entire
scale bar was covered. The region within the mask
was filled with the texture from the surrounding area,
effectively erasing the scale bar from the image. Fi-
nally, the grayscale image was converted back into a
three-channel image without the scale bar, ensuring
that the subsequent analysis focused solely on the rel-
evant US data.

The resulting preprocessed image can be seen in
Figure 2.

Figure 1: Raw US image of the thyroid nodule. The dashed rect-
angles serve to indicate the locations of the artifacts. Additionally,
black borders can also be observed.

Figure 2: The resulting preprocessed US image is free from artifacts
and retains only the relevant information.

3.3. Data Augmentation

The importance of Data Augmentation (DA) in DL,
particularly when dealing with a small dataset, cannot
be overlooked. With limited data, a model is at risk
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Figure 3: An overview of the established pipeline is presented. Data augmentation was applied exclusively to the training set. Additionally,
the red arrows denote the chosen target layers for generating heatmaps using CAM algorithms.

of overfitting, where it learns the training data so well
that it struggles to generalize to new, unseen data. To
mitigate this, DA transformations are applied to the
US images used in this study, enhancing the robust-
ness of the DNN model.

The network used in this study was developed
in PyTorch, leading to all image augmentations and
transformations being performed using the ’Torchvi-
sion’ library. It is important to note that a combina-
tion of on-the-fly DA and preprocessing operations is
standard practice in PyTorch.

Given the characteristics of the dataset, the follow-
ing DA transformations and preprocessing steps have
been considered:

• ’Resize’ is applied to all images to ensure unifor-
mity in size before they are fed into the network.
A standard size of 800x600 pixels is used for all
input images. Bilinear interpolation is used dur-
ing the resizing process, aiding in the preserva-
tion of as much of the original image detail as
possible.

• ’RandomHorizontalFlip’ introduces variability
into the dataset by simulating possible changes
in orientation that might occur during US scans.

• ’RandomRotation’ is applied to the images to
enhance the model’s ability to handle both minor
shifts in the nodule’s position and various orien-
tations of the entire image. This transformation
simulates the variability that might occur in real-
world US imaging, where images can be taken
from different positions.

• ’ColorJitter’, which randomly adjusts bright-
ness and contrast, enables the model to recognize
nodules under varying contrast conditions.

• ’RandomAffine’, including random translations
and scaling, simulates variations in the position
and size of the nodules.

• ’ToTensor’ is a preprocessing step that converts
the images into PyTorch tensors, a format that is
necessary for PyTorch models.

• ’Normalize’ standardizes the pixel values of the
images using predefined statistics. The mean and
standard deviation values used for normalization
were computed directly from the dataset.

Both the DA transformations and preprocessing op-
erations are applied on-the-fly to each batch during
every iteration of the model’s training process.

3.4. Proposed pipeline

The pipeline for this project, established during
a previous internship, consists of several key steps.
These include pre-processing, DA, and feature ex-
traction utilizing a pre-trained Densenet121 as the
main backbone. Additional components were in-
corporated, such as Convolutional Blocks Attention
Modules (CBAM), and a final convolutional block.
The latter is comprised of a Separable Convolution,
Batch Normalization, a Rectified Linear Unit (ReLU)
activation function, and an Adaptive Max-pool layer.
A Fully-Connected (FC) layer was also included for
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binary classification purposes. This network config-
uration was subsequently denoted as the ’Attention-
Densenet121’.

Initially, due to the fact that the proposed architec-
ture had been previously coded in Tensorflow, it was
necessary for the entire codebase to be translated into
the PyTorch framework. This transition was moti-
vated by an ongoing initiative to construct a propri-
etary library for training DL models within the in-
stitution that supervised this project. It should be
noted that during the code translation process, care-
ful attention was given to ensure accurate replication
of all model configurations, including non-linearities,
weight initialization, and the number of parameters.
Once the full pipeline was successfully migrated into
the target framework, efforts were made to optimize
the hyperparameters, and training strategy, and to se-
lect the most suitable dataset for training. These mea-
sures aimed to enhance the network’s performance.

Subsequently, in pursuit of more profound insights
into the network’s rationale, a variety of post-hoc ex-
plainability algorithms were tested for heatmap gener-
ation, providing visual interpretations of the model’s
decision-making process.

On the other hand, in a bid to further enhance the
model’s predictive capabilities, two distinct network
configurations were explored: a Mono-Input Network
and a Multi-Input Network. These configurations
were designed to use thyroid nodule images in dif-
ferent manners, thereby exploiting the unique features
and information each view of the thyroid nodules pro-
vides.

Further details regarding the implemented proce-
dures will be presented in the following sections. A
comprehensive illustration of the pre-defined pipeline
can be found in Figure 3.

3.4.1. Hyper-parameters optimization
To enhance network performance, an initial experi-

ment was conducted using the baseline dataset as de-
tailed in Section 3.1.1, with the model being trained
under the original set of hyperparameters. This was
followed by a Random Search, a process of hyper-
parameter optimization that involves the selection of
random combinations from a predetermined range of
hyperparameters to identify the best solution. During
this phase, several key objectives were pursued. These
included the optimization of the batch size, learning
rate, learning rate scheduler, dropout, and the selec-
tion of an optimizer. Additional techniques incorpo-
rated to boost network effectiveness included weight
decay and gradient clipping. Weight decay refers to
a regularization method that prevents overfitting by
adding a penalty term to the loss function, thereby re-
ducing the magnitude of the weights (Loshchilov and
Hutter, 2017). Gradient clipping, on the other hand, is
a technique to prevent exploding gradients by limiting
the maximum value of gradients (Zhang et al., 2019).

Moreover, in this context, a stratified five-fold
cross-validation approach was employed. This was
done to more accurately estimate the model’s capacity
to generalize to unseen data, given the selected sets of
hyperparameters.

3.4.2. Backbone’s weights
The dataset’s unique image characteristics encour-

aged experiments assessing the impact of applying
pre-trained weights to the Densenet121 backbone,
compared to training the network from scratch. This
was conducted to evaluate transfer learning benefits,
where the model is initialized with weights learned
from a different, typically larger, dataset - in this case,
ImageNet. It is important to note that these weights
are not updated during backpropagation. The rele-
vance of this approach arises from the stark differ-
ences between the ImageNet images and the US thy-
roid nodule images. The goal was to establish the ef-
fectiveness of transfer learning in this specific context,
determining if features learned from the large-scale
dataset could be efficiently applied to thyroid nodule
classification.

Additionally, experiments were conducted using
different dataset versions. This was driven by the hy-
pothesis that certain dataset characteristics and size
could impact the decision to use pre-trained weights,
potentially influencing the experiment outcomes.

3.4.3. Optimization of hidden layers in the classifier
To boost the network’s performance, the structure

of the classifier’s hidden layers was analyzed. Exper-
iments were conducted to reveal how changes in the
number of hidden layers affected the model’s output.

The foundation for these experiments lies in the
fundamental architecture of DL models. The depth
of a model, indicated by its hidden layers, can sig-
nificantly impact its capacity to discern complex pat-
terns and relationships within the data. Models with a
higher count of hidden layers are known for their pro-
ficiency in comprehending hierarchical feature repre-
sentations, which could be highly beneficial given the
complex nature of the application.

Nonetheless, a balance must be struck. An increase
in the number of hidden layers can potentially en-
hance the model’s learning ability, but it may also lead
to overfitting, especially when working with a limited-
sized dataset.

Bearing these considerations in mind, a systematic
adjustment of the hidden layers in the classifier was
undertaken. The objective was to pinpoint an opti-
mal balance between the model’s learning ability and
the risk of overfitting, with particular emphasis on the
dataset’s unique characteristics.

3.4.4. Mono-Input network
In this context, it is important to note that each thy-

roid nodule image was fed into the network individu-
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Figure 4: A schematic overview of the networks and fusion strategies used in the training process is depicted. The top part of the figure
presents the Mono-Input network, while the bottom part depicts the Multi-Input network. The layers where the feature maps are concatenated
for each of the fusion strategies are indicated by colored dashed lines: purple for input-level fusion, green for intermediate-level fusion, light
blue for feature-level fusion, and orange for decision-level fusion, respectively.

ally, either in an axial or sagittal orientation. This ap-
proach was taken to ensure that each orientation was
processed independently, thereby allowing the model
to capture unique features present in each view. By
handling the images separately, the network can ef-
fectively learn and identify the distinct characteristics
of nodules in both axial and sagittal planes. This ap-
proach increases the model’s ability to discriminate
between images requiring FNA and those that do not,
enhancing the overall accuracy and robustness of the
predictions.

However, it should be acknowledged that this
mono-input approach can have potential drawbacks.
One significant issue is that it may result in different
classifications for the same nodule, depending on the
view presented to the model. This inconsistency poses
a challenge, as it leaves open the question of which
classification to follow when there is a discrepancy be-
tween the results obtained from different orientations.

3.4.5. Multi-Input network
The decision to simultaneously input both axial and

sagittal images into the network is a result of the dis-
tinct perspectives they offer for the evaluation of thy-
roid nodules. These two views reveal different fea-
tures of the nodules when examining the thyroid, aid-
ing in the detection of any anomalies. In this setup,
each image type follows a separate branch within the
network, ensuring that their unique information is in-
dependently processed. This combined approach pro-
vides the network with a more comprehensive under-
standing of the nodule’s structure, potentially leading

to more accurate predictions regarding the necessity
of an FNA.

In this approach, a prediction is made by the model
for each pair of images that are inputted. Accordingly,
the dataset that was used in this context was built to
ensure that an axial and a sagittal view of the image is
always present for each exam.

Moreover, to further enhance the model’s ability to
distinguish complex patterns and nuances in the data
from these two distinct anatomical perspectives, vari-
ous fusion strategies were employed. These strategies
were designed to allow the model to handle multi-
view data effectively, thereby exploiting the full po-
tential of the axial and sagittal images.

3.4.6. Fusion strategies
The adoption of different fusion strategies— input-

level, feature-level, intermediate, and decision-level
—facilitates the integration of learned features from
the axial and sagittal views in distinct ways, each with
its own advantages.

Input-level fusion involves the concatenation of
axial and sagittal images into a single tensor prior to
their introduction into the network. This strategy al-
lows the network to concurrently process both views
from the very beginning. As a potential benefit, this
approach could enable the network to learn features
that are intrinsically interdependent on both views
right from the start. This may be especially benefi-
cial when the features in the axial and sagittal views
have strong correlations or interact in ways that sug-
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Method Authors What it does Pro Con

GradCAM
Selvaraju et al.

(2017)

Use of gradient information
to highlight important
regions for predictions

Simple and effective
Lower resolution

heatmap

GradCAM++
Chattopadhay
et al. (2018)

An extension of GradCAM
that captures multi-level and
multi-object features

Better at handling
multiple objects

More computationally
expensive

XGradCAM
Fu et al.
(2020)

An improved version of
GradCAM with better visual
fidelity

Provides more detailed
and accurate
visualization

More computationally
intensive

AblationCAM
Ramaswamy
et al. (2020)

Ablates each activation map
and measures the decrease in
output score

Can handle model
architectures that
GradCAM cannot

Very computationally
intensive

ScoreCAM
Wang et al.

(2020)

Generates heatmaps by
activating neurons in the
target layer one by one

Does not require
gradients, making it
applicable to a wider

range of models

Very computationally
intensive and slow

EigenCAM
Muhammad
and Yeasin

(2020)

Applies PCA to the feature
maps and uses the principal
components to highlight
regions

Can capture more
diverse features

Might be harder to
interpret

Table 2: Brief comparison of heatmap generation methods used in DL. Each method is assessed based on its functionality, advantages, and
limitations. The methods vary in their computational complexity, the nature of the information they use to generate heatmaps (e.g., gradients,
activation maps, or principal components), and their ability to handle different model architectures or scenarios (e.g., multiple objects, diverse
features).

gest thyroid nodule anomalies (Seeland and Mäder,
2021).

Moving on to feature-level fusion, the features
from both views are combined immediately after the
last feature extraction layer. This approach enhances
the model’s ability to learn shared representations
from the very beginning of the classification stage.
The benefit here is that the model can capture inter-
actions between the two views at all succeeding levels
of representation, potentially leading to a richer, more
complex feature space that takes into account the re-
lationship between axial and sagittal images early on
(Seeland and Mäder, 2021).

Intermediate-level fusion, in contrast, processes
the two inputs separately up to the first spatial atten-
tion module. The features are then combined and pro-
cessed together through the rest of the network. This
strategy is beneficial when there are important view-
specific features that should be learned separately be-
fore they are combined. It allows the model to learn
and maintain view-specific representations, and then
merge these representations to capture the relation-
ships between the views (Zhang et al., 2021).

Lastly, the decision-level fusion strategy processes
each input through the entire network, including the
initial classifier, separately. The preliminary predic-
tions are then combined and passed through a final
classifier. This approach is advantageous when the
axial and sagittal views contain largely independent
information that can contribute to the final decision.
By allowing each view to reach a preliminary deci-
sion independently, late fusion can exploit the unique

information present in each view to the fullest extent
(Seeland and Mäder, 2021).

A schematic overview of the networks and fusion
strategies previously described is presented in Figure
4.

3.4.7. Post-hoc explainability
Post-hoc explainability (XAI) in DL refers to the

process of interpreting the decisions of a model after
its training phase. As highlighted in Section 2, the
complexity and lack of transparency in DL models of-
ten lead to them being referred to as ”black boxes”.
The aim of post-hoc explainability is to shed light
on these black boxes, thus revealing what the model
has learned and the mechanisms behind its decision-
making process. A variety of techniques are utilized
to accomplish this, such as visualizing the network’s
activations and weights, and employing saliency maps
to emphasize significant features in the input data
(Holzinger et al., 2022a).

The proposed method in this study emphasizes the
generation of heatmaps using attention modules and
Class Activation Maps (CAM) algorithms. Both these
tools yield heatmaps, which are visual representations
indicating where a model is ”paying attention” during
prediction. However, the means of generating these
maps and the precise insights they offer can vary.

It is crucial to distinguish between attention maps
and techniques like GradCAM. Although both pro-
vide visual indications of a model’s focus, they do so
in fundamentally different ways.
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Figure 5: A schematic representation of the channel and spatial at-
tention mechanisms. The upper section illustrates the channel at-
tention module, while the lower section depicts the spatial attention
module. The red arrow indicates the layer where the attention map
is generated.

3.4.8. Attention maps
Attention modules in a network go beyond visu-

alization. They actively guide the model’s focus by
promoting the most meaningful regions and diminish-
ing the less significant information. This process ul-
timately shapes the model’s attention, offering a more
directed approach to identifying key features within
the data. (Guo et al., 2022).

As seen in Figure 3, the attention mechanism in-
cluded in the network was the CBAM introduced by
Woo et al. (2018). CBAM operates by sequentially
employing channel and spatial attention modules to
adaptively adjust feature maps across both dimen-
sions. The importance of each feature map is assessed
by the channel attention module, while the spatial at-
tention module further refines the feature maps by tak-
ing into account the inter-spatial relationships among
features. A schematic overview of this mechanism is
presented in Figure 5.

In this work, the attention maps were generated di-
rectly from the attention weights in the Spatial Atten-
tion module.

3.4.9. CAM algorithms
CAM algorithms, in general, work by providing a

visual representation of the importance of different
regions in the image in relation to the model’s final
decision. This is achieved by using the gradient in-
formation flowing into the model’s convolutional lay-
ers. By highlighting the areas that significantly im-
pact the prediction, these algorithms offer a compre-
hensive view of the model’s decision-making process

(Holzinger et al., 2022b). The advantage of these al-
gorithms lies in their ability to take into account the
entire network, instead of focusing solely on a specific
layer. This allows for a more complete understanding
of how the model interprets the input data to arrive at
its final decision. A summary of these algorithms can
be found in Table 2.

As depicted in Figure 3, three distinct layers were
selected to generate the heatmaps, based on the archi-
tecture of the network used in this work. These lay-
ers were chosen because they are likely to contain the
most semantically meaningful (i.e., informative) acti-
vation maps. The selected layers are as follows:

• The final layer of the backbone: This layer
directly follows the backbone with pre-trained
weights and may contain high-level feature maps
beneficial for diagnosis.

• The spatial attention layer: This layer follows
the spatial attention mechanism and may contain
feature maps further refined by attention.

• The final convolutional layer: This layer is the
last convolutional layer before the classifier, and
the output from this layer directly feeds into the
classifier. This layer is likely to possess the
most abstract and high-level feature representa-
tions that are most closely tied to the final class
predictions.

All these heatmaps were generated using the Py-
Torch Grad-CAM library, a package created by
Gildenblat and contributors (2021) that includes state-
of-the-art methods for XAI in computer vision.

4. Model training

The training was monitored and convergence opti-
mized using Rectified Adaptive Moment Estimation
(RADAM) with a learning rate set to 0.001. Unlike
ADAM, RADAM rectifies the variance of the adaptive
learning rate to provide a more consistent and reliable
convergence, making it a superior choice for this op-
timization (Liu et al., 2019).

Given the imbalanced nature of the provided
dataset, Focal Loss was employed as the loss function
(Lin et al., 2017). This decision was made in order
to address the imbalance by automatically computing
the loss weights based on the data distribution, thereby
assigning more weight to the underrepresented class.
The gamma parameter was fixed at 3.5.

Gradient clipping, which limits the magnitude of
gradients to prevent exploding gradients and improve
model stability, was found to be advantageous and was
implemented with a clip value of 5. To aid in regu-
larization, weights decay was introduced with a value
set to 0.001, which helps in preventing overfitting by
adding a penalty to the loss function based on the size
of the weights.
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To adjust the learning rate during training, a type
of learning rate scheduler known as ”ReduceLROn-
Plateau” was utilized. This is a specific method that
dynamically adapts the learning rate based on the
model’s performance. Specifically, this scheduler di-
minishes the learning rate when the model’s perfor-
mance ceases to improve, thereby providing a more
effective learning rate for the training process. It is
characterized by a ’patience’ parameter, which was set
to 5 in this case, dictating the number of epochs with
no improvement after which the learning rate will be
reduced (Biskup, 2008).

Additional measures to prevent overfitting included
early stopping and dropout. Early stopping was im-
plemented with a patience value of 40, and the model
was selected where the validation loss was at its low-
est. Dropout was set to 0.25, a technique that ran-
domly deactivates neurons in the classifier to improve
generalization by preventing the model from becom-
ing overly reliant on any single neuron.

The batch size for the training was fixed at 16, and
the models were trained over 150 epochs. Weights
that were not pre-trained in the architecture were ini-
tialized using the Kaiming distribution. This method
of initialization is beneficial because it helps to pre-
vent the issue of vanishing and exploding gradients
during backpropagation. By maintaining the variance
of the weights, the Kaiming initialization ensures that
each neuron operates in a region where it is sensitive
to the inputs and can learn from them effectively. This
leads to improved training speed and performance (He
et al., 2015).

To ensure the reproducibility of the model training
process and the subsequent results, a fixed random
seed was established for any source of randomness.
This practice ensures that the randomness in any part
of the process is consistent, enabling reliable replica-
tion of the training process.

4.1. Stratified k-fold cross-validation

Stratified 5-fold cross-validation was employed
during the training phase as a dual-purpose strategy
to enhance model performance. This method of cross-
validation is particularly useful when dealing with im-
balanced datasets, as it ensures that each fold contains
a proportional representation of each class. This helps
in retaining the distribution of the classes and mitigat-
ing the impact of class imbalance during model train-
ing and validation (Szeghalmy and Fazekas, 2023).

The first purpose of using stratified 5-fold cross-
validation was to explore the generalization capabil-
ities of each model. By dividing the data into five
distinct subsets, or ”folds,” derived from the respec-
tive training set of each version of the dataset, and
iteratively training and validating on different combi-
nations of these folds, a more comprehensive under-
standing of each model’s ability to generalize beyond
the training data could be gained.

In the process of performing the cross-validation,
meticulous care was taken to apply DA exclusively to
the training sets in each fold. This was essential to
ensure that the validation set remained untouched and
accurately represented unseen data, thus providing a
reliable evaluation of the model’s performance. This
approach further ensured that the model was not in-
advertently exposed to augmented versions of the val-
idation data during training, which could potentially
bias the validation results.

The second use of stratified 5-fold cross-validation
was to construct an ensemble of models, with an em-
phasis on leveraging the best-performing models from
each fold to enhance the robustness of their predic-
tions. The best-performing models were determined
by their lowest validation loss value achieved during
training, and these models were saved for the sub-
sequent ensemble construction. These models were
combined using the stacking ensemble method, which
involves stacking the predictions of each model to cre-
ate a new input representation. This stacked input is
then fed into a classifier to generate the final predic-
tions. By combining the predictions of multiple mod-
els, the stacking ensemble improves the accuracy and
robustness of the overall predictions. Ensemble mod-
els, such as the stacking ensemble, are known for their
ability to mitigate the individual weaknesses of con-
stituent models and deliver improved performance

5. Results

This section concisely presents the results of the
conducted experiments.

5.1. Baseline model optimization
Initial experiments were conducted to improve the

performance of the Attention-Densenet121 architec-
ture. The model was initially trained on the ”Base-
line” dataset using the original set of hyperparameters
and later extended to the ”Enlarged” dataset. Strat-
ified 5-fold cross-validation, as described in Section
4.1, was employed to assess the model’s generaliza-
tion capabilities comprehensively. The primary met-
ric optimized during training was the validation loss,
aiming to establish a highly confident model in its pre-
dictions. Although accuracy was not the main metric
of focus, the mean values of this metric are presented
as a reference to evaluate the model’s performance be-
fore inferring on the test set. It is worth noting that the
use of stratified 5-fold cross-validation ensured bal-
anced partitions within each fold.

Numerous experiments with varying hyperparame-
ters were conducted initially. After testing multiple
configurations, the use of Random Search was ex-
plored. This method proved to be effective in iden-
tifying sets of hyperparameters that improved model
performance, as evidenced in Table 3. The model con-
figuration identified through this method was then em-
ployed in subsequent experiments.
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Model Validation loss Validation accuracy

Baseline model 0.0518 0.8211
Optimized model 0.0426 0.8365

Table 3: Summary of the 5-fold cross-validation results: The base-
line model refers to the model trained using the predefined hyper-
parameters, while the optimized model refers to the model trained
using the hyperparameters obtained after hyperparameter optimiza-
tion. Best result is shown in bold.

Figure 6: Comparison of loss curves for the baseline model and
the optimized model configuration during a single fold of the cross-
validation process. The newly identified set of hyperparameters fa-
cilitated the model’s convergence and enabled it to reach a lower
loss value.

5.2. Benefits of pre-trained weights
As discussed in previous sections, the unique na-

ture of the provided dataset—relative to the datasets
typically used to train pre-trained models in Py-
Torch—motivated experiments to train the network
from scratch. These experiments were performed us-
ing the new, more effective set of hyperparameters
and applied to different dataset subsets to investigate
the influence of dataset size on network performance.
Table 4 reveals a significant performance difference
when using pre-trained weights versus not using them.
Additionally, it demonstrates a decline in network per-
formance when trained on smaller subsets, specifi-
cally referring to the datasets that only contain images
from private sources. Counterintuitively when the net-
work was trained on the ”Enlarged” dataset, the per-
formance also decreased.

5.3. Evaluating the influence of hidden layers in the
classifier

After assessing the influence of using pre-trained
weights, the next set of experiments aimed to in-
vestigate whether increasing the classifier’s complex-
ity could enhance the network’s predictive abilities.

These experiments primarily involved models trained
on the ”Baseline” and ”Enlarged” datasets, since pre-
vious findings suggested that a smaller training dataset
could potentially diminish the network’s performance.
While initial observations suggested that the inclu-
sion of additional hidden layers might negatively af-
fect the network’s performance, the addition of an ex-
tra layer actually led to an overall improvement, as
demonstrated in Table 5. These experiments facili-
tated the identification of the optimal network con-
figuration and hyperparameter settings. The model
deemed to be the best among those tested was sub-
sequently utilized in further experiments involving its
multi-input variant.

5.4. Performance of Multi-Input network and Fusion
strategies

Upon identifying an optimal mono-input network
configuration and set of hyperparameters, the experi-
ments shifted focus to assess the performance of this
network in a multi-input setting. This involved explor-
ing the fusion strategies detailed in Section 3.4.6 to
leverage the image features across different planes. It
is important to note, as detailed in Table 1, that train-
ing and validation of this model required the use of
a specific subset of the dataset, grouping the images
into pairs, both in the training and validation sets. As
shown in Table 6, the performance of this network
configuration is less robust than its mono-input vari-
ant. However, within this context, the decision-level
fusion strategy demonstrated better performance.

Fusion strategy Validation loss Validation accuracy

Input-level 0.1049 0.5864
Feature-level 0.1267 0.6128
Intermediate-level 0.3756 0.5623
Decision-level 0.1033 0.5594

Table 6: Comparison of the 5-fold cross-validation results of the
multi-input network using different fusion strategies. This model
was trained on a specific data subset for multi-input models, re-
ferred to as the ”multi-view dataset.” The final architecture of the
model and the hyperparameters used for training in this comparison
were chosen based on the ”best model” in the mono-input setting.
Best result is shown in bold.

5.5. Binary classification results

Upon completion of the various experimental sets,
both the mono-input and multi-input networks under-
went rigorous training. The mono-input network was
trained on the ”Baseline” and ”Enlarged” datasets,
while the multi-input network was trained on the
”Multi-view” dataset. During the training process,
each network variant was validated using its corre-
sponding validation set.

The performance of these models is presented in
Table 7. This table demonstrates the accuracy, F1-
score, sensitivity, and specificity of six different mod-
els labeled A through F. Given that the primary objec-

21.12



Comparative Analysis and Explainability of Mono-input and Multi-input CNNs in Classifying Thyroid Nodules
from 2D Ultrasound Images 13

Dataset Pre-trained backbone Non pre-trained backbone

Validation loss Validation accuracy Validation loss Validation accuracy

Baseline 0.0426 0.8365 0.0656 0.6442
Baseline chu 0.0758 0.7441 0.0779 0.5330
Enlarged 0.0599 0.7050 0.0783 0.5429
Enlarged chu 0.0822 0.6258 0.0744 0.4905

Table 4: Comparison of the 5-fold cross-validation results of the optimized model across different data subsets, considering the use of pre-
trained weights in the backbone network or not. Best result is shown in bold.

Dataset n=2 n=3 n=4

Validation
loss

Validation
accuracy

Validation
loss

Validation
accuracy

Validation
loss

Validation
accuracy

Baseline 0.0426 0.8365 0.0455 0.8234 0.0412 0.8344
Enlarged 0.0599 0.7050 0.0617 0.6981 0.0552 0.7101

Table 5: Comparison of validation loss and accuracy across different sizes of hidden layers in the classifier for the optimized mono-input
network. Results were obtained through 5-fold cross-validation on different data subsets. The ”best model” configuration was selected based
on these experiments, with the best result highlighted in bold. Here, ”n” refers to the number of hidden layers in the classifier.

tive of this study is to reduce unnecessary FNA pro-
cedures, the model with the highest specificity is con-
sidered the best. Each model represents a particular
configuration of the mono-input network:

• Model A represents the model that achieved
the lowest validation loss across the five differ-
ent folds during cross-validation on the Baseline
dataset.

• Model B is the model that was trained on the en-
tire Baseline dataset.

• Model C is an ensemble model that incorporates
the weights of the models that achieved the low-
est validation loss in each of the folds during
cross-validation on the Baseline dataset.

• Model D represents the model that achieved the
lowest validation loss across the five different
folds during cross-validation on the Enlarged
dataset.

• Model E is the model that was trained on the en-
tire Enlarged dataset.

• Model F is an ensemble model that incorporates
the weights of the models that achieved the low-
est validation loss in each of the folds during
cross-validation on the Enlarged dataset.

These results were presented in this manner to un-
derscore the significant role that class distribution
plays in the training process of the model. Both Model
A and Model D, despite being trained on a subset
of their respective datasets, demonstrated the high-
est performance across all metrics. For a more intu-
itive understanding of each mono-input model’s per-
formance, readers are referred to Figure 7.

Model Accuracy F1-score Sensitivity Specificity

A 0.75 0.73 0.67 1.00
B 0.57 0.52 0.54 0.71
C 0.68 0.67 0.64 0.73
D 0.75 0.74 0.69 0.86
E 0.73 0.72 0.68 0.80
F 0.73 0.72 0.67 0.84

Table 7: Classification results obtained using various configura-
tions of the mono-input network. A: The model that achieved the
lowest validation loss across the five folds during cross-validation
on the Baseline dataset. B: The model trained on the entire Base-
line dataset. C: An ensemble model that uses the weights of each
of the models with the lowest validation loss from the five folds
during cross-validation on the Baseline dataset. D: The model
that achieved the lowest validation loss across the five folds dur-
ing cross-validation on the Enlarged dataset. E: The model trained
on the entire Enlarged dataset. F: An ensemble model that uses the
weights of each of the models with the lowest validation loss from
the five folds during cross-validation on the Enlarged dataset. The
inference was performed on the test set. Best result is highlighted
in bold.

Model Accuracy F1-score Sensitivity Specificity

A 0.47 0.36 1.00 0.45
B 0.47 0.36 1.00 0.45
C 0.53 0.47 1.00 0.48
D 0.56 0.56 0.63 0.50

Table 8: Classification results of the multi-input network using the
selected best configuration of the mono-input network and employ-
ing different fusion strategies. A refers to the multi-input model uti-
lizing input-level fusion, B refers to the multi-input model employ-
ing feature-level fusion, C refers to the multi-input model utiliz-
ing intermediate-level fusion, and D refers to the multi-input model
employing decision-level fusion. The test set used for inference is
derived from the ”Multi-view dataset”. Best result is shown in bold.
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When examining the performance of the multi-
input network on the same binary classification task,
it is clear from Table 8 that the multi-input model
using decision-level fusion achieved the best overall
metrics, as previously suggested by Table 6. Notably,
all these models demonstrated high sensitivity. For
a clearer understanding of the performance of each
multi-input model, please refer to Figure 8.

5.6. Results from post-hoc XAI techniques

In line with the study’s aim to examine various XAI
techniques for better comprehension of the decision-
making process of the model, this section presents a
series of heatmaps generated from different methods.
As detailed in Section 3.4.7, these heatmaps were pro-
duced using various CAM algorithms and by using
the weights extracted directly from the spatial atten-
tion module. They were also derived from different
layers within the network employed for binary classi-
fication. It is worth noting that the model from which
these heatmaps were generated is the one that demon-
strated the best overall performance in the binary clas-
sification task, as described in the preceding section
5.5.

5.6.1. Backbone’s heatmaps
From the qualitative results displayed in Figure 9,

it becomes apparent that meaningful information re-
garding the nodule’s localization is not revealed by
any of the various maps generated for each case across
the different algorithms, when the heatmaps are cre-
ated using the gradient information up to the last layer
of the backbone. However, for the instance where
the network has accurately predicted the input image
as ’FNA-not-required’, the GradCAM begins to high-
light the correct localization of the nodule. In contrast,
for the ’FNA-required’ case, a larger activation area is
displayed by the EigenCAM, but it completely misses
the nodule’s localization.

5.6.2. Spatial module’s heatmaps
As per the qualitative results depicted in Figure 10,

a noticeable contribution by the spatial attention mod-
ule within the CBAM is observed. For the input image
correctly identified as ’FNA-not-required’, the nod-
ule’s localization is either fully or partially highlighted
by all the different algorithms, with the GradCAM and
XGradCAM covering the largest part of the nodule.
The only exceptions are the ScoreCAM and Eigen-
CAM, which extend the highly activated area to struc-
tures not corresponding to the nodule. On the other
hand, for the input image correctly classified as ’FNA-
required’, despite the model’s high confidence in its
prediction, none of the algorithms displays the correct
localization of the nodule. Counterintuitively, in the
case where the model misclassified the input image as
’FNA-required’, the most activated areas are at least
close to the nodule’s position.

5.6.3. Last convolutional layer’s heatmaps
The information up to this layer has a strong con-

nection with the model’s final decision. As shown in
the qualitative results in Figure 11, a striking sim-
ilarity across the different CAM methods and vari-
ous cases is seen in all the heatmaps. However, only
for the input image correctly classified as ’FNA-not-
required’, do the heatmaps display highly activated ar-
eas where the nodule is located. For the rest of the
cases, across the different algorithms, the decision of
the model is based on the incorrect part of the input
images. Moreover, in all cases, the ScoreCAM com-
pletely fails to provide any information.

5.6.4. Heatmaps using attention weights
Interpretability is less straightforward for the

heatmaps directly generated from the weights of the
spatial attention module. As demonstrated in Figure
12, areas containing meaningful spatial information
are dispersed throughout the entire image, intermin-
gled with areas of less significant information. Nev-
ertheless, it is observable that, for the case where
the input image was correctly classified as ’FNA-not-
required’, this activated area is still situated around the
position of the nodule.

6. Discussion

6.1. Optimization and refinement of the network
The initial phase of the study focused on optimizing

the baseline model, which was critical in establishing
a benchmark for subsequent experiments. This pro-
cess was a cornerstone in the development of a more
refined and efficient network, as it involved varying
the hyperparameters and choosing the configuration
that yielded the lowest validation loss.

Building on this, the results accentuated the sub-
stantial advantage of employing pre-trained weights.
They provided a robust foundation for the model, im-
proved performance metrics, and mitigated the risk of
overfitting. This insight reemphasizes the significance
of pre-training in the network setup.

Following the experiments performed, the addition
of extra hidden layers showed a positive influence on
network performance. The assumption that more lay-
ers could potentially degrade the model’s performance
was negated. An optimal configuration with four hid-
den layers was identified that exhibited lower valida-
tion loss, particularly on the ”Baseline” dataset. How-
ever, it also raised questions about the potential limi-
tations of added complexity in the classifier when ap-
plied to the ”Enlarged” dataset.

6.2. Contrasting performance of Mono-Input and
Multi-Input models

The study explored mono-input and multi-input
models, providing valuable insights, especially con-
sidering the dataset characteristics and employed
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Figure 7: Confusion matrices representing the binary classification results of thyroid nodules on the test set for the mono-input network. A:
The model that achieved the lowest validation loss across the five folds during cross-validation on the Baseline dataset. B: The model trained
on the entire Baseline dataset. C: An ensemble model that uses the weights of each of the models with the lowest validation loss from the
five folds during cross-validation on the Baseline dataset. D: The model that achieved the lowest validation loss across the five folds during
cross-validation on the Enlarged dataset. E: The model trained on the entire Enlarged dataset. F: An ensemble model that uses the weights of
each of the models with the lowest validation loss from the five folds during cross-validation on the Enlarged dataset.

Figure 8: Confusion matrices of the binary classification of thyroid nodules on the test set for the multi-input network. A represents the
multi-input model utilizing input-level fusion, B represents the multi-input model employing feature-level fusion, C represents the multi-input
model utilizing intermediate-level fusion, and D represents the multi-input model employing decision-level fusion.
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Figure 9: Comparison of heatmaps generated using different CAM algorithms, extracting the information from the final layer of the backbone.
The first element in each row represents the input images, to the left of which the ground-truth label and the model’s class probability are
displayed. A: Image correctly classified as ’FNA-not-required’. B: Image correctly classified as ’FNA-required’. C: Image incorrectly
classified as ’FNA-required’. D: Image incorrectly classified as ’FNA-not-required’. The white arrows in the first column indicate the nodule’s
location in each case.

Figure 10: Comparison of heatmaps generated using different CAM algorithms, extracting the information from the spatial attention module
layer of the overall architecture. The first element in each row represents the input images, to the left of which the ground-truth label and the
model’s class probability are displayed. A: Image correctly classified as ’FNA-not-required’. B: Image correctly classified as ’FNA-required’.
C: Image incorrectly classified as ’FNA-required’. D: Image incorrectly classified as ’FNA-not-required’. The white arrows in the first column
indicate the nodule’s location in each case.
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Figure 11: Comparison of heatmaps generated using different CAM algorithms, extracting the information from the final convolutional layer of
the overall architecture. The first element in each row represents the input images, to the left of which the ground-truth label and the model’s
class probability are displayed. A: Image correctly classified as ’FNA-not-required’. B: Image correctly classified as ’FNA-required’. C:
Image incorrectly classified as ’FNA-required’. D: Image incorrectly classified as ’FNA-not-required’. The white arrows in the first column
indicate the nodule’s location in each case.

Figure 12: Heatmaps generated using the weights extracted from the spatial attention module. On the left are images correctly classified by
the model, and on the right are images incorrectly classified by the model. The probabilities assigned by the model for each sample to belong
to the corresponding class are also displayed. The white arrows in the first column indicate the nodule’s location in each case.

methodology. The problem complexity was amplified
in this setting, affirming the significance of the dataset
construction and data quality in DL model success.

Interestingly, the mono-input model displayed su-
perior performance over the multi-input model, even

under different fusion strategies. Typically, multiple
inputs boost the neural networks’ learning capacity,
allowing them to capture complex patterns in data.
However, in the context of this study, additional infor-
mation seemed to increase the noise rather than im-
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prove class distinction. Furthermore, the inclusion of
multiple inputs reduced the number of cases by two
and increased the complexity of the data.

Upon deeper analysis of the performance charac-
teristics of the mono-input and multi-input models,
a striking difference was observed. High specificity
was exhibited by the mono-input models, indicating
proficiency in correctly identifying samples that were
indeed negative, or ’FNA-not-required’. Conversely,
high sensitivity was demonstrated by the multi-input
models, signifying their capability in accurately rec-
ognizing positive samples, those labeled as ’FNA-
required’.

These findings highlight the trade-off between
specificity and sensitivity in the mono-input and
multi-input models. Achieving a balance between the
two metrics is crucial to ensure accurate classification
and reduce the risk of false interpretations in medical
scenarios.

6.3. Evaluating the efficacy of fusion strategies

When comparing different fusion strategies,
decision-level fusion demonstrated the best perfor-
mance. By performing fusion at the decision level,
the network can rely on individual decisions made
based on different data subsets. This strategy likely
contributed to a more comprehensive understanding
of the application, which could lead to more accurate
overall decisions.

6.4. Impact of dataset characteristics and model per-
formance metrics

The impact of dataset characteristics on model per-
formance was evident in the results of the binary clas-
sification task. Models trained on a subset of the data
(Models A and D) outperformed those trained on the
entire dataset (Models B and E), as shown in Table
7. This performance difference highlights the impor-
tance of balanced class distributions in the training
data.

Interestingly, the optimal performance was
achieved by models A and D, which were trained
on subsets with more balanced class distributions.
This suggests that when the model was exposed to
a dataset with a more balanced representation of
classes during training, it was better able to generalize
and perform well during inference. These findings
emphasize the critical role that class distribution plays
in training robust and high-performing models.

It is worth noting that the ”Baseline” dataset, which
served as the initial reference dataset in this study,
was expanded to create the ”Enlarged” dataset. The
expansion involved combining the original ”Base-
line” dataset with newly acquired images, exclusively
sourced from the Hospital of Bastia. It is important
to highlight that the images from the Hospital of Bas-
tia were obtained using a different scanner compared
to the Hospital of Dijon. The introduction of these

new images, along with potential variability in image
quality and characteristics, may have contributed to
the observed decline in performance when training on
the ”Enlarged” dataset

Overall, these results underscore the importance of
careful dataset construction, including considerations
of class distribution and potential variations in image
sources, in order to train robust models with optimal
performance.

6.5. Explainability through heatmaps

In the analysis of explainability through heatmaps,
it was observed that the interpretability of the models
varied based on the layer and method used. The last
layer of the backbone did not provide meaningful in-
formation about the nodule’s localization, as shown in
Figure 9. However, GradCAM successfully indicated
the correct nodule localization for ’FNA-not-required’
predictions, while EigenCAM, despite displaying a
larger activation area, failed to accurately pinpoint the
nodule’s location for ’FNA-required’ cases.

Additionally, the spatial attention module within
the CBAM played a crucial role in correctly iden-
tifying the nodule’s position for ’FNA-not-required’
cases, as demonstrated in Figure 10. This finding
was further reinforced by the effective highlighting of
the nodule’s position through GradCAM and XGrad-
CAM. In contrast, ScoreCAM and EigenCAM ex-
tended their activations to areas outside the nodule
region, and none of the algorithms successfully local-
ized the nodule for ’FNA-required’ classifications. In-
terestingly, even in cases of misclassification, the ac-
tivated areas still exhibited a close alignment with the
actual position of the nodule.

In cases where the model made accurate predic-
tions but the heatmaps did not accurately highlight the
nodule’s location, it is important to consider that the
model may be utilizing other features or contextual
information surrounding the nodule for classification.
These features may not be visually apparent in the
generated heatmaps. The model could be capturing
subtle patterns or contextual cues that are learned dur-
ing training. Therefore, although the heatmaps may
not show specific activation in the nodule region, the
model could still be leveraging other relevant features
to make the correct decision. This emphasizes the DL
models’ ability to capture and utilize complex infor-
mation in decision-making, even when it is not ex-
plicitly evident in the generated heatmaps.

On the other hand, when evaluating the perfor-
mance of different CAM algorithms across differ-
ent cases and target layers, GradCAM consistently
demonstrated the best performance. The heatmaps
generated for each input image remained consistent
across different stages in the network.

Lastly, the interpretability of the models was less
clear when considering the heatmaps generated di-
rectly from the spatial attention module’s weights,
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as shown in Figure 12. Although significant spatial
information appeared scattered throughout the entire
image, the nodule’s location could still be discerned
in correctly classified ’FNA-not-required’ cases.

6.6. Comparison with the previous internship

In comparison to the previous internship, it is im-
portant to highlight the improvement in the perfor-
mance of the Attention-Densenet121 network in this
study. The confidence of the network in its predic-
tions was enhanced by optimizing the loss metric of
the model. It is worth noting that the previous intern-
ship exclusively focused on exploring the mono-input
configuration, making a direct performance compari-
son between the mono-input and multi-input networks
unfeasible. However, within the context of the mono-
input setting, it can be observed that the network in
this study achieved a high level of specificity, which
was the primary objective. Nonetheless, this improve-
ment in specificity came at the expense of a slight de-
crease in sensitivity.

7. Future work

To further enhance the performance of the Mono-
input and Multi-input Attention-Densenet121 net-
works presented in this study, it is crucial to deter-
mine the optimal configuration of the dataset for train-
ing both network settings. Finding the most effective
combination of training data sources, image charac-
teristics, and DA techniques can potentially improve
the models’ classification accuracy and generalization
capability.

Additionally, identifying the XAI algorithm that
provides more precise information about nodule lo-
calization is of utmost importance. Developing an al-
gorithm that can serve as a second opinion in a medi-
cal setting relies on accurate and interpretable nodule
localization. This would provide valuable support to
medical professionals in making informed decisions.

Moreover, given the limitations of the TIRADS sys-
tem in determining relevant image features, there is a
critical need for interpretable representations that can
capture and explain the key characteristics of thyroid
nodules. Techniques such as unsupervised learning or
disentangled representation learning hold promise in
extracting meaningful and interpretable features from
ultrasound images. By gaining a deeper understand-
ing of the underlying factors associated with differ-
ent types of thyroid nodules, more accurate and ex-
plainable diagnostic models can be developed. These
models can provide valuable insights to medical pro-
fessionals, ultimately improving decision-making and
enhancing patient care in the field of thyroid nodule
classification.

8. Conclusions

In conclusion, the study involved optimizing and
refining the network, which resulted in improved per-
formance. Mono-input models demonstrated supe-
rior performance compared to multi-input models.
Among the fusion strategies, decision-level fusion
showed the best results. Models trained on a bal-
anced subset of the data outperformed those trained
on the entire dataset. The interpretability of the mod-
els varied depending on the method and layer used.
These findings contribute valuable insights into the
field of DL models for thyroid nodule classification,
highlighting the importance of model optimization,
dataset characteristics, and interpretability techniques
for future research and advancements in this domain.
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Abstract

Rheumatoid arthritis is a condition that affects thousands of people worldwide. The treatments that exist today are not
a complete cure but only an aid to slow the progression of arthritis as well as relieve some symptoms. According to
the patients, pain is one of the most prevalent symptoms, which leads to emotional and quality of life consequences.
On the other hand clinical studies have demonstrated that insoles could be useful for the improvement of pain. Nev-
ertheless, experiments in this area are still unexplored, so in order to carry out the development of the insoles, it is
necessary to resort to computational models that provide the finite element analysis with accurate and precise data
on the identification and location of the foot bones for the design of the prototype. The first step for a computational
model is to use modern tools based on deep learning to obtain a proper segmentation of the foot bones. In this work
a method based on a 3D U-Net with Attention that contributes to the automatic segmentation of the foot bones is
proposed. In the first experiments, a decent segmentation of the posterior foot bones has been obtained, so further
tests were done to obtain a more defined segmentation on the forefoot bones. The trained models have been tested
on two different datasets, one coming from INRIA and the other from CHU Saint Etienne. The last one completely
unknown data for the model. The evaluation demonstrated that the main general goal was achieved in a qualitative
and quantitative way.

Keywords: Automated segmentation, Supervised segmentation, Foot bones, 3D Attention UNET

1. Introduction

The foot is a remarkable structure composed of
numerous bones that work together to support body
weight, provide stability, and facilitate movement
(Parvizi, 2021). Inside the foot are around 30 joints, and
more than 100 ligaments, tendons and muscles (Hardy
and Snaith, 2011). Accurate knowledge of foot bone
morphology and spatial relationships is crucial for diag-
nosing and treating various foot disorders, injuries, and
deformities (Coughlin and Mann, 2014).

The foot consists of three major regions: the hind,
mid, and forefoot. The hindfoot includes the talus and
calcaneus bones, forming the ankle joint and provid-
ing a stable base for the foot (Coughlin and Mann,
2014). The midfoot comprises the navicular, cuboid,
and cuneiform bones, giving the arch support and flexi-
bility. The forefoot comprises the metatarsals and pha-

langes, forming the toes and enabling weight-bearing,
propulsion, and balance during locomotion (Standring,
2016). In the figure [Fig.1], it can be observed the three
parts of the foot mentioned above.

Each bone in the foot exhibits distinct anatomical
features and variations, including size, shape, articula-
tions, and bony prominences. For example, the talus
bone is a tarsal bone that articulates with the tibia and
fibula, forming the ankle joint. It plays a crucial role in
transmitting forces between the leg and foot (Standring,
2016). The calcaneus bone, also known as the heel
bone, supports body weight and is an attachment site
for muscles and ligaments (Coughlin and Mann, 2014).

Many degenerative conditions affect bones. One of
them is arthritis which cannot be considered a single
disease. The term refers to joint discomfort or illness,
and there are different varieties of arthritis and disorders
associated with it. However, the current medicine does

22.1



Supervised Automatic Segmentation of Foot Bones in 3D CT scans 2

Figure 1: Three main regions of the foot. Midfoot in green, hindfoot in pink and forefoot in blue

not have a cure for this pathology, thus, the treatments
are based on symptom relief (Pelt, 2012).

Rheumatoid arthritis (RA) is a chronic autoimmune
disease characterized by joint inflammation, pain, and
progressive joint damage (Aletaha and Smolen, 2018).
It affects millions worldwide, including a significant
population in France with a prevalence of 0.5% (Egan
et al., 2001). Hands and feet are commonly affected by
RA, a type of peripheral polyarthritis that compromises
foot function and is accompanied by changes in plantar
pressure and gait abnormalities. Patients are negatively
affected, which results in foot pain, instability, difficulty
walking, and a lower quality of life (Turner et al., 2008).

RA treatment has improved due to the advent of
anti-rheumatic drugs since patients with severe inflam-
matory and destructive illnesses have been reduced.
However, pain relief remains a significant concern for
many patients as the emotional and quality of life con-
sequences are significantly affected by this symptom
(Vergne-Salle et al., 2020). Some studies have shown
that footwear is essential in treating RA, as tight-fitting
shoes can lead to high pressures and consequent pain.
For this reason, foot orthoses have been prescribed to
improve lifestyle quality by reducing the load in regions
where pain may be concentrated (Kelly et al., 2021).
Nevertheless, their effectiveness is still unclear.

Furthermore, biomechanical researchers investigate
foot bones’ mechanical properties and function to de-
velop improved footwear designs and understand gait
abnormalities. By using therapeutic footwear and per-
sonalized foot orthoses, foot pain and impairment can
be decreased (Guillemin et al., 2005). Orthotic insoles
are frequently employed to treat RA patients and in-
crease their functional abilities. Although wearing in-
soles is commonly associated with pain alleviation, sys-
tematic evaluation of the mechanisms involved in this
treatment is lacking. Due to the difficulty of conducting
such studies in a clinical setting, insole design and its
relationship to internal effects such as joint pressure and
soft tissue deformations have yet to be examined (Egan
et al., 2001).

In other words, understanding foot pain still has sev-
eral limitations due to the need for methods to study
the sources of pain and the complex structure of the

foot that does not allow us to understand specific mech-
anisms involved in pain. The finite Element Method
(FEM) offers a powerful computational approach to
tackling this issue. It can model the mechanical re-
sponse of the foot to different stimuli and investigate
the distribution of stresses within different tissues al-
lowing a deeper understanding of structure abnormali-
ties, tissue degeneration, and other factors involved in
pain. FEM also facilitates the identification of specific
regions that experience excessive stress or strain, help-
ing localize potential pain sources (Chen et al., 2015).

On the other hand, computational modeling provides
a further understanding of how loading affects the soft
tissue and joints internally. There are different tools to
model the foot, in this case, the bones. One widely used
technique in orthopedics for surgery planning, biome-
chanical analysis, and the development of custom-fit
prosthetics is segmentation (Pham et al., 2000). In con-
junction with FEM, segmentation plays a crucial role in
precisely localizing pain sources within the foot because
it provides accurate and detailed information about the
geometry and boundaries of the analyzed structures.

In the same way, segmentation has shown promising
results in various medical modalities. Computed tomog-
raphy (CT), magnetic resonance imaging (MRI), and X-
rays can provide valuable insights into the foot bones’
structural characteristics and spatial relationships. Us-
ing these imaging techniques, one can precisely iden-
tify, segment, and measure each bone in a 2D or 3D im-
age. Additionally, imaging facilitates the detection of
pathological conditions, deformities and fractures. Po-
diatrists utilize foot bone analysis to diagnose and man-
age conditions like arthritis, flatfoot, or bunion deformi-
ties (Zhang et al., 2014).

The segmentation process involves identifying and
separating individual bones within the foot. Supervised
segmentation leverages labeled training data to learn a
segmentation model that can accurately delineate bones
in CT scans. The model can then be applied to unseen
scans to automate segmentation. However, due to the
complex anatomical structures and variations in bone
shapes, manual segmentation of foot bones is a time-
consuming and challenging task for radiologists and
clinicians (Wang and Hazlehurst, 2018). For this rea-
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son, automatic segmentation has become the solution to
this problem. Machine learning methods and convolu-
tional neural networks (CNN) are required for this type
of segmentation.

The primary objective of this paper is to develop and
evaluate a supervised segmentation framework for ac-
curately segmenting foot bones in 3D CT scans, focus-
ing on patients with rheumatoid arthritis in France. It
is worth mentioning that this task corresponds to the
first stage of a project called INORA. The main goal
of INORA is to investigate the mechanisms of action of
shoes and orthotic insoles using patient-specific compu-
tational biomechanical models to suggest a reasonable
approach to their design. On a more fundamental view,
these models will aid in discovering mechanical deter-
minants of pain reduction, allowing for patients’ long-
term well-being.

Hence, the contributions of this work are as follows:

• Creation of a dataset with their respective Ground
Truth (GT) of healthy patients.

• Generation of data cubes, which are used as input
to the network.

• Application of a 3D U-NET with attention blocks
to perform binary supervised automated segmenta-
tion.

• A Weighted loss function to discriminate back-
ground pixels.

• Training focused on the Field of View (FOV)

• Obtention of 3D meshes with different segmenta-
tion methods: overlapping, majority voting, and
sliding.

• 3D meshes with all and individual structures of the
foot

• Evaluation of the predictions with statistic methods
to know the model’s performance on each image.

2. State of the art

Medical image segmentation plays a crucial role in
various clinical applications, enabling accurate diagno-
sis, treatment planning, and disease monitoring. Over
the years, researchers have made significant advance-
ments in the field, proposing innovative techniques to
address the challenges associated with segmenting med-
ical images. This section provides an overview of some
techniques in medical image segmentation. It will focus
on deep learning methodologies and algorithms based
on supervised segmentation of the spine and vertebrae
due to the limited information available on foot segmen-
tation.

For biomedical image segmentation tasks, the net-
work known for excellence and its superior performance
results is the U-NET architecture presented by (Ron-
neberger et al., 2015). U-NET is a network based on

Figure 2: UNET architecture for medical segmentation. Courtesy of
(Ronneberger et al., 2015)

CNN networks. It is built on an encoder-decoder struc-
ture where the encoder learns hierarchical representa-
tions of the input image through convolutional layers,
capturing low-level and high-level features. The de-
coder then utilizes upsampling and skip connections to
recover spatial information and generate a pixel-wise
segmentation map. U-NET’s architecture shown in fig-
ure [Fig.2], with its contracting and expanding path-
ways, has proven effective in capturing context and local
details, enabling accurate and efficient segmentation.

On the other hand, in his paper based on the chal-
lenge VerSe 2019, (Payer et al., 2020) proposes a three-
step method to perform vertebrae localization and seg-
mentation. It consists of using two CNNs, one with a
coarse input resolution, to predict the approximate lo-
cation of the spine. And the other at a higher resolution
for the multiple landmark localization and identification
of individual centroids. Finally, the segmentation CNN
performs a binary image segmentation of each localized
vertebra in the highest resolution.

Furthermore,they use a single network for segment-
ing the vertebra because each one is individually sep-
arated from the background. Since each vertebra has
an independent segmentation, the network must know
which vertebrae are in the input volume to segment.
Thus, they crop the region surrounding the localized
vertebra from the CT scan to the center of the reduced
image. During inference, they utilize the ground-truth
vertebra location throughout training and the predicted
vertebra. Besides, they generate an image of a Gaus-
sian heatmap centered on the vertebra location. Both
the cropped and heatmap images are sent into the seg-
mentation U-Net.

They adapt the U-NET of (Ronneberger et al., 2015)
for the binary segmentation to execute average instead
of max pooling and linear up-sampling instead of trans-
posed convolutions. The network has five levels with a
kernel size of [3x3x3] and 64 filters and is set up to pre-
dict a single output volume. The vertebrae segmentation
method is shown in [Fig.3]. The results obtained on the
test sets for the segmentation have good performance
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Figure 3: General overview of vertebrae segmentation using U-NET method proposed by (Payer et al., 2020)

compared to others, reaching a method with good gener-
alization capabilities and winning the VerSe 2019 chal-
lenge.

(Meng et al., 2023) proposed a novel framework that
combines graph optimization and an anatomical con-
sistency cycle to improve the accuracy and robustness
of vertebrae analysis. These techniques are applied be-
tween the localization, segmentation, and identification
tasks. Graph optimization is used to refine localiza-
tion and segmentation results by leveraging spatial re-
lationships between neighboring vertebrae. At the same
time, incorporating an anatomical consistency cycle en-
sures anatomical accuracy throughout the analysis pro-
cess. For the vertebrae segmentation, they computed a
binary segmentation of the entire spine that helps locate
the region of interest. This step allows the estimation of
the locations of individual vertebrae. With this informa-
tion, the individual vertebrae segmentation masks are
calculated. Similarly to (Payer et al., 2020), they use
three steps strategy of localization, identification, and
segmentation with the difference that they introduce an
anatomic consistency cycle. This cycle ensures that the
results are refined iteratively.

For the segmentation task, they use a 3D Attention
U-NET. The base architecture used is the 3D U-NET
of (Ronneberger et al., 2015), but with the segmenta-
tion module in (Payer et al., 2020) and adding atten-
tion blocks (Oktay et al., 2018) embedded in the skip
connections. The network’s input is a 3D CT image
patch, and its output is a probability mask for each
voxel, indicating whether or not it belongs to the bone.
The overview of the method is visualized in the figure
[Fig.4].

Furthermore, the vertebrae are identified using loca-
tions and segmentation masks. A VGG network is used
for this task considering both local and global contexts.
The classification is made in two stages: first, predicting
the spine level (cervical, thoracic, or lumbar) and then
predicting the identity within the group.

The results obtained achieved state-of-the-art execu-
tion on the VerSe challenge. Furthermore, the method
generalizes well in unseen data.

Inspired by the work of (Meng et al., 2023), a new ap-
proach to segmenting the foot bones is developed. The
method is intended to help the finite element analysis in
order to design insoles that allow dealing with the pain

provoked by Rheumatoid Arthritis.
The proposed framework consists firstly in achieving

an automatic binary segmentation of CT volumes in two
different perspectives of the foot, which does not con-
sider prior knowledge. It should also be mentioned that
the phalanges were not taken into account. Moreover, it
incorporates a loss function with weights to discard pix-
els with no bone, an approach centered on the FOV of
the scan, and four models trained with the four different
groups of bones to analyze the complex structures found
in segmentation results. Additionally, a prediction ag-
gregation is included in three modes: Overlapping, slid-
ing, and central voting to generate the final masks.

3. Material and methods

3.1. Dataset
The dataset used in this paper is building-labeled.

The data was provided by Centre Inria de l’Université
Grenoble Alpes. It includes 3D CT scans of 11 healthy
patients in-vivo and their respective meshes segmented
by an image processing method. Each patient has two
images, one corresponding to the anterior zone of the
foot and the other to the posterior location of the foot.
In every scan, different bones can be appreciated. Then,
they merged to form the entire foot. Some images from
this dataset can be observed in [Fig.5]

3.1.1. Ground Truth creation
For supervised learning purposes, an annotated

dataset was created. The 22 volumes were already seg-
mented into 14-15 bones and saved in an STL format.
For the reconstruction and voxelization of these STL
files, 3D slicer was used. The first step of this pro-
cess was to load the 14 or 15 segments separately to
join them into a single segmentation later and create a
binary label map with a single layer. The map is then
selected, and the volume of the original image is used
as a reference to ensure that all CT characteristics are
considered to create a new one. Finally, it is exported as
a NIFTI image. This procedure was repeated 22 times,
one for each image of each patient. At that point, the
dataset had been labeled and was ready for usage.

3.2. Pre-processing
Once the dataset was created, it was observed and

cleaned. The image was adapted to the field of view
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Figure 4: Vertebrae segmentation: overview method using 3D U-Net with Attention. Courtesy of (Meng et al., 2023)

(FOV), resulting in the removal of the CT table after
the obtention of the first results. However, this adjust-
ment helped to focus more precisely on the area to be
segmented.

3.2.1. Test dataset
For testing purposes, another dataset was used. This

dataset comprises 3D CT scans of three healthy patients
ex-vivo from CHU Saint-Etienne and does not contain
labels. These scans are in a DICOM format, so a con-
version to NIFTI format was performed for better data
manipulation. The image was resized to fit the field of
view in the training dataset.

Figure 5: The first four images belong to the anterior foot, and the
last two to the hindfoot. The cuneiform bones, the navicular, and the
cuboid can be appreciated on the left. In the middle, the five metatar-
sus and the tibia, fibula, calcaneus, and talus are shown on the right.

3.3. Data preparation
3.3.1. Cube extraction

A cube extraction strategy was employed because the
network only accepts fixed-size input, and the CT scan
input has an arbitrary size. All the dataset was pre-
processed. The cube extraction was done taking into
account various cube sizes and strides. The overlap was
created by making the stride smaller than the cube size.
Furthermore, volume padding was considered, with a
value of -1000, the value of the air in Hounsfield units
for the images, and a value of 0 for the GT. The scans
were also down-sampled due to decreased voxel spac-
ing, although trials were performed with the original
voxel spacing. The following combinations of three
cube sizes and strides with two different voxel spacing
were tried to obtain the optimal network settings:

1. 96x96x96 and 48 with 0.37mm and 1.0mm
2. 64x64x64 and 32 0.37mm and 1.0mm
3. 32x32x32 and 16 0.37mm and 1.0mm

Once the cubes were obtained, a viewer was created
to visualize them. See the images from different views
to check if the extraction was successful was possible
with this tool. An example is shown in the [Fig.6].

Figure 6: Example of a cube with three different view perspectives.
Image cubes at the top and label image at the bottom

3.4. Network architecture

(Ronneberger et al., 2015) introduced U-Net, a well-
known deep-learning network for biomedical image
segmentation. (Meng et al., 2023) has employed this
network to segment the spine and vertebrae. Therefore,
this project uses a 3D U-Net design. The U-Net archi-
tecture comprises the encoder (down-sampling) and the
decoder (up-sampling). The encoder collects high-order
abstract information from images while decreasing their
size. At the same time, the decoder progressively recov-
ers the original size of the input image. Additionally,
skip connections between the encoder and decoder pre-
serve information.

The U-Net is built with different blocks to facilitate
code comprehension. Each block will be described in
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the paragraphs below. The network takes several pa-
rameters as inputs, including the input channels and the
number of feature maps at each level of the U-Net. The
input tensor is initially passed through a convolutional
block (Conv start) which performs the first feature ex-
traction and encoding. This block encloses convolution
operations followed by batch normalization and ReLU
activation layers. Then, the resulting output is passed
through four down-sampling blocks (Encoder) that con-
sist of a max-pooling layer followed by a sequential
process of repeated convolutional blocks. Here, the
max-pooling reduces the spatial dimensions of the fea-
ture maps and extracts dominant features. These blocks
gradually capture and encode hierarchical features at
different scales.

After reaching the bottom of the U-shaped architec-
ture, the tensor passed by a series of up-convolution
blocks (Decoder). Each up-convolution block applies
a sequence of convolutional blocks followed by an up-
sample operation. Here, up-sampling acts as the reverse
of the max-pooling, increasing the spatial dimensions of
the feature maps and helping to recover the information
lost during down-sampling.

An attention block is applied at each up-convolution
block between the up-sampled features and the corre-
sponding features from the skip connections. Inside
every attention block, an attention mechanism com-
bines the feature maps from the skip connections and
the global feature maps to produce an attention map.
The attention map is computed by applying convolu-
tional operations to capture their interdependencies; this
means that the attention procedure enhances the critical
features and helps the model focus on relevant informa-
tion. Therefore, the block output is a weighted combi-
nation of the input feature map based on the importance
assigned by the attention system.

The up-sampled and attention-enhanced features are
concatenated with the features from the skip connec-
tions. This concatenation combines the high-level and
low-level features, allowing the model to retain and fuse
information from different scales. Finally, the concate-
nated elements passed through the subsequent convolu-
tional operations (up-convolution blocks) to further re-
fine the features. The output of the final layer is routed
through a 1x1x1 convolutional layer, and a sigmoid ac-
tivation function is applied to generate the final result
that provides the probability class at each voxel. The
model used for U-Net with attention can be seen in the
figure [Fig.7].

3.5. Training

Once the data was pre-processed, the network was
trained. For the first training, which served as a refer-
ence, the following configuration was used:

1. the whole dataset without split

2. cube size of 96x96x96 with a stride of 48 and a
voxel spacing of 0.37mm.

3. batch size of 10

With this configuration, it was noted that the train-
ing was prolonged. Due to GPU memory constraints, it
was decided to modify the cube size to 64x64x64 with
a stride of 32 and decrease the cube resolution, so the
voxel spacing was increased to 1.0mm. Besides, the
dataset was separated into three sets: train, validation,
and test with 7, 2, and 2 CT scans, respectively, while
the batch size remained the same. The training was re-
peated with these changes.

Other experiments were performed by changing the
cube and stride size, raising and lowering the voxel
spacing, and the batch size. However, the training was
observed to be slower when the cube size was reduced,
even though the batch size was increased.

Another thing that was considered was implementing
a code with different blocks. One block for training,
one for validation, and one for testing. This help to see
the behavior of the network when training. Another pa-
rameter considered to vary according to the results ob-
tained was the number of epochs, starting with 150 and
200 afterward. The latter is the number to be taken in
the following training sessions. An instrument was also
needed to visualize the plot´s behavior of the loss func-
tion, the accuracy, and the dice score in real-time. The
TensorFlow tool: tensorboard was used for this purpose.

After several tests, the cube size chosen for all exper-
iments was 64x64x64 with a stride of 32 and a voxel
spacing of 1.0 mm. The appropriate configuration se-
lected can be observed in the table [Tab.1].

Training parameters

Loss functions Dice and MSE
Optimizer Adam

Learning rate 0.001
Batch size 56

Lambda(λ) 20
Epochs 200

Table 1: Optimal hyper-parameters configuration used in all the ex-
periments after the first results.

Consequently, we proceeded to perform the training
with the following variants:

• Training with optimal configuration

• Training with a weighted loss function

• Training with FOV adjustment with optimal con-
figuration

• Training with FOv with a weighted loss function

• Group Bones training

• Group Bones training with a weighted loss func-
tion
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Figure 7: UNET 3D with attention architecture

3.5.1. Loss functions
In order to minimize the difference between our pre-

diction and the actual data, the network was trained
using a regression loss L (Meng et al., 2023). This
loss function combines the Dice coefficient and the
Mean Squared Error resulting in the following equation
[Eq.1]:

Lloss (G(x), y) = 1 − 2|G(x) · y|
|G(x)|2 + |y|2 + λ∥y −G(x)∥2 (1)

Where the ground truth cube is denominated by y, the
input by x, and the output by G(x). λ is experimentally
set to 20 and maintained constant during the training.
The equation’s first part consists of a dice loss function,
and the second is an MSE loss function.

Dice Loss Function. For the dice loss, a function
was created to calculate the dice coefficient, whose
equation can be seen in [Eq.6]. In the dice coefficient,
the best value is the one that is close to one; neverthe-
less, in a loss function, the values must be small since
they are necessary to correct the weights in the back-
propagation. Therefore, a modification is made to the
equation used to calculate the dice by adding a one to
subtract it. In this way, we obtain values close to the

values that indicate that the model is learning and that it
is good. The loss function is described by the following:

Dscloss (G(x), y) = 1 − 2|G(x) · y|
|G(x)|2 + |y|2 (2)

MSE loss function. The MSE loss is obtained by
the Pytorch library, and it measures the mean squared
error between the predicted value and the target. The
equation is shown in [Eq.3].

MSEloss (G(x), y) = λ
n∑

i=1

(y −G(x))2 = λ∥y −G(x)∥2

(3)

3.5.2. Weighted Loss functions
One of our experiments involves training the model

and implementing a weighted loss function for better
segmentation results. A weighted loss function is a
modified version of the standard loss function. The
weights impose a higher penalty for incorrect minority
class classifications. By raising the penalty of incor-
rectly classifying a minority class, the model will be-
come more sensitive to that class.
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In this case, we applied the weights to the bone class
representing a small percentage in the image compared
to the background class. A method was created to as-
sign the weights to the loss function of each batch. It
is implemented in the data loader and is computed with
the following:

W i =
max (S , #bonesi)

n
(4)

Where S is a value selected according to the mini-
mum numbers of non-zero voxels in the image, and it
is used to avoid a result of zero. #bones is the number
of voxels that contain bone, and n is the total number of
voxels, which can be described by the size of the cube
power of 3. Observing the number of bone voxels S is
set to 6400.

3.6. Validation

A selection of the most optimal model is required to
validate the trained experiments. Dice score (dsc) and
accuracy are used for this purpose. Both metrics evalu-
ate the performance of the segmentation task. Further-
more, the average loss function is also employed as a
reference to determine which model is better than the
other. The lower the average loss, the better the model.
However, this selection is arbitrary because we must
also take into account the values achieved in accuracy
and dice in the elected epoch.

3.6.1. Metrics
In this case, a segmentation task’s performance is

evaluated. Two standard metrics are used.

Accuracy. The pixel accuracy is the percentage of
correctly classified pixels in the image. It is computed
with the following formula:

Pixel accuracy =
#T P + #T N

#T N + #T P + #FP + #FN
(5)

In this case, the given classes are background (0) and
bone (1):

• True Positive (TP): pixel classified correctly as
bone

• False Positive (FP): pixel classified incorrectly as
bone

• True Negative (TN): pixel classified correctly as
background

• False Negative (FN): pixel classified incorrectly
as background

However, there is an issue with this metric called
class imbalance. If one class is more predominant than

another, there may be a high accuracy indicating pix-
els are well classified while the other class is not. This
result will be completely useless, and it demonstrates
that high accuracy does not mean excellent segmenta-
tion skills. There are other metrics to deal with this
problem. One of them is the dice score.

Dice score. The second measure is the Dice score
which is defined as two times the intersection between
the ground truth and the predicted mask, divided by the
sum of the ground truth and the predicted mask. The
formula is displayed in [Eq.6].

Dsc =
2|GT ∩ S |
|GT |2 + |S |2 (6)

The minimum value that the dice can take is 0, which
means no intersection between the predicted mask and
the ground truth, and the maximum that it can take is
1, which implies the prediction is accurate. Thus, the
values closer to 1 indicate a decent overlap between the
ground truth and the predicted mask.

3.7. Test
The test applied after the training & validation serves

as an indicator of how good is the current model. A dice
and accuracy score and an average of the loss to test the
model’s performance with unseen data were obtained.
Nevertheless, the real test will be done on the whole CT
scan, and it will be explained in the Evaluation 4.

3.8. Implementation details
This project was developed using an UBUNTU

22.04.1 LTS OS, Python 3.9.1, CUDA 11.2, and VSC
1.77.0 IDE. SimpleITK 2.2.1, 3D Slicer 5.2.1, ITK-
SNAP 3.8.0, and MeshLab 2020.09 software were em-
ployed to help in image processing tasks.

In addition, the manipulation and reading of the
NIFTI data were handled by the Nibabel 5.0.1, Nilearn
0.10.0, and Nipraxis 0.3.6 libraries. The deep-learning
framework PyTorch 2.0.0 and its complementary pack-
ages were also utilized. The online TensorFlow tool,
tensorboard, served to visualize the plots, time series,
and model constitution. Lastly, the models were trained
on two NVIDIA QUADRO RTX 5000 GPUs with 16
GB of built-in RAM each, provided by INRIA. With
these specifications, each training session lasted approx-
imately 16 to 20 hours.

4. Results

Two datasets to evaluate the model were used. One
comes from INRIA as the training set, and the other
from CHU Saint-Etienne. The first one has 2 CT sub-
jects and two images per each, while the second one has
3 CT subjects and one scan per each.
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The effectiveness of the segmentation is assessed
using two common metrics from the literature (Payer
et al., 2020). The first measure is the Dice score (DSC).
It is calculated by dividing two times the intersection of
the ground truth label and predicted label by the sum of
the ground truth and prediction [Eq. 6]. The Hausdorff
Distance (HD) is the largest of all the distances between
a point in one set and the nearest point in the other set.
It compares the predicted label with the ground truth.

On the one hand, the dice coefficient measures the
segmentation accuracy and is particularly useful in deal-
ing with imbalanced classes. In the case of these im-
ages, the background(the first class) is present in more
regions than the bones(second class), giving; as a result,
imbalanced classes, so there is a need for a metric to
tackle this problem. The dice considering both the true
and false positives gives a balanced calculation of the
segmentation performance.

On the contrary, the Hausdorff distance reveals infor-
mation about the boundary or shape dissimilarity be-
tween the masks. It is a helpful metric for evaluating
how accurately the algorithm extracts the contours and
fine details of the segmented objects. The foot contains
various complex structures, and the segmentation en-
tails clearly defining the outlines of the foot bones and
separating them from the background or other entities.
For this reason, if the segmentation is more similar, the
Hausdorff distance is smaller; if it is more dissimilar,
the HD is larger.

The first step for inference was to take the entire
CT scan and apply the trained model in three different
modes: overlapping, sliding, and central voting. These
implement the same strategy used in cube extraction,
obtaining, as a result, the binary mask.

Overlap. This approach divides the whole CT scan
into cubes of size 64x64x64 as in the cube extraction
to reproduce the same input as in training. Once the im-
age is divided, the model is applied in an overlapping
mode with a quarter of the cube size stride, in this case,
16. Each voxel contains 64 (4x4x4) probabilities, which
are averaged and then binarized by setting a threshold of
0.5 to generate the final mask.

Slide. This technique splits the scan into cubes of
64x64x64 as in the overlap method but with the dif-
ference that the model is applied in a sliding mode. It
involves moving a fixed-size window across the input
image in a systematic manner to extract features. Like-
wise, the probabilities in each voxel are averaged and
binarized to produce the mask.
It involves moving a fixed-size window or kernel across
an input image in a systematic manner to perform local
operations or extract features.

Central voting. In this mode, the image is divided

into multiple cubes of size 64x64x64 with a stride of
16 (a quarter of the cube size), which is used to slide
the cubes. Then, the model is applied to each cube by
overlapping the 50%, and the other 50% of the cube
is discarded, causing the central area to have more
weight in the voting process. Here, each voxel has 8
(2x2x2) probabilities that are averaged and later, with a
threshold of 0.5, are converted into binary values to get
the mask.

Furthermore, the algorithm is programmed to save
the best model as the one with the lowest validation av-
erage loss. Following this criterion, the best epoch is
the one that contains the best model. However, when
looking at the loss and accuracy plots, the lowest aver-
age loss is not the one that actually has the highest dice
score value. Therefore the epoch that contains the high-
est average dice is selected. This procedure was applied
to get the best model of all the experiments.

The results are exhibited in two ways: qualitatively
and quantitatively. In the qualitative ones for the INRIA
dataset, two types of images can be found. In the first
image, the 2D slice representation, anterior and poste-
rior foot, are displayed in three distinct views (axial,
sagital and coronal) corresponding to different slices.
Each window contains four images: at the upper left
corner the GT, at the upper right corner the overlapping
mask, at the bottom right the central voting mask and
at the bottom left the sliding. This view allows a better
comparison of all the masks obtained with the diverse
methods. At the same time, the projections of the 3D
meshes are also presented. Each window corresponds
to the various modes employed for their creation; at the
top is the central voting mesh, at the right is the sliding,
and at the left is the overlapping.

The three modes for the CHU dataset are shown in the
three views previously mentioned. Overlapping at the
upper left corner, sliding at the upper right, and central
voting at the bottom right. This dataset does not have
Ground Truth, so it is not included.

In order to obtain this 3D perspective, the NIFTI im-
ages were subjected to a conversion algorithm to obtain
volumetric structures. It examines each voxel and de-
tects its relationship to the surrounding voxels. The in-
tensities are then mapped to a color gradient and used
to determine the iso-surface, representing the boundary
between different forms. Besides, the 3D view allows a
better analysis of the segmentation since here is possible
to observe the missing or remnant parts in the mesh.

The images containing the 3D data are organized in
such a way that the first model, from left to right, is ob-
tained with central voting, the second with overlapping,
and the third with sliding.

On the other hand, the quantitative ones show the
metrics that indicate how good the results are numer-
ically speaking. As the dataset of the CHU does not
contain labels, the metrics could not be calculated, so
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only qualitative results are presented.
This section will be divided to include all the speci-

fied experiments described in 3.5.

4.1. First experiments

The first experiment was used to evaluate the net-
work’s performance. The initial number of epochs was
set to 150 and the batch size to 10 with a learning rate
of 0.001 and using an Adam Optimizer, a lambda value
of 20, and the loss function described in the 3.5.1.

4.1.1. INRIA dataset
The resulting masks are computed in the three modes

mentioned above for both images of the two test sub-
jects. The masks in 2D of the first results of the pos-
terior and anterior foot are shown in the [Fig.9a]. The
segmentation of the hind bones is much better than the
anterior bones since a clear separation in the metatarsals
cannot be distinguished.

Figure 8: GT of the 3D Mask of the whole foot

Subsequently, the meshes of the whole foot are pre-
sented in [Fig.13a], and as a reference for how the 3D
model should look, the labeled mesh in [Fig.8]. In this
view, the foot structure is preserved but with some prob-
lems in the separations of the small bones. Also, it is
possible to perceive the CT platform, which indicates
that the images are not well-centered. These outcomes
are taken as a reference to improve the current work.

On the contrary, good quantitative results are ob-
tained for the first CT containing the posterior foot
bones and being in the overlapping method, which
presents the best dice score. However, in the other CT
where the hind bones are also found, the Dice score de-
creases to 0.68, increasing the HD to 60.50 in the over-
lapping method and surrounding the same values in the
sliding and the central voting. In contrast, for the scans
containing the forefoot bones, such as the metatarsals,
the dice remain in the range of 0.74-0.78 with Hausdorff
distances with similar values. In the [Tab.2] are the met-
rics mentioned before for the three different techniques
applied to the scans.

4.1.2. CHU dataset
The results achieved with this dataset are essential to

determine how well the model generalizes with data it
has never seen. The masks are obtained in the three dif-
ferent modes already mentioned. The masks in 2D of
the first results are displayed in [Fig.11a]. Here, the
whole structure of the foot can be appreciated. The
metatarsus are seen in the axial and coronal views. The
3D meshes are shown in [Fig.14a]. This view matches
well with what was seen in the 2D slice representation.
Four of the five metatarsals are well-delineated, while
the last is barely visible. The other bones have a good
appearance but still need to be refined. Thus, with these
results, it can be analyzed what should be improved in
the subsequent experiments since complete modeling of
the anterior zone of the foot is not yet achieved.

4.2. Training with optimal configuration

After observing the quantitative and qualitative re-
sults of the first training, the decision to train with more
epochs was made. If the plots of average dice and aver-
age loss are observed well, it is possible to see that the
average dice can still rise and the average loss can still
go down. For this reason, the number of epochs was in-
creased. The next training was executed, increasing the
number of epochs to 200 and the batch size to 56. The
rest of the hyper-parameters are shown in the [Tab.1].

4.2.1. INRIA dataset
The new experiment demonstrates a slight improve-

ment in segmentation. In the figure [Fig.9b], it is pos-
sible to observe that some bones are almost separated
than in the first training. Nevertheless, this disunion
is more evident in the 3D masks [Fig.13b] since the
metatarsals are more defined and with more separation
between them than in the image of the first experiment.
It means that the increase in epochs does influence ob-
taining better results. However, the same issue as be-
fore, the CT platform, is still present.

On the other hand, the metrics [Tab.3] showed that the
results were slightly better in the first experiment than
in this training. In addition, if a comparison is made be-
tween the different methods, it can be seen that the over-
lapping is the one that presents the highest dice scores
and low HD surrounding values between 0.64-0.91 for
dice score and 8.73-62.69 for the Hausdorff distances.

4.2.2. CHU dataset
In contrast to the first data set, a little deterioration

is shown here. The metatarsals, well defined in the first
experiment, are not so in this one, as shown in [Fig.11b].
However, the space between the first metatarsal and the
phalanx present in the first experiment cannot be seen
here; they are now cohesive. On the other hand, the
larger bones can be seen better. This change can be ob-
served in the meshes in [Fig.14b]. This image shows
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ID

CT2 Posterior Foot
CT2 Anterior Foot
CT3 Posterior Foot
CT3 Anterior Foot

Overlap

Dice score HD

0.9221 8.4210
0.7811 10.6531
0.6834 60.5049
0.7590 21.7797

Slide

Dice score HD

0.9027 14.0649
0.7627 18.7134
0.6627 62.1347
0.7562 24.0272

Central votes

Dice score HD

0.9177 8.2734
0.7597 16.0471
0.6767 59.3397
0.7438 22.1166

Table 2: Metrics for overlapping, sliding and central voting of the first experiments

ID

CT2 Posterior Foot
CT2 Anterior Foot
CT3 Posterior Foot
CT3 Anterior Foot

Overlap

Dice score HD

0.9165 8.7323
0.7229 22.7211

0.64789 62.6973
0.7640 22.3904

Slide

Dice score HD

0.9041 26.5989
0.7671 23.9673
0.6256 63.0804
0.7645 25.9660

Central votes

Dice score HD

0.9107 14.6513
0.7055 23.6192
0.6445 61.5869
0.7402 22.5457

Table 3: Metrics for overlapping, sliding and central voting of the training with optimal configuration

that although the metatarsals are now missing segments,
the larger bones, such as the fibula and talus, are more
delineated.

4.3. Training with weighted loss function
The main objective of this experiment was to give

more importance (weight) to the areas of the image with
bone than the ones with the background. The segmenta-
tion masks provided by this model are presented below.

4.3.1. INRIA dataset
The results are better for the model trained with a

weighted loss function. In the 2D view [Fig.9c], it can
be appreciated that the bones on the bottom right corner
in the image of the hindfoot are already separated. It is
not observable in the previous results. The same hap-
pens with the bones of the anterior foot in the top right
corner. Here, some bones look more divided than in the
other experiments. In the 3D meshes [Fig.13c], it can be
observed that the gaps between the metatarsals are more
apparent than before, and the bones look more detailed.

Likewise, this could be proved with the metrics in the
[Tab.4]. Those report an increment in the dice score of
all of the scans except the first one and a diminution in
the HD of all of the scans. Once again, the comparison
between modes shows that the overlapping is the best
due to its high dice scores and low HD.

The achieved enhancement is due to the weights
added to the voxels with bones; this approach makes
a difference in the appearance of the segmentation, even
though the same problem is repeated since the CT table
is still appearing.

4.3.2. CHU dataset
The masks produced with the model with weights can

be appreciated in the [Fig.11c]. These demonstrate that

some structures in the anterior foot reappeared again,
like in the first experiment. However, in this trial, the
more prominent objects are slightly disjointed, which
is good because segmentation is becoming more accu-
rate. Despite this, the metatarsus does not still look like
the first experiment, but more so than the one with the
optimal configuration. This difference is more visible
in the 3D data,[Fig.14c], than in the 2D images. Addi-
tionally, the last metatarsal is a little more reconstructed
here than before. This characteristic can be appreciated
more in the overlapping mode (middle).

4.4. Training adjusting the image to the FOV with opti-
mal configuration

The last results showed a problem with the masks.
The CT table can be appreciated in the segmentation
where the hindfoot bones are. Given this circumstance,
it was decided to do a new training by adjusting the im-
age to a suitable FOV. The qualitative and numerical re-
sults obtained with this experiment are shown below.

4.4.1. INRIA dataset
In this experiment, the results show a considerable

improvement. It can be seen directly in the metrics
[Tab.5], which indicate better results than previous ones.
In the third scan, it is possible to see the increase in the
dice and the noticeable decrease in HD. These values
are due to the adjustment to the FOV of the image be-
cause, thanks to this, the CT table is no longer visible.
Comparing the three modes, again overlapping demon-
strates better scores than the others.

The new appearance can be verified with the images
of the 2D [Fig.10a], which include bones and no other
external factor as the platform. In the same way, the
meshes in [Fig.13d] are cleaner than before, and now
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ID

CT2 Posterior Foot
CT2 Anterior Foot
CT3 Posterior Foot
CT3 Anterior Foot

Overlap

Dice score HD

0.91344 7.7876
0.7760 18.4593
0.6696 62.2535
0.7970 16.7156

Slide

Dice score HD

0.8999 19.8114
0.7369 20.3803
0.6737 62.9174
0.7500 18.4963

Central votes

Dice score HD

0.9083 11.9665
0.7574 18.8119
0.6606 60.7476
0.7746 23.9159

Table 4: Metrics for overlapping, sliding and central voting of the training with weighted loss

it is possible to observe better the whole 3D model. It
should be highlighted that the characteristics obtained
with the past training are preserved; the only difference
is the disappearance of the table.

4.4.2. CHU dataset
In the case of this dataset, the table did not appear

before, so this experiment is not significant at all. Nev-
ertheless, it presents an enhancement in the details of
the metatarsals than the segmentation seen in the previ-
ous experiment that can be observed in the 2D masks in
[Fig.12a]. Similarly, the bones above the metatarsals
show more delineated edges, indicating that the seg-
mentation improves in slightly larger structures. For the
3D data,[Fig.14d], it is possible to see the better defini-
tion of the metatarsals but not the previously mentioned
remarked borders.

4.5. Training adjusting the image to the FOV with
weighted loss

This experiment is performed with the same FOV ar-
rangement as before. The only difference here is that
some weights are aggregated to the loss functions to in-
crease the segmentation performance, give more impor-
tance to the bone voxels, and remove the external fac-
tors (the CT table) that caused some noise before. The
results are displayed in the figures below.

4.5.1. INRIA dataset
When the weights are applied to the previous model,

the dice score of all scans increases, lowering their
Hausdorff distances. These metrics are presented in
[Tab.6]. If their values are compared in the different
modes, it can be seen that the overlap method is, an-
other time, the best one. Despite the good metrics, the
images do not reflect the same as they can be perceived
in [Fig.10b]. For the posterior foot, the coronal view
demonstrates that the previously separated bones are
now a little closer together. On the other hand, the axial
view of the anterior foot indicates that the metatarsals
present more gaps between them. In contrast, the sagit-
tal one suggests that these bones are under-segmented
as they look like one.

In the meshes [Fig.13e] The only difference is that the
metatarsals are farther apart, but neither improvement is
particularly noticeable.

4.5.2. CHU dataset
For this dataset, the resulting masks are displayed in

[Fig.12b] for the 2D and in [Fig.14e] for the 3D. In
the 2D slice representation, the metatarsals are shown
again, even more, complete than before. In the same
way, the other bones are also more detailed. For the
meshes, the bones look similar to the first results. Here,
the metatarsals are delineated, but the phalanxes that
were not present before can be barely perceived. It indi-
cates that could be an over-segmentation in these masks
because both datasets do not include the phalanxes, even
though some images can have few remnants of them.

4.6. Training with separate structures
As the previous results showed some issues in spe-

cific structures, the decision was made to train four dif-
ferent groups of bone. The last experiment was di-
vided into four groups of bones. They were selected ac-
cordingly to the shared features like function, size, and
shape. The first group comprised the five metatarsals,
the second group of the three cuneiforms, cuboid and
navicular, the third one of the talus and the calcaneus,
and the fourth of the tibia and fibula. These experi-
ments were performed just on the first dataset as it is
the one that can be compared qualitatively and quanti-
tatively due to the labels. The different bones are dis-
played in the [Fig.15].

As seen in the meshes obtained from each group of
bones, almost all present an adequate segmentation with
some details to be improved. The best ones are those
obtained in overlapping mode, as shown in the mid-
dle column of all the images and the metrics in the ta-
bles below. The only exception is found in group 2 of
the cuneiforms since an adequate segmentation of these
structures has yet to be achieved. Only a few bones can
be observed in the sliding mode due to their shape, size,
and organization. These bones are very close to each
other, so the sliding way helps to reduce interference
from neighboring bones by isolating each bone individ-
ually during the segmentation process.

On the other hand, two types of metrics are calcu-
lated. In [Tab.7] and in Appendix [Tabs.9,10 and 11]
are shown the dice scores and HDs obtained between
the GT and the segmentation mask only with a specific
group of bones. While the [Tab.8] and in Appendix
[Tabs.12,13 and 14] show a comparison between the
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ID

CT2 Posterior Foot
CT2 Anterior Foot
CT3 Posterior Foot
CT3 Anterior Foot

Overlap

Dice score HD

0.9153 10.4259
0.7415 16.0471
0.9111 18.3738
0.7768 17.8254

Slide

Dice score HD

0.9049 17.3032
0.7550 26.8142
0.8946 15.7761
0.7700 19.5925

Central votes

Dice score HD

0.9099 12.4377
0.7250 21.3096
0.9088 18.3439
0.7590 20.1404

Table 5: Metrics for overlapping, sliding and central voting of the training with FOV optimal configuration

ID

CT2 Posterior Foot
CT2 Anterior Foot
CT3 Posterior Foot
CT3 Anterior Foot

Overlap

Dice score HD

0.9170 5.2979
0.7732 12.7153
0.9095 17.9326
0.7987 22.9340

Slide

Dice score HD

0.8964 17.3032
0.7805 16.6870
0.8973 17.5818
0.7558 21.3481

Central votes

Dice score HD

0.9127 7.9097
0.7472 13.0027
0.9070 17.9326
0.7846 23.3335

Table 6: Metrics for overlapping, sliding and central voting of the training with FOV with weighted loss

ID

CT2 Posterior Foot
CT2 Anterior Foot
CT3 Posterior Foot
CT3 Anterior Foot

Overlap

Dice score HD

0 75.7136
0.4299 39.2008

0 36.1030
0.4119 33.4252

Slide

Dice score HD

0 78.7309
0.3098 39.2008

0 76.8861
0.2150 61.5447

Central votes

Dice score HD

0 78.3125
0.3638 39.2008

0 63.5916
0.4321 33.5376

Table 7: Metrics for overlapping, sliding and central voting of Group 1 bones

ID

CT2 Posterior Foot
CT2 Anterior Foot
CT3 Posterior Foot
CT3 Anterior Foot

Overlap

Dice score HD

0.7526 5.2846
0.9040 4.5012
0.7560 8.3229
0.8741 10.5304

Slide

Dice score HD

0.2799 10.9447
0.8402 5.3362
0.7019 5.3490
0.8840 8.5100

Central votes

Dice score HD

0.7243 5.6113
0.8985 4.3149
0.7554 9.3090
0.8662 13.4682

Table 8: Metrics for overlapping, sliding and central voting of the Group 1 with all bones

GT focusing only on the specific group of bones and
a mask containing all bones. In these results, it can be
analyzed that the scores and HD are surrounding values
above 0.75, reaching 0.90s. These measures are higher
than the ones between the mask and the localized area;
it means that the context given by the adjacent bones is
essential to the model to delineate the objects’ contours
better. It is also worth mentioning that for the bones of
groups 3 and 4, part of the hindfoot, no data are reported
in the dice and HD as they do not exist in that perspec-
tive within the scan.

5. Discussion

In this section, the previous results will be analyzed.
All of the experiments performed with the first dataset
demonstrated that overlapping is the best method to seg-
ment. It can be noticed in all the 2D masks [Fig.9,10,
11 and 12]) and especially in the meshes created in this
mode (middle column of [Fig.13,14 and 15]). As well
as in the metrics calculated for the first dataset, since
the highest dice scores and lowest Hausdorff distance
were obtained with it. The models generated with this
method present more defined and better-achieved struc-
tures than the central voting and sliding techniques. It
happens because to produce the overlapping, 64 prob-
abilities are collected, which are averaged and then bi-
narized to determine if it is a bone voxel. Therefore,
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this approach is more accurate because of the number
of votes each voxel receives. On the other hand, central
voting only receives eight votes that are also averaged
and converted to binary values. Still, this method only
focuses on the center of the voxel, discarding 50% of the
information in the voxel. Thus, it also captures fewer
features than in the overlapping mode. Likewise, the
sliding receives only one vote, which leads it to collect
less context and features that make it less robust when
segmenting, and it is, in fact, the method that presents
less definition in the qualitative results.

Furthermore, it is possible to observe that the bones
that present better segmentation are the biggest ones. In
the first dataset, the model performs well, segmenting
the entire outline of the foot but not precisely on the
metatarsal bones. These showed more complications at
the time of segmentation. In contrast, the second dataset
demonstrated that the metatarsals are also a complicated
structure to segment, but these were well-defined in the
experiment used as a baseline. Nevertheless, after all the
experiments, the best shape was obtained in the model
trained with the FOV adjustment and weighted loss.

On the other hand, the experiments done with the
different groups of bones confirmed that the model ac-
complishes better results with large structures than with
small ones. As can be observed in [Fig.15] and in
the tables [Tabs.7,9,10 and 11], where the metrics of
the group 3 which involves the talus and calcaneus are
higher than the others. These bones are more promi-
nent and more dense in comparison to the metatarsals.
Moreover, the percentage of presence within the hind-
foot scan is also above that in one foot containing the
metatarsals. For this reason, these bones are challeng-
ing for the segmentation model.

In addition, group 2 of bones did not perform well
during segmentation since these bones are barely ap-
preciated in the scans of the first dataset. It is no-
ticeable in the [Fig.5]. This group involves the three
cuneiforms, the cuboid, and the navicular, particularly
these bones have different and complex shapes, they are
not disposed in the same way and are in proximity to
other bones, so these facts complicate the segmenta-
tion process. Also, these bones have the same issue as
the metatarsals; their presence in the image is less than
other bones, as seen in [Fig.5], and are less dense than
other bones.

5.1. Limitations
Despite the general good results, the model strug-

gles to segment bones that share their borders with
others, such as group 2, which is only partially
present in masks. Likewise, small structures like the
metatarsals are also hard to segment, leading to an
under-segmentation or poor existence in the masks.

Indeed, the results result from low contrast in the
scans and artifacts like the CT table, screws, or other
biomechanical prostheses. Besides, not having enough

data to train the network and the limited time for train-
ing caused GPU constraints that did not allow for added
cross-validation and better time response to execute
more experiments.

6. Conclusions

With all the results and models presented, the main
objective of this project was achieved successfully. It
consisted in performing a segmentation of the foot
bones. However, this was completed in a global but not
local context. That is to say that some bones present dif-
ficulties to be segmented, such as the metatarsals, cause
of their size and presence in the scans. Along with the
three cuneiform, the cuboid, and the navicular bones
due to their intricate shape, small size, and different or-
ganization. Furthermore, the evaluation of both datasets
demonstrates the ability of the model to detect all the
bones, but only in part due to the challenging structures
in the foot, despite the good metrics accomplished in
some cases.

6.1. Future Work

The current results show that there is still work to
improve segmentation and develop a fully autonomous
method that relies only on the proper parameters and
configuration to generate the desired results. Different
techniques can be implemented, and some of them will
be mentioned.

The first one is to train the network employing data
augmentation methods since one of the limitations of
the models is having few CTs to train and segment.
In addition, performing cross-validation experiments
could give better results since the model could be less
biased.

The second thing to try is to modify the network ar-
chitecture to be more robust. A UNETR could be help-
ful for this task because it can segment and identify the
bones simultaneously without the need to divide the im-
ages into patches.

Furthermore, modeling ensembling can lead to bet-
ter performance on the segmentation due to the variety
and complexity between bones. One network can seg-
ment big bones, and the other can segment the small or
problematic ones.
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Posterior foot Anterior foot

(a) First results

Posterior foot Anterior foot

(b) Optimal configuration

Posterior foot Anterior foot

(c) Weighted Loss

Figure 9: 2D representation of INRIA dataset of Subject 1 (a) baseline
experiment, (b) experiment with the best parameters, and (c) experi-
ment adding weights to the loss function

Posterior foot Anterior foot

(a) FOV

Posterior foot Anterior foot

(b) FOV with Weighted Loss

Figure 10: 2D representation of INRIA dataset of Subject 1 (a) ex-
periment with the adjustment of the Field of View and (b) experiment
with the adjustment of the Field of View adding weights to the loss
function
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(a) First results

(b) Optimal configuration

(c) Weighted Loss

Figure 11: 2D representation of St-Etienne dataset of Subject 1 (a)
baseline experiment, (b) experiment with the best parameters, and (c)
experiment adding weights to the loss function

(a) FOV

(b) FOV with Weighted Loss

Figure 12: 2D representation of St-Etienne dataset of Subject 1 (a) ex-
periment with the adjustment of the Field of View and (b) experiment
with the adjustment of the Field of View adding weights to the loss
function
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(a) First results

(b) Optimal configuration

(c) Weighted Loss

(d) FOV

(e) FOV with Weighted Loss

Figure 13: 3D meshes of the whole foot of INRIA dataset of Subject 1 (a) baseline experiment, (b) experiment with the best parameters,(c)
experiment adding weights to the loss function, (d) experiment with the adjustment of the Field of View, and (e) experiment with the adjustment of
the Field of View adding weights to the loss function
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(a) First results

(b) Optimal configuration

(c) Weighted Loss

(d) FOV

(e) FOV with Weighted Loss

Figure 14: 3D meshes of the whole foot of St-Etienne dataset of Subject 1 (a) baseline experiment, (b) experiment with the best parameters,(c)
experiment adding weights to the loss function, (d) experiment with the adjustment of the Field of View, and (e) experiment with the adjustment of
the Field of View adding weights to the loss function
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(a) Group 1: Metatarsals

(b) Group 2: Cuneiforms, cuboid and navicular

(c) Group 3: Talus and calcaneus

(d) Group 4: Tibia and Fibula

Figure 15: 3D meshes per group of bones of INRIA dataset of Subject 1 (a) Metatarsals, (b) Cuneiforms, navicular and cuboid,(c) Talus and
calcaneus, and (d) Tibia and fibula
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Appendix

ID

CT2 Posterior Foot
CT2 Anterior Foot
CT3 Posterior Foot
CT3 Anterior Foot

Overlap

Dice score HD

N/A N/A
N/A N/A
N/A N/A

0 50.9405

Slide

Dice score HD

N/A N/A
0 51.2820
0 50.4870

0.1766 31.4956

Central votes

Dice score HD

N/A N/A
0 52.3533

N/A N/A
0 52.0754

Table 9: Metrics for overlapping, sliding and central voting of the Group 2 bones

ID

CT2 Posterior Foot
CT2 Anterior Foot
CT3 Posterior Foot
CT3 Anterior Foot

Overlap

Dice score HD

0.9202 6.7922
N/A N/A

0.7557 24.2371
N/A N/A

Slide

Dice score HD

0.4957 34.0400
N/A N/A

0.4901 36.9611
0.1952 32.2940

Central votes

Dice score HD

0.9219 7.5917
N/A N/A

0.7572 22.4849
0.1842 36.6841

Table 10: Metrics for overlapping, sliding and central voting of the Group 3 bones

ID

CT2 Posterior Foot
CT2 Anterior Foot
CT3 Posterior Foot
CT3 Anterior Foot

Overlap

Dice score HD

0.2836 41.9146
N/A N/A

0.3030 40.8628
N/A N/A

Slide

Dice score HD

0.2528 42.2675
N/A N/A

0.5347 33.2814
N/A N/A

Central votes

Dice score HD

0.2871 41.9146
N/A N/A

0.3287 40.8628
N/A N/A

Table 11: Metrics for overlapping, sliding and central voting of the Group 4 bones

ID

CT2 Posterior Foot
CT2 Anterior Foot
CT3 Posterior Foot
CT3 Anterior Foot

Overlap

Dice score HD

0.9299 8.7792
0.9702 7.8051
0.9202 8.3966
0.9628 6.9811

Slide

Dice score HD

0.8624 8.5180
0.9623 7.8051
0.8872 8.3147
0.9384 7.5556

Central votes

Dice score HD

0.9253 8.5421
0.9734 7.7700
0.9089 9.1083
0.9647 7.6635

Table 12: Metrics for overlapping, sliding and central voting of Group 2 with all bones

ID

CT2 Posterior Foot
CT2 Anterior Foot
CT3 Posterior Foot
CT3 Anterior Foot

Overlap

Dice score HD

0.9716 3.7732
0.9176 5.7914
0.9667 4.5616
0.8661 10.6338

Slide

Dice score HD

0.9537 7.0688
0.8937 6.8324
0.9535 6.3008
0.8698 7.9786

Central votes

Dice score HD

0.9724 3.7732
0.9199 5.6113
0.9663 4.5616
0.8777 10.4258

Table 13: Metrics for overlapping, sliding and central voting of Group 3 with all bones
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ID

CT2 Posterior Foot
CT2 Anterior Foot
CT3 Posterior Foot
CT3 Anterior Foot

Overlap

Dice score HD

0.9482 4.0700
N/A N/A

0.9034 18.3737
N/A N/A

Slide

Dice score HD

0.9545 3.8805
N/A N/A

0.8940 15.7760
N/A N/A

Central votes

Dice score HD

0.9469 4.2186
N/A N/A

0.9035 18.3737
N/A N/A

Table 14: Metrics for overlapping, sliding and central voting of Group 4 with all bones
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Abstract

Deep Learning’s recent popularity in the field of Medical Imaging and CADx has generated concerns over the need
to understand the decision-making process of the models, which has caused the development of different explainability
methods (XAI). This study applied several of these XAI algorithms, namely saliency maps, Occlusion, Integrated
Gradients, Guided GradCAM, LIME, SHAP, and DeepLIFT, to evaluate the performance of two CNNs trained on
two different classification tasks: patch-based breast cancer classification and whole mammogram classification. The
attribution maps obtained from the first task were qualitatively evaluated, and it was found that true positive predictions
tended to highlight the lesion’s area, while true negative predictions had more spread out highlighted regions. The
attribution maps from the second task showed that the CNN highlighted the area of the mammogram where the lesion
was located. The lesions were also highlighted in false negative and true positive mammograms with low probability
scores, which implies that the model underwent correct training and learned the relevant features. Considering the idea
that there should be a connection between explainability and the position of the lesions, IOU scores were computed
to quantitatively evaluate the different XAI approaches. Integrated Gradients performed best at locating the lesions,
while SHAP and LIME were the worst-performing.

Keywords: Deep Learning, explainability, XAI, mammography, attribution maps, breast cancer, classification,
occlusion, SHAP, saliency maps, integrated gradients, DeepLIFT, Guided GradCAM

1. Introduction

Deep Learning has risen in popularity in recent years
in the field of Computer Aided Diagnosis (CAD), with
current state of the art implementing different deep
learning models for solving a wide-range of tasks in
medical imaging (Singh et al., 2020). One such task
is breast cancer classification. As one of the lead-
ing causes of mortality amongst women, breast cancer
has spurred significant interest in developing improved
detection methodologies. Due to the vast amount of
breast cancer cases, CAD systems seek to alleviate ra-
diologists’ workload, aiming to reduce work hours and
improve detection accuracy (Balkenende et al., 2022).
Convolutional Neural Networks (CNNs), in particular,
have been extensively used for the purpose of classify-
ing mammographies as benign or malignant (Loizidou
et al., 2023). Arevalo et al. (2015) were among the first
to use CNNs for classifying breast lesions, achieving an
AUC value of 0.86 on the BCDR-F03 dataset. Since

then, various other CNN architectures have been ap-
plied, like ResNet-50 and InceptionResNet-V2, where
the latter achieved a 97.5% and 95.3% accuracy on the
DDSM and INbreast datasets respectively in a study by
Al-antari et al. (2020). Research findings have demon-
strated that these CNN-models exhibit comparable per-
formance to that of radiologists, and in certain instances,
can increase the proficiency of radiologists when em-
ployed as a supplementary tool (Ou et al., 2021). Al-
though DL methods have continuously been proven to
perform adequately as CAD methods for Breast Can-
cer, there have been growing concerns as to the use of
this technology. Deep Learning models are essentially
considered as ”black boxes”, due to the sheer number
of layers and weights inside, rendering it practically im-
possible to completely understand the inner workings
and mechanisms of the neural network. This is criti-
cal in the medical field, where a decision made based
on the results obtained from a neural network could
have a huge direct impact on a patient’s life. Moreover,
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DL should comply with regulations like the European
Union’s General Data Protection Regulation (GDPR)
(van der Velden et al., 2022). Explainable AI (XAI)
aims to alleviate these previously stated concerns by
developing various techniques that seek to understand
deep learning algorithms. Some of these XAI methods
include Saliency Maps, Integrated Gradients, Occlu-
sion, Guided GradCAM, LIME, SHAP and DeepLIFT.

The objective of this work is to visualize and evalu-
ate the performance of a trained classifier for 2D mam-
mographies with the different XAI algorithms , and to
compare the differences between them. The study was
performed as follows:

1. Patch based XAI: To train standard CNNs on
mamography with normal and malign patches, and
assess the results of the different XAI methods on
the model.

2. Whole mammogram XAI: To train models on full
mammography images to classify between malig-
nant and healthy images and assess the results with
several XAI methods.

3. Evaluation of XAI methods: Qualitative and quan-
titative evaluation of the XAI attribution maps in
terms of robustness and localization of findings
with bounding boxes and IOU scores.

2. State of the art

2.0.1. XAI Methods
Saliency maps are considered as the baseline ap-

proach in XAI for medical imaging, and provide in-
sights to the parts of an image that contributed the most
towards a prediction from a neural network (van der
Velden et al., 2022). They work by computing the gra-
dients of the target class score with respect to the input.
The output is a matrix of similar shape to the input im-
age, where values close to 0 correspond to pixels which
have a smaller impact on the output. High values, either
positive or negative, on the other hand, correspond to
pixels which majorly affect the output score (Simonyan
et al., 2014).

Guided GradCAM is a point-wise multiplication be-
tween Guided Backpropagation and GradCAM, which
makes it able to function with any type of CNN. It works
by computing the gradient of the score for a given class
with respect to a feature map, and it then applies global
average pooling. Then, it obtains a weighted combi-
nation of the feature maps, and a RELU is subsequently
applied to only acquire the features which influence pos-
itively the result. The resulting heatmap has the same
size as the feature maps, and thus needs to be resized
(Selvaraju et al., 2019).

Integrated Gradients compute the gradients of the
output from the model for each step along a linear path
between a baseline, which can be a blank image in the
case of images, and the input. The gradients are then

integrated, which accumulates the changes as the input
goes from the baseline to the input image. A character-
istic of this method is that it doesn’t need to modify the
network (Sundararajan et al., 2017).

Occlusion perturbs the image by applying a gray slid-
ing window along the image, noting the changes in the
output for each window position. Thus, when the cor-
rect class is occluded by the window, the output proba-
bility is expected to drop significantly (Zeiler and Fer-
gus, 2013).

Like Occlusion, LIME (Local Interpretable Model
Agnostic Explanations) perturbs the image and com-
putes its corresponding output score for each of the per-
turbed images. This perturbation occurs at a pixel or
superpixel level. The latter is done by providing LIME
with a segmentation mask that divides the image into
different regions. Then, a simpler interpretable model
is trained on the perturbed images and their predictions,
in order to learn the relationship between the changes to
the original image and the original model’s predictions.
The higher the weights assigned to a pixel or superpixel,
the higher its impact on the prediction (Ribeiro et al.,
2016).

Based on cooperative game theory, SHapley Additive
exPlanations (SHAP) uses Shapley values to compute
the magnitude of the contribution of each feature to the
output of the model. It achieves this by perturbing the
image and altering the pixels (or superpixels). To com-
pute the contributions, SHAP considers the different
subsets of features and calculates the output with each
given subset until it considers all possible combinations.
However, this is computationally intensive, which has
spawned some variations to approximate Shapley Val-
ues, such as Kernel SHAP and Deep SHAP (van der
Velden et al., 2022)

DeepLIFT addresses the saturation problem by intro-
ducing a reference input and its reference activations in
the network. The reference activations are compared to
new activations to compute the activation changes and,
therefore, the contributions of each neuron (de Vries
et al., 2023) (Shrikumar et al., 2019).

The following section will list some of the state of the
art applications of XAI in Mammographies.

2.0.2. XAI in Mammography
XAI methods have been used in the medical imag-

ing field used to alleviate the concerns surrounding the
black-box paradigm, as previously stated. Several vi-
sual explainability approaches have been used to study
and understand a wide range of image modalities from
various anatomical locations, like: brain, breast, cardio-
vascular, chest, prostate, eye, skin, among others (van
der Velden et al., 2022). In the case of breast applica-
tions, researchers have obtained visual explanations for
X-rays, MRI, ultrasound, and histological images.

Regarding XAI in 2D mammographies specifically,
XAI has been used to evaluate the performance of the
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networks on various problems. Huang et al. (2020) pro-
posed a hybrid neural network comprised by two parts:
a modified PCANet and a DenseNet. They compared
their proposed HybridNet with other popular models
like PCANet, ResNet and DenseNet, and found that Hy-
bridNet outperformed all of them. To confirm its correct
performance, CAM was applied, and it was observed
that the resulting attribution maps focused on the ab-
normal parts (i.e. the lesions) of the mammographies,
indicating that HybridNet had successfully learned the
important features for the classification problem.

Akserlod-Ballin et al. (2019) developed an ML-DL
model that combined mammographies and clinical data
to detect breast cancer, resulting in an AUC of 0.91,
a specificity of 77.3% and a sensitivity of 87%. The
combination with clinical data provided a level of inter-
pretability to the model, and this was further explored
by computing the impact of each of the data’s features
via SHAP.

Xi et al. (2020) tackled the problem of having high-
resolution mammographies with meaningful informa-
tion located in very small regions of the image. Instead
of resizing the full images, which entails a loss of infor-
mation, they trained several CNNs like AlexNet, VG-
GNet, GoogLeNet, and ResNet with the cropped ROIs,
and and then applied created abnormality detectors by
integrating the CNNs with either CAM or other region
proposal networks. ResNet was the network selected for
integration with CAM, and found that the detection re-
sults obtained from the heatmap aligned with the ground
truth for the lesion localizations.

A paper by Kobayashi et al. (2022) utilized genera-
tive contribution mapping (GCM). GCM is a classifi-
cation model proposed by Arai and Nagao (2017) that
uses XAI to explain its classification predictions by cre-
ating class contribution maps and class weight maps.
Kobayashi et al. used this method to classify the exis-
tence of calcifications on mammographies. They found
that GCM was more efficiently explainable when com-
bined with class contribution maps and class weight
maps than with GradCAM. It also found that GCM,
when used with the maps, could provide important vi-
sual information even in the case of a false negative,
due to the highlighting of the microcalcification local-
izations even with an incorrect prediction.

Yi et al. (2019) aimed to develop a CNN to classify
mammography images according the view, the breast
laterality and the breast density. The model architecture
selected for the three tasks was ResNet-50, modifying
its last layer and assigning it either two or four output
neurons, according to the task. CAM was applied to vi-
sualize the network’s decision when predicting for each
of the three objectives. The model showed an AUC of
1 for mammographic view and 0.93 laterality classifi-
cation, but it displayed a 68% accuracy when classify-
ing breast tissue density. CAM’s heatmaps displayed
the network’s focus on the superior part of the image

generally corresponding to the pectoral muscle for the
mammographic view task. As for the laterality task, the
heatmap highlighted the region located towards the left
or right, depending on the laterality. Even though the
third task achieved such a low accuracy, the heatmaps
consistently highlighted the regions corresponding to
the breast, even if the network predicted an incorrect
breast density, indicating that it correctly based its deci-
sion on the breast tissue.

Prodan et al. (2023) developed both CNN and Vi-
sual Transformers for breast cancer detection. They
employed a data augmentation technique involving syn-
thetic images to reach better performance. After train-
ing the models, they made use of GradCAM and bound-
ing boxes to gain insight into their models’ decision
making procedure and behavior.

3. Material and methods

3.1. Dataset

The dataset used for the breast patches classification
task is the Iceberg Selection, a subset of the OPTIMAM
Mammography Image Database (OMI-DB) (Halling-
Brown et al., 2020), consisting of patches centered on
breast lesions and patches with normal breast tissue.
There are a total of 3808 full-images acquired from
three different scanners: Hologic, Siemens, and GE,
with each image having a patch centered around the le-
sion, and a normal patch, thus yielding a total number
of 7616 image patches. The dataset was divided into
training (80%) and validation (20%) subsets, ensuring
no overlap of patients between them to avoid bias.

For the full-mammography classification task, two
datasets were used. The first dataset is a more balanced
subset of the training data of the RSNA22 challenge
(Carr et al., 2022). It has a total of 2767 images, of
which 1647 were negative cases, and 562 were positive
(malignant) cases. The images in the dataset were all
preprocessed, flipping the images to have the same lat-
erality (left), cropping the background, and saving them
as PNG files. Like in the previous task, the dataset was
divided into 80% training and 20% validation, avoiding
patient overlap. The second dataset contained the ma-
lignant full-images from the OMI-DB subset described
previously that were acquired with the Hologic scan-
ner, due to the higher similarity of the images from the
RSNA22 dataset in comparison to those acquired with
the Siemens or GE scanners. As for the benign im-
ages, an equal amount as the malignant images were
selected from the OMI-DB dataset, which were also
subsequently flipped, cropped and saved as PNG files.
Thus, the total number was 7229 full-images. Training
and validation were divided 80%:20% with no patient
overlap. Table 1 summarizes the datasets used.
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Train Validation Total
Non-malignant 3045 763 3808
Malignant 3045 763 3808OMIDB Subset

(Iceberg Selection) Total 6090 1526 7616
Non-malignant 1647 411 2058
Malignant 562 147 709RSNA22 Subset
Total 2209 558 2767
Non-malignant 2896 719 3615
Malignant 2892 722 3614OMIDB Hologic

Subset (Full-Images) Total 5788 1441 7229

Table 1: Datasets used for the breast classification tasks.

3.2. Methods

3.2.1. Preprocessing
The whole mammograms in from the Iceberg Se-

lection were previously flipped, cropped and saved as
PNG files. In order to create the Normal + Malignant
OMI-DB Hologic database, the normal images were
preprocessed in the same way. The DICOM files were
read, thresholded, and a bounding box was computed
with OpenCV’s ConnectedComponents and findCon-
tours. The images were then cropped according to the
computed bounding box to remove the background. Fi-
nally, the mammograms were saved as PNG files.

3.2.2. Breast Patches Classification
MobileNetV2 and ResNet-50 are two popular CNN

architectures, and were therefore selected for this prob-
lem. Both were trained on the Iceberg Selection
Dataset, with the train set image transformations con-
sisting of a horizontal flip, a vertical flip, and a ran-
dom rotation of 30 degrees for data augmentation, and a
224x224 resizing and normalization. The validation set
transformations consisted only of the 224x224 resizing
and normalization. The loss used was Cross Entropy
Loss, the optimizer was Adam with a learning rate of
0.001, and a ReduceLROnPlateau scheduler with a pa-
tience equal to 5.

Out of both of them, ResNet-50 performed the best,
with an accuracy of 97% compared to MobileNetV2’s
93%. ResNet-50’s high performance was in line with
what was expected, as the classification problem was
relatively simple due to the very different appearances
of a normal patch vs one with a malignant lesion.

3.2.3. Full-Image Classification
Due to ResNet-50’s good performance in the previous

problem, several experiments were initially performed
with it for Full-Image Classification with the RSNA22
subset dataset. Since it was an unbalanced problem with
around three times the amount of negative cases vs pos-
itive cases, the weight of the positive examples was set
to 3. Several attempts with varying learning rate values
were made. However, ResNet-50 failed to yield satis-
factory results.

The next network attempted was EfficientNetB0.
Cantone et al. used this architecture, among others, for
classifying whole mammograms. They used SGD with

Figure 1: General diagram showing the generation of the heatmaps
with Captum. Each of the explainability methods takes the CNN (ei-
ther the ResNet-50 or EfficientNetB0) and an image (patch or whole
mammogram) as inputs, and generates an attribution map containing
the contribution scores for each pixel or superpixel.

Figure 2: An example of segmentation performed with Scikit-Image’s
SLIC. The segmented image is fed as a feature mask for the generation
of SHAP and LIME’s attribution maps.

a momentum of 0.9 and a Cosine Annealing scheduler
with warm restart, and varied the input image resolution
Cantone et al. (2023). Thus, the same hyperparameters
were tested in this study, in addition to the focal loss.
The selected learning rate was set to 0.01, and the in-
put size was set to 1024x512, as higher resolutions did
not perform significantly better and its computational
costs were substantially higher. This approach with the
RSNA22 subset reached an AUC of 0.72.

Aiming to further improve the performance of the
network, EfficientNet-B0 was then trained on the Nor-
mal + Malignant OMI-DB Hologic subset previously
described. The hyperparameters selected were Cross
Entropy Loss, SGD with momentum equal to 0.9 and
a learning rate of 0.01, and Cosine Annealing with
warm restart as a scheduler. The input size was kept
at 1024x512. The AUC reached was higher than in the
previous step, with a value of 0.83.
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Figure 3: Steps to acquire the bounding boxes from the attribution maps. The attribution maps are obtained with a XAI technique, and they are
subsequently binarized by keeping only the pixels with a score above a selected quantile, which are then cleaned by keeping only the larger regions
via morphological operations. The bounding boxes are then acquired with the contours of the binarized maps, and they are finally merged into a
large bounding box.

3.2.4. Explainability
Once the ResNet-50 and EfficientNetB0 models were

trained and selected for each of the tasks, several ex-
plainability methods were applied on them to observe
the inner workings and performance of the models.
Captum for PyTorch is an open-source library that in-
cludes many explainability methods (Kokhlikyan et al.,
2020). As such, the following attribution methods were
computed utilizing this library. Fig. 1 summarizes
the generation of the attribution maps by evaluating the
model’s contributions with an input image.

Computing the vanilla saliency maps and the
DeepLIFT attribution maps require solely the trained
model and the target class for which the gradients are
computed. The attribution maps obtained initially with
both of these methods are hard to visualize, given the
large size of the input image and the small highlighted
regions. To solve this, the attribution maps were dilated
with a rectangular kernel of size 9x9 in a single itera-
tion.

Integrated gradients, like the previous two, require
only the target class. The number of steps performed by
the approximation method for the integrals was set to
200. This was selected as a compromise between com-
putational cost and attribution map resolution. As with
vanilla saliency and DeepLIFT, the acquired maps were
dilated for better viewing.

Guided GradCAM requires the specific layer for
which the attributions are to be computed. The last lay-
ers for both models were specified and the attribution
maps were also dilated.

As a perturbation-based approach, Occlusion re-
quired the shape of the patch with which to occlude the
input image, and, optionally, the strides that the patch
should take in each direction after every iteration. The
sliding window shape was set to (3, 60, 60) and the
strides to (3, 30, 30). The relatively large window size
and strides were a compromise for the large computa-
tional times and the resolution of the attribution maps.

Captum’s LIME approach takes in an optional fea-
ture mask argument, which groups the image’s pixels
into superpixels, and treats each group as a single in-
terpretable feature. If a feature mask is not provided,
then LIME considers each pixel as an individual inter-
pretable feature, which largely increases their number,
resulting in very slow attribution map computations.
Thus, the feature mask is obtained by dividing the input
images into 150 segments using Scikit-Image’s SLIC
method. Fig. 2 shows an example of a mammogram
segmented with SLIC. Afterwards, the feature mask is
fed into LIME with a number of steps equal to 200. The
resulting attribution maps were not dilated, as the super-
pixels are easily observable. SHAP, much like LIME,
was fed the same feature mask, on account of the same
reasons. The attributions were not dilated either because
of the superpixel grouping. An example of a feature
mask obtained with SLIC can be observed in Fig.2.

3.2.5. Quantitative Evaluation: IOU
Using OMI-DB’s subset that solely includes images

with lesions, it was hypothesized that the explainabil-
ity results should show a certain relationship with the
position of the lesions. To this effect, and to evaluate
the different explainability methods’ attributions in the
whole mammogram classification task, the Intersection
Over Union (IOU) was calculated with respect to the
ground truth bounding boxes available for the malig-
nant full-images from the OMI-DB subset. Bounding
boxes generated from the attribution maps were there-
fore needed. To achieve this, the following steps were
taken:

1. The dilated attribution maps were selected (ex-
cept for LIME and SHAP) because they gener-
ated larger connected regions corresponding to
the mass’ location which were not as affected by
the morphological operations from the next steps.
These dilated attribution maps were binarized by
thresholding them according to a given quantile. If
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Figure 4: Examples of mammography patches that are either non-malignant or malignant. The top row corresponds to the original images, and the
following rows show the attribution maps generated with a different explainability technique. Red areas correspond to higher attribution scores and
higher impact on the model’s prediction, while blue areas represent low scores.

the attribution score for a pixel was higher than that
quantile, the score would be set to 1. Otherwise, it
was set to 0.

2. The binarized attributions were eroded and then di-
lated, to remove the very small regions.

3. The bounding boxes for each separate region were
obtained by finding their contours and generating a
box for each contour.

4. In the case of multiple bounding boxes in a sin-

gle image, they were combined into a single big
bounding box with the minimum and maximum xy
coordinate values found among the multiple boxes
and setting them as the upper left and lower right
coordinates for the combined bounding box, re-
spectively.

5. Finally, the IOU scores for each image for each of
the explainability methods were computed.
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Figure 5: Boxplots computed with the IOU scores of the bounding
boxes generated with the attribution maps of all the images. Higher
IOU scores indicate a better overlap with the ground truth boxplots
for lesion localization.

Fig. 3 illustrates each of the steps to generate the
bounding boxes from the attribution maps

4. Results

4.1. Patch Classification

Attribution maps for several instances of the valida-
tion dataset were acquired in order to observe ResNet-
50’s performance and attempt to visualize its learned
features. The randomly selected images indicate the
prediction and the label, and each attribution map shows
the attribution scores for each region of the image. The
higher the score, the greater the impact of that region
in the probability score for the target class. The attribu-
tion maps are color coded such that the redder a certain
pixel, the higher its importance for the prediction, and
the bluer, the lower its importance.

Fig. 4 shows the five original images plus their
attribution map computed with each explainability
method: Saliency, Integrated Gradients, Occlusion,
Guided GradCAM, LIME, and SHAP. The maps dif-
fer greatly from one another, although some of them
do seem to focus on areas that correspond to the le-
sion in the true positive cases. The true negative exam-
ples, however, visually vary more among themselves.
On many cases, the focus of the model seems to be on
regions which appear to be denser.

4.2. Full Image Classification

As with explainability for the patch classification
task, the attribution maps for several images from the
validation set were acquired. The true positive images
with the highest probability scores were retrieved and
their corresponding attribution maps for each of the
methods were obtained. Figures 8 and 9 show the five
images with the highest probability scores for malig-
nancy, as well as the attribution maps generated with

Figure 6: IOU vs TPR curves.

the explainability methods. All of the methods seem to
highlight the areas corresponding to the lesions. Vanilla
saliency appears to highlight areas outside the lesions
more than the rest of the methods, but it still focuses
mostly on the lesion.

The bounding boxes for each attribution map for each
image per method were also generated. Fig. 10 and Fig.
11 show the corresponding bounding boxes generated
from the attribution maps from Figs. 8 & 9, as well as
the ground truth bounding boxes.

Examples showing the images with the lowest true
positive scores and false negative scores were also gen-
erated, and are added in the appendix. In the case of
the lowest true positive score examples, even though
the network was not very confident at classifying the
images, it does highlight the area corresponding to the
lesion in most of the cases. The highest false negative
score examples displayed this same behavior, focusing
in the lesion area or highlighting it along with other re-
gions in many cases.

Once having generated these examples for visual ap-
praisal, the IOU for all the validation images for all the
methods were computed as described in the previous
section. Bounding boxes were computed to compare
the overall IOU scores among the different explainabil-
ity techniques, and are shown in Fig. 5. The best per-
forming XAI techniques in terms of IOU scores were
Integrated Gradients and Occlusion, while LIME and
SHAP were found to be the lowest performing ones.

An IOU threshold vs True Positive Rate graph was
also generated for further comparison of the seven dif-
ferent methods by varying the IOU thresholds. A TP
would mean the bounding boxes from the attribution
maps overlap significantly with the ground truth, and
are therefore able to locate the lesions. The graph is
shown in Fig. 6. As before, the best curves correspond
to Integrated Gradients and Occlusion, while the worst
belong to LIME and SHAP.
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Figure 7: Attribution maps for the synthetic lesion generated over a real mammogram via stable diffusion.

4.3. Synthetic Lesions with Stable Diffusion
We have developed an additional experiment to fur-

ther test attribution maps in synthetically generated le-
sions in normal mammograms. This experiment has
been done in collaboration with Montoya (2023), whose
master thesis work focused on the generation of high-
resolution synthethic mammographies with diffusion
models, and is featured in this year’s proceedings. A
sample image of a real mammogram with a synthetic
lesion generated during his work was selected to extract
attribution information with some explainability meth-
ods, as shown in Fig. 7. Most of the methods assign
the synthetic lesion’s area with the highest attribution
scores. SHAP was the only method where this did not
happen, although the synthetic lesion was counted as
being of moderate impact.

5. Discussion

In this study, several explainability methods were
tested on two networks, each trained on one of two
breast cancer classification tasks. The explainability
maps generated from the patch classifier exhibit an ap-
parent overlap with the area of the patch correspond-
ing to the mass, in the case of patches with masses.
In general, the attribution maps seem to highlight the
denser areas of the patches. The attribution maps look
quite different from one another. This was to be ex-
pected for non-malignant patches, as, with the absence
of a lesion, there is nothing that the classifier should
focus on in particular. For the patches containing a le-
sion, it was observed that most of the attribution meth-
ods higher scores were often positioned in the middle
of the patch. All in all, patches with no lesions seem
to indicate that the network’s attention seems to be dis-
persed throughout the image, whereas lesion patches’
attribution maps mostly coincide with the lesion’s posi-
tion. This suggests that the network apparently learned
to identify the masses properly, although it is difficult
to ascertain when many lesions span almost the entirety
or the majority of the patch, thus generating rather dis-
perse attribution maps. Since the dataset consisted of
patches centered around the lesion, this behavior is rea-
sonable, as almost the entire image is visually different

from normal patches and most of the the image could
provide important information.

In the whole mammogram classification task, the at-
tribution maps for all of the methods were successfully
acquired for the validation dataset. When compared to
the attribution maps from the previous task, the focus on
specific regions of the image was much more apparent.

In true positive images, the highlighted regions
mostly coincided with the position of the lesion in all
the methods. Vanilla saliency presented more disperse
attribution maps, presenting generally more clusters of
highlighted pixels than the rest. This could be cause
by vanilla saliency not being class discriminative, thus
highlighting areas that contribute negatively towards
the malignant target class. SHAP and LIME, for their
part, although correctly assigning the highest attribu-
tion scores to the superpixels that overlapped with the
lesion, occasionally allocated relatively high scores to
superpixels that were positioned elsewhere in the im-
age. A reason for this could be that those superpixels
overlapped with several pixels that got high attribution
scores, which, by themselves, would not be as notice-
able, but by congregating in a superpixel the latter’s at-
tribution scores would rise and be more visually appar-
ent across a larger area.

The bounding boxes generated from the attribution
maps were overall able to center on the region indi-
cated by the ground truth, although the large majority
of them were quite bigger than their ground truth coun-
terparts. This was expected, as they were acquired from
the previously dilated attribution maps, which enlarged
the highlighted regions. Integrated gradients achieved
the highest scores, but generating their attribution maps
was the computationally expensive and took the longest
out of the seven methods. In contrast, even though Oc-
clusion and GradCAM did not achieve IOU scores as
high as Integrated Gradients, they were much faster,
with GradCAM’s attribution maps generating almost in-
stantly. LIME and SHAP’s much lower IOU scores
were mostly caused by their bounding boxes being af-
fected by the image’s initial segmentation. Segment-
ing the mammogram into smaller regions could possi-
bly help mitigate this, although it would increase the
computationally resources when acquiring the attribu-
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Figure 8: Examples for Saliency, Occlusion, and GradCAMs’ attribution maps on images with high probability scores. Red and yellow regions
correspond to higher attribution scores.

tion scores, as LIME and SHAP would have now many
more image segments to consider.

True positive images with low probability scores and
false negative images generated attribution maps where
most of them contained the lesion area among its high-
lighted regions, indicating that while the model was not
as confident classifying it as a malignant image or even
misclassified it altogether, it was still focusing in the
lesion. This supports the idea that the network suc-
cessfully learned the masses’ features and effectively

bases its decision on the relevant data. The bounding
boxes in this cases were expectedly not as accurate as
the ones generated from the true positive images with
higher probability scores, as even though the mass’ po-
sition was highlighted, in many instances this was only
one of several highlighted regions, which effectively
created more bounding boxes throughout the mammo-
gram, This resulted in a much bigger final bounding box
when combining them and in predictably much lower
IOU scores.
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Figure 9: Examples for LIME, SHAP, DeepLIFT, and Integrated Gradients’ attribution maps on images with high probability scores. Red and
yellow regions correspond to higher attribution scores.

Finally, the attribution maps from the synthetic lesion
generated with stable diffusion highlighted the lesion’s
area. This means that even while being synthetic, the
explainability methods indicate that the network was fo-
cusing on it when evaluating for malignancy. Therefore,
explainability algorithms could provide some insights
for evaluating stable diffusion results.

5.1. Limitations and Future Work

The models trained for these classification tasks were
not the best performing ones, which most certainly im-
pacted the attribution maps. It could be possible to ob-
tain attribution maps which highlight the lesions even
more accurately if applied to better performing models.
The bounding boxes were generated following a simple
and rudimentary technique, causing them to be larger
and less accurate. A more refined method to generate
the bounding boxes could be developed, which could
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Figure 10: Examples of bounding boxes obtained with Saliency, Occlusion, and GradCAMs’ attribution maps on images with high probability
scores.

in turn improve the IOU results. Finally, a decently
accurate model that classifies between different breast
cancer subtypes could provide useful information in the
attribution maps. At present, it is not possible to iden-
tify these subtypes without a more invasive procedure,
but XAI could potentially provide useful morphologi-
cal information for detecting these subtypes in mammo-
grams.

6. Conclusions

In this paper, some XAI techniques were applied on
two breast cancer classification tasks. The results ob-
tained indicate that these techniques could provide users
with useful information for understanding the decision-
making processes of a neural network in medical imag-
ing. When correctly trained, the methods should high-
light the areas with clinical relevance, which in this
case translated to the lesions in malignant mammo-
grams. They can also show possible areas of improve-
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Figure 11: Examples of bounding boxes obtained with LIME, SHAP, DeepLIFT, and Integrated Gradients’ attribution maps on images with high
probability scores.

ment by indicating the regions which are causing the
network to misclassify the images, or to detect possible
biases. IOU scores with the lesion location were low but
could potentially increase by improving the bounding
box generation method from the attribution maps. In-
tegrated gradients possessed the best IOU scores, but it
is a rather computationally expensive technique. Grad-
CAM and Occlusion could be used instead with poten-
tially slightly worse results. Additionally, the various
explainability techniques possess a potential for provid-

ing insights for evaluating and subsequently improving
the models for the generation of synthetic images via
stable diffusion. Future work could improve on this by
refining the bounding box generation from the attribu-
tion maps and by applying XAI methods for breast can-
cer subtype classification.
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Appendix A. Attribution maps for whole mammograms

Figure A.12: Examples for Saliency, Occlusion, and GradCAMs’ attribution maps on TP images with low probability scores. Red and yellow
regions correspond to higher attribution scores.
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Figure A.13: Examples for LIME, SHAP, DeepLIFT, and Integrated Gradients’ attribution maps on TP images with low probability scores. Red
and yellow regions correspond to higher attribution scores.
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Figure A.14: Examples of bounding boxes obtained with Saliency, Occlusion, and GradCAMs’ attribution maps on TP images with low probability
scores.
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Figure A.15: Examples of bounding boxes obtained with LIME, SHAP, DeepLIFT, and Integrated Gradients’ attribution maps on TP images with
low probability scores.
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Figure A.16: Examples for Saliency, Occlusion, and GradCAMs’ attribution maps on FN images. Red and yellow regions correspond to higher
attribution scores.
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Figure A.17: Examples for LIME, SHAP, DeepLIFT, and Integrated Gradients’ attribution maps on FN images. Red and yellow regions correspond
to higher attribution scores.
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Figure A.18: Examples of bounding boxes obtained with Saliency, Occlusion, and GradCAMs’ attribution maps on FN images.
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Figure A.19: Examples of bounding boxes obtained with LIME, SHAP, DeepLIFT, and Integrated Gradients’ attribution maps on FN images.
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Abstract

Ischemic stroke accounts for 87% of all strokes, which are the leading cause of disability and the fifth leading
cause of death worldwide. Current stroke management guidelines rely on quantification of ischemic lesion volume to
select an appropriate treatment for a patient. Despite the fact that baseline non-contrast CT is not as suitable as it is
Perfusion CT or Diffusion Weighted Imaging to obtain this measurement, it is the first imaging modality performed
when the patient arrives at the emergency department, it is cheaper, more widely available and faster. Consequently,
the development of accurate automated segmentation tools for ischemic lesions on baseline non-contrast CT is a
clinically relevant problem that, if satisfactory solved, would represent an improvement in healthcare provision.

Among other difficulties, the low contrast that the ischemic stroke lesion presents on baseline non-contrast CT
makes the task of segmenting it very challenging even for expert radiologists. In the case of automated solutions,
the difficulty of collecting large, well-curated datasets of baseline and follow-up acute ischemic stroke images further
complicates the task. In this work, a self-supervised learning (SSL) pre-training strategy was proposed to exploit large
unlabelled non-contrast CT datasets (stroke positive and negative) in the task of acute ischemic stroke infarct segmen-
tation. A robust data pre-processing pipeline was proposed to homogenise the different datasets before using them
in a SSL-enhanced version of the well-known self-configuring nnU-Net pipeline. From the experiments conducted,
pre-training the nnU-Net encoder in a self-supervised manner with all available non-contrast CT images resulted in an
acute ischemic stroke segmentation performance significantly higher than training the same model from scratch and
comparable to that obtained by training from scratch using approximately 3.6 times more labelled data.

The code developed for this work is publicly available at: https://github.com/joaco18/stroke-seg-ssl.

Keywords: Acute Ischemic Stroke, Non-Contrast CT, Segmentation, Self-Supervised Learning

1. Introduction

Stroke is a pathology characterised by a focal injury
in the central nervous system with a vascular origin. It
represents the first cause of disability and the fifth cause
of death worldwide (Virani et al. (2021)). A stroke can
be classified in two types: ischemic and hemorrhagic.
The ischemic type accounts for 87% of all strokes and
involves a restriction or reduction of blood flow caused
by the occlusion of a blood vessel (Benjamin et al.
(2017); Sacco et al. (2013)).

During the management of this emergency, time is
brain: the longer the brain tissue is deprived of blood

∗Corresponding author
Email address: joacoseia18@gmail.com (Joaquin O. Seia)

supply, the higher the probability of cell death and the
worse the prognosis for the patient. Depending on the
time elapsed since the onset of the stroke, it can be
divided into three categories: hyperacute (less than 6
hours from onset), acute (less than 24 hours) or sub-
acute (from 24 hours to 5 days) (Brorson and Cifu
(2019)). Each of these stages is accompanied by dis-
tinct physiopathological characteristics that define dif-
ferent ways in which the patient should be managed.

The time-dependent fate of the hypoperfused tissue
can be spatially described by two clinically relevant
zones: core and penumbra. While the former refers
to a highly hypoperfused tissue that is already infarcted
(or is inevitably destined to become infarcted regardless
of treatment), the latter represents hypoperfused tissue
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that is potentially salvageable through reperfusion (Va-
gal et al. (2019)).

Reperfusion therapy, and endovascular treatment
(EVT) in particular, is an effective therapeutic solution
for acute ischemic stroke (AIS) patients with a large
vessel occlusion. However, it is currently restricted to
patients with a small lesion core because the larger this
region it is, the higher the risk of an hemorrhage fol-
lowing the reperfusion and the smaller the benefit the
patient can get from it. (Byrne et al. (2019); Goyal et al.
(2020)).

1.1. Medical images in the context of stroke

As mentioned above, selecting the correct treatment
for a patient requires the assessment of the extent of the
ischemic lesion, and medical imaging plays a vital role
in this process. This is reflected in the current American
Heart Association (AHA) guideline for the management
of stroke patients, which recommends an emergency
brain imaging evaluation before any treatment decision
is made (Powers et al. (2019)). This recommendation
states that non-contrast computed tomography (NCCT)
should be a first-line imaging modality used to rule out
intracerebral hemorrhage. Thereafter, patient selection
for EVT should follow one of two imaging recommen-
dations depending on the time to last known well. For
hyperacute ischemic stroke, the Alberta Stroke Program
Early CT Score (ASPECTS) should be computed over
the NCCT and an angiographic CT (CTA) should be
acquired. In AIS patients, a combination of CTA and
perfusion CT (CTP) or magnetic resonance angiogra-
phy (MRA) and diffusion-weighted magnetic resonance
imaging (DWI) is recommended.

The guideline presents three principal non-
angiographic imaging modalities: NCCT, CTP
and DWI. Although the evaluation of an AIS stroke
patient using NCCT alone is not recommended, it is an
imaging modality with high potential for stroke lesion
assessment. In order to identify what makes NCCT
unique, it is necessary to introduce on some basic
concepts of these three modalities.

Non-contrast computed tomography
NCCT measures tissue density. Brain tissue under-

going through severe ischemia appears hypodense on
NCCT because of increased water content due to ionic
edema (Goyal et al. (2020)). ASPECTS is a rating sys-
tem that uses this biomarker to subjectively assess the
extent of early infarction on the NCCT (Mokin et al.
(2017)). Although the use of ASPECTS is currently
part of the stroke management guidelines, it is charac-
terised by a high inter-observer variability (Farzin et al.
(2016)). It has been well described that the ischemic
core signal is virtually absent in baseline NCCT images
compared to other modalities, making the task of lesion
segmentation challenging even for expert neuroradiolo-
gists (El-Hariri et al. (2022); Estrada et al. (2022)). Fur-

thermore, this scoring system does not provide a fine
quantification of the lesion volume but rather a coarse
estimation of extent based on affected vascular regions.

Computed tomography perfusion
In this modality, the focus is placed on blood flow

measurement rather than the consequences of ischemia
in the brain parenchyma. Through a non-trivial post-
processing step, measurements of penumbra and is-
chemic core volumes can be obtained based on the rel-
ative blood flow at each voxel. The recent inclusion of
CTP among the AHA recommendations results from the
successful use of CTP-derived core and penumbra vol-
umes as part of patient selection criteria for EVT in two
large clinical trials, Defuse 3 and DAWN (Albers et al.
(2018); Nogueira et al. (2018)).

However, despite being useful, CTP is not free of
complications. Differences in results between software
solutions and difficulties inherent in the modality it-
self, such as patient motion or confounding physiolog-
ical processes, can lead to over- or underestimation of
core volume in CTP. To serve as an example, in AIS,
CTP is prone to underestimation of baseline ischemic
core in cases of luxury perfusion, where the core infarc-
tion becomes hyperemic because of spontaneous reper-
fusion or engorgement of the leptomeningeal arteries
(Sotoudeh et al. (2019)). In order to rule out this false
negatives, a simultaneous review of the baseline NCCT
is required, leveraging the complementary information
provided by the two modalities (Vagal et al. (2019)).

Diffusion weighted image
The ischemic stroke lesion appears as a high signal

on the DWI scan because of the diffusion restriction in
the extracellular space caused by the cytotoxic edema
(Goyal et al. (2020), Kuang et al. (2021)). Contrary to
NCCT, this biomarker is visible within minutes after is-
chemia onset and is much more conspicuous. Because
of its limited availability, the higher cost and longer ac-
quisition time, DWI is usually reserved for a follow-up
evaluation and quantification of final infarct (El-Hariri
et al. (2022)). These elements make DWI the gold stan-
dard for estimating the volume of the ischemic lesion.

However, it is important to note that even though the
lesion core volumes computed on the baseline NCCT
(or CTP) are highly correlated with those obtained from
the DWI image, they may differ. For example, depend-
ing on the success of recanalisation or the time elapsed
between the baseline image and the treatment, the fi-
nal infarct extent will differ from the baseline lesion.
In addition, very small ischemic lesions associated with
small emboli generated during reperfusion may appear
on the post-treatment image but not on the baseline im-
age.

1.2. Why NCCT?

As presented, it is clear that advanced imaging tech-
niques such as CTP and DWI can provide a more com-
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plete and accurate assessment of the ischemic lesion.
However, these modalities are not available in hospitals
on a 24/7 basis, and AIS patients are mostly diagnosed
by using NCCT images (Kim et al. (2021)).

Despite the fact that baseline NCCT is not the best
modality for quantifying the volume of the ischemic
core, it is the first line imaging modality performed
when the patient arrives to the emergency department,
is the cheapest, the most widely available and the fastest
technique among the mentioned ones. Consequently,
the segmentation of ischemic stroke lesion core on base-
line NCCT is a clinically relevant problem.

As stated in Bouslama et al. (2021), a proper quan-
tification of the stroke core on baseline NCCT images
could allow centres without advanced imaging tech-
niques or specialised stroke neurologists to ensure ac-
cess to endovascular therapy for a wider population of
patients who could benefit from it. Even when follow-
ing the current guidelines and using perfusion imaging,
NCCT can still provide complementary information that
can lead to improved healthcare provision.

In this context, where manual segmentation of stroke
lesions on baseline NCCT images is not feasible but
would represent an improvement in the management of
AIS patients, the development of accurate automated
segmentation tools for ischemic lesions on baseline
NCCT is a problem that needs to be addressed.

2. State of the art

2.1. Automatic segmentation of AIS lesions
Over the last decade, machine learning, and in par-

ticular deep learning (DL), has been successfully ap-
plied to many image segmentation taks. The work in
Isensee et al. (2020), which presented a robust model
that achieved state of the art (SOTA) performance over
53 different medical image segmentation problems, can
serve as a clear example of this. The segmentation
of acute ischemic lesions has not been the exception,
where several methods have tackled the task in MRI im-
ages (Clèrigues et al. (2020)) or CTP scans (Amador
et al. (2021, 2022); Robben et al. (2020)).

In contrast, on baseline NCCT images, there are
only a few well-established approaches for segmenting
AIS lesions. Among these solutions, there is a large
heterogeneity in their experimental designs, which af-
fects how comparable and transferable they are to other
NCCT datasets. Overall, there are three main elements
transversal to the literature on this topic:

1. The vast majority of deep learning proposals have
successfully applied UNet-like deep convolutional
neural networks (DCNN).

2. The use of contextual information in the model de-
sign improves the segmentation results. In most
cases, inter-hemispheric asymmetries are used as
one of the forms of contextual information.

3. The lack of large, well-curated and publicly avail-
able datasets containing baseline and follow-up
AIS images is not negligible, as most of the publi-
cations have worked with private datasets with dif-
ferent patient selection criteria.

In the following for each of this three aspects some
salient publications are commented.

2.1.1. U-Net like architecture choice
Among the many works using U-shaped architec-

tures, in Ostmeier et al. (2022) and El-Hariri et al.
(2022), the self-configuring model nnU-Net (Isensee
et al. (2020)) was shown to be successful in AIS lesion
core segmentation on baseline NCCT images. In the
first case, the authors showed that nnU-Net achieved
non-inferior segmentation results compared to expert
neuroradiologists. In the second case, the authors not
only showed that nnU-Net was able to achieve high
volumetric agreement with ground truth pre-treatment
DWI labels, but also pointed out that their model was
already part of commercial software, demonstrating the
impact this architecture already has in the clinical prac-
tice.

2.1.2. Exploiting contextual information
Contextual information has been incorporated into

models in many different ways in the literature. Chen
et al. (2022) and Kuang et al. (2019) used the difference
images generated after a sagittal flipping of the NCCT
images. The first one opted for a 2D U-shaped archi-
tecture in which the original, flipped and difference im-
ages were given as a multi-channel input. The second
one opted for a more sophisticated approach using a 3D
U-shaped architecture with a multi-path encoder. Four
paths were used, covering the original image, the dif-
ference image, an infarct location probability map and a
distance-to-cerebrospinal-fluid map. In Ni et al. (2022),
a 3-step end-to-end trainable 3D asymmetry disentan-
gling network was used to obtain an effective and in-
terpretable AIS segmentation on NCCT. Their method
automatically separated pathological asymmetries and
intrinsic anatomical asymmetries from the NCCT.

An approach usually referred to as SOTA in AIS core
segmentation in baseline NCCT is the work of Kuang
et al. (2021). The authors proposed a multi-task learn-
ing approach, called EIS-Net, which was simultane-
ously trained to segment the stroke lesion and to predict
the ASPECTS score from the NCCT. Their model con-
sisted of a 3D U-shaped segmentation CNN architecture
with a triple-path encoder. Each path was fed with the
NCCT, the sagittally mirrored NCCT and a CT atlas, re-
spectively. The differences between these features were
exploited using an ad hoc comparison block. The use
of contextual information within a multitask optimisa-
tion strategy allowed them to achieve better results than
using the plain U-shaped segmentation model.
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2.1.3. Data scarcity problem
Overlapping with the previous remark, the work in

Giancardo et al. (2023) presents another model that ex-
ploits the inter-hemispheric differences. However, the
remarkable aspect of this paper is that the authors iden-
tified that one of the elements that is delaying the devel-
opment of automatic AIS segmentation in NCCT/CTA
is the difficulty in obtaining large enough samples
containing high-quality DWI images with voxel-level
ground truth annotations. To circumvent this problem,
they used only image-level labels (the stroke core vol-
ume size) to train their model and obtained a competi-
tive AIS lesion core segmentation on CTA images.

2.2. Deep learning with labelled data scarcity

In the recent years, self-supervised learning (SSL)
strategies have gained popularity for addressing the
problem of scarcity of labelled data. As described in the
work of Balestriero et al. (2023) SSL stands for a col-
lection of machine learning approaches that can learn
from large amounts of unlabelled data. The common
practice implies the definition of a pretext task based
on unlabelled inputs to produce descriptive and mean-
ingful representations that can be used across different
downstream tasks. Self-supervised image representa-
tion learning has shown amazing progress in the last five
years, achieving a performance in several downstream
tasks that is competitive or even superior to supervised
learning approaches (Bardes et al. (2022); Caron et al.
(2021); Chen and He (2021); Grill et al. (2020); He et al.
(2022, 2020)).

One of the most commonly used SSL methods is
based on a joint embedding architecture, where two
Siamese networks are trained to produce similar embed-
dings for different views of the same image. In this way,
the networks learn to extract semantically meaningful
information from the images themselves. The main dif-
ficulty in this approach is to avoid representation col-
lapse, phenomenon where the networks ignore the in-
puts and produce identical and constant output vectors.

Recently, among the several existing ways to
avoid model collapse, distillation methods have been
pointed out as achieving better performance than others
(Balestriero et al. (2023); Bardes et al. (2022)). In gen-
eral, distillation methods train a student network to pre-
dict the representations of a teacher network. During the
training phase, the gradients are only back-propagated
through the student network, and the weights of the
teacher are a running average of the weights of the stu-
dent.

One of the most representative distillation SSL meth-
ods is the work of Caron et al. (2021). The authors
designed an approach termed DINO as an acronym of
“knowledge distillation with no labels”. DINO sim-
plified SSL training by optimising the matching of the
teacher network’s output using a standard cross-entropy

loss. Collapse prevention was achieved by including
two simple operations in the teacher output, known as
centring and sharpening. DINO could work on both
transformer and convolutional architectures achieving
SOTA accuracy on ImageNet. More interestingly, the
trained encoders could obtain feature representations
that explicitly contained a scene layout of the image,
which could be used to generate accurate segmentation
masks.

These promising models have also found their way
into the field of medical imaging. Among the many
papers applying SSL to medical images (Jiang et al.
(2023); Kalapos and Gyires-Tóth (2023); Manna and
Chakraborty (2022)), the work presented in Ye et al.
(2022) deserves special attention. In this article, the
authors proposed a DINO-based SSL method, called
DeSD (deep self-distillation), which allowed the use
of unlabelled data in the context of 3D medical image
segmentation. In their model, both a student network
and a momentum teacher were built by stacking sev-
eral sub-encoders. The deep self-distillation supervision
implied that the features of every student sub-encoder
were optimised to match the teacher’s output distribu-
tion. This technique resulted in superior pre-training of
the segmentation network encoder compared to other
existing SSL methods. When tested on seven down-
stream 3D medical segmentation datasets, their method
outperformed training the same segmentation architec-
ture from scratch and achieved state of the art results.

Considering the challenges associated with baseline
NCCT AIS lesion segmentation, SSL can be identi-
fied as a promising approach to address the problem.
The capacity of self-supervised learning techniques to
make models extract semantically meaningful infor-
mation coming from unlabelled datasets, represents a
promising approach as a pre-training strategy in the con-
text of AIS lesion segmentation. Given that SSL models
have been shown to capture the scene layout of images,
these methods may represent an unexplored way to ex-
ploit the intrinsic contextual information present in the
brain NCCT image that is not necessarily related to the
AIS lesion label.

In addition, these methods open the possibility of re-
purposing large amounts of unused, unlabelled NCCT
images (with or without stroke) to improve segmenta-
tion performance. In a context of scarcity of good qual-
ity labelled AIS datasets, SSL could represent a more
efficient use of the manual labelling process, limiting it
to a subset of cases used for fine tuning to the down-
stream segmentation task and validating the results.

Lastly, U-shaped architectures and in particular nnU-
Net, represent a standard segmentation baseline across
many medical imaging modalities which has also been
successful in the context of AIS lesion core segmenta-
tion. Therefore, the integration of SSL as a pre-training
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strategy for nnU-Net encoder, in a similar manner to that
done in Ye et al. (2022), may represent a synergistic way
to integrate the aforementioned benefits of SSL with the
highly successful self-configuring nnU-Net pipeline.

2.3. Contributions

1. A robust pre-processing pipeline for NCCT images
which can work across many different datasets of
variable quality.

2. A systematic pipeline to enhance nnU-Net auto-
tuning framework with an additional encoder pre-
trainining in a self-supervised manner.

3. Use of a DeSD-like self supervised pre-training
strategy to exploit large unlabelled NCCT (stroke
positive and negative) datasets for the task of AIS
segmentation.

4. Introduction of an asymmetry based data augmen-
tation technique for achieving better latent repre-
sentations for the context of stroke lesion segmen-
tation on NCCT.

5. Pre-training nnU-Net’s encoder with SSL is found
to be an effective way for exploiting large amounts
of unlabelled datasets, improving AIS final infarct
segmentation performance on baseline NCCT im-
ages.

3. Material and methods

3.1. Datasets

In this work four datasets were utilised. A detailed
description of each of them is presented below.

Acute Ischemic Stroke Dataset (AISD)
This dataset, published in Li et al. (2021), included

cases of AIS with less than 24 hours from symptom on-
set to NCCT acquisition (n=397). For each case, NCCT,
DWI and manual stroke lesion segmentation were pro-
vided. NCCT and DWI images were not registered. Pa-
tients underwent DWI within 24 hours of CT acquisi-
tion. Ground-truth labels were delineated on the NCCT
by a physician using the MRI images as a reference.
Important clinical information was missing from this
dataset, such as the timing of DWI acquisition (pre/post
endovascular treatment). As a result, it was not possible
to determine whether the provided ground truth corre-
sponded to final infarct or pre-treatment stroke core le-
sions. After visual inspection, five cases were discarded
from the dataset due to large motion artefacts or non-
overlapping ground truth with baseline imaging.

A Paired CT-MRI dataset for Ischemic Stroke Seg-
mentation (APIS)

This dataset corresponded to the publicly released
training subset of the ISBI 2023 APIS Challenge
(Gómez et al. (2023)). The dataset (n=60) included pa-
tients over 18 years of age, collected from two Colom-
bian clinics (FOSCAL and FOSUNAB), eight of whom

were healthy controls. Each case included an NCCT
image, the apparent diffusion coefficient (ADC) map
derived from the DWI and a manual delineation of
the stroke lesion core. No treatment was applied be-
tween NCCT and ADC (stroke lesion core as ground
truth). Two neuroradiologists with more than five years
of experience delineated the affected tissue over the
DWI/ADC images. Eight cases were discarded due to
high image corruption (missing slices, evident lesion
mask misplacement), leaving a total count of forty-four
stroke-positive cases.

In APIS dataset, NCCT and ADC maps were pro-
vided registered and skull-stripped. However, after a vi-
sual inspection, the registration process was found sub-
optimal. This had two negative consequences: non-
brain structures (e.g. bone) were visible in the skull-
stripped image and the labels were misregistered.

icometrix Acute Ischemic Stroke Dataset (icoAIS).
This was an in-house private set of cases provided by

the Klinikum rechts der Isar (Munich, Germany). The
collection included acute and early subacute stroke pa-
tients (n=159) and healthy patients (n=8), all over 18
years of age. Three images were available for each case:
NCCT, DWI and ADC map. The MRI images were
provided already skull-stripped and registered to a com-
mon space. MRI images were acquired after success-
ful revascularisation therapy. The collection included a
wide range of infarct patterns in all vascular territories,
even including posterior circulation infarcts, which are
common in clinical practice but not commonly studied
in the literature.

Ground truth labels for icoAIS were obtained in
two different ways. In half of the cases (n=79),
the voxel-level labels involved a high-quality hybrid
human-algorithm annotation process described in Her-
nandez Petzsche et al. (2022). Since the process in-
volved neuroradiologists with more than ten years of
experience reviewing the MRI images, this subset was
referred to as gold standard labels. For the remain-
ing stroke-positive cases (n=80), silver standard labels
were obtained by running SEALS -the publicly avail-
able1 ISLES22 winning solution- over the DWI im-
ages. A stroke expert reviewed the annotations and
found them to be adequate and highly correlated with
the available gold standard annotations.

Collaborative European Neuro-Trauma Effectiveness
Research in Traumatic Brain Injury Dataset (CENTER-
TBI)

This collection of NCCT images was a multi-centre,
multi-scanner dataset presented in Maas et al. (2015).
From the complete dataset, only a selection of NCCT
scans identified by expert review as not having abnor-
mal TBI-related findings was kept (n=637). This re-

1https://github.com/Tabrisrei/ISLES22 SEALS
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sulted in a very diverse dataset of healthy (non-stroke)
patients.

In all cases, due to the retrospective nature of this
work and the rigorous anonymisation of the data, it was
not necessary to obtain informed consent from the pa-
tients. In the particular case of APIS, the data was used
in agreement with the APIS challenge signed informed
consent.

3.1.1. Dataset partitioning
The complete dataset was split into three subsets:

training, validation and test (70-20-10% respectively).
The partitioning was done individually for each dataset
at the patient level. For stroke-positive datasets, the par-
titioning was done stratified by lesion location and size.
This ensured that all subsets had equal representation of
right, left and bilateral lesions and lesion sizes. In the
specific case of icoAIS the dataset was also stratified by
the labelling standard (gold vs. silver).

3.2. Preprocessing

As a first pre-processing step, all the images were
turned into NIfTI format. Cases that where acquired in
“tilted” fashion were “un-tilted” during the DICOM to
NIfTI conversion using the NITRC conversion tool (Li
et al. (2016)).

Figure 1: Preprocessing pipeline

It is noteworthy that there were significant differences
between the datasets used. Diversity is desirable in the
context of SSL, but to reduce the risk of the algorithms
exploiting meaningless shortcuts or biases (i.e. distin-
guishing data origins by their skull-stripping quality),
the datasets were homogenised as much as possible. To
do this, a robust preprocessing pipeline (summarised in
Figure 1) was applied to all datasets. It comprised six
steps:

a. Resampling. All volumes were resampled to 1mm3

resolution using a linear interpolation for NCCT, ADC

and DWI images and a nearest neighbour interpolation
for the ground truth mask.

b. Skull Stripping. NCCT and DWI/ADC images are
not characterised by having high contrast differences be-
tween the different brain soft tissues. As a consequence,
popular skull stripping methods (Ashburner and Friston
(2005); Isensee et al. (2019); Lutkenhoff et al. (2014))
mainly developed to work on high resolution T1 MRI
images gave poor results when applied to the desired
modalities. In addition, for APIS, all methods failed due
to the pre-existing sub-optimal preprocessing. Robust
results were obtained by combining two models from
the publicly available FreeSurfer toolbox: SynthSR and
SynthStrip (Hoopes et al. (2022); Iglesias et al. (2023)).

In both cases, the respective authors used a clever
synthetic data generation technique to obtain robust
models across multiple resolutions and contrasts. The
authors show that SynthSR is able to generate a high-
resolution T1 MRI out of any brain MRI image and
has a reasonable performance when using CT scans.
SynthStrip is a brain segmentation model that is very
robust across different brain MRI modalities, but it did
not work very well when applied directly to the NCCT
image. Instead, generating a pseudo-T1 first and apply-
ing SynthStrip over it gave the best results. SynthStrip
was applied directly to ADC and DWI MRI images with
good results.

c. Registration. For APIS and icoAIS, a brain-
masked affine registration of the MRI image to the
NCCT space was performed using the Elastix toolbox
(Shamonin (2013)). This involved a pyramidal regis-
tration with mutual information as the objective func-
tion. After this, the stroke lesion mask was propagated
to the NCCT space using the same transformation but
with nearest neighbour interpolation.

d. Contralateral image. To obtain the mirrored brain
with respect to the inter-hemispheric plane, the NCCT
was first registered to an NCCT MNI space template
(Rorden et al. (2012)) using brain-masked affine regis-
tration. A left-right flip was then performed and the re-
sulting image was masked-affine registered to the origi-
nal NCCT image. In this way, the desired image ended
in the original patient space and the effect of gross nor-
mal asymmetries in brain shape was reduced.

e. Intensity clipping. Following the literature and
the recommendations done by an expert in stroke imag-
ing, the NCCT and the contralateral NCCT images were
intensity clipped to the range [-100, 400], leaving un-
changed the range in which both brain soft tissue and
stroke lesions have their intensities.

3.3. Method overview

As mentioned in the introduction, this work uses a
variant of the two-step SSL paradigm presented in Ye
et al. (2022). Unlike the cited work, the nnU-Net self-
configuring model is used as the base architecture and
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is enhanced by adding SSL pre-training to its encoder
part.

Introduced in the work of Isensee et al. (2020),
nnU-Net is a self-configuring method for deep-learning
biomedical image segmentation. In terms of implemen-
tation, it consists of a robust pipeline with two stages:
first, it finds the best configuration of the UNet model
for any new dataset, and then, based on the conclusions
of this step, the tailored training can be performed. In
the first step, the data pre-processing, network architec-
ture, training details and post-processing stages are de-
cided. Two core elements are involved in this process: a
dataset fingerprint and a pipeline fingerprint. The first
one is a standardised dataset representation comprising
key properties such as the image size, voxel spacing and
class ratios. The second one registers a collection of
choices made during the automatic optimal method de-
sign (i.e. batch size, patch size, network topology, etc.)
and serves as a recipe followed during training to instan-
tiate the model and the training machinery.

Given the success of this self-tuned pipeline, we used
it as a basis for a four steps training strategy:

1. nnU-Net configuration according to the dataset
used for SSL.

2. Self-Supervised pre-training of nnU-Net encoder.
3. nnU-Net configuration according to the dataset

used for supervised learning.
4. Transfer learning and supervised training of nnU-

Net segmentation network.

In the first step, the objective was to use the opti-
mal architecture configuration and data pre-processing
of nnU-Net, but for self-supervised training. To this
end, an nnU-Net dataset containing the full set of NCCT
images (stroke and healthy cases) was generated and
the nnU-Net self-configuration pipeline was run over
it. By default, during the dataset fingerprint extraction,
nnU-Net computes the intensity statistics -that are later
used for normalising the images- from foreground re-
gion defined by the segmentation mask. To be able to
process healthy cases and to obtain a more general nor-
malisation strategy, nnU-Net pipeline was fed with the
brain masks as if they were the segmentation targets,
so that all the whole brain region was treated as fore-
ground. Three results were kept from this step: the
pre-processed images, the dataset fingerprint and the
pipeline fingerprint.

In the second step, the pipeline fingerprint was used
to instantiate the complete UNet model, discarding the
decoder part and adding the additional modules required
for deep self-distillation training (see details in Section
3.4). This distillation mechanism was implemented to
dynamically adapt to the number of encoding steps de-
fined by the nnU-Net pipeline. Finally, the encoder was
trained in SSL fashion and its weights were re-adjusted
(removing the extra SSL modules) to the original nnU-
Net encoder structure.

In the third step, the self-configuring nnU-Net
pipeline was run a second time. This time, only the
subset of desired labelled images were included and the
stroke lesion masks were given as segmentation targets.
The resulting dataset fingerprint was modified by re-
placing the intensity statistics with those from the full
NCCT dataset, so that the pre-processed inputs were in
the same intensity space used to pre-train the encoder.
The preprocessing was then run and the pipeline finger-
print was generated.

Finally, the nnU-Net supervised training pipeline was
run using the pre-trained weights of the encoder as a
starting checkpoint.

3.4. Self-supervised learning details

The SSL method implemented in this work shared
the same overall structure with DeSD (Ye et al. (2022)).
Its general outline can be appreciated in Figure 2. The
overall strategy was based on knowledge distillation,
training a student network gθs to match the output of
a teacher network gθt (where θs and θt were their param-
eters respectively).

Both networks roughly shared the same architecture,
but the student one was decoupled into N sub-encoders:
gi
θs

for i from 1 to N. The network gθs was generated by
adding a projection head at the end of each of the 6 en-
coding stages determined by the nnU-Net configuration
pipeline. Naming the projection head h, each stage of
nnU-Net encoder f i (i = 1, ...,N) and the complete en-
coder f , the overall network could be formally written
as: gi

s = hi ◦ f i
s . The same holds for the teacher network,

but using only the complete encoder: gt = ht ◦ ft.
In all cases, the projection head (h) consisted of a

multi-layer perceptron (MLP) of three layers plus a fi-
nal weight-normalised fully connected layer of dimen-
sion K. The two MLP hidden layers were of dimension
2048, with batch normalisation and Gaussian Error Lin-
ear Units (GELU) activation function. The MLP output
had a dimension of 256, with no batch normalisation or
non-linearity applied. In summary, the complete projec-
tion head mapped the output of each stage of the student
network and the final teacher network into a K dimen-
sional representation, with K = 65536 in our case.

As done in Caron et al. (2021), after the K dimen-
sional teacher representations were obtained, a centring
was applied to avoid model collapse. The centring de-
pended on the first order batch statistics and can be in-
terpreted as adding a bias term c to the teacher: gt(x)←
gt(x) + c. The centre c was updated with an exponential
moving average rule:

c← mc + (1 − m)
1
B

B∑

i=1

gθt (xi), (1)

where m = 0.9 and B is the batch size.
Given an input image x, the resulting representations

from the N=6 student sub-encoders and the teacher one
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Figure 2: Self-supervised training method, see Section 3.4 for details. Subindex s and t stands for student and teacher respectively, L for loss, EMA
for exponential moving average and MLP for multi-layer perceptron.

were transformed into probability distributions over the
K dimensions (denoted Pi

s for i = 1, ...,N and Pt respec-
tively). Each probability P was obtained by normalising
the output of the corresponding network g with a soft-
max function:

P(x)( j) =
exp(g(x)( j)/T

∑K
k=1 exp(g(x)(k)/T

, (2)

where j = 1, ...,K and T > 0 was a temperature pa-
rameter that, as indicated in Caron et al. (2021), had a
sharpening effect that reduced the possibility of repre-
sentation collapse.

As usually done in SSL, from a given image, a set
V = {x1, x2} was generated with two differently dis-
torted views (crops) of it. Then, x1 and x2 were passed
through both the student and the teacher networks, in
order to obtain their respective embeddings.

During training, only the student weights were up-
dated through gradient back-propagation. The training
objective was to match each student embedding with the
teacher’s one by minimising the cross-entropy loss:

min
θs

1
N

N∑

i=1

∑

x∈V

∑

x′∈V
x′,V

H(Pt(x), Ps(x′)), (3)

where H(a, b) = −a log b.
The weights of the teacher network were updated us-

ing an exponential moving average of the student ones
(momentum encoder). The updating rule was defined
by: θt ← λθt + (1 − λ)θs. Where λ followed a cosine
schedule from 0.9996 to 1 during training.

Finally, once the model was trained, the features used
in downstream task are the ones from the backbone ft,
dropping the projection head.

3.4.1. Distorted views strategy
The SSL literature suggests that inputs to Siamese

networks should follow two recommendations: The

view size should contain more than 50% of the origi-
nal image, and that the larger the batch size used dur-
ing training, the better. However, as the proposed mod-
els had 3D inputs, which increased their GPU memory
consumption, a trade-off was made between these two
requirements. An anisotropic patch size of 112x112x16
(favouring inter-hemispheric contextual content) and a
batch size of 64 (the largest the memory would hold)
were chosen.

Given that the median image size in our datasets was
169x138x139, to avoid sampling two completely differ-
ent views from the volume, an online patch sampling
strategy of two stages was used. First, from the region
defined by the brain’s bounding box, a slab of 24 slices
was sampled along the z axis and then the two patches
x1 and x2 were sampled from within the slab. This en-
sured a high degree of overlap between the paired views.
In addition, to prioritise slabs with higher brain content,
if the sampled slab contained less than 40% of brain, it
was replaced by a new sample with a probability equal
to the background content percentage (the less brain
content, the more chances to take another sample).

Several data augmentations were applied to both
views: flipping, scaling, Gaussian noise, Gaussian
blur, gamma intensity transformation, change of image
brightness and contrast. These were the same ones used
in Ye et al. (2022) but applied on a volume fashion and
not slice-wise.

3.4.2. Training and evaluation details
Evaluating the progress of SSL methods is not a sim-

ple task. Common ways to evaluate the quality of the
obtained representations are linear probing with a clas-
sification task, k-nearest neighbours clustering or di-
rectly training over the downstream task at each epoch.
In our case, training the decoder stage of the segmen-
tation network at each epoch was computationally pro-
hibitive. For this reason, the training dynamics were
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evaluated by checking the training and validation loss
curves and using RankMe.

RankMe is a recently proposed metric to evaluate
SSL training performance in a fully unsupervised man-
ner (Garrido et al. (2023)). It represents an indirect way
to evaluate the information content of a set of represen-
tations by assessing an approximation to their rank. The
higher the RankMe, the more linearly independent the
representation components are and more the variance of
the data is distributed among them, showing an empiri-
cal positive correlation with their performance in differ-
ent downstream tasks. Following the cited publication,
RankMe was computed over the latent representation of
256 elements produced by the MLP of the teacher’s pro-
jection head.

Preliminary experiments were carried out to become
familiar with the learning dynamics of the models and
to find a suitable set of hyperparameters and training
choices.

An AdamW optimiser was used with a batch size of
64. The learning rate was linearly ramped up during the
first 10 training epochs to its base value of 0.1. After this
warm-up the learning rate was decayed with a cosine
schedule. Weight decay also followed a cosine sched-
ule from 0.04 to 10−5. The temperature Ts was set to 0.1
while a linear warm-up from 0.04 to 0.07 during the first
10 epochs was used for Tt. In order to reduce memory
consumption 16-bit floating precision was used for the
model weights. Independently on the dataset used, in all
the experiments SSL was trained for 100 epochs after
which train loss, validation losses and RankMe curves
reached a plateau. Each epoch consisted of 9600 itera-
tions. Since there were no clear signs of overfitting or
model performance decay (or improvement) at the final
plateau, the model from the last epoch was kept as the
pre-trained checkpoint.

3.4.3. Latent representation projection and model in-
terpretability

After training the encoder in the SSL fashion, two
techniques were used to interpret the obtained represen-
tations: attribution maps and t-SNE dimensional reduc-
tion to observe clustered patterns.

Attribution maps were computed using Integrated
Gradients method (Sundararajan et al. (2017)). Since
our network did not output class wise predictions, a sum
of all the elements in the final representation was added
at the end of the network before applying the attribu-
tion method. The resulting maps highlighted the voxels
whose change most affected the entire latent representa-
tion.

To analyse the projections in a more systematic
way, a t-distributed Stochastic Neighbour Embedding
(t-SNE) projection of the teacher representations onto
a two-dimensional space was obtained (van der Maaten
and Hinton (2008)). Given the resulting clustered nature
of the resulting 2D space, a set of representative points

of the visible groupings were selected and their six near-
est neighbours were obtained. For these 6 cases, axial
slices of the NCCT volumes and their attribution maps
were plotted with the aim of detecting common salient
features used by the network to generate the representa-
tions (see Figure 8 for an example).

3.5. Supervised Segmentation details
Among the different experiments performed in the su-

pervised segmentation training, the main objective was
to compare the impact of the different training strategies
on the performance of the final infarct segmentation on
baseline NCCT images. In this sense, we decided to fo-
cus on the icoAIS dataset for supervised segmentation.
This was the best described dataset, the one with the
best image quality and the only one that was certain to
contain only final infarct ground truth.

As a first step, several experiments were performed to
train the nnU-Net model from scratch with the icoAIS
dataset to gain insight into the training dynamics. From
these experiments it was found that the 3D nnU-Net ar-
chitecture outperformed the 2D version and therefore
the former was retained throughout the work.

After running the nnU-Net self-configuring pipeline
over the dataset used for supervised learning, the result-
ing model architecture is illustrated in Figure 3. The
model details follow the overall rules defined in Isensee
et al. (2020). However, the main design specifications
are presented below.

The model consisted of six encoding and six de-
coding stages 3D U-shaped architecture, using only
plain convolutions, instance normalisation and Leaky
ReLU non-linear activation function. Each resolu-
tion stage of both the encoder and the decoder con-
sisted of two computational blocks of convolution-
normalisation-activation function. Down-sampling was
done with strided convolutions and up-sampling with
transposed ones. The initial number of feature maps
was set to 32 and doubled (halved) with each down-
sampling (up-sampling) operation, the number of fea-
ture maps across the network was capped at 320 to limit
the chance of overfitting.

During training, each epoch implied 250 iterations,
where the minibatch size was 2. Stochastic gradient de-
scent with Nesterov momentum (µ = 0.99) and an ini-
tial learning rate of 0.01 was used to optimise the net-
work weights. The learning rate was decayed through
the training according to the ’poly’ learning rate policy,
(1 − epoch/epochmax)0.9. The loss function was the av-
erage of binary cross-entropy and soft dice losses.

The network was trained with deep supervision,
where additional losses are added in the decoder at all
but the two lowest resolutions, each using a down sam-
pled version of the ground truth mask. The training
objective was the sum of the losses at all resolutions,
L = w1xL1 + ... + w4xL4, where the weights wi =

1
2i w1

were later normalised to sum to 1.
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Figure 3: Alternative representation of the U-Net model, highlighting the encoding-decoding nature of the architecture

Since the resampling was performed as part of our
preprocessing pipeline, the nnU-Net preprocessing con-
sisted only of normalising the images using the fore-
ground voxels statistics. The 0.5 and 99.5 percentiles
were used for clipping, and the post-calculated mean
and standard deviation were used for z-score normalisa-
tion. Samples for the mini-batches were selected from
random training cases. Class unbalance was handled
with over sampling by forcing that at least half of the
samples in the minibatch had to contain stroke on it. The
patch size used was 160x160x96. A variety of data aug-
mentations were applied on the fly during training: ro-
tations, scaling, Gaussian noise, Gaussian blur, bright-
ness, contrast, low resolution simulation, gamma cor-
rection and mirroring.

Unless otherwise stated, all networks were trained for
100 epochs. After these epochs, the model trained from
scratch on the icoAIS dataset reached a plateau on the
validation exponential moving average (EMA) pseudo-
dice, and the validation and train loss curves began to
show overfitting patterns (the former stopped decreas-
ing, while the latter continued to decrease). In all cases,
the models were trained on the training set, model se-
lection was done with the validation set, and the test set
was left aside in both procedures.

The nnU-Net pipeline retains the best model from all
training epochs as the one that maximises the pseudo-
dice EMA over the validation set. This dice approxima-
tion is computed by considering each batch of samples
from the validation cases as a case itself. This strategy
was shown in the original paper to be a good compro-
mise between computational cost and performance im-
pact. However, in the problem addressed in this work,
it resulted in a very noisy validation pseudo-dice curve,
which - even when smoothed by the EMA - affected the
selection of the best model. In the preliminary experi-
ments, it was observed that when the model was trained
for 300 epochs, the best selected model did not achieve
the highest performance over the full images in the vali-
dation set. This suggested that, in our specific problem,
nnU-Net tended to select slightly overfitted models as
best, which was “manually” prevented by limiting train-
ing to 100 epochs.

Another preliminary finding was that when nnU-Net

supervised training was repeated on the same cases and
experimental design, but with different random initiali-
sations, there was significant variability in performance
on the full validation cases. In an attempt to minimise
this confounding noise, three different runs with differ-
ent random initialisations were made for each super-
vised experiment. For each of them, the best model was
selected according to the nnU-Net criteria and the ma-
jority voting ensemble was computed from the predic-
tions of these three models.

Finally, during inference time, images were predicted
using a sliding window approach with a window size of
96x160x160 and a stride of 48. Gaussian importance
weighting was applied, increasing the weight of central
voxels in the softmax aggregation. Test time data aug-
mentation was applied by mirroring all axes.

3.5.1. Training nnU-Net with pretrained weights
When performing transfer learning from a pre-trained

SSL model to a downstream task, two main strate-
gies can be used to prevent the encoder from “forget-
ting” what it has learned: freezing the weights of the
pre-trained encoder (for a fraction of epochs or for all
epochs) or using smaller learning rates for the encoder.
In order not to modify the nnU-Net pipeline too much,
we decided to go for the freezing strategy. Four strate-
gies were briefly explored: leaving all parameters un-
frozen, unfreezing the encoder after 33 epochs or after
66 epochs, and leaving the encoder frozen for the entire
training procedure. The best resulting strategy was to
leave all parameters unfrozen and was therefore used in
all experiments presented in this work.

3.6. Metrics

The performance of the models in the segmenta-
tion task was evaluated using a set of different met-
rics. Among the metrics commonly reported in the
medical imaging community, the Dice Score Coefficient
(DSC) and the 95% Hausdorff Distance (HD95) were
used. The former evaluates the voxel overlap between
the segmentation and the ground truth, ignoring the true
negatives in the background, however Dice is not well
suited to detecting outliers in the contour prediction.
HD compares the greatest distance between predicted
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and ground truth contours. For both the DSC and HD95,
calculated at subject level, we report the mean, median
and interquartile range

From a clinical perspective, since lesion volume plays
a key role in patient selection criteria, it is important
to measure how close the predicted volume was to the
ground truth. In this sense, three measures were in-
cluded: absolute volume difference, volumetric Spear-
man correlation and interclass correlation coefficient
(two-way mixed effects, single rater consistency defi-
nition (ICC(3,1)) (Koo and Li (2016)). All metrics were
calculated at the subject level.

Since the ground truths are derived from post-
treatment DWI images, minor embolic lesions of no
clinical significance and characterised by volumes <
3mL may be included in the ground truth whereas they
were not present in the baseline image. Following Gi-
ancardo et al. (2023) and the suggestions from a stroke
imaging expert, we decided to report the metrics for two
different scenarios. One where all lesions are retained in
the ground truth and a second one, where only lesions
larger than 3 mL are retained.

For this two scenarios both the results on the indepen-
dent validation and test sets are reported in the results
section.

3.6.1. Statistical Analysis
Dice scores across experiments were statistically

compared using the Wilcoxon signed-rank test after re-
jecting normality with the Shapiro-Wilk test and QQ
plot analysis.

3.7. Experiments

3.7.1. Baselines
The effect of using an SSL pre-training strategy was

compared against two baselines:

• Training the nnU-Net model from scratch using
only the icoAIS dataset, run hereafter referred to
as FS-STKi, following the convention (training
mechanism)-(supervised dataset), where FS stands
for From Scratch, STK for stroke and i for the par-
ticular icoAIS dataset.

• Training the nnU-Net model from scratch using all
the available labelled data coming from the three
stroke positive datasets: AISD, APIS, icoAIS.
Similar as before, this run is referred to as FS-
STKp, where the p stands for positive.

It is important to note that for the second baseline, the
training was conducted for 300 epochs. Because of the
increase in the training data, the training convergence
took longer. At around 300 epochs, the same rationale
mentioned for selecting 100 epochs was fulfilled.

3.7.2. Exploring different datasets for SSL pre-training
In order to evaluate the benefits of using the pre-

trained encoder, several experiments were carried out.
The first one involved studying the influence of using
different datasets during SSL pre-training. Three sce-
narios were investigated:

• Training on all the available NCCT images (abbre-
viated as “ALL”). This involved using the AISD,
APIS, icoAIS and CENTER-TBI datasets, with the
hypothesis that including the greater diversity of
images in the dataset would allow the model to
learn better representations.

• Training with all stroke-positive NCCT images
(STKp). This involved using the AISD, APIS,
icoAIS datasets, hypothesising that including of
only stroke-positive images might allow the model
to somehow capture better suited representations
for the problem under assessment.

• Training only on healthy/non-stroke patients
(STKn). This implied using only the CENTER-
TBI dataset, with the idea that pre-training on
healthy patients and fine-tuning on stroke-positive
cases might allow the model somehow exploit the
difference (presence of lesions) between these im-
age sets.

For all these different datasets, the SSL pre-training
was done as described in Subsection 3.4.2. Once the
encoder was pre-trained, the supervised training was
done using only the icoAIS dataset. In the following,
these supervised pre-trained experiments are identified
respectively as ALL-STKi, STKp-STKi, STKn-STKi,
following a convention close to the one defined above
(SSL dataset)-(supervised dataset).

3.7.3. Symmetry focused data augmentation technique
In self-supervised learning the data augmentation

techniques used to generate the two different views from
the same image play an important role in the represen-
tations learned by the model. In an attempt to integrate
the inter-hemispheric asymmetries more explicitly into
the SSL pre-training pipeline, a specific data augmenta-
tion technique was developed. In detail, when a patch
was sampled from the original NCCT volume, the same
patch location was sampled from the contralateral im-
age and both views were later subjected to the regular
data augmentation techniques.

The idea behind this experiment was that with
this augmentation, the resulting model representations
would be more agnostic to brain asymmetries. Derived
from this, training the encoders with healthy patients
only, the model would disregard normal asymmetries,
which could have an impact when trained in a super-
vised manner with the presence of stroke-induced asym-
metries.
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To explore this idea, we pre-trained the encoder with
the three dataset configurations presented in the previ-
ous section, but added the symmetry augmentation with
a probability of 0.7 each time an image was sampled
(regardless of its stroke content).

Once the encoders were pretrained, the com-
plete supervised nnU-Net was trained using only
the icoAIS dataset. These experiments are identi-
fied as ALL-STKi-SA, STKp-STKi-SA, STKn-STKi-
SA, following a close convention to the one defined
above (SSL pretraining dataset)-(supervised dataset)-
(symmetry augmentation).

3.7.4. Additional experiments
An early phase of this work involved the participa-

tion in the ISBI 2023 APIS Challenge. Following the
reported benefits of including inter-hemispheric differ-
ences in ischemic stroke segmentation models, a 3D
nnU-Net was trained over the complete stroke-positive
training set (STKp) with the same specifications as
above, but using a different input. The NCCT and
the difference from its sagittally mirrored version were
used as a multi-channel input to the model. This model
achieved first place in the competition by a wide margin
over the other participants (for further details see Ap-
pendix A).

With the aim of combining this initial achievement
with the main line of research of this work, a further set
of experiments was carried out using the multi-channel
3D input to train both the encoder with SSL and the
complete nnU-Net in a supervised fashion (with or with-
out pre-training). For the sake of clarity, the details and
results of these side experiments are included in Ap-
pendix B.

3.8. Computational resources

All the models were implemented using Python
3.10.9 and PyTorch 2.0. All the experiments were run
on a 64-bit GNU/Linux (Ubuntu 20.04) server with an
8-core AMD EPYC 7R32 CPU (2.8 GHz) with 32 GB
of RAM and a single NVIDIA A10G GPU card with 24
GB GDDR6 of memory using CUDA 11.6.

4. Results

4.1. Results over icoAIS validation set

In Tables 1 and 2 the quantitative segmentation re-
sults obtained on the icoAIS validation set are pre-
sented. The first table shows the results considering all
lesion sizes and the second one only considering lesions
bigger than 3 mL.

Firstly, from the two result summaries, focusing on
DSC as usually done in the literature, we can see that
pre-training the U-shape model’s encoder with SSL
gave an improvement in performance compared to train-
ing from scratch. Almost all the methods pre-trained

with SSL had a higher mean and median Dice than FS-
STKi. Secondly, when considering the influence of the
dataset used in SSL pre-training, using all the available
NCCTs (ALL) was on par to using only the stroke pos-
itive datasets (STKp). However, both achieved superior
Dice scores than using only stroke-negative (healthy)
data (STKn). Finally, when evaluating the use of the ad
hoc symmetry augmentation technique, it can be seen
that it slightly improved the performance when pre-
training with all the NCCTs or only the stroke-positive
datasets.

Figure 4: Dice Score Coefficient for the best performing training
methods computed over the icoAIS validation set considering all le-
sion sizes. The statistical significance were determined with a paired
Wilcoxon rank test, where ns indicates 0.05 < p <= 1 and * indicates
0.01 < p <= 0.05

Figure 5: Dice Score Coefficient for the best performing training
methods computed over the AIS validation set considering lesions
> 3mL. The statistical significance were determined with a paired
Wilcoxon rank test, where ns indicates 0.05 < p <= 1 and * indicates
0.01 < p <= 0.05

Again focusing on Dice, from all the SSL pre-training
variants, the best performance was achieved when using
all available NCCTs with the symmetric data augmen-
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Table 1: Performance measures on icoAIS validation set considering all lesion sizes (cases n=29).

DSC ↑ HD95 [mm] ↓ AVD [mL] ↓ Corr ↑ ICC ↑
Experiment Mean Median(Iqr) Mean Median(Iqr) Mean Median(Iqr)

FS-STKi 0.1981 0.135 (0.373) 45.19 47.27 (14.48) 19.74 9.51 (17.03) 0.52 0.70
FS-STKp 0.2361 0.138 (0.487) 39.39 35.52 (23.84) 21.83 10.23 (27.23) 0.65 0.74

ALL-STKi 0.2510 0.144 (0.473) 45.72 50.32 (32.85) 21.56 8.61 (21.01) 0.65 0.63
ALL-STKi-SA 0.2554 0.237 (0.395) 44.33 47.69 (33.45) 21.84 9.23 (19.76) 0.70 0.63

STKp-STKi 0.2503 0.166 (0.431) 49.94 50.47 (29.35) 20.29 9.74 (17.47) 0.60 0.67
STKp-STKi-SA 0.2525 0.186 (0.424) 43.76 48.19 (30.80) 20.27 9.55 (17.70) 0.61 0.65

STKn-STKi 0.2195 0.133 (0.396) 52.43 48.28 (40.01) 24.23 11.22 (20.41) 0.58 0.61
STKn-STKi-SA 0.2096 0.083 (0.336) 49.86 47.93 (38.67) 26.54 12.73 (25.60) 0.64 0.54

Table 2: Performance measures on icoAIS validation set considering lesions > 3mL (cases n=24).

DSC ↑ HD95 [mm] ↓ AVD [mL] ↓ Corr ↑ ICC ↑
Experiment Mean Median(Iqr) Mean Median(Iqr) Mean Median(Iqr)

FS-STKi 0.2451 0.1958 (0.358) 44.37 43.60(26.20) 21.18 9.91 (19.86) 0.50 0.7
FS-STKp 0.2720 0.2981 (0.405) 44.87 41.75(38.07) 27.99 14.57 (34.48) 0.69 0.73

ALL-STKi 0.3101 0.2926 (0.420) 43.12 39.16(32.38) 23.40 7.00 (24.26) 0.65 0.62
ALL-STKi-SA 0.3171 0.3477 (0.312) 38.52 34.70(37.78) 24.01 11.50 (20.73) 0.71 0.63

STKp-STKi 0.3103 0.3307 (0.358) 51.64 45.91(41.46) 21.07 8.91 (17.02) 0.69 0.66
STKp-STKi-SA 0.3122 0.3589 (0.376) 44.74 45.16(35.71) 21.32 7.61 (20.05) 0.66 0.65

STKn-STKi 0.2725 0.2705 (0.412) 47.76 41.04(44.06) 27.10 13.07 (18.84) 0.62 0.61
STKn-STKi-SA 0.2608 0.1986 (0.369) 45.92 38.59(34.48) 29.95 15.91 (35.32) 0.65 0.52

tation (ALL-STKi-SA). See Figure 4 for a comparison
of Dice for the best performing methods. Considering
all lesion sizes, a mean Dice of 0.2554 ± 0.225 and a
median Dice of 0.237 ± 0.395 were obtained, which
were significantly higher than those obtained for train-
ing from scratch only with icoAIS data (mean DSC of
0.1981 ± 0.214 and median of 0.135 ± 0.373).

More interestingly, the results obtained with SSL pre-
training on all the data (ALL-STKi-SA) were superior to
those obtained when the supervised model was trained
from scratch with all labelled datasets (FS-STKp) (mean
DSC 0.2361 ± 0.255 and median 0.138 ± 0.487).

When considering the results obtained by including
only lesions larger than 3 mL, two things must be noted.
The results stated in the previous paragraph still hold in
this case -as can be seen in Table 2- with ALL-STKi-
SA SSL pre-trained model outperformed its counterpart
trained from scratch (see Figure 5 for a boxplot compar-
ison of the best methods).

For the other quantitative measures presented in Ta-
bles 1 and 2, the results were not as clear as in the case of
DSC. In the case of the 95% Hausdorff distance, regard-
less of the lesion size considered, ALL-STKi-SA slightly
outperformed training from scratch with the same su-
pervised learning dataset. However, this was not the
case when using all labelled cases, where the SSL model

Figure 6: Dice Score Coefficient for the best performing training
methods computed over the icoAIS test set ablated by lesion size. The
statistical significance were determined with a paired Wilcoxon rank
test, where ns indicates 0.05 < p <= 1

was superior only when excluding the small volumes.
When considering the absolute volume difference, the
results are even more dispersed, indicating that the best
performing method across all runs was FS-STKi if we
consider the mean value, or ALL-STKi if we consider
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Table 3: Performance measures on icoAIS test set for both lesion sizes criteria (cases n=19 for All and n=14 for > 3mL ).

DSC ↑ HD95 [mm] ↓ AVD [mL] ↓ Lesion size

Experiment Mean Median(Iqr) Mean Median(Iqr) Mean Median(Iqr)

FS-STKi 0.2053 0.106 (0.279) 46.99 48.75 (19.71) 26.81 8.92 (30.37) All
FS-STKp 0.2059 0.117 (0.366) 45.23 42.40 (33.66) 23.77 11.28 (28.79) All

ALL-STKi-SA 0.2468 0.156 (0.275) 45.81 42.56 (27.89) 21.51 6.70 (21.01) All

FS-STKi 0.2915 0.268 (0.349) 42.91 41.27 (28.61) 30.43 5.47 (50.83) > 3mL
FS-STKp 0.2833 0.180 (0.325) 36.69 37.47 (38.61) 22.24 9.53 (31.37) > 3mL

ALL-STKi-SA 0.3406 0.332 (0.424) 42.66 42.56 (41.39) 23.27 5.32 (29.38) > 3mL

Figure 7: Example results from the icoAIS test set. In the upper row a case (A) in which all the methods failed, in the bottom row a case (B) in
which all the methods had reasonable performance. In all the cases the GT is shown in red with the model prediction overlaid in colours different
from red

the median. Finally, the model selected as best by the
Dice criteria showed the highest Spearman volume cor-
relation, and all the models showed a moderate ICC,
both when including and excluding lesions smaller than
3mL.

4.2. Results over icoAIS test set
In Table 3 the quantitative segmentation results ob-

tained on the icoAIS test set are presented. The upper
part shows the results considering all lesion sizes (n=19)
and the lower part only considering lesions bigger than
3 mL (n=14). In both cases, only the best performing
SSL pre-trained method according to the validation set
was compared against the two baselines.

When considering Dice score as the main metric (re-
sults summarised in Figure 6), although the differences
were not statistically significant, the same trend as seen
in the validation sets could be observed. Pre-training
the nnU-Net encoder with all the available NCCTs in
the SSL fashion, and then fine-tuning with only the

cases from the icoAIS dataset, resulted in a better per-
formance (median DSC for all lesion sizes: 0.156, and
for lesions > 3mL: 0.332) than training from scratch
(median DSC for all lesion sizes: 0.106, and for lesions
> 3mL: 0.268), and even slightly better than training
from scratch with all the labelled data. Although the
SSL pre-trained model did not achieve the best HD95,
it slightly outperformed its counterpart trained from
scratch, and it achieved the best average volume differ-
ence of the three models considered. Spearman corre-
lation and ICC values were omitted due to the low con-
fidence in their results given the small size of the test
set.

Figure 7 shows qualitative results for two cases from
the test partition of the icoAIS dataset. The top row
persents a challenging case that none of the methods
could segment correctly, and the bottom row shows a
case where all methods performed well. In both cases, it
is important to note that the SSL pre-trained model (last
column) was more specific than its counterparts trained
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from scratch.

4.3. Interpreting the SSL pre-trained encoder

Figure 8, shows the results of applying some tech-
niques to interpret the latent representations obtained
with the best SSL pre-trained encoder. The top sub-
figure depicts the low-dimensional projections of the
NCCT volumes from the test set. As can be seen, a clus-
tered structure emerged from the data points that was
not related to the origin of the data or the presence of
stroke lesions (colour of the dots).

Visual inspection was done on examples of each clus-
ter, without identifying clear patterns, biases or short-
cuts used by the model to aggregate the cases. In this
sense, the middle and the bottom sub-figures show the
middle slice of the 6 nearest neighbouring volumes from
some representative points in the scatter plot (black
markers). In the middle one, it can be seen that in gen-
eral there are some common elements along the rows
(neighbours). For example, in the first and second rows
there is a similarity in the orientation of the volumes,
and in the third row the cases seem to have large or
abnormal ventricle sizes. The last sub-picture shows
the attribution maps obtained from these cases. In the
cases from the first row, the model was strongly influ-
enced by some voxels in the frontal region, in the sec-
ond row, some attention was given to the anterior voxels
outside the brain (possibly related to the overall orien-
tation of the case), and in the third row, the ventricular
regions are highlighted. Overall, it is important to note
that even when attention was paid to voxels outside the
brain, the representations were able to capture informa-
tion that was mostly related to the brain region.

5. Discussion

In this work, the use of a DeSD-like self-supervised
pre-training strategy was proposed to exploit large unla-
belled NCCT (stroke positive and negative) datasets in
the task of AIS final infarct segmentation.

As a first remark, it is worth highlighting the software
engineering contributions made in order to enhance the
nnU-Net model with SSL pre-training of its encoder.
In this work, an SSL training infrastructure was de-
signed in such a way that it was automatically adapted
to the guidelines resulting from the robust nnU-Net
self-configuration pipeline. In this sense, the proposed
method, represents a contribution beyond the problem
or datasets addressed in this work, allowing the use of
SSL pre-training in any other 3D medical image seg-
mentation problem.

In the experiments conducted for AIS, the segmen-
tation performance obtained by pre-training the nnU-
Net encoder in a self-supervised learning fashion and
then doing supervised segmentation training was signif-
icantly better than training nnU-Net from scratch on the

Figure 8: T-SNE low dimensional projections of the image representa-
tions and NCCT with the respective Attribution map for representative
points.

same supervised learning dataset. These results were
consistent with the findings of Ye et al. (2022), despite
the different nature of the problem and the different net-
work architecture used.

In terms of the dataset used to pre-train the encoder, it
was interesting that only a small difference to was found
between using all the stroke positive and negative cases
and using only the AIS positive datasets, while both had
a large performance gain with compared to using only
the stroke negative cases for pre-training. There might
be several explanations for this. One of them is that
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the inclusion of stroke positive cases may be a key ele-
ment in achieving a good pre-training for the supervised
task at hand. However, the attention maps obtained for
the encoder and the clusters shown by the low repre-
sentations did not suggest that the pre-trained encoder
itself captured any evident information about the stroke
lesions. A more resonable explanation lies in the in-
clusion of cases in the training set for SSL that were
also present in the supervised training set, allowing the
model to take into account the particular image charac-
teristics of this dataset. In any case, it was clear that the
model did not benefit from the contrast of pre-training
on healthy cases and then using only pathological ones
for the supervised task.

In relation to the exploitation of contextual informa-
tion, it was shown that including the proposed symme-
try augmentation technique during pre-training led to
a small improvement in the segmentation performance.
This was not surprising, as it was consistent with many
publications in the field showing that models achieve
better AIS segmentation performance when forced to
exploit inter-hemispheric symmetry/asymmetry. How-
ever, despite the initial belief that the symmetry aug-
mentation would be more beneficial for the downstream
task when pre-training on non-stroke cases (becoming
normal asymmetry agnostic), the results obtained were
exactly the opposite. As there is no immediate rational
explanation for this phenomenon, further experiments
should be conducted to better understand what is the
effect of this augmentation on the obtained representa-
tions.

Also in relation to the contextual information, in the
introduction it was initially hypothesised that the use
of SSL could lead to meaningful representations of the
NCCT images that could exploit the contextual infor-
mation already present in the image itself. However,
although the encoder’s attribution maps showed that the
pre-trained encoder was mostly influenced by brain vox-
els and the shape/location of certain structures such as
the ventricles, it is difficult to determine the impact of
this information on the final segmentation. The inclu-
sion of additional pretext tasks during the SSL training,
as done in Giancardo et al. (2023), is a strategy that
could lead to representations better suited to the down-
stream problem and should be explored in future work.

One of the other important results of this work was
that the best SSL pre-training strategy was able to
achieve performances at least on par with the ones ob-
tained by training the supervised segmentation model
trained from scratch with almost 3.6 times more labelled
cases. As commented previously, there was a high vari-
ability in the quality of the datasets, in their initial pre-
processing, in the volume of the lesions in them, and
only icoAIS had certain infarct ground truth masks. In
this context, SSL pre-training provided a robust way
of extracting meaningful information from these cases,
becoming independent of their variable labelling stan-

dards.

5.1. Comparison with other approaches
From the results section, it is clear that models devel-

oped for other medical image segmentation problems
achieve better Dice scores. However, AIS segmentation
on NCCT is a particularly challenging task, due to the
cross-domain nature of the labels, the lack of visibility
of the lesions in NCCT, and many other reasons previ-
ously exposed.

Especially in the context of AIS, it is difficult to even
compare with other approaches presented in the litera-
ture. In this work, the icoAIS dataset was chosen as the
main dataset; this choice had a major drawback, which
is the impossibility -in the time of the project- to com-
pare our results with those of other methods, since nei-
ther their approaches nor our dataset are publicly avail-
able. However, this dataset was chosen because it was
better than the publicly available ones in terms of size,
type and quality of the labels. Therefore, in this work,
the performance evaluation of the proposed methods
was done by comparing the relative improvements of
the proposed methods with a widely accepted baseline
such as nnU-Net.

Having said this, and taking into account that the
strict comparison with other reported methods may be
misleading due to several differences (number of cases,
label origin, minimum lesion size, lesion location, etc.),
our results are in the same range as the those reported
by other methods on datasets similar to ours. For ex-
ample, in Kuang et al. (2021) a 3D UNet applied to
AIS segmentation is reported to achieve a mean Dice of
0.308 (sd: 0.283), in Giancardo et al. (2023) their model
achieved a mean Dice of 0.26 and a plain nnU-Net one
of 0.14 and in El-Hariri et al. (2022) a 3D nnU-Net
trained for AIS had a mean Dice of 0.377 or 0.346 (sd:
0.276 and 0.275 respectively) depending on the reader
used as ground truth.

5.2. Limitations
Choosing which metric to report and focus on is not

an easy task in AIS segmentation. Although the perfor-
mance based on 95% Hausdorff distance and absolute
volume difference was reported and commented in the
results section, the focus in this work was placed on the
Dice Score coefficient.

The 95% Hausdorff distance is not considered a clin-
ically relevant metric in the field of AIS segmentation
and was only included for consistency with other im-
age analysis works. Due to the lack of contrast of AIS
in NCCT images, it is hard to achieve accurate contour
matching, making it very difficult to get a clear picture
of the overall model performance using HD95. AVD, on
the other hand, is a very relevant measure from a clin-
ical perspective, nevertheless the values obtained for it
should be put into context. With Dice values not sur-
passing 0.35, it is difficult to tell if a model is better than
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another simply because it achieved a smaller volume
difference. A smaller AVD indicates that the volumes
are similar, but in our problem they are most likely mis-
localised, so this should be interpreted roughly linked to
how specific the models are.

Finally, DSC is not without its complications. The
Dice score is biased by the size of the lesion volume,
i.e. low spatial overlap for a big lesion might gener-
ate a high Dice and vice versa. As a consequence, the
increase in DSC reported in the results for all models
when the lesions smaller than 3mL were removed from
the ground truth, could have two explanations. On the
one hand, it could indicate that all models struggled to
segment very small lesions, but on the other hand, it
could be a consequence of the limitations of the metric
itself. Due to the wide range of lesion volumes, depend-
ing on the case, small lesions may have a large influence
on the metric, which is inconsistent with the lower clin-
ical significance assigned to them.

Although Dice was chosen as the metric to focus
on, all of the above concerns should be taken into ac-
count when interpreting the results obtained. For future
work, a ranking system, such as the one implemented in
(Maier et al. (2017)), could be used to collect and pon-
der the information provided by the different metrics.

Regarding the experimental design, some pitfalls in
the dataset partitioning strategy need to be pointed out.
Firstly, the distribution of cases between the training,
validation and test sets could have been done better. A
minimum number of cases should have been guaranteed
to be left in the test set to allow for more powerful sta-
tistical analysis of the results.

Secondly, as previously commented, in this work a
stratified partitioning was done according to data ori-
gin, lesion location and lesion size. However, it might
have been advantageous not to restrict the location to
the sides of the brain, but to specify the nervous sys-
tem structures affected, as lesions in the cerebellum and
brain stem may be more difficult to segment due to
bone-related imaging artefacts.

Lastly, more robust results could have been obtained
by validating the models using a k-fold cross-validation
procedure. However, in a context of limited compu-
tational resources, it was preferred to run each super-
vised nnU-Net experiment multiple times and enssem-
bling the resulting models to reduce the impact of nnU-
Net random initialisation on segmentation performance.

6. Conclusions

In this work, a DeSD-like self-supervised pre-
training strategy was proposed to exploit large unla-
belled NCCT (stroke positive and negative) datasets in
the task of AIS final infarct segmentation. A robust data
pre-processing pipeline was proposed to homogenise

the different datasets before using them in an SSL-
enhanced version of the well-known self-configuring
nnU-Net model.

From the conducted experiments, pre-training the
nnU-Net’s encoder in a self-supervised manner with all
the available NCCT images (stroke-positive and stroke-
negative) resulted in an AIS segmentation performance
significantly higher than training the same model from
scratch and comparable to that obtained by using ap-
proximately 3.6 times more labelled data.

In acute ischemic stroke, is very difficult to have ac-
cess access to high quality datasets with both baseline
and follow up images to accurately asses the extension
of the final infarct (or ischemic lesion core). In this
work, we presented a successful method to exploit large
amounts of unlabelled baseline NCCT images, which
are much easier to obtain from hospitals and are cur-
rently neglected, proving they can be used to improve
final infarct lesion segmentation.
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Appendix A. ISBI 2023 APIS Challenge solution

As mentioned in Section 3.7.4, our submission to the
ISBI 2023 APIS Challenge won the competition. The
proposed model achieved a Dice score of 0.20 ± 0.25
and a Hausdorff distance of 66.02 ± 24.22 on the hid-
den test set, which were significantly better than those of
the second best solution (0.11 ± 0.30 and 59.64 ± 22.88,
respectively). Since both solutions used a 3D nnU-Net
model, the difference in performance was mainly ex-
plained by the use of the robust preprocessing strat-
egy presented in Section 3.2, which allowed us to use
a larger set of training cases, and by the inclusion of the
difference image as an additional input channel.

To obtain this model, the inter-hemispheric differ-
ence image was first generated by subtracting the NCCT
from its contralateral version, resulting in an image in
which both normal and abnormal inter-hemispheric dif-
ferences appeared highlighted. Then, a training proce-
dure was performed in the same way as that described
in Section 3.7.1 for the baseline FS-STKp.

Appendix B. Addition of interhemispherical differ-
ence image as another input channel

In line with Appendix A, for this experiment the in-
terhemispheric difference image was generated and then
used as an additional input channel in both the SSL pre-
training and the supervised experiments.

The two baselines presented in Section 3.7.1 were
run for the multi-channel input. Additionally, the nnU-
Net encoder was SSL pre-trained with the three dataset
configurations presented in Section 3.7.2. Once the en-
coder was pre-trained, the full supervised nnU-Net was
trained using only the icoAIS dataset. All training pro-
cedures followed exactly the same specifications as de-
scribed in section 3.

Tables A.4 and A.5 show the quantitative results ob-
tained for the segmentation task on the icoAIS valida-
tion set. Contrary to the results presented in Section 4, it
can be seen here that pre-training the nnU-Net encoder
with SSL and fine-tuning the full architecture with su-
pervised training led to worse performance than training
nnU-Net from scratch on the same dataset.

Comparing the results between the supervised models
trained from scratch with and without the inclusion of
the difference image, it can be seen that, in line with the
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Table B.4: Performance measures for multichannel input with difference image + NCCT, on (icoAIS val. set) considering all lesions sizes (n=29).

DSC ↑ HD95 ↓ AVD ↓ Corr ↑ ICC ↑
Experiment Mean Median(Iqr) Mean Median(Iqr) Mean Median(Iqr)

FS-STKi 0.2445 0.130 (0.470) 44.39 41.15 (32.84) 22.00 15.77 (23.23) 0.7 0.69
FS-STKp 0.2380 0.185 (0.420) 38.52 34.05 (19.33) 24.48 14.04 (23.74) 0.69 0.60

ALL-STKi 0.1897 0.122 (0.267) 57.20 55.66 (35.55) 51.22 43.82 (33.68) 0.46 0.26
STKp-STKi 0.1989 0.139 (0.303) 53.51 54.48 (21.97) 47.01 34.42 (33.55) 0.34 0.30
STKn-STKi 0.1953 0.119 (0.332) 55.91 54.08 (26.03) 58.09 48.42 (50.82) 0.42 0.25

Table B.5: Performance measures for multichannel input with difference image + NCCT, on icoAIS val. set considering lesions > 3mL (n=24).

DSC ↑ HD95 ↓ AVD ↓ Corr ↑ ICC ↑
Experiment Mean Median(Iqr) Mean Median(Iqr) Mean Median(Iqr)

FS-STKi 0.2890 0.314 (0.435) 41.78 36.47 (34.01) 25.04 12.47 (25.68) 0.57 0.64
FS-STKp 0.2920 0.293 (0.495) 41.63 36.60 (38.42) 25.21 17.76 (27.50) 0.74 0.58

ALL-STKi 0.2253 0.144 (0.238) 64.73 66.40 (37.36) 53.25 33.67 (35.06) 0.28 0.17
STKp-STKi 0.2361 0.162 (0.285) 59.81 62.44 (27.27) 48.25 33.36 (39.39) 0.23 0.21
STKn-STKi 0.2317 0.149 (0.295) 62.27 62.78 (32.34) 60.70 42.83 (58.37) 0.26 0.16

Figure B.9: T-SNE low dimensional projections of the image representations and NCCT and interhemispherical difference images examples (with
their the respective attribution maps) for representative points.

literature, the inclusion of this additional input channel
was beneficial.

As can be seen in Figure B.9, the attention maps of
the encoders pre-trained with SSL show that the out-
put of the model was strongly influenced by the brain
region in the difference image channel and, unexpect-
edly, by the non-brain region of the NCCT channel.

This finding, in addition to the benefits seen in training
from scratch, suggests that further experiments should
be conducted to explore different ways of exploiting the
potential of the two images during self-supervised pre-
training (i.e. as data augmentation techniques, separate
paths for each image, etc.).
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Abstract

Hemorrhagic stroke refers to bleeding when a blood vessel in the brain ruptures, leading to the formation of a
hematoma as the blood flows into the surrounding brain tissue. Due to its high mortality rates, a quick response is
crucial to prevent irreversible consequences. Hematoma expansion (HE) is a term to describe the rise in the volume
of the hematoma over time. HE is characterized by either a rise in absolute volume of more than 6 ml or a relative
volume increase of over 33% on the follow-up non-contrast computed tomography (NCCT) scan when compared to
the initial scan. Presence of the hematoma growth is related to the worsening of the clinical outcomes. Therefore,
accurately identifying patients at risk is critical, since they could be targeted for clinical treatment. In this dissertation,
we propose two deep learning-based applications solely using NCCT data. First, a novel hematoma growth detection
approach to automatically measure the growth from the longitudinal CT scans of a patient, having two distinct time
points (basal and follow-up). Second, a prediction for the HE occurrence using only information from the basal
image. We have studied various deep learning models such as modified Unet encoders with attention gate (Unet-AG)
and squeeze and excitation blocks (Unet-SE), transfer learning models (Densenet, EfficientNet, Resnet), and vision
transformers (Swin-t and R50-ViT). In our study, we conducted experiments using both 2D and 3D settings, aiming to
assess the advantages and disadvantages of these approaches within the same dataset. Furthermore, we experimented
with different input variations such as whole-image, ROI-based and lesion-based approaches. All analyses have been
performed using a five-fold cross-validation strategy using the dataset obtained from Hospital Dr. Josep Trueta, which
consisted of 206 cases, out of which 41 were confirmed HE cases and the rest were negative cases, i.e. cases without
or with small hematoma expansion. The overall performance results of the detection models were as follows: the
2D detection model utilizing the Unet approach achieved a ROC-AUC score of 0.920 with both ROI-based image
inputs. The 3D detection approach using the Unet model and ROI-based image input achieved a ROC-AUC score of
0.800. Lastly, for the challenging 2D prediction model using only basal images the use of the EfficientNetB0 model
and whole image input achieved a ROC-AUC score of 0.720. The obtained results show promising potential to be
explored in the clinical setting.

Keywords: Hemorrhagic stroke, Hematoma expansion, Lesion growth, Classification, Deep learning

1. Introduction

Nowadays stroke is one of the most common causes
of death, ranking fifth place among all causes of death
after diseases of the heart, cancer, COVID-19, and un-
intentional injuries (Tsao., 2023). Stroke is a medi-
cal condition that occurs when the blood supply to a
part of the brain is disrupted or reduced. This can be
caused by a blockage in a blood vessel or bleeding in the

brain. When the brain is deprived of oxygen and nutri-
ents, brain cells begin to die within minutes, which can
lead to permanent brain damage or even death. Stroke
is classified into two types: ischemic and intracere-
bral hemorrhage (ICH). Ischemic stroke occurs when a
blood clot blocks a blood vessel in the brain, cutting
off the blood supply to that area of the brain. ICH oc-
curs when a blood vessel in the brain ruptures or leaks,
causing bleeding in the brain. Ischemic stroke is the
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most common type of stroke, accounting for about 87%
of all strokes and ICH is less common, for about 10%
of all strokes (Tsao., 2023). Even though it is a less
common condition, it has the highest death rates (Rost
et al., 2008), with approximately 40% one-month mor-
tality rates (Qureshi et al., 2009).

Within the occurrence of ICH, blood can flow into
the surrounding brain tissue if a blood artery in the
brain bursts, creating a hematoma. Hematoma expan-
sion (HE) is the term used to describe a rise in the size
of a hematoma, or collection of blood, inside the brain
following a hemorrhagic stroke. The hematoma may
continue to enlarge as more blood pours from the broken
blood vessel over time. HE is characterized by either a
rise in absolute volume of more than 6 ml or a relative
volume increase of over 33% on the follow-up CT scan
when compared to the initial scan (Wada et al., 2007).
HE affects 20–40% of hemorrhagic stroke patients and
it occurs within 24 hours of ICH (Davis et al., 2006),
(Dowlatshahi et al., 2011). Previous studies showed that
the presence of growth is related to the worsening of
clinical outcomes and an increase in mortality (Steiner
et al., 2006). As a result, accurately identifying patients
at risk for early expansion is critical, since they could be
a target for clinical treatment.

Neuroimaging is the main method in the diagnosis of
ICH. Computed tomography (CT) imaging is fast, in-
expensive, and widely available, these features support
it to be the most common choice for the neuroimag-
ing of stroke patients. CT angiography (CTA) is an
imaging technique that can be used in the neuroimag-
ing of ICH cases. CTA is used to visualize blood ves-
sels in the body, particularly the arteries. It combines
CT scanning with contrast material to produce detailed,
three-dimensional images of blood vessels. However,
for some patients with special conditions, the use of
CTA may be limited due to a variety of factors. There-
fore, non-contrast computed tomography (NCCT) is the
most frequently used modality for detecting ICH, iden-
tifying prognostic indicators, and measuring hematoma
volume, all of which are critical for the prognosis of
the disease (Hillal et al., 2022). Notice that two im-
ages need to be acquired in the last case, the basal and
the follow-up, usually acquired within 8 hours from the
onset for basal and for follow-up 24 hours later after
baseline.

Recently, the prediction of hematoma expansion us-
ing only the basal image has drawn increasing attention
in research. NCCT imaging markers such as hypoden-
sity, black hole sign, blend sign, island sign, and swirl
sign has been proposed to be indicators of hematoma
expansion (Cai et al., 2020). Examples of these imag-
ing signs are given in Figure 1. While these signs can be
helpful in identifying hemorrhages, they are not always
accurate or present in the images. The sensitivity, or the

Figure 1: Imaging signs of hematoma expansion. Image extracted
from Hillal et al. (2022).

ability of these signs to correctly identify a hematoma,
is only about 50% (Tingting et al., 2022). This means
that half of the time, these signs may not be present even
if there is a hemorrhage, making it difficult to accurately
identify the expansion of the hematoma.

In clinical settings, NCCT imaging markers are ana-
lyzed for the prediction of hematoma expansion by ex-
perienced radiologists. Interpreting these CT signals de-
pends primarily on skilled radiologists, making it costly
and labor-intensive. As a result, automated hematoma
expansion prediction is critical. However, predicting
hematoma expansion remains difficult due to the com-
plex relationship between hematoma expansion and its
various factors, along with the considerable variability
between individual hematoma conditions. Nonetheless,
artificial intelligence (AI) can offer a solution by analyz-
ing vast amounts of medical data and identifying pat-
terns that may be difficult for clinicians to detect. By
leveraging the power of AI, medical professionals can
more quickly and accurately diagnose hematoma ex-
pansion, allowing for earlier treatment and better patient
outcomes.

1.1. Contributions

In this study, we have explored two approaches. First,
a novel growth detection approach to automatically
measure the growth from the longitudinal CT scans of
a patient, having two distinct time points (basal and the
follow-up). This application targets detecting the HE
without the need for segmentation masks, leading to a
rapid response. Second, a prediction approach for the
HE using only basal image information. We studied
different deep learning models in different image ap-
proaches (whole image, ROI-based and lesion-based) in
2D and 3D settings.

The following points provide a concise summary of
the key contributions made during the development of
our detection and prediction models:
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1. We have studied various deep learning models
such as modified Unet encoders with attention gate
and squeeze-and-excitation blocks, transfer learn-
ing models (Densenet, EfficientNet, Resnet), and
vision transformers (Swin, R50-ViT).

2. We explored the challenging problem of prediction
of HE using only basal image as an input.

3. We have performed our experiments in 2D and
3D settings, allowing us to compare the advan-
tages and disadvantages of small and imbalanced
datasets.

4. We have experimented with different input varia-
tions of the data such as whole-image, ROI-based
and lesion-based approaches. The implementa-
tions were made using an in-house dataset from the
Trueta Hospital located in Girona, Spain.

5. We investigated the impact of excluding patients
with intraventricular hemorrhage (IVH) in deep
learning models.

6. In contrast to much of the existing literature, our
algorithm solely utilizes non-contrast computed to-
mography (NCCT) image data. This has the po-
tential to advance research toward image-only data
utilization, which is often the primary data source
in emergency situations.

2. State of the art

A multitude of investigations has been carried out
on the application of machine learning and deep learn-
ing algorithms for the analysis of medical data to pre-
dict HE. Given the rarity of hemorrhagic stroke, gath-
ering large amounts of data is difficult. To the best of
our knowledge, there are no available public datasets
specifically designed for hematoma expansion predic-
tion. Consequently, existing research in the literature
has relied on limited private datasets from local hospi-
tals. This situation unfortunately introduces a bias to-
wards a small patient population, making it challenging
to directly compare results between different studies. In
other words, while the methodology used may be con-
sistent, the success of the models heavily relies on the
characteristics of the dataset employed.

Our literature review shows that prior studies on
hematoma expansion have primarily used machine
learning classifiers that use imaging markers, radiomics
features, and clinical data information. With recent ad-
vances in deep learning techniques, there has been an in-
crease in interest in using deep neural networks (DNNs)
to classify cases of hematoma expansion, resulting in a
growth in the number of proposed algorithms.

2.1. Machine learning based analyses in HE prediction

In light of the success of conventional machine learn-
ing algorithms on small datasets, it is observed that

machine learning has been widely utilized, with recent
research continuing to demonstrate its applications in
the prediction of hematoma expansion. For instance,
Liu et al. (2019) implemented a support vector ma-
chine classification application by combining different
variables, including the patient’s demographic parame-
ters, clinical status, laboratory test parameters, and im-
age signs. The work of Duan et al. (2021) compared
radiomic models based on different machine learning
models for the hematoma expansion prediction such as
support vector machine (SVM), decision tree (DT), con-
ditional inference trees (CIT), random forest (RF), k-
nearest neighbors (KNN), back-propagation neural net-
work (BPNet) and Bayes. They used texture param-
eters from the baseline NCCT images as inputs. In
their study, they excluded intraventricular hemorrhage
cases. In their recent work, Chen et al. (2022) con-
ducted a comparative analysis of three models aimed
at predicting hematoma expansion. The models incor-
porated radiomics features extracted from the NCCT
image, radiological features manually defined by two
experienced radiologists, and a combined model lever-
aging both types of inputs. The authors evaluated the
performance of the Catboost model in comparison with
other traditional machine learning models, as utilized in
previous studies. As another recent traditional machine
learning application, Li et al. (2023) extracted radiomics
features that were categorized into three groups based
on geometry, intensity, and texture. The authors con-
ducted Lasso feature screening and prediction analysis
using eight distinct machine learning models.

2.2. Deep learning based analyses in HE prediction

There has been a surge of interest in the use of deep
learning for predicting hematoma expansion. It is worth
noting that, in the literature, deep learning techniques
have primarily been employed on modestly sized ar-
chitectures with fewer parameters, due to the size of
the available datasets. In addition, we have observed
a trend towards incorporating other forms of informa-
tion, such as clinical data or image features that are de-
rived through traditional image processing techniques,
in conjunction with medical imaging data.

Several studies in the literature have integrated medi-
cal imaging data with clinical parameters. For instance,
Wang et al. (2021) presented an automated prediction
pipeline utilizing NCCT images and clinical parame-
ters. Their architecture features a channel-attention-
based encoder to extract image features and a decoder
branch to upsample the clinical parameter features, fol-
lowed by a fusion of the two sets of information. As an-
other example of usage of clinical parameters, Wan et al.
(2022) proposed BSGNet, which uses multimodal data
to predict hematoma expansion and has a lower com-
putational complexity. In their approach, the authors
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achieved joint training with imaging data and clinical
parameters.

In the literature, it was also possible to observe exam-
ples of the combination of machine learning and deep
learning methods. For instance, Tingting et al. (2022)
proposed a dual model machine learning method. The
first step is to create a deep neural network predic-
tor using Resnet-34, VGGNet, and GoogLeNet, using
cropped lesion ROIs as input. In the second step, they
combined the predictions with the clinical data of the
patients and then had an MLP layer for the final classi-
fication.

There are also examples of using only image-based
data in the existing literature. For instance, Zhong et al.
(2021) presented a 3D Unet-like convolutional neural
network (CNN) model for predicting hematoma expan-
sion in their recent study. The authors compared the ef-
ficacy of conventional NCCT markers, a BAT predictive
model which is a multi-itemed score for HE prediction
(B for blend sign, A for hypodensity presence, and T
for the time from onset to NCCT), and a deep learning
model, concluding that the deep learning model outper-
formed the others.

Ma et al. (2022) proposed an end-to-end deep learn-
ing algorithm for the segmentation of hematoma le-
sions and prediction of hematoma expansion in 2D.
They calculated evaluation metrics patient-wise, by tak-
ing the mean value of the given slice probabilities be-
longing to the same patient. The authors reported that
the 2D Unet model with attention for the segmenta-
tion task and the 2D Resnet-34 model for the classifica-
tion task yielded the best results.In another study, Tang
et al. (2022) presented a model comprising the k-nearest
neighbors matting method for skull stripping and a mod-
ified 2D Resnet-34 model for classification. They cal-
culated evaluation metrics image-wise. The prediction
model proposed by Teng et al. (2021) involved a com-
bination of radiomic features extracted from the images
and CNN features obtained using an Unet-like model
in 2D. The combined features were fed into a Gradient
Boosting classifier, which assigned the predictions.

Within the literature, there have been successful ap-
plications for predicting hematoma expansion utilizing
solely NCCT images in both 2D (Ma et al. (2022), Teng
et al. (2021), Tang et al. (2022)) and 3D (Zhong et al.
(2021)) scenarios. However, there exists a dearth of
research that comprehensively analyzes and compares
these 2D and 3D approaches on the same dataset. Ad-
ditionally, we observe a mixture of image-wise and
patient-wise metric calculations in 2D applications,
with no examples of comparison between these two dis-
parate metrics in the current literature.

Conversely, while there are instances in the literature
that employ cropped lesion regions of interest (ROIs)

(Tingting et al. (2022)) and entire volume/image data,
there is a lack of analysis and understanding of how
different scales of NCCT image information impact the
performance of deep learning-based models in predict-
ing hematoma expansion.

2.3. Lesion detection

Longitudinal lesion detection is an analysis of detect-
ing the worsening of the lesion at given two-time points.
In the literature, recent examples of these applications
can be seen in the multiple sclerosis (MS) disease using
deep learning architectures. Salem et al. (2020) pro-
posed a CNN-based architecture to detect new T2-w le-
sions to predict prognosis worsening. They proposed an
architecture with two input channels (basal and follow-
up images), where the first part of the Unet architec-
ture learns the deformation fields (DFs) and image fea-
tures, and in the second part of the architecture, another
Unet performed the final detection and the segmenta-
tion of the new T2-w lesions. As another example,
Gessert et al. (2020) proposed an attention-guided two-
path CNN approach to detect the lesion activity in terms
of new and enlarging lesions between two-time points,
given basal and follow-up images as inputs.

In the hematoma expansion problem, similarly, we
have basal and follow-up information. These two im-
ages can be used to detect the clinical worsening of the
patient or the segmentation of the lesion growth in given
two time points. To the best of our knowledge, there is
no lesion growth detection algorithm established in the
hematoma expansion literature.

3. Material and methods

3.1. Dataset

The dataset used in the project was obtained at Dr.
Josep Trueta’s hospital in Girona, Spain. It consists of
206 cases, each with non-contrast head CT scans. The
image examinations were performed on a 128-slice CT
scanner (Philips Healthcare) and NCCT volumes had a
slice thickness was 3 mm and a gap of 1.5 mm.

From now on, we will refer to the term “basal” for
the initial scans, while “follow-up volumes” will denote
subsequent scans performed after 24 hours.

Our dataset includes 206 basal and follow-up cases,
with 41 showing hematoma expansion and retaining
165 not showing hematoma expansion and with a mean
growth of 3.03 ml and a standard deviation of 10.15 ml.
In our study, hematoma expansion cases were referred
to as positive cases. This subset of cases with hematoma
expansion accounts for roughly 20% of the total dataset.
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(a) IVH case with ground
truth.

(b) IPH case with ground
truth.

Figure 2: Example of IVH and IPH cases from the dataset.

3.1.1. Segmentation
According to the literature, several studies (Ma et al.

(2022), Tingting et al. (2022), Teng et al. (2021))
have utilized segmentation masks within the prediction
pipeline to establish the region of interest (ROI). In our
study, we similarly incorporated segmentation masks
for the images.

The segmentation masks for our dataset were ob-
tained using 3D-based Unet architecture with squeeze-
and-excitation blocks following the work of Abramova
et al. (2021). Obtained segmentation masks were ap-
proved and refined when needed by an expert neurol-
ogist from Dr. Josep Trueta Hospital. In our study,
hematoma volumes were calculated based on approved
segmentation from the neurologist.

3.1.2. IVH and IPH
IVH, also known as intraventricular bleeding, is a

type of hemorrhage that takes place within the brain
ventricles where cerebrospinal fluid is produced, and
it is an extension of hemorrhage within the brain
parenchyma. The adjacent hemorrhagic stroke lesion
near the ventricles is one possible origin of it. On the
other hand, intraparenchymal hemorrhage (IPH) is the
name of bleeding that only appears in the brain tissue.
Since in the ground truth segmentation masks intraven-
tricular hemorrhage was not delineated as a stroke class,
it was not segmented. Figure 2 shows an example of ac-
cepted ground truths after neurologist examination.

In the Trueta dataset, we have 33 IVH cases (%16
of the dataset), where 5 cases are labeled as posi-
tive hematoma expansion. Since the hematoma expan-
sion classification problem requires data to be well dis-
tinguished between positive and negative classes, we
wanted to investigate the effect of the existence of IVH
cases for this problem.

3.1.3. Data preparation
The initial pre-processing of NCCT images requires

coil removal and skull stripping (see Figure 3) because
regions outside of the brain may mislead the algorithm
and result in undesirable outcomes. For the coil re-
moval, the image was binarized, and the biggest con-

(a) Baseline NCCT image (b) Coil removal

(c) Baseline image prepro-
cessed and registered.

(d) Follow-up image prepro-
cessed

Figure 3: Preprocessing pipeline (a) Basal image NCCT (b) Basal im-
age after coil removal (c) Basal image after pre-processing (d) Follow-
up image after pre-processing.

nected component, in this case, the head, was kept. The
skull stripping algorithm is performed by removing the
borders using morphological operations and the final
brain extraction is made based on the biggest connected
components. The intensity ranges of the images were
scaled from 0 to 90.

To enable analyses based on basal and follow-up im-
ages, a multi-level affine registration was performed.
This involved an initial rigid registration, with the basal
image selected as the moving image and the follow-
up image as the fixed image. Figure 3 shows the pre-
processing approach, which contains coil removal, in-
tensity scaling, skull stripping, and registration.

3.1.4. Dataset balancing
In the field of deep learning, one common challenge

that researchers and practitioners often face is imbal-
anced datasets, where the number of instances in one
class significantly outweighs the other. This scenario
can make training models difficult because the model
is biased towards the majority class, resulting in poor
performance of the minority class. To address this is-
sue, various techniques such as undersampling, over-
sampling, and class weighting have been used, but they
do not always produce satisfactory results.

To overcome the problem of class imbalance in our
dataset, we decided to create a balanced dataset that not
only equalized the class distribution but also took into
account the different volumes of basal lesions within
the positive class. In our dataset, the positive class ac-
counted for only 20% of all instances, while the nega-
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tive class accounted for the remaining 80%. This signif-
icant class imbalance made it difficult to train a model
capable of capturing patterns and making accurate pre-
dictions for the positive class.

To address this issue, we focused on the basal volume
of lesions, considering it a crucial factor in the classifi-
cation task. We divided the positive class into differ-
ent ranges based on the basal lesion volume. Within
this specific volume range, we ensured that we had an
equal number of cases from the negative class. This ap-
proach allowed us to create a balanced dataset not only
in terms of class distribution but also in terms of lesion
volume distribution. This approach aimed to enhance
the model’s ability to generalize and make accurate pre-
dictions for both the positive and negative classes, re-
gardless of the basal lesion volume. During this stage,
we took extra care to maintain the reliability of our anal-
ysis. We removed lesions from consideration if their
initial basal volume was below 5 ml or above 60 ml.
It’s worth noting that these particular lesions were only
found in the negative class. This step was crucial to
prevent any biases that could have affected our results.
Finally, we obtained a balanced dataset containing 70
patients, given in Table 1. The balanced dataset is used
for the 2D and 3D detection and prediction models.

Table 1: Data distribution in the balanced dataset.

Range of basal
volume, ml

Number
of cases

5-10 28
10-20 16
20-30 8
30-40 6
40-60 12

3.2. Methodology

In this work, we worked on two different tasks. The
first one is the detection of the hematoma growth, mean-
ing that given basal and follow-up image information,
performing classification that detects the cases with
hematoma expansion. The second one is the prediction
of the future hematoma growth occurrence through the
analysis of solely basal image data. The general pipeline
of these two tasks is given in Figure 4, where DNN cor-
responds to different DNN architectures implemented.

The detection model was designed to provide a quick
and reliable deep learning-based approach for clinical
settings. This model is aimed to define the critical de-
terioration of the patient in the following hours to the
onset time. The condition for clinical worsening is
the same as hematoma expansion, meaning that having
more than 6 ml increase in the absolute volume or 33%
relative volume increase. Clinical worsening can be de-
tected by first having the segmentation masks and then
calculating the difference between basal and follow-up

Figure 4: The proposed detection and prediction pipelines.

image masks. However, segmentation of the lesions is
usually a semi-automatic and time-consuming approach
considering the clinical settings. Recognizing the ur-
gency and high mortality associated with this disease,
we aimed to provide a deep learning approach capa-
ble of detecting differences between basal and follow-
up image information without relying on segmentation
masks. In this model, baseline and follow-up images
were given as two-channel inputs to the DNN model.

The prediction model was designed to provide a deep
learning based approach to predict the HE occurrence in
the follow-up scan for a patient, using only basal image
information. This model utilizes basal image features to
forecast the clinical worsening of the patient at the next
time point. The ground truth mask is used to provide
attention to the lesion features itself, rather than other
structures within the frame. In this model, baseline and
baseline masks were given as two channel inputs to the
DNN model.

In light of the existing literature that highlights the
successful use of non-contrast computed tomography
(NCCT) images for predicting hematoma expansion,
both in two-dimensional (2D) and three-dimensional
(3D) formats, our objective was to perform a compre-
hensive analysis using multidimensional imaging and
compare these methods within a single dataset.
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CT scans inherently capture data in the form of 3D
volumes. However, for the purpose of training models,
it is possible to adopt a 2D approach with these images.
In this approach, the 3D volume is essentially consid-
ered a collection of 2D slices. This strategy provides
computational efficiency by treating each slice as an in-
dependent image, making it appropriate for situations
with limited data. Nevertheless, a drawback of the 2D
approach is that it often disregards the 3D spatial infor-
mation and inter-slice relationships present within the
volume. As a consequence, important contextual details
that could contribute to accurate analysis and interpre-
tation may be overlooked or lost. On the other hand, 3D
approaches keep the spatial information with the cost of
expensive model training and less amount of data.

To initiate our investigation, we began by focusing
on the 2D detection task, as it served as an initial base-
line approach for addressing the prediction problem.
As part of this task, we included each slice of the pa-
tient’s NCCT scan in our dataset, specifically focusing
on slices where the lesion was present and the lesion
mask contained more than 100 pixels.

In a 2D slice-based approach, it’s crucial to address
the challenge of patient data distribution across sets. En-
suring the exclusive presence of a patient’s data in a sin-
gle set is vital to avoid data leakage, which can lead to
unreliable and biased results. To avoid accidental in-
formation leakage, we carefully assigned slices to sets
based on unique patient IDs. This method preserved
data integrity during the training, validation, and test-
ing stages. During the evaluation, we used two distinct
metrics: image-wise and patient-wise. The image-wise
evaluation assessed probabilities or predictions for in-
dividual slices independently, without considering rela-
tionships between slices from the same patient. In the
patient-wise approach, we calculated the mean predic-
tion value for a patient using all their slices.

The use of 2D detection analysis proved invaluable in
understanding the most appropriate and effective mod-
els and implementations compatible with our dataset. In
this stage, we experimented with three different groups
of methods.

1. Modified Unet encoder architecture: Unet, Unet-
SE and Unet-AG.

2. Transfer learning algorithms: Densenet121,
EfficientNet-B0, Resnet18 and Resnet34.

3. Vision transformers: Swin-t and R50-Vit.

We experimented with 9 models belonging to given
3 groups in 2D detection and prediction problem. In
3D problem, because of the availability of given models
in 3D, we implemented EfficientNet-B0, Densenet121,
Resnet18, Unet, Unet-SE and Unet-AG.

Furthermore, we conducted a study to examine the
impact of different scales of the same data on the output,

(a) (b) (c)

(d) (e) (f)

Figure 5: Different input types used in the study, (a)(b)(c) Basal image
for the whole image, ROI and lesion based, (d)(e)(f) Follow-up image
for the whole image, ROI and lesion based.

considering both ROI-based and whole image/volume-
based approaches discussed in the literature. We investi-
gated the following tests with varying scales of the data
are given in Figure 5:

1. Whole image/volume-based: As the name sug-
gests, this approach encompassed the entire raw
slice or volume of the data. It considered the com-
plete context provided by the original image or vol-
ume.

2. ROI-based: In this approach, a region of interest
(ROI) was defined by considering the lesion infor-
mation and the surrounding pixels within a bound-
ing box. The analysis took into account the local-
ized area surrounding the lesion.

3. Lesion-based: This approach involved isolating a
specific lesion from the background information by
applying a mask. The analysis focused solely on
the lesion itself.

By examining these different scales, we aimed to gain
insights into how the choice of scale impacts the out-
put and performance of the methods under investiga-
tion. Following the 2D detection approach, we pro-
ceeded to evaluate the performance of the successful
models within the 2D prediction model. Later, we re-
peated model tests for 3D detection and prediction prob-
lems.

3.3. Deep learning architectures

3.3.1. Unet encoder variations
Unet encoder. The Unet architecture was first proposed
by Ronneberger et al. (2015) for the cell segmentation
task. It was specifically designed for biomedical im-
age segmentation tasks, but its effectiveness has been

25.7



Hemorrhagic stroke hematoma expansion detection and prediction 8

Figure 6: Schematic of the additive attention gate by Schlemper et al.
(2019)

demonstrated in various other domains as well. It con-
sists of a contracting path (encoder) and an expanding
path (decoder), which form a U-shaped network. The
encoder part of the Unet contains a series of convolu-
tional layers with rectified linear unit (ReLU) activa-
tions, followed by max-pooling layers. These layers
gradually reduce the input’s spatial dimensions while
increasing the number of feature channels, allowing the
network to capture high-level abstract features. This
ability to capture features makes the Unet encoder a
powerful feature extractor that can be used in various
tasks.

The Unet encoder architecture was implemented to a
3D HE prediction problem in the literature by (Zhong
et al., 2021). This architecture includes a series of con-
volutional blocks followed by Instance normalization
and Leaky Relu activation function, two max pooling
operations and two global residual connections. In our
study, we refer to this Unet-like encoder with residual
connections as our base Unet encoder model. We im-
plemented this model in 2D and 3D settings.

Unet-AG. An attention gate is a mechanism used in
deep learning models, particularly in the context of im-
age segmentation, to selectively focus on relevant re-
gions or features while suppressing irrelevant or noisy
information. It helps the model to attend to specific ar-
eas of an input image, enabling more accurate and re-
fined segmentation results. Schlemper et al. (2019) pro-
posed an additive attention gate approach (see Figure 6)
that can be integrated into a standard CNN model, re-
sulting in higher sensitivity and prediction accuracy. In
their work, they proposed Attention-Unet for segmenta-
tion and AG-Sononet for the classification tasks.

The objective of employing the ”attention” strategy
is to learn to focus on target structures while disre-
garding irrelevant areas within an image. In the con-
text of our detection problem, our intention was for the
model to direct its attention toward focusing on the dif-
ferences between the given 2 input images. Conversely,
in our prediction problem, our aim was for the model
to prioritize features that are relevant to the expansion
occurrence. In our study, we introduced an attention-
gated classification model from the base Unet encoder
model with global residual connections given in Figure
7. The architecture takes given input images and imple-
ments a series of convolutional blocks. Each of these

Figure 7: Schematic of proposed Unet encoder with Attention gate.
Example of a detection model with input of 2 channels basal and
follow-up ROI.

blocks contains a convolutional layer followed by in-
stance batch normalization and Leaky Relu activation
function. For the following two convolutional blocks, a
global residual connection is added. An attention gate
mechanism is added between the output of the 9th con-
volution and the last convolution output.

Unet-SE. The squeeze-and-excitation blocks were first
introduced by (Hu et al., 2017). SE blocks can be used
as building blocks for the current CNNs at an additional
slight cost of computation. Their main goal is to en-
hance the representational power of a neural network.
The SE block aims to explicitly model the interdepen-
dencies between channels in a feature map. It captures
the importance of each channel and adaptively recali-
brates them to improve the overall feature representa-
tion. The SE block consists of two main steps: squeeze
and excitation.

1. Squeeze: In this step, the spatial dimensions of the
feature map are reduced to capture global infor-
mation about the channel interdependencies. It in-
volves applying an average pooling operation over
the spatial dimensions. This operation aggregates
the feature maps from each channel, creating a
channel descriptor.

2. Excitation: In this step, the channel descriptor ob-
tained from the squeeze step is used to model the
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Figure 8: Schematic of proposed Unet-SE encoder with squeeze and
excitation module. Example of a detection model with input of 2
channels basal and follow-up whole image.

interdependencies between channels and generate
channel-wise importance scores. The channel de-
scriptor is passed through a fully connected layer,
reducing the dimensionality of the descriptor. It
is followed by a ReLU activation function and an-
other fully connected layer where the dimension-
ality of the descriptor is increased to the original
dimension. Then a Sigmoid activation function is
applied. Finally, the output of the excitation step
is a set of channel-wise scaling factors that capture
the importance of each channel.

The SE block is then applied to the original feature
map by multiplying the original feature map with the
channel-wise scaling factors. This recalibration opera-
tion dynamically adjusts the contribution of each chan-
nel, allowing the network to focus on more informative
channels and suppress less useful ones. The schematic
of the proposed Unet-SE architecture is given in Figure
8).

3.3.2. Vision transformers
The effectiveness of Transformers and attention

mechanisms has been demonstrated in the field of nat-
ural language processing (NLP). Drawing inspiration
from their achievements, several studies have attempted
to apply transformer architectures in the domain of com-
puter vision. Dosovitskiy et al. (2020) were the first

ones to apply pure transformer architecture in computer
vision. In our study, we implemented two vision trans-
former architectures: Swin (Liu et al., 2021), and R50-
ViT (Chen et al., 2021).

In vision transformer architecture, an image is di-
vided into non-overlapping patches each having a size
of 16x16. Each patch represents a specific area of the
image. To obtain a sequence of patch embeddings,
these patches are flattened and linearly projected. Po-
sitional encodings are added to the patch embeddings
to incorporate positional information into the model.
The spatial location of each patch in the image is en-
coded by these encodings. The patch embeddings with
positional encodings are then fed into a Transformer
encoder which contains multiple layers, each contain-
ing a multi-head self-attention mechanism and a feed-
forward neural network. The final patch embedding is
used as the image’s global representation. This repre-
sentation is then fed into a classification head, which
uses the image to make predictions, such as object
recognition or image classification.

Although vision transformers typically demonstrate
superior performance on large datasets and architec-
tures, it is still feasible to discover smaller vision trans-
former architectures with a lower number of parameters,
which can be pre-trained on ImageNet weights, on Hug-
ging Face Transformers model hub (Wolf et al., 2020)
and Pytorch torchvision package.

Swin transformer. Swin transformer is a Vision Trans-
former variant that addresses the original architecture’s
limitation in handling large images. It implements a hi-
erarchical structure that divides the image into stages,
allowing the model to effectively capture both local and
global information. Rather than directly applying the
self-attention mechanism on the patch embeddings, the
Swin Transformer introduces a hierarchical structure of
stages. Each stage processes a lower-resolution version
of the image at a different scale. The shifted window
mechanism is used within each stage of the Swin Trans-
former. Shifted windows are used to capture local de-
pendencies instead of regular non-overlapping patches.
This allows the model to handle large images without
losing fine-grained details.

R50-ViT. TransUnet is a hybrid model including
Resnet50 and ViT in the encoder and Unet in the de-
coder part Chen et al. (2021). This model is proposed
for the multi-organ segmentation task and showed a suc-
cessful performance. R50-ViT is the hybrid encoder
part of this network combining the successful Resnet50
model with ViT.
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3.3.3. Transfer learning models
Transfer learning has emerged as the state-of-the-

art technique in the literature in the context of the
hematoma expansion problem due to its efficiency and
demonstrated success. In our study, we employed
three architecture models: Densenet121 introduced by
(Huang et al., 2018), EfficientNet B0 proposed by (Tan
and Le, 2019), and Resnet architecture by (He et al.,
2016).

3.4. Training and validation strategy

In our training, we utilized 5-fold cross-validation to
ensure an unbiased and comprehensive evaluation of
performance. During the network training, 75% and
15% of the data were assigned as training and test set,
sequentially. A validation set is created from the train-
ing set. In the end, we derived a total of 54 patients for
training, 6 for validation, and 10 for testing sets. For the
2D task, the training, validation, and test sets contained
1288, 160, and 227 slices, respectively. It’s important
to note that we maintained the same data distribution
across these sets to ensure fairness and consistency in
our evaluations.

3.5. Metrics

To evaluate the classification model’s success we
used Accuracy, F1 Score, Sensitivity, Specificity, and
ROC AUC score. Accuracy measures the overall cor-
rectness of a classifier by calculating the ratio of correct
predictions to the total number of predictions. It pro-
vides a general indication of how well the classifier per-
forms across all classes, however, it is not suitable for
imbalanced datasets. The accuracy formula is given by:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision measures the proportion of correctly pre-
dicted positive instances (true positives) out of all in-
stances predicted as positive (true positives and false
positives). The precision formula is given by:

Precision =
TP

TP + FP
(2)

Recall, also known as sensitivity or true positive rate,
measures the proportion of correctly predicted positive
instances (true positives) out of all actual positive in-
stances (true positives and false negatives). The recall
formula is given by:

Recall (Sensitivity) =
TP

TP + FN
(3)

Precision and recall metrics are not directly used in
our evaluation metrics but they were used to calculate
the F1 Score, which is a harmonic mean of precision

and recall, offering a balanced assessment of both met-
rics. The harmonic mean used in the F1 score calcula-
tion places more weight on low values, meaning that the
F1 score will be lower if either precision or recall is low.
This makes the F1 score a suitable metric when there is
an imbalance between the positive and negative classes
in the dataset. The F1 score formula is given by:

F1 score = 2 × precision × recall
precision + recall

(4)

Specificity, also known as true negative rate, mea-
sures the proportion of correctly predicted negative in-
stances (true negatives) out of all actual negative in-
stances (true negatives and false positives).

Specificity =
TN

TN + FP
(5)

The Receiver Operating Characteristic (ROC) curve
is a graphical representation of a binary classification
model’s performance. At various classification thresh-
olds, it shows the trade-off between the true positive
rate (TPR) and the false positive rate (FPR). The Area
Under the ROC Curve (AUC) is a metric that quanti-
fies the model’s overall performance across all classi-
fication thresholds. During the parameter tuning and
model evaluation decisions for the validation set, the
ROC AUC scores were used in the decision process.

3.6. Data augmentation

In the context of 2D detection and prediction, we
incorporated random horizontal flipping and applied
affine transformation. For 3D detection and prediction,
we utilized a random affine transformation in three-
dimensional space. The affine transformation parame-
ters were as follows: a rotation angle of 10 degrees, hor-
izontal and vertical translations of 10 each, and a scaling
factor of 1.2. Furthermore, the inputs were normalized
between 0 to 1 using min-max normalization.

3.7. Implementation details

The project was implemented using the open-source
deep learning framework PyTorch. The deep learning
algorithms were implemented from PyTorch’s torchvi-
sion library, Hugging Face’s Transformers model hub
(Wolf et al., 2020), and models from MONAI (Cardoso
et al., 2022). The experiments were implemented using
Pytorch 2.0.1 and CUDA 11.7 on a Linux environment.
The 2D training was performed on an Nvidia Titan V
GPU with 12 GB of memory. The 3D experiments were
implemented on an Nvidia A30 Tensor core GPU with
24 GB of memory.
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4. Results

This section contains the results of the different ex-
periments mentioned in the Subsection 3.2 Methodol-
ogy. The results section will be split into two sub-
sections to cover detection and prediction experiments.
Furthermore, each subsection will be divided into two
to cover 2D and 3D experiments. The results were cal-
culated based on average test scores of 5-fold cross-
validation. For the comparison, they were ordered based
on their ROC-AUC scores.

4.1. Detection experiments
In the detection section, our aim is to introduce a

quick deep learning-based approach to detect the patient
worsening. Therefore, in this section, we experimented
with whole image/volume and ROI-based analyses.

4.1.1. 2D detection results
For the 2D experiments, we used a batch size of 4,

a learning rate of 10−5 with Adam optimizer. We train
the models for 25 epochs with focal loss where StepLR
scheduler is applied with the step size of 15 and gamma
of 0.1.

In our 2D experiments, we utilized a thresholding ap-
proach to select the appropriate slices. This method in-
volved selecting slices based on the size of the lesion
within a given basal mask for each specific slice. If the
basal mask contained more than 100 pixels, indicating
that the lesion was sufficiently large for inclusion in our
training, the slice was chosen. This procedure was ap-
plied to all dataset.

The selection of the threshold number involves a
trade-off. A higher threshold resulted in larger and
clearer lesions for the model. However, this also led
to the elimination of more slices from the dataset, re-
ducing the overall data size. We conducted experiments
using various thresholds, including 50, 100, 200, 400,
and 700. After evaluating performance, we obtained the
optimized performance with the threshold of 100.

During the training phase, we conducted experiments
using two different approaches: utilizing pre-trained
weights from ImageNet and training from scratch. Af-
ter evaluating the results, we found that training from
scratch yielded superior outcomes compared to us-
ing pre-trained weights from ImageNet. We trained
Densenet121 (7M), EfficientNetB0 (5M), Resnet34
(21M), Unet (7M), Unet-AG (8M) and Unet-SE (7M)
models from scratch.

For the transformer training, we employed the Swin
tiny (28M) and R50-ViT (99M) pre-trained architec-
tures. In R50-ViT, we froze the ResNet50 backbone and
fine-tuned the ViT component, which consisted of 7M
parameters. In the Swin tiny architecture, we froze the
backbone and fine-tuned the last PatchMerging and the

following two SwinTransformerBlock. This architec-
ture consisted of 15M parameters.

In the ROI-based experiments, we utilized the ROI of
the basal and follow-up images belonging to the same
slice number as the model inputs. We extracted the ROIs
using the ground truth masks and subsequently normal-
ized each of them using min-max normalization. This
normalization process ensured that the intensity values
of each ROI image were normalized within the range
of 0 to 1. We performed zero padding to ensure that
all ROIs has the same shape, 512x512. However, for
the implementation of the R50-ViT model, images are
resized to be 384x384, as stated in its documentation.

It is important to point out that, the ROIs that are
used to train the network are obtained using ground
truth masks. However, our main idea is to introduce
a trained tool that can be used in clinical settings given
the cropped ROIs. These ROIs can be obtained by visu-
alization software such as 3D Slicer.

In the whole image experiments, similar to ROI ex-
periments, basal, and follow-up slices were given as
two-channel inputs into models, image settings are vi-
sualized in Figure 5. We performed min-max normal-
ization and the shape of the slices was 512x512.

The 2D detection results calculated using whole im-
ages were given in Table 2a. In this case, Swin t archi-
tecture showed the best performance achieving a 0.91
ROC-AUC score. The 2D detection results calculated
using ROI images were given in Table 2b. It showed
that the Unet model performed the best achieving a 0.92
ROC-AUC score.

This experiment concludes that it is possible to
achieve almost the same high performance using ROI
and whole images with different architectures in the
case of a 2D detection problem. However, when also
considering the architectures that rank second and third,
ROI-based image results have a better general perfor-
mance.

4.1.2. 3D detection results
For 3D experiments, we used a batch size of 2, a

learning rate of 10−5 with Adam optimizer. We train
the models for 25 epochs with binary cross entropy
loss where the StepLR scheduler is applied with the
step size of 15 and gamma of 0.1. During the train-
ing phase, we trained 7 models in 3D. These models
were Densenet121, EfficienNetB0, Resnet18, Resnet34,
Unet, Unet-AG and Unet-SE.

In the ROI-based and lesion-based experiments, after
obtaining the cropped volumes, we performed min-max
normalization and zero padding to size of 64x320x320,
based on the greatest volume size of the lesion and ROI
in the dataset. During the data preparation of the 3D
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Table 2: Detection results.

(a) Top three test set average 2D detection results from 5-fold cross-validation, using the whole image, calculated patient-wise.

Model Accuracy F1-Score Sensitivity Specificity ROC-AUC
Swin t 0.91 (0.07) 0.90 (0.09) 0.87 (0.15) 0.96 (0.07) 0.91 (0.07)

EfficientNet 0.86 (0.10) 0.82 (0.14) 0.75 (0.23) 0.96 (0.07) 0.86 (0.10)
R50-ViT 0.85 (0.10) 0.82 (0.14) 0.76 (0.23) 0.96 (0.07) 0.86 (0.10)

(b) Top three test set average 2D detection from 5-fold cross-validation results using ROIs, calculated patient-wise.

Model Accuracy F1-Score Sensitivity Specificity ROC-AUC
Unet 0.91 (0.07) 0.90 (0.09) 0.87 (0.15) 0.96 (0.07) 0.92 (0.03)

Unet-SE 0.91 (0.07) 0.90 (0.09) 0.83 (0.14) 1.00 (0.00) 0.91 (0.07)
Unet-AG 0.90 (0.08) 0.87 (0.11) 0.80 (0.17) 1.00 (0.00) 0.90 (0.08)

(c) Top three test set average 3D detection results from 5-fold cross-validation using the whole volume.

Model Accuracy F1-Score Sensitivity Specificity ROC-AUC
Unet-SE 0.73 (0.20) 0.70 (0.24) 0.68 (0.27) 0.80 (0.30) 0.74 (0.20)
Unet-AG 0.71 (0.15) 0.65 (0.23) 0.60 (0.29) 0.83 (0.24) 0.72 (0.16)

Unet 0.71 (0.19) 0.68 (0.22) 0.68 (0.27) 0.75 (0.29) 0.72 (0.19)

(d) Top three test set average 3D detection results from 5-fold cross-validation using ROIs volume.

Model Accuracy F1-Score Sensitivity Specificity ROC-AUC
Unet 0.80 (0.18) 0.75 (0.26) 0.71 (0.29) 0.87 (0.09) 0.80 (0.18)

Unet-SE 0.73 (0.20) 0.70 (0.24) 0.68 (0.27) 0.80 (0.30) 0.74 (0.20)
Unet-AG 0.73 (0.18) 0.72 (0.18) 0.71 (0.27) 0.75 (0.38) 0.74 (0.18)

dataset, we needed to perform specific arrangements be-
cause of the GPU memory limitation. We empirically
found that the optimum setting was to resize the vol-
umes and have the batch size of 2. Therefore, the input
volumes were resized to 32x256x256.

In the 3D detection results using whole volumes, the
Unet-SE model performed the best achieving a 0.74
ROC-AUC score given in Table 2c. In terms of ROI
results, the Unet model showed superior performance
by having a ROC-AUC score of 0.80 given in Table 2d.

The experiments conclude that for the 3D detection
model, ROI volume performed better than the whole im-
age approach. Furthermore, overall in detection models
2D detection model performed better than the 3D detec-
tion model.

4.2. Model explainability

Grad-CAM (Gradient-weighted Class Activation
Mapping) is a technique to visualize and understand
the reasoning behind the predictions made by convo-
lutional neural networks (CNNs), introduced by (Sel-
varaju et al., 2017). It generates a heat map that high-
lights the regions of the input image that were crucial in
determining the prediction. This heat map is created by
leveraging the gradients of the target class with respect
to the convolutional feature maps.

The Grad-CAM results based on our 2D detection
model showed that the detection model is making de-
cisions based on the difference between provided two

inputs. In the end, it determines the HE by focusing on
the lesion area itself as given in Figure 9.

(a) (b) (c)

Figure 9: (a) Basal image, (b) Follow-up image, (c) Grad-CAM ob-
tained on the basal image, using 2d detection model, where the red
areas represent the regions of the input image that are highly impor-
tant for the model’s prediction.

4.3. Prediction experiments
In the prediction section, our aim is to predict patient

prognosis only based on basal image and mask infor-
mation. The model received the basal image and basal
mask as inputs, which were provided as two-channel
inputs. This two-channel application aims to have at-
tention on the lesion. In this section, we experimented
with whole image/volume, ROI-based and lesion-based
analyses, we obtained our results from 5-fold cross-
validation.
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4.3.1. 2D prediction results
The 2D prediction model settings are the same as 2D

detection models, including settings for obtaining ROI-
based and whole images. They are explained in the sub-
section 4.1.1 2D detection results. In the lesion-based
experiments, we obtained the input images by mask-
ing the basal image with the basal mask. Similar to
ROI-based experiments, we performed a zero padding
to ensure that all lesion-based basal images has the same
shape, 512x512. We performed min-max normalization
for each lesion-based image.

The 2D prediction results that are calculated using
whole images were given in the Table 3a. Results show
that EfficientNetB0 model performed the best achieving
the ROC-AUC score of 0.720. Considering the com-
plexity of the prediction problem compared to the de-
tection problem, we obtained overall lower results, as
expected.

For the ROI results, Resnet34 model performed the
best, achieving 0.695 ROC-AUC score. The ROI based
2D prediction results are given in the Table 3b. The
R50-ViT model demonstrated the highest performance
among the lesion-based image results, with a ROC-
AUC score of 0.690, given in the Table 3c.

In conclusion, the 2D prediction results showed that
the best setting for the prediction was with the whole-
volume image setting with the EfficientNetB0 model.

4.3.2. 3D prediction results
The 3D prediction model settings are the same as 3D

detection models, including settings for obtaining whole
volume, ROI-based volume and lesion-based volume
procedures. Considering the complexity of the predic-
tion problem and limitations from 3D setting, with our
current setting we could not obtain a stable prediction
model. In the best setting, we obtained an average test
ROC-AUC score of 0.559 using Resnet34 model.

4.4. Effect of patient-wise and image-wise evaluation
metrics

During our experiments in 2D, we implemented
patient-wise and image-wise evaluation metrics. We
also performed different voting approaches on the as-
signment of the patient-wise metric. These voting meth-
ods contained three approaches. First, taking the mean
of the probabilities belonging the same patient’s slices
and then assigning it to the patient probability. Second,
taking the medium slice’s probability value to be the
probability of the patient. Lastly, taking the maximum
probability among the slices of a patient and assigning
it to be the patient probability.

Our results showed that mean voting approach gave
the best results. Furthermore, patient-wise approach

outperformed to image-wise in almost all model exper-
iments. This concludes that, patient-wise patient proba-
bility assignment is more reliable.

4.5. Effect of IVH cases
As mentioned in the subsection 3.1.2 IVH and IPH,

we investigated the effect of excluding the IVH cases.
The number of IVH cases in the dataset was 10 in total
of 70 cases. Therefore removing these cases came with
a trade off of having a much smaller dataset but con-
taining only IPH cases. For some models we observed
a positive effect when IVH cases were excluded. How-
ever for some others, we had the opposite. This phe-
nomena can be explained by the way of different archi-
tectures process the data. However, at this stage, con-
sidering the bias coming from having a much smaller
dataset, the specific factors contributing to this occur-
rence remain unexplained.

5. Discussion

In this work, we investigated hematoma expansion
detection and prediction, analysing the use of 2D and
3D deep learning strategies and also the use of different
image input approaches. The applications and interpre-
tations of the work can be divided into two subsections.

5.1. Detection approaches
The 2D detection approaches presented in this work

are the first attempts to implement a lesion growth de-
tection model specifically for the problem of hematoma
expansion. This success can be attributed to the rela-
tively lower difficulty of the detection task compared to
the prediction task, as well as the slice-by-slice nature of
2D models, which proved to be beneficial in our small
dataset. Patient-wise evaluation metrics were defined
and utilized in our experiments, with the average vot-
ing metric demonstrating success. Remarkable results
were achieved using both whole image and ROI-based
input types, indicating that these two image types can be
effectively utilized in the 2D detection problem. Over-
all, we obtained a 0.91 ROC-AUC value using the Swin
transformer with whole images and a 0.92 ROC-AUC
score using Unet with the ROI images, shown in the Ta-
bles 2a and 2b. The presented approach was supported
by the Grad-CAM explainability model, visualizing that
the model was making decisions based on the difference
between lesions in given two input images.

Regarding the 3D approaches, it comes with the ad-
vantage of having spatial information, but it also has the
disadvantage of having a smaller number of samples to
train. In this model, we obtained the best value with a
0.80 ROC-AUC value with the Unet model and ROI-
based volume setting, given in the Table 2d.

It concludes that for the detection problem, ROI-
based image setting showed a successful performance,
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Table 3: Prediction results.

(a) Top three test set average 2D prediction results s from 5-fold cross-validation using the whole image, calculated patient-wise.

Model Accuracy F1-Score Sensitivity Specificity ROC-AUC
EfficientNet 0.71 (0.19) 0.70 (0.19) 0.68 (0.20) 0.76 (0.23) 0.72 (0.19)

Densenet 0.63 (0.16) 0.62 (0.20) 0.68 (0.27) 0.60 (0.21) 0.64 (0.13)
Unet-SE 0.63 (0.14) 0.52 (0.20) 0.51 (0.32) 0.75 (0.15) 0.64 (0.10)

(b) Top three test set average 2D prediction results s from 5-fold cross-validation using ROIs, calculated patient-wise.

Model Accuracy F1-Score Sensitivity Specificity ROC-AUC
Resnet34 0.68 (0.16) 0.65 (0.22) 0.64 (0.31) 0.75 (0.22) 0.69 (0.15)
R50-ViT 0.68 (0.12) 0.74 (0.09) 0.80 (0.17) 0.55 (0.33) 0.67 (0.14)
Unet-SE 0.66 (0.21) 0.63 (0.25) 0.60 (0.28) 0.75 (0.15) 0.67 (0.20)

(c) The test set average 2D prediction results from 5-fold cross-validation using the lesion-based image, calculated patient-wise.

Model Accuracy F1-Score Sensitivity Specificity ROC-AUC
R50-ViT 0.68 (0.12) 0.67 (0.19) 0.67 (0.27) 0.69 (0.18) 0.69 (0.11)
Densenet 0.71 (0.15) 0.78 (0.09) 0.87 (0.09) 0.50 (0.35) 0.69 (0.16)
Unet-AG 0.60 (0.15) 0.52 (0.32) 0.60 (0.41) 0.60 (0.33) 0.60 (0.13)

considering that the model is actually focusing on the
difference between given two lesion inputs, putting hard
attention on the lesion area removes other distractions
and helps with the detection process. The 3D model
achieved lower ROC-AUC scores compared to the 2D
detection model. This difference could be attributed to
the smaller number of samples used during the training
of the 3D model. To enhance the performance of the
3D model, it may be beneficial to increase the training
sample size or explore other techniques to address the
limitations.

5.2. Prediction approaches

For the 2D prediction approaches, In the hematoma
expansion prediction problem, we observed that the
whole image setting outperformed ROI and lesion-
based images. This is the opposite of the 3D detection
conclusion. However, the nature of the prediction model
is different than the detection model, therefore the infor-
mation needed to make a decision is different. The suc-
cess of the whole images over ROI-based images might
be related to the positional information of the given le-
sion, which is lost if the input is ROI or lesion-based
images. In this model, the best setting was achieved
by the EffiecientNetB0 model with a ROC-AUC score
of 0.72, given in the Table 3a. Despite the prediction
problem being considered more challenging, the slice-
by-slice approach enabled us to train with more data,
leading to a promising result.

Regarding the 3D prediction, being the most chal-
lenging problem in this study, we believe that challenges
occurred because of the complexity of the prediction
model and less number of training samples for the 3D
training.

Overall, the results obtained from the 2D detection
approaches were the most successful ones among all the

experiments conducted. For the detection approaches,
ROI-based image setting and for the 2D prediction prob-
lem, whole image setting showed the best performance.
With the differences (standard deviation) present in the
dataset, when we performed the dependent t-test for
paired samples for the statistical analysis between ap-
proaches we observed that the results are not signifi-
cantly conclusive.

5.3. Limitations and future work

Throughout this study, our primary constraint re-
volved around the limited size and imbalanced nature of
the available data. Given the complex feature character-
istics and intraclass heterogeneity, especially construct-
ing an effective prediction model requires the utilization
of robust representations and much larger dataset to ob-
tain a more reliable generalization of the problem.

Another limitation was the lack of spatial informa-
tion in the 2D models. Even though in the 2D detection
and prediction models we achieved promising results,
we observed some misclassified cases because of the
lack of spatial information in these models. In the 2D
detection model, we observed a misclassification that
happened when the lesion growth is in the sagittal plane
instead of the axial plane. Since the slice view is taken
from the axial view, basal and follow-up images look
alike for most of the slices of the lesion, leading an av-
erage probability score of having a non-HE detection
result, even though the right label is HE. The case is
shown in Figure 10.

The 3D model training is the most appropriate way
of using the spatial information of the 3D volumes, but
it comes with the limitations of having fewer samples,
especially if the dataset is small. In future work, we
would like to replicate the experiments with a greater
number of samples within a multicenter study.
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(a) Axial view

(b) Sagittal view

Figure 10: The lack of spatial information observed in 2D detection
problem.

6. Conclusions

In this work, we implemented and analysed a set of
approaches to tackle two different problems related to
the clinical management of the patients with hemor-
rhagic stroke. The first approach focused on detect-
ing hematoma lesion growth in longitudinal NCCT im-
ages, from basal and follow up scans of a patient. The
objective was to develop an automated deep learning
pipeline that could accurately measure the progression
of the hematoma over time and detect clinical worsen-
ing. This approach served as a foundation for the second
approach.

The second approach was a challenging prediction
model, particularly designed to classify cases of the fu-
ture HE occurrences. Unlike the detection model, this
prediction model relied only on basal image informa-
tion to make its classification. The main purpose of this
model was to identify features within the baseline im-
ages that were highly correlated with the likelihood of
future HE.

We studied the impact of using 2D vs 3D strate-
gies and also the use of different inputs to the model
(the whole brain image, a ROI-based including the
hematoma and the lesion-masked image of the case).
We obtained promising results for the 2D, 3D detec-
tion, and 2D prediction tasks. For the 2D detection task,
we obtained the ROC-AUC value of 0.92 with the Unet
model with an ROI-based image. For the 3D detection
task, we obtained a 0.80 ROC-AUC value with the Unet
model with ROI-based volume. The results suggest that
using HE detection approach holds promise for further
exploration in clinical settings.

Despite the challenge of the prediction task, we ob-
tained a 0.72 ROC-AUC value with the EfficientNet-B0
model with the whole image setting in 2D. However,
due to our data size limitation, we could not obtain a

stable 3D prediction model. The results of this study
demonstrated the potential of integrating deep learning
into clinical practice, particularly for the early detection
of HE. This technology could serve as a valuable tool to
support clinicians in making timely decisions for patient
care.
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Abstract

Bipolar disorder (BD) and schizophrenia (SZ) are severe mental disorders that have a significant impact on individuals
and society. Early identification of risk markers for these diseases is crucial for understanding their progression and
enabling preventive interventions. The Danish High Risk and Resilience Study (VIA) is a longitudinal cohort study
that aims to gain insights into the early disease processes of SZ and BD, particularly in children with familial high risk
(FHR). Understanding structural brain changes associated with these diseases during early stages is essential for ef-
fective interventions. The central sulcus (CS) is a prominent brain landmark related to brain regions involved in motor
and sensory processing. Analyzing CS morphology can provide valuable insights into neurodevelopmental abnormal-
ities in the FHR group. However, CS segmentation presents challenges due to its high morphological variability and
complex shape, which are especially apparent in the adolescent cohort. This study explores two novel approaches for
training robust and adaptable CS segmentation models that address these challenges. Firstly, we utilize synthetic data
generation to model the morphological variability of the CS, adapting SynthSeg’s generative model to our problem.
Secondly, we employ self-supervised pre-training and multi-task learning to adjust the segmentation models to new
subject cohorts by learning relevant feature representations of the cortex shape. These approaches aim to overcome
limited data availability and enable reliable CS segmentation performance on diverse populations, removing the need
for extensive and error-prone post- and pre-processing steps. By leveraging synthetic data and self-supervised learn-
ing, this research demonstrates how recent advancements in training robust and generalizable deep learning models
can help overcome problems hindering the deployment of DL medical imaging solutions. Although our evaluation
showed only a moderate improvement in performance metrics, we emphasize the significant potential of the methods
explored to advance CS segmentation and their importance in facilitating early detection and intervention strategies
for SZ and BD.

Keywords: segmentation, central sulcus, synthetic data, SynthSeg, self-supervised training, SimCLR, U-Net,
multi-task learning

1. Introduction

1.1. Background
Bipolar disorder (BD) and schizophrenia (SZ) are se-

vere mental disorders that impact approximately 0.7%
and 1.0% of the population respectively (Robinson and
Bergen, 2021). These conditions impose a significant
burden on both individuals and society, resulting in
substantial economic, mental, and societal costs (Fer-
rari et al., 2016; Millier et al., 2014). SZ and BD
are believed to be neurodevelopmental disorders influ-
enced by both genetic and environmental factors (Tho-

rup et al., 2015). Identifying early risk markers for these
diseases can enhance our understanding of their pro-
gression and lay the groundwork for primary preventive
interventions.

SZ and BD typically manifest in late teenage years
or early 20s, while children at familial high risk may
exhibit symptoms even earlier, often before the age of
12 (Robinson and Bergen, 2021; Thorup et al., 2015).
Having a family history of BD or SZ is the strongest risk
factor for developing these disorders and, according to a
meta-analysis, approximately 55% of children at famil-
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ial high risk will encounter mental illness in early adult-
hood, with around one-third experiencing severe mental
illness (SMI) (Thorup et al., 2018).

The Danish High Risk and Resilience Study (VIA) is
a longitudinal cohort study of 520 7-year-old children
born to parents with schizophrenia, bipolar disorder, or
no mental disorders (Thorup et al., 2015). Its main ob-
jectives are to gain insights into the early disease pro-
cesses of schizophrenia and bipolar disorder, investigate
the developmental trajectory of children with familial
high risk across various domains (neurocognition, psy-
chopathology, social cognition, motor function) and ex-
amine the influence of genetic and environmental fac-
tors on the progression of these disorders. The study
seeks to explore symptom formation, cognitive impair-
ments, differences in brain structure and activation pat-
terns (Thorup et al., 2018).

According to the VIA7 study results, children born
to parents diagnosed with SZ and BD already demon-
strate higher rates of psychiatric diagnosis, cognitive
deficits (particularly in FHR SZ), and motor difficulties
by age 7 (Burton et al., 2017). When compared to con-
trols, children with FHR of SZ show persistent develop-
mental deficits in manual dexterity and balance. While
no observable motor development differences are found
among children with FHR of BD as a group, children
with definite motor problems across all groups had a
higher likelihood of experiencing psychosis, suggesting
a connection between childhood motor impairment and
neurodevelopmental susceptibility to psychosis (Burton
et al., 2023). Studying structural brain changes re-
lated to these impairments during early disease forma-
tion could provide critical information on differences in
neurodevelopment between individuals with and with-
out familial risk as well as their causes.

The central sulcus (CS) is an important landmark
for examining structural brain differences in individu-
als with motor and sensory deficits. It is a prominent
anatomical feature of the brain that separates the frontal
lobe from the parietal lobe and is symmetrically located
in both hemispheres of the brain. It is one of the ma-
jor sulci (grooves) found in the cerebral cortex. Re-
search has shown that alterations in the shape and size
of the central sulcus, which separates the primary motor
and somatosensory areas, can impact fine motor control
and sensory processing in individuals (Jensen, 2016).
Therefore, analysis of the shape and morphology of the
CS can contribute to a better understanding of the ob-
served neurodevelopmental abnormalities in the FHR
group.

The first step in CS analysis is its detection and seg-
mentation, commonly based on structural magnetic res-
onance (MR) images. Although the central sulcus is one
of the most stable and prominent folds of the human
brain, its size and shape vary substantially across indi-
viduals and between hemispheres (Caulo et al., 2007).
For example, one of the most prominent sections of the

Figure 1: Schematic representation of the different morphological
variants of the hand motor cortex observed in humans. Omega, medi-
ally asymmetric epsilon, laterally asymmetric epsilon, and null vari-
ants were observed in 88.3%, 2.9%, 7.0%, and 1.8% of the hemi-
spheres, respectively with statistically significant sex differences. The
epsilon variant was twice as frequent in men, and an interhemispheric
concordance for morphologic variants was observed only for women.
Courtesy of (Caulo et al., 2007).

central sulcus is the so-called hand knob region, which
has significant anatomical variations illustrated in Fig-
ure 1.

Furthermore, the CS morphology depends highly on
the gyrification of the cortex, which measures the degree
of cortical folding (White et al., 2010) . Increased gyrifi-
cation characterized by numerous and complex gyri and
sulci may lead to more intricate and convoluted sulci
patterns with more twists and turns while decreased
gyrification, observed with ageing may result in shal-
lower and less complex gyri and wider sulci (Lin et al.,
2021b). This decrease in gyrification is caused by sys-
tematic cortical thinning during normal ageing and is re-
lated to neuronal pruning, life-long reshaping and neu-
rodegenerative processes (Lin et al., 2021b). This in fact
means that the intricate pattern of gyri and sulci will
vary considerably among different age groups, particu-
larly in children and adults as we know that the peak
of gyrification happens in early childhood after which it
steadily decreases over time (Klein et al., 2014).

1.2. Project proposal

Segmenting the central sulcus poses a significant
challenge due to its intrinsically high morphological
variability, which is further influenced by the gyrifica-
tion changes that occur with age. Successfully address-
ing these challenges requires sophisticated models and,
crucially, large and diverse datasets that encompass the
full range of CS morphological variations. Unfortu-
nately, the only currently available dataset with man-
ual sulci segmentations, to the best of our knowledge, is
limited in terms of subject count and represents a spe-
cific cohort, making robust and precise CS segmentation
on diverse populations a difficult task (Brainvisa, 2019).

In light of these challenges, the primary objective of
this research is to develop and investigate approaches
for constructing robust and adaptable CS segmentation
models. Our experiments aim to address the issue of
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limited data availability and provide pipelines that can
train CS segmentation models that demonstrate reliable
performance on unseen and diverse populations of sub-
jects. To achieve them, we investigate two novel ideas
in the field of CS segmentation, namely how synthetic
data generation can be used to model morphological
variability of the CS while self-supervised pre-training
and multi-task learning can be utilized for adjusting the
model to new subject cohorts by learning pertinent fea-
ture representations of the cortex shape.

2. State of the art

Since the development of high-resolution brain MR
imaging, the recognition of cerebral sulci and their mor-
phology analysis has been of significant interest to re-
searchers studying structural abnormality patterns re-
lated to the diseases affecting the neocortex (Huntge-
burth and Petrides, 2012; Mangin et al., 1995). This led
to the development of several classes of approaches for
automatic sulci detection.

The first type of approaches relies on feature-based
elastic registration of a labelled template atlas with seg-
mented sulci to the subject’s imaging data. This method
propagates labels and identifies anatomical structures of
interest by matching surface features between the sub-
ject and the pre-labelled template (Behnke et al., 2003;
Desikan et al., 2006). While these approaches have been
successful in identifying some major sulci, the high
inter-subject variability of the cortical folding patterns
makes it challenging to achieve an exact match between
a subject and a template. Moreover, the existence of
such a match is uncertain which further complicates the
use of these methods for a precise sulci shape analysis.
(Yang and Kruggel, 2008).

Another set of approaches explored by Kao et al.
(2007); Shi et al. (2007); Vivodtzev et al. (2003) con-
sider curvature and geodesic depth properties of the
cerebral folds. They use depth thresholding and de-
formable models to differentiate sulci and gyri using
cortical surface meshes created from 3D MR images, re-
lying on the assumption that sulci are concave and gyri
are convex. However, these approaches highly depend
on the ad-hoc handcrafted rules, thresholds and param-
eters describing the elasticity of the deformable model
or depth and curvature thresholds as well as the quality
of meshing, which can limit their generalizability and
performance.

Recent advancements in image processing, computa-
tional methods, and deep learning approaches have led
to substantial progress in automatic cortical sulci seg-
mentation (Borne et al., 2020). These advancements
increased the accuracy of segmentation as well as ex-
panded on the types and variety of supported sulci, en-
abling more precise investigations into complex fold-
ing patterns and their relationship with brain structure

and function (Lyu et al., 2021). In this section, we pro-
vide an overview of recent developments in the field,
which encompass the most popular pipelines for auto-
matic sulci segmentation and outline the motivations be-
hind the methods explored in this study.

2.1. Spherical CNNs
In the past decade, deep learning models have gained

significant traction in biomedical research due to their
exceptional ability for feature extraction and outstand-
ing performance (Liu et al., 2021). While there have
been previous efforts to apply traditional convolutional
neural networks (CNNs) to segment the sulci, such as
demonstrated in Yang et al. (2019), the unique charac-
teristics of the convoluted cerebral cortex have led to the
proposal to use a spherical variant of CNNs (Lyu et al.,
2021).

Standard 2D or 3D CNN architectures are ill-suited
for handling the curved geometry of the convoluted
cerebral cortex. Most CNN models are designed to op-
timally work in Euclidean image grids, which restricts
their ability to effectively encode cortical surface data.
Due to the intricate shape and high curvature of the cor-
tex, it is possible for two points situated on the cortex to
have a small Euclidean distance. However, in terms of
the manifold distance through the cerebral cortex, these
points could be significantly far apart representing dis-
tinct and separate regions of the brain. The complex
geometry of the cortex introduces a non-linear map-
ping between Euclidean and manifold distances, mean-
ing that proximity in Euclidean space does not neces-
sarily imply proximity on the cortical surface.

These limitations have prompted the increasing pop-
ularity of spherical CNNs as they offer a more suit-
able framework for processing and analyzing the corti-
cal surface (Willbrand et al., 2022) . However, for them
to work, the cortical surface first needs to be represented
as a 2D spherical manifold. This process typically in-
volves segmenting the white matter (WM) and grey
matter (GM) tissues based on structural brain images,
constructing a cerebral cortex surface mesh through tes-
selation, and applying post-processing steps to address
topological inconsistencies, holes, gaps, and optimize
surface geometry (McConnell, 1995). Finally, the sur-
face mesh is inflated while preserving its metric proper-
ties, resulting in an expanded, spherical representation
of the cortex (Fischl et al., 1999).

Lyu et al. (2021) further improves the performance of
spherical CNNs in sulci segmentation tasks by apply-
ing surface data augmentation and context-aware train-
ing in a pipeline schematically depicted in Figure 2.
Given the small size of the dataset used (60 and 36 in
two explored cohorts), the authors emphasized a crucial
need for data augmentation. However, the augmentation
approaches for spherical surfaces have not been exten-
sively explored compared to regular 2D/3D data. The
authors proposed a novel approach that utilizes surface

26.3



SYNCS: Synthetic Data and Contrastive Self-Supervised Training for Central Sulcus Segmentation 4

registration to augment training samples. The augmen-
tations are achieved by applying spherical harmonics to
decompose the spherical deformation needed to register
every training image to all others and reconstruct inter-
mediate deformations by controlling the basis functions.
By doing so, the suggested approach bridges the gap be-
tween moving and target samples in the feature space
along their deformation trajectory. This method en-
hances the training data by generating additional varia-
tions that improve the performance of models trained on
limited samples. In their context-aware learning phase,
hierarchical training is employed. The model is first
trained to recognize the deeper and more stable primary
sulci, and then the predicted information about their lo-
cation is used as an additional input channel to guide
the segmentation of shallower and more variable tertiary
sulci.

While the use of spherical CNNs to capture cere-
bral surface topology is a promising idea, the numer-
ous pre- and post-processing steps required to segment
the tissues and generate cortical meshes and spherical
surfaces present drawbacks. The performance of the
separate models used in these steps can significantly
impact the resulting surface representations of the cor-
tex, leading to missed or wrongly detected sulci regions.
The data augmentation technique proposed by the au-
thors although presents a novel augmentation scheme
for spherical data is nevertheless limited in its variability
to sulci patterns presented in the training data. The lim-
ited amount of data augmentation techniques for spher-
ical surfaces and the general lack of research in the field
of spherical CNNs can impede the development of ro-
bust segmentation algorithms.

2.2. Brainvisa

The BrainVISA software package is widely recog-
nized and utilized in the literature for sulci segmenta-
tion (Kochunov et al., 2011; Leroy et al., 2015; Ochiai
et al., 2004; Perrot et al., 2011; Roell et al., 2021; Zhang
et al., 2020). It offers the capability to segment more
than 120 different sulci of the brain and compute mor-
phological features based on the segmentation. In its
latest version, as described in Borne et al. (2020), Brain-
VISA introduces several approaches for sulci labelling,
consolidating decades of research in developing auto-
matic pipelines for sulci segmentation. Although these
approaches follow different directions for segmentation,
they all share the same data preparation steps and begin
with sulci detection. BrainVISA’s pipeline encompasses
multiple pre-processing steps and as shown in Figure 3,
as it starts from a high-quality structural T1-weighted
image used to first detect and then label the sulci.

2.2.1. Pre-processing
The pre-processing steps applied by BrainVISA aim

to transform the structural MR image into a binary CSF

skeleton image, where non-zero voxels define the skele-
ton of the CSF that corresponds to the detected sulci
(Borne et al., 2020). To achieve this, several key steps
are carried out. The pre-processing pipeline starts with
bias field correction to mitigate low-frequency intensity
variations in the MRI image. Afterwards, brain and
cerebellum identification is performed, followed by the
removal of non-brain tissues using a technique based
on 3D erosion and template-based 3D region growth.
The cortical grey matter ribbon is then obtained after
which spherical meshes for the pial and GM/WM inter-
faces are extracted. Next, based on curvature estima-
tion a crevasse detector reconstructs sulcal structures as
medial surfaces between the two opposing gyral banks
spanning from the most internal point of the sulcal fold
to the cortex’s convex hull. Following that, the skeleton
of the CSF is fragmented into elementary folds, ensur-
ing adherence to topological and geometric constraints
specific to the sulci definition (Zhang et al., 2020). Fi-
nally, the CSF skeleton image is parcellated into distinct
sulci using one of the following methods.

2.2.2. Multi-atlas parcellation
Multi-atlas segmentation (MAS) methods, originally

presented by Rohlfing et al. (2004), leverage manually
segmented images as atlases, wherein each atlas is ad-
justed to fit the image being segmented, and the best
matches are selected to participate in the segmentation
process. This approach enables a more accurate repre-
sentation of anatomical variability by avoiding the use
of an average template atlas to model the segmentation
problem. Instead, MAS techniques incorporate atlases
that better capture the inter-subject variability present in
the data. It is worth noting, however, that the registra-
tion of atlases to the target images can be computation-
ally demanding.

In BrainVISA, the MAS technique involves creating
patches extracted as cubical slices from the training im-
ages that encompass the elementary sulci detected in
the preceding steps (Borne et al., 2020). These patches
are then registered to the target image, where the folds
skeleton has been extracted, and the best matches are
determined. The patch labels are subsequently propa-
gated onto the target image, utilizing the distance be-
tween patches to perform a robust weighted average of
the labels. Finally, the propagated labels are utilized to
calculate the label score maps.

2.2.3. CNN parcellation
Similarly to approaches based on spherical CNNs,

BrainVISA’s deep learning models do not rely on
the original intensity image but instead utilize a pre-
processed version of it. They employ a binary 3D im-
age that represents the skeleton of CSF. BrainVISA au-
thors experimented with a 3D U-Net convolutional neu-
ral network (CNN) based on the architecture proposed
by Çiçek et al. (2016), examining both patch-based and
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Figure 2: A schematic representation of the framework proposed by Lyu et al. (2021) for the training of spherical CNNs for sulci segmentation. Two
main contributions are the data augmentation approach (blue box), which augments training samples by deforming them through surface registration
to every possible pair of other training samples while reconstructing all intermediate deformations and using them as additional samples and the
context-aware training method (green box) in which spatial information of primary/secondary sulci is extrapolated to guide the segmentation of
smaller and shallower tertiary sulci. Courtesy of (Lyu et al., 2021)

Figure 3: BrainVISA pre-processing pipeline. (a) T1w structural image; (b) Skull stripping; (c) Hemisphere segmentation; (d) GM and WM
segmentation; (e) CSF skeleton labelling; (f) Cerebral cortex surface reconstruction; (g) Sulci detection; (h) Sulci parcellation. Based on (Zhang
et al., 2020).
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whole-image-based models, concluding that the U-Net
model processing the entire image outperformed the
patch-based one. The superiority of the whole-image
approach was attributed to its ability to capture com-
prehensive sulcal patterns more efficiently. This was
achieved by having a larger field of view and the ca-
pability to observe the complete folding pattern of the
brain, enabling a better understanding of the overall
structure (Borne et al., 2020).

During the training process, the CSF skeleton image
was used as input to the DL model, which was trained
to produce a parcellation of the skeleton by assigning a
specific sulci label to each non-zero voxel. During train-
ing, only the classification error of the voxels belonging
to the skeleton contributed to the loss, based on the as-
sumption that the sulci detection step was executed ac-
curately. Such design choice reduced the complexity
of the learning task, as the model solely had to learn
the labelling of the skeleton voxels without considering
the background. Moreover, due to the heavy reliance
on pre-processed skeleton images, the researchers em-
ployed only a simple random rotation-based augmenta-
tion during training, since the binary nature of the im-
ages limited the application of complex data augmenta-
tion techniques.

2.3. Limitations of the current methods
While the methods utilizing spherical CNNs and

BrainVISA pipelines for automated sulci segmentation
demonstrate significant advancements in the field, they
are not without their limitations.

First of all, both of them have significant pre- and
post-processing pipelines. The performance of individ-
ual models employed in them can substantially impact
the resulting spherical surface or CSF skeleton cortex
representations. Both of them heavily rely on the qual-
ity of the WM/GM/CSF segmentations that are used to
build cortex meshes which could be a complicated task,
especially in low-resolution images corrupted by arte-
facts, introducing potential inaccuracies or errors. Fur-
thermore, in a population of children or adolescents, for
example, higher cortical gyrification can lead to nar-
rower sulci gaps which make proper differentiation be-
tween opposing gyral banks challenging due to the par-
tial volume effect (Kochunov et al., 2005).

Secondly, both methods employ a narrow range of
data augmentations, which has limited effectiveness in
enhancing the diversity of cortex morphologies repre-
sented in the training set. These augmentations might
fail to adequately simulate the variability of sulci that
could be absent in the original data or image variation
and bias induced by differences in acquisition schemes
or scanners.

Finally, both approaches are trained and evaluated on
small-scale in-house datasets consisting of only a few
dozen images, typically representing a specific cohort.
This limitation arises from the lack of comprehensive,

diverse, and standardized datasets available for eval-
uating sulci segmentation techniques. Consequently,
the generalizability and robustness of these approaches
across different cohorts are called into question.

These challenges and limitations motivate us to in-
vestigate alternative approaches in this study. Our focus
is to develope models that could effectively handle vari-
ations in image quality and contrast, which would sim-
plify the segmentation pipeline avoiding multiple pre-
processing steps that can lead to the accumulation of er-
rors. We are interested in exploring approaches that can
efficiently utilise little available data as well as adapt the
model to diverse cohorts with previously unseen sulcal
patterns. In the subsequent section, we detail the spe-
cific methodologies employed to achieve these objec-
tives.

3. Material and methods

3.1. Datasets

In this section, we discuss the datasets used for train-
ing and evaluation. It is important to note that the
primary objective of this study is to investigate the
training of robust and generalizable segmentation mod-
els. Therefore, we are exclusively using the BrainVISA
dataset that has high-quality curated and labelled CS
segmentations to train or fine-tune models for the CS
segmentations task, while the VIA11 dataset is used
solely for evaluation or self-supervised pre-training that
assumes that the CS ground truths do not exist. Such
a split allows us to assess the performance degradation
of models trained on one dataset and evaluated on an-
other, analysing how inherent disparities in population
demographics and acquisition parameters between the
datasets affect the model’s performance.

To ensure uniformity in the input data for the mod-
els, we apply the same pre-processing steps for both
datasets, which include only skull-stripping and regis-
tration to the common MNI template (Collins et al.,
1994). Furthermore, the images were cropped to
content and resampled to a consistent resolution of
256x256x124 using the Python implementation of Sim-
pleITK by Yaniv et al. (2017), thereby ensuring iden-
tical embedding dimensionality for VIA11 and Brain-
VISA images.

3.1.1. BrainVISA
Along with presenting the latest sulci segmentation

approaches of BrainVISA, Borne et al. (2020) have also
released the dataset used to train them. Although it rep-
resents a significant contribution in terms of data avail-
ability, providing the first to our knowledge high-quality
manually segmented dataset with multiple sulci labels
for multiple subjects, it has strong limitations in terms
of cohort representation.
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The dataset contains images from 62 healthy subjects
selected from various databases. The subjects are pre-
dominantly right-handed men aged between 25 and 35
years. For each subject, a panel of experts produced
segmentations for 63 sulci in the right hemisphere and
64 sulci in the left hemisphere through an iterative pro-
cess involving consensus-based labelling, where agree-
ment among all experts was required for the final seg-
mentation. Although precise, such a labelling scheme
excludes the possibility of estimating inter-rater relia-
bility. The dataset includes skull-stripped T1-weighted
images, CSF skeleton images, sulci segmentations and
brain masks for each subject.

The dataset was randomly split into the train (70%)
and validation (30%) sets, enabling performance eval-
uation on the BrainVISA data as well. Only the train-
ing portion of the dataset was used for CS segmentation
learning, synthetic data generation and self-supervised
pre-training as described in the following sections.

3.1.2. VIA11
The VIA11 study is the second phase of the longi-

tudinal VIA project, which focuses on assessing partic-
ipants in their 11th year of life (Thorup et al., 2018).
In contrast to the initial examination conducted at age
7 (VIA7), VIA11 study protocol incorporates several
neuroimaging techniques, with our analysis focusing on
structural T1-weighted (MP2RAGE) images.

For our study, we included 303 subjects who partici-
pated in the VIA11 study and had structural MR images
of sufficient quality. The cohort’s average age is 12.1 ±
0.28 years. It has a balanced gender distribution (49%
male, 51% female) and includes predominantly right-
handed individuals (258 right-handed, 26 left-handed,
19 ambidextrous).

Central sulcus labels for this dataset were obtained
using a semi-automatic approach. First, the Brain-
VISA Morphologist pipeline (Borne et al., 2020) was
employed for the initial sulci segmentation of all sub-
jects. Then, manual quality control was performed to
estimate their correctness which resulted in 125 sub-
jects having sufficiently good segmentations, 165 sub-
jects having notable errors that would require manual
correction of the BrainVISA segmentations, and 13 sub-
jects having incorrect orientation or other errors that
prevented manual quality control. In our work, we used
125 subjects’ images for which the initial automatic tis-
sue and sulci segmentation procedures were deemed
of sufficient quality to perform self-supervised learn-
ing as well as estimate the model’s performance and
compare it among our approaches. The remaining 165
subjects, for which manually corrected segmentations
were not available until the very end of the project were
never used for any supervised or unsupervised train-
ing. These 165 images were only used as a hold-out
test set for comparison between BrainVISA and our ap-
proaches. It is worth noticing nevertheless, that those

manual corrections were performed based on the Brain-
VISA initial segmentations, and mostly consisted of re-
moving/adding voxels to the BrainVISA’s output, which
in fact means that these segmentations are highly bi-
ased towards BrainVISA’s output. We also note that the
only pre-processing step applied to VIA11 images was
skull-stripping and registration to the MNI space using
the BrainVISA software, thereby replicating the same
pipeline used to generate the BrainVISA dataset. This
ensures uniform data representation for both the training
and evaluation phases.

3.2. Methods
Data augmentation has emerged as a popular tech-

nique for training deep learning models in scenarios
with limited training data, particularly in the medical
imaging domain (Chlap et al., 2021). In this section, we
explain our rationale for employing synthetic data gen-
eration based on the work by Billot et al. (2023a) and
provide specific implementation details.

Moreover, to address the issue of limited and con-
strained diversity in the datasets, we investigate the use
of a contrastive self-supervised framework, SimCLR,
developed by Chen et al. (2020), in conjunction with
our synthetic data to learn cortex representation through
self-supervised and multi-task training. We demon-
strate how this approach can facilitate model adaptation
to new datasets without labelled data, thereby aiding
in performing segmentation tasks on dissimilar popu-
lations.

Given that our primary focus is exploring training
and data generation techniques, we have opted to uti-
lize a simple yet effective 3D CNN U-Net segmentation
model designed by Çiçek et al. (2016). 3D U-Nets are
among the most commonly employed architectures for
3D medical image segmentation, demonstrating effec-
tiveness, relative computational efficiency, and robust-
ness in the medical domain (Hesamian et al., 2019). U-
Net models typically consist of symmetric encoder and
decoder parts, that have skipped connections between
them. The encoder part of the U-Net is responsible for
extracting hierarchical and abstract feature representa-
tions from the input image, which is passed to the de-
coder responsible for upsampling the encoded feature
maps to the original input image dimensions and gen-
erating the final segmentation map. Specifically, in all
our experiments, we employed a 5-level 3D U-Net with
an implementation from MONAI, Cardoso et al. (2022),
featuring 16, 32, 64, 128, and 256 channels per layer.
This choice allowed us to work with a model of com-
parable size and complexity to that used by Borne et al.
(2020), while considering the limitations of our compu-
tational resources.

3.2.1. Synthetic data generation
SynthSeg, introduced in the work by Billot et al.

(2023a), is a segmentation model that leverages a gen-
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erative approach to create synthetic images for network
training. By dynamically generating training images
with fully randomized parameters, the SynthSeg model
learns contrast, intensity, scale, resolution, morphology,
artefacts, and noise invariant features, leading to su-
perior segmentation performance, particularly on low-
quality images (Billot et al., 2020, 2023b; Iglesias et al.,
2021). We adapted the SynthSeg’s data generator for
our specific problem, utilizing its powerful generation
capabilities to create a diverse image dataset based on
the limited available labelled images.

Figure 4 illustrates the general pipeline used to cre-
ate our synthetic dataset. It starts from a segmentation
(containing labels of tissues to synthesize, such as WM,
GM, CSF, skull bone, and fat) that is passed as input to
the SynthSeg data generator. We obtain these segmen-
tations for our datasets from two different sources.

For the VIA11 we utilize FreeSurfer’s Samseg tool
(Puonti et al., 2016) to obtain preliminary segmenta-
tions. These segmentations are then manually quality-
checked by a skilled neuroscientist. This quality con-
trol ensures that the resulting brain segmentations are
anatomically correct and could be used for subsequent
image synthesis. From the 125 subjects originally re-
served for SST, we select 101 that pass this quality con-
trol and only their segmentations are used for the syn-
thetic image generation based on VIA11 data. Billot
et al. (2023a) show that with as little as 20 segmen-
tation maps they can reach the top performance there-
fore we believe that our choice of using only the 101
highest-quality segmentations will not impede the per-
formance of the models. Generated synthetic images
from the VIA11 segmentations are then used only for
self-supervised pretraining described later.

For the BrainVISA dataset, we obtain the tissue
segmentations by utilizing an implementation of an
expectation-maximization-based algorithm described
by Schindler and Dellaert (2004), that classifies image
voxels between WM and GM based on the estimated pa-
rameters of the intensities distribution of tissues. Since
BrainVISA images contain voxels belonging only to ei-
ther WM or GM and skull stripping of those images is
manually corrected, we opt to use this method for its
simplicity and speed. For the BrainVISA segmenta-
tions, we additionally combine the central sulcus labels
with the tissue labels to create a single segmentation that
includes both the tissue information required for gen-
erating synthetic images and the sulci labels needed to
train the CS segmentation model.

After obtaining the final segmentations we employ
SynthSeg’s data generator while incorporating the fol-
lowing adjustments:

• We use T1w tissue priors provided by Billot et al.
(2023a) to generate images with a contrast sim-
ilar to T1w by sampling the intensity values for
each tissue based on its Gaussian mixture model

parameters. Although the original paper demon-
strated that the same approach could be used to
train a model invariant to any specific contrast by
sampling random intensities that do not rely on
any priors, we decided to use T1w-based intensi-
ties to simplify and speed up the training process,
since our goal is evaluating the models’ perfor-
mance on the VIA11 dataset, which also consists
of T1w images. Furthermore, we believe that re-
stricting the power of possible augmentations can
lead to faster convergence and the ability to learn
from fewer data which is favourable in the current
setting due to the limited amount of generated im-
ages and computational resources

• We preserve the original image dimensions when
generating the output, excluding the random re-
sampling and cropping transformations employed
by the SynthSeg model. Preserving sufficient spa-
tial resolution is crucial for accurate sulci segmen-
tation, and reducing resolution or cropping the im-
ages may result in the loss of important informa-
tion. Additionally, both the VIA11 and BrainVISA
datasets contain isotropic images with a spatial res-
olution close to 1x1x1mm, eliminating the need to
learn resolution-agnostic features for our experi-
ments.

• We utilize the complete set of original spatial trans-
formations, including random affine and elastic
transformations of the segmentation map, Gaus-
sian blurring, and bias field corruption applied to
the generated image.

• As we use skull-stripped images, no transforma-
tions related to random drops of segmentation la-
bels related to the skull are performed.

• Sulci labels are not considered during the image
generation step. The model uses corresponding
sulci voxels labels of background, WM, or GM
for synthesizing intensities under the sulci labels,
ensuring the integrity of the image and allowing
potential overlap of sulci labels with WM or GM
voxels, if present in the original images.

After the generation process, we obtain a pair of syn-
thetic intensity images and the corresponding segmen-
tation, which includes labels for the tissues and the sulci
(only for BrainVISA). This dataset obtained through the
generative model is referred to as the synthetic dataset.

By applying rigid and non-rigid spatial transforma-
tions, random intensity sampling, artefact generation,
bias field corruption, and blurring, we simulate high
variability in image appearances as well as cortex mor-
phology while preserving crucial information neces-
sary for CS detection and segmentation. Clarisse et al.
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Figure 4: Synthetic Data Generation Pipeline. First, we create a segmentation map, that contains both the tissue and sulci labels. Then we pass it
through the SynthSeg generative model, which applies a series of transformations to the segmentation and creates the artificial image by sampling
tissue-specific intensity values based on the tissue priors. Finally, the output of the model is the synthetic image and transformed segmentations
that contains sulci and tissue labels.

(1997) demonstrated that consistent and accurate iden-
tification of the CS relies on several key criteria, in-
cluding its relative location to other stable and distinct
folds, specific shape patterns, as well as its symmetri-
cal location and position on the cortical surface, all of
which remain relatively invariant with our transforma-
tions. Therefore, by distorting the images in ways that
maintain these criteria, we hypothesize that the model
will learn a more robust representation of the CS loca-
tion and shape, invariant to potential distortions that can
occur in different datasets, caused by the changes in-
duced by gyrification or brain volume differences, lead-
ing to better recognition performance and increased ro-
bustness on the morphologically diverse datasets. This
hypothesis is supported by the findings of Billot et al.
(2023b), who showed the effectiveness of such synthetic
data generation for tissue segmentation tasks.

3.2.2. SimCLR
Self-supervised learning (SSL) is a popular method

for training DL models in the absence of labelled data
that has been especially popular in the medical imag-
ing field, where the cost of labelling is extremely high
(Huang et al., 2023). Contrastive training is one of the
popular SSL approaches used to learn meaningful rep-
resentations of input data by maximizing the similar-
ity between different views of the same input and min-
imizing the similarity between views of different data
(Jaiswal et al., 2020). A Simple Framework for Con-
trastive Learning of Visual Representations (SimCLR)
(Chen et al., 2020) is a successful implementation of
contrastive learning, particularly in medical image clas-
sification and segmentation (Azizi et al., 2021; Dominic
et al., 2023; Zeng et al., 2021). The general structure of
SimCLR is illustrated in Figure 5. Our objective in uti-
lizing SSL and SimCLR is to integrate knowledge about
cortex morphology, including sulci position and shape,
into the model weights during the pre-training phase.
This integration is expected to be beneficial during the
subsequent fine-tuning phase, where the model will fo-

Figure 5: SimCLR framework architecture. First, two image views are
generated for each segmentation present in the batch using a synthetic
data generator. These synthetic images are then passed through a U-
Net encoder, which calculates a dense image representation which is
further projected into a space where contrastive loss is computed us-
ing an MLP. The loss function encourages the embeddings of images
from the same segmentation to be close together in the embedding
space while pushing apart the embeddings of images from different
segmentation maps.

cus on learning central sulcus segmentation.

The first step of the SimCLR framework involves
generating multiple views of the same input image,
which is a crucial step aimed at preserving relevant se-
mantic information while introducing image variabil-
ity. Random cropping, colour distortion, and Gaussian
blur proved to be effective transformations for generat-
ing views in natural image classification (Chen et al.,
2020). However, in our case of 3D grayscale volumes
in which cropping might erase important information
about the cortex morphology we apply a different ap-
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proach. Instead, we leverage the synthetic dataset gen-
erated from a single tissue segmentation and treat it as
a dataset containing multiple views of the same input.
We hypothesize that the diverse synthetic images de-
rived from the same segmentation capture essential and
identical information about the same cortex morphology
while the unique transformations applied to each image
introduce the necessary variability. This view genera-
tion process can be thought of as creating multiple dis-
tortions of the same cortical morphological fingerprint
by stretching, scaling, changing its colour or elastically
deforming it that would nonetheless preserve the unique
pattern present in it.

After generating the different image views, they are
sequentially passed through the base model and a non-
linear transformation unit based on a Multi-Layer Per-
ceptron (MLP). The base model serves as a robust fea-
ture extractor, producing a dense representation of the
image that captures key features. Inspired by recent ex-
periments (Dominic et al., 2023; Zeng et al., 2021), we
choose the U-Net encoder as the base model. We uti-
lize the first five layers from the downsampling path of
the U-Net and flatten the output of the last down con-
volution layer after max pooling to introduce it as in-
put to the MLP. The MLP projects the feature embed-
dings from the base model space into a space where
contrastive loss is calculated. This helps filter out spe-
cific features preferred by the contrastive loss optimiza-
tion and allows the base model to learn a more robust
image representation. In our experiments, we used a 3-
layer MLP with a final embedding dimension of 128,
as deeper MLPs have shown better results (Azizi et al.,
2021).

The final step involves calculating the embeddings’
similarity and optimizing the total contrastive loss
shown in Equation 1, which is based on the Normal-
ized Temperature-scaled Cross Entropy Loss (NT-Xent)
derived from the work of Oord et al. (2018) and dis-
played in Equation 2. The SimCLR framework aims to
maximize the similarity between the embeddings of two
augmented versions of the same image (i.e., zi and z j)
while minimizing it between views of different images
zk. The similarity between embeddings is estimated us-
ing cosine similarity defined in Equation 3.

Lcontrastive =
1

2N

N∑

k=1

[ℓ(2k − 1, 2k)) + ℓ(2k, 2k − 1)]

(1)

ℓi, j = − log
exp(sim(zi, z j)/τ)∑2N

k=1 ⊮[k,i] exp(sim(zi, zk)/τ)
(2)

sim(zi, z j) =
z⊤i · z j

∥zi∥ · ∥z j∥ (3)

By optimizing this loss function, we aim to pre-train
the model on a task similar to the downstream task, but

without actual labels. The pre-training with SimCLR
on synthetic data encourages the U-Net encoder to learn
robust and comprehensive feature representations of the
cortex morphology, as it is the only consistent and dis-
tinctive feature across different image views. Follow-
ing pre-training, the model undergoes fine-tuning on the
downstream task.

Our hypothesis is that by initializing the weights
of the U-Net encoder with those learned during pre-
training, we can transfer information about the anatom-
ical variability of the cortical folds from a bigger and
more diverse dataset and then leverage that knowledge
for segmentation through fine-tuning. Specifically, we
focus on pre-training with the VIA11 dataset and sub-
sequent fine-tuning on the BrainVISA dataset to assess
if the model can capture cohort-specific sulci properties
that may be absent in the limited labelled data as we are
especially interested in improving the performance on
the VIA11 that we use for the final evaluation.

3.2.3. Multi-task learning
In our previous approach, we utilized the SimCLR

framework for pre-training the U-Net encoder. How-
ever, we also investigate the pre-training of the decoder
component in the U-Net architecture. Drawing inspi-
ration from recent advancements in multi-task learning
(Gao et al., 2020; Zhou et al., 2021), we propose a novel
pre-training framework that combines contrastive self-
supervised learning with segmentation learning to pre-
train the entire U-Net model.

Illustrated in Figure 6, our multi-task SSL pipeline
consists of two parts. The first part follows the con-
trastive pre-training structure described before, calcu-
lating the contrastive loss and updating the weights of
the U-Net encoder. The second part employs the same
encoder model, combined with a symmetrical decoder
which is simultaneously trained in a joint optimization
procedure for brain tissue segmentation. We utilize the
same labels used to create synthetic images to train the
U-Net decoder to segment GM tissue based on the inten-
sity images, effectively replicating a part of the Synth-
Seg training pipeline. We choose to train the model for
only single-class GM segmentation to make it compat-
ible with the downstream single-class task of CS seg-
mentation, avoiding the need to adjust internal embed-
ding and kernel dimensions. Furthermore, GM segmen-
tations were already available as a prerequisite for syn-
thetic data generation and segmenting GM requires an
understanding of the cortex morphology from the model
at the surface detection level, albeit based on intensity
contrast.

The final loss function optimized in this pipeline,
shown in Equation 4, is a combination of the segmenta-
tion loss and the contrastive loss discussed earlier. We
employ the soft dice loss implementation from MONAI
(Cardoso et al., 2022) for the segmentation loss. This
training scheme enables us to target the full U-Net
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Figure 6: Multi-task self-supervised training scheme. Combined contrastive and segmentation loss allows pre-training of both the encoder (on
contrastive and GM segmentation tasks) and decoder (only on GM segmentation task) of the U-Net.

model during the pre-training phase, learning improved
weights initialization for both the encoder and decoder.
Moreover, it encourages the encoder to learn representa-
tive features not only for the contrastive task but also for
the segmentation task directly. By employing the multi-
task loss, we aim to leverage the information learned
during the pre-training phase more effectively in the
downstream phase.

Lmulti-task = Lsegmentation +Lcontrastive (4)

3.3. Training and Validation Strategy

This section presents the technical implementation
details of the tested models, training and validation
strategies employed. These details aim to clarify the ra-
tionale behind our parameter choices and facilitate the
replication of our results.

Unlike the approach proposed by Billot et al. (2023a),
which utilizes online data generation which creates syn-
thetic images on the fly and directly feeds them into
the segmentation model, we employ an offline gener-
ation approach. This choice is driven by computational
limitations that prevent us from simultaneously running
both the generative and segmentation models on the
same GPU. Due to the storage constraints, we gener-
ate 100 synthetic images for each subject from both the
BrainVISA and VIA11 datasets, resulting in 6,200 syn-
thetic images for BrainVISA and 10,100 synthetic im-
ages for VIA11 datasets.

To ensure consistency in training parameters, we train
all U-Net models for a maximum of 200 epochs during
the central sulcus (CS) segmentation learning process.
We employ an early stopping criterion, wherein train-
ing is halted if the validation loss fails to improve for
the last 10 epochs. For CS segmentation, we adopt the
Tversky Loss introduced by Salehi et al. (2017) as our
learning criterion. This loss function has demonstrated
superior performance in highly imbalanced segmenta-
tion problems, which is important in our case as CS
voxels occupy on average around 0.02% of all image
voxels. Although we train the model on both synthetic

and original images in some experiments, validation is
always performed using the original images from the
corresponding validation splits. We employ a batch size
of 1, as it is the maximum that can fit within our avail-
able GPUs (NVIDIA GeForce RTX 3090 with 24GB of
video RAM) and an initial learning rate (LR) of 0.001.

In the final evaluation stage, we incorporate a post-
processing step in our workflow to facilitate a meaning-
ful comparison between the segmentations and meshes
generated by our models and BrainVISA’s pipeline.
Given that our segmentations do not rely on CSF skele-
ton images and do not impose anatomical correctness
requirements as part of their design, it is essential to en-
sure their compatibility with the meshing algorithm. To
achieve this, we have opted to employ the same mesh-
ing algorithm utilized by BrainVISA in their pipeline
for generating meshes from segmentations. By adopt-
ing the same tool, we minimize additional variability
introduced by different meshing techniques, enabling a
more accurate comparison of mesh properties.

The meshing process involves intricate calculations
to create a surface based on a point cloud (McConnell,
1995). However, during this process, errors such as
gaps, holes, and excessive tessellation can arise, partic-
ularly in the presence of noise points. To address these
issues and achieve appropriate tessellation in our gen-
erated segmentations, we apply a straightforward post-
processing approach. We begin by performing a mor-
phological binary dilation on the obtained segmenta-
tion, connecting sulcus segments that are close to each
other but separated spatially. Subsequently, connected
component labelling is applied to the dilated image. In
the final segmentation, we retain only the voxels from
the original segmentation that belong to the two largest
connected components calculated from the dilated im-
age. This step ensures that only the central sulcus seg-
ments from the left and right hemispheres are retained
before the meshing stage, reducing errors in the result-
ing sulcus mesh and enhancing its quality. We apply
this post-processing step only for the final comparison
between BrainVISA’s pipeline and our approaches as it
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Figure 7: Ambiguity in CS segmentation. a) Brain image; b) Brain
image with overlapped sulci segmentations: ground truth (red) and
manually drawn alternatives (blue and green). Notice how the alter-
native segmentations closely follow the ground truth in terms of shape
and correct anatomical position, despite having zero overlap with the
ground truth and yielding a DSC of 0. The precise localization of the
CS ribbon within the sulcal gap, which often spans multiple voxels in
width, is inherently ambiguous. Therefore, a metric that accounts for
the distance between segmentations provides a more robust measure,
which makes it crucial to consider.

is needed specifically for correct meshing and fair com-
parison with the full BrainVISA pipeline.

3.4. Quantitative Analysis
To evaluate the quality of our segmentations, we em-

ploy two widely used metrics: the Dice similarity coef-
ficient (DSC) and the Hausdorff distance (HD).

The DSC quantifies the voxel-wise overlap between
two segmentations, denoted as X and Y . Its values range
from 0 to 1, where 0 represents no overlap and 1 indi-
cates complete agreement. The DSC is computed using
the following formula:

DS C =
2 × |X ∩ Y |
|X| + |Y |

Another important metric we employ is the Hausdorff
distance, defined as:

H(X,Y) = max
{

sup
x∈X

inf
y∈Y
ρ(x, y), sup

y∈Y
inf
x∈X
ρ(x, y)

}

It measures the mutual proximity of two segmentations
and provides insight into their spatial dissimilarity. HD
reflects the maximum distance of the two closest points
in the segmentations and it takes positive values with
smaller ones reflecting higher proximity and 0 corre-
sponding to the complete overlap of two segmentations.
Given the nature of the segmentation task, we argue that
the Hausdorff distance is a crucial measure of segmen-
tation quality that should be considered. Sulci localiza-
tion is a complicated task and the precise placement of
the sulci ribbon in the gap between two gyri is often
ambiguous as shown in Figure 7.

3.5. Implementation Details
We used Python programming language with several

frameworks for this project. Pytorch and Pytorch Light-
ning were used to implement and train the SSL and

DL models while Tensorflow was used to adapt and run
the synthetic data generation pipeline. Additionally, li-
braries like SimpleITK-SimpleElastix and nibabel were
used for image registration and spatial transformations
and ITK-Snap with 3D Slicer were used for visualiza-
tion purposes.

Project code as well as other hyperparameters val-
ues and corresponding documentation can be found at:
https://github.com/Vivikar/central-sulcus-analysis.

4. Results

In this section, we present the results of our exper-
iments, both qualitatively and quantitatively, following
the same order as in the previous section.

4.1. Synthetic data generation

We begin by examining the impact of synthetic data
on the model’s generalizability. To assess this, we com-
pare the performance of the model trained on the syn-
thetic BrainVISA dataset with the model trained on the
original BrainVISA dataset. Figure 8 displays the quan-
titative results comparing the performance of these two
models on two evaluation datasets: one composed of
the original BrainVISA images from the validation split
and the other consisting of original 125 images from the
VIA11 dataset, for which we have used BrainVISA’s
segmentations as ground truth since they passed the
quality control.

On both datasets, we observe a decrease in the Dice
similarity coefficient for the models trained on synthetic
data. This finding aligns with the studies conducted by
Billot et al. (2023a) and Billot et al. (2023b), which
demonstrate that while synthetic data yields signifi-
cant improvements for images affected by artefacts, low
quality, or low resolution, models trained on synthetic
data tend to under-perform compared to state-of-the-
art models on high-quality and high-resolution images.
However, the model trained on synthetic data exhibits a
substantial decrease in Hausdorff distance scores on the
VIA11 dataset, which arguably provides a more sensi-
ble evaluation of performance in this setting (see Figure
9).

Figure 9 presents qualitative results that help explain
these outcomes. It illustrates how the model trained
solely on the original data misclassifies the region unre-
lated to the central sulcus (CS), while the model trained
on synthetic data does not. It is important to note that
the misclassified region corresponds to the neck and
represents a skull-stripping error, as it should not be
present in the skull-stripped image. However, the model
trained on synthetic data makes errors in mistakenly
segmenting sulci neighbouring to CS as illustrated in
image c) of Figure 9. Although these errors lead to sig-
nificantly lower Hausdorff distance scores as they are
closer to ground truth, they are of great concern as they
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Figure 8: Box plot showing DSC and HD scores for the models trained on the synthetic and original BrainVISA datasets and evaluated on the
original images from the BrainVISA validation split and VIA11 dataset. A statistically significant decrease (p-value < 0.000001 based on a two-
sided t-test) of HD scores between the model trained on synthetic and original data is observed for the VIA11 dataset.

Figure 9: Sample segmentations for VIA11 subjects for the a) model
trained on original BrainVISA data, and b) and c) model trained on
synthetic BrainVISA data. The yellow arrows indicate the regions
where some of the modes made mistakes.

still have a substantial impact on the meshing of the CS
segmentation and the subsequent estimation of its mor-
phological features.

In our following experiments, we use the synthetic
dataset for learning CS segmentation in the fine-tuning
stages of the SSL as it demonstrates superior perfor-
mance.

4.2. SimCLR
To test how SSL can aid in adjusting the model to

new datasets we apply the synthetic data generation ap-
proach described earlier to the 101 VIA11 images to
create a synthetic VIA11 dataset, which we utilize for
self-supervision in conjunction with the synthetic Brain-
VISA dataset.

4.2.1. SSL pre-training
Chen et al. (2020) use several methods to validate the

performance of their self-supervised pre-training. How-
ever, since our downstream task is not related to classifi-

cation and the used images do not represent distinct cat-
egories of objects, we have chosen to validate the qual-
ity of learned image representations through the dimen-
sionality reduction approach. Figure 10 shows the pro-
jection of the embeddings outputted by the MLP from
128D space to 2D space using T-SNE (van der Maaten
and Hinton, 2008). We select random four validation
VIA images that were not included in the 101 images
used for self-supervised training, and we generate 100
synthetic images based on the segmentations of these
four. Despite the model never encountering images gen-
erated from these four segmentations during training,
we observe a clear separation between the projected
embeddings corresponding to each segmentation which
shows that during SSL the U-Net encoder was able to
learn distinct features separating these images.

4.2.2. Full U-Net fine-tuning
Figure 11 presents the metrics of the U-Net models

with different SSL approaches, fine-tuned on the syn-
thetic BrainVISA dataset with no frozen layers (i.e., all
encoder weights were initialized with those calculated
during SSL and then updated during downstream train-
ing). We observe a statistically significant increase in
the Dice score metrics with SSL, with the best values for
the VIA11 dataset obtained when pre-trained on VIA11
compared to no SSL (p-value=0.000799). However, we
find no statistically significant difference in HD when
comparing No SSL and VIA11 SSL for the VIA11
dataset. It appears that SSL with a small and homo-
geneous dataset like BrainVISA does not contribute to
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Figure 10: Visualization of embeddings of 100 different images pro-
jected onto a 2D plane with T-SNE from 4 different validation seg-
mentations. Each coloured dot represents a synthetic image generated
from a distinct segmentation.

the increase of the model’s generalizability and robust-
ness, while SSL with a bigger and more diverse VIA11
dataset leads to an increase in the Dice scores without
degrading HD. Therefore, in our following experiments,
we consider the model pre-trained with VIA11 SSL and
fine-tuned with synthetic BrainVISA data as our best-
performing model.

4.2.3. U-Net fine-tuning with the frozen encoder
Azizi et al. (2021) highlights the importance of care-

ful fine-tuning when learning downstream tasks to pre-
serve the information learned during self-supervision.
We investigate the impact of freezing the encoder model
after SSL and thus completely preserving the SSL fea-
tures for learning the CS segmentation task. Figure 12
compares the models with and without SSL, evaluating
whether freezing the encoder during the downstream
task benefits the CS segmentation performance. The
results show a significant decrease in performance for
both datasets and on both evaluation metrics when the
encoder is frozen.

4.3. Multi-task SSL

As we can see in Figure 13 there are no statistically
significant improvements in any of the metrics for the
multi-task learning scenario. Due to computational lim-
itations, we conducted experiments with SSL and eval-
uation solely on the VIA11 data, focusing primarily
on the adaptability of our model to diverse and unseen
datasets. Although no improvements were observed, we
note that this strategy did not substantially degrade our
results therefore such an outcome could be a result of a
poor hyper-parameters selection.

4.4. Comparison with BrainVISA

To evaluate the effectiveness of our approach
and compare it with the state-of-the-art BrainVISA’s
pipeline, we conducted several experiments using 165

VIA11 images from the held-out test set. These images
were not utilized during any stage of the pre-training or
data synthesis. We have obtained manual ground truth
CS segmentations by correcting the initial BrainVISA’s
pipeline output for them, as it was deemed necessary
during our initial quality assessment of the BrainVISA’s
results.

Figure 14 presents a comparison between our best
model that is based on VIA11 SST with the further fine-
tuning on the synthetic BrainVISA data. We see that
BrainVISA’s segmentations have a much higher Dice
score.

This substantial difference in DSC can be attributed
to two main factors. First, the manual segmentations
are essentially modifications of BrainVISA results, and
in many cases, the initial BrainVISA estimate, if suffi-
ciently accurate, was left unchanged. Second, the na-
ture of the segmentations generated by our algorithm is
characterized by thicker segmentation ribbons as can be
seen in Figure 15, which are anatomically and morpho-
logically correct but receive lower Dice scores due to
its voxel-wise intersection evaluation. However, our ap-
proach shows a statistically significant improvement in
the HD (BrainVISA’s mean 8.315 vs our model’s 7.37
with p-value < 0.005).

Considering our ultimate goal of evaluating morpho-
logical features of the CS, an essential step in their anal-
ysis is meshing and subsequent extraction of shape fea-
tures. The BrainVISA software provides built-in tools
for meshing sulci segmentations. We utilized these tools
to compute meshes for the segmentations obtained from
the BrainVISA pipeline, manually corrected segmenta-
tions, and segmentations produced by our best model.
Figure 16 displays correlation plots between the volume
and surface area calculated from these three meshes. It
is immediately apparent that the morphological features
of volume and surface area calculated from our segmen-
tations exhibit a close correlation with those calculated
from the manual segmentations.

5. Discussion and conclusions

In this study, we have presented and evaluated various
approaches for training deep learning models to perform
central sulcus segmentation. Our review of the cur-
rent state-of-the-art approaches revealed important limi-
tations in models trained on small and restricted labelled
datasets, which fail to account for the neuroanatomical
variability of cortical morphology. We have emphasized
the need for robust and automatic segmentation mod-
els and proposed novel frameworks to address this chal-
lenge. Our frameworks focus on two key ideas: efficient
utilization of limited labelled data through artificial sim-
ulation of cortical variability in synthetic images and the
creation of a pipeline for adapting the model to new sub-
ject populations through self-supervised learning of cor-
tex morphology features.
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Figure 11: DSC and HD for models with SSL based on different datasets with subsequent fine-tuning of the full encoder and decoder on both
original datasets. A statistically significant difference (p-value < 0.005) was observed when comparing No SST with the VIA SST in terms of DSC
on the VIA11 dataset.

Figure 12: DSC and HD for models without SSL and SSL on the VIA11 dataset with frozen and not frozen encoder on both datasets.
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Figure 13: DSC and HD for models trained without SSL, with VIA SSL and with multi-task VIA11 SSL and tested on the VIA11 dataset.

Figure 14: DSC and HD scores of the BrainVISA segmentations and our U-Net model trained with VIA11 SSL. Our model shows a statistically
significant decrease in the HD scores with a p-value of 0.0379 based on a two-sample T-test.

Figure 15: Segmentation examples. a) produced by BrainVISA software, b) produced by our VIA11 SST U-Net model, c) manually corrected
ground truth. Yellow arrows indicate gaps in the segmentation ribbon that can lead to holes in the resulting mesh interfering with morphological
features calculation.

26.16



SYNCS: Synthetic Data and Contrastive Self-Supervised Training for Central Sulcus Segmentation 17

Figure 16: Volume and surface area of the meshes calculated based on the manually corrected segmentation, BrainVISA’s and ours (predicted by
the VIA11 SST U-Net) plotted against each other.

5.1. Discussion of results

Firstly, we explored the use of synthetic data to train
more robust models. Our findings indicate that models
trained with synthetic data exhibit significantly lower
Hausdorff distance (HD) scores on the VIA11 dataset,
despite never being exposed to it during training. This
dataset consists of a different subject population, with
different image contrasts, and quality compared to the
training dataset. This promising result highlights the po-
tential of using synthetic data to simulate the morpho-
logical variability of cortex present in diverse subject
populations that is beneficial for sulci localization. This
approach helps address the limitations posed by small
datasets, which have historically hindered progress in
sulci segmentation research.

We tested the effectiveness of a self-supervised learn-
ing framework based on SimCLR combined with syn-
thetic data for learning unique and distinct representa-
tions of cortex morphology. Our experiments demon-
strate that our pre-training strategy for the U-Net en-
coder leads to improved DSC for the VIA11 dataset.
This shows that with this pipeline we can adapt our
segmentation model to new datasets without requiring
any labels for them, effectively transferring information
about cortex shape variability from the new dataset to
our model. Consequently, this approach shows that we
can improve the segmentation results for new cohorts by
performing SSL on just the intensity images, paving the

way to utilizing abundant unlabelled datasets that are
openly available for the training of foundation models
that better capture real-world anatomical variability of
the cortex.

Although the multi-task SSL approach did not sub-
stantially improve our results, we believe that more
careful pre-training of both the encoder and decoder
models could yield better performance. We did not ex-
tensively experiment with hyper-parameter tuning for
the multi-task framework and subsequent fine-tuning,
which could explain the lack of improvement. Addition-
ally, the substantial difference between GM segmenta-
tion and CS segmentation may have hindered the adapt-
ability of the SSL loss for CS segmentation.

Lastly, we compared our best model with the current
state-of-the-art pipeline from BrainVISA and demon-
strated comparable performance with an improvement
in the HD metric. To validate the correctness of the
morphological structures represented by these segmen-
tations, we constructed meshes based on them. The
meshes built from segmentations produced by our mod-
els have highly correlated surface area and volume mea-
sures to those obtained from manual ground truths, in-
dicating that the developed approach can be effectively
utilized for CS segmentation that can be further used for
analyzing the shape properties of the central sulcus.
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5.1.1. Limitations and future work

The objective of this study was to explore and estab-
lish a proof of concept for training robust CS segmenta-
tion models directly from intensity images, without the
need for extensive pre- or post-processing steps. We
aimed to address the challenges commonly encountered
in the medical imaging domain, including the limited
availability of labelled data and the high morphological
variability of the target structure.

However, it is important to acknowledge the limita-
tions of our work. We conducted evaluations on only
one external dataset (VIA11) in addition to the training
dataset (BrainVISA). To obtain a more comprehensive
understanding of the pipeline’s performance and robust-
ness, further evaluations on additional datasets with di-
verse population cohorts are necessary. For instance,
testing the model on datasets consisting of elderly in-
dividuals with neurodegenerative processes resulting in
substantial brain atrophy or infants and young children
with either under-developed or over-developed cortical
gyrification could provide valuable insights.

In our synthetic data generation process, we utilized
a limited set of artificial images due to storage and com-
putational constraints. To enhance the diversity of the
synthetic dataset, implementing an online generation
procedure with unlimited and unique images for each
generation could be explored. Additionally, we were
unable to extensively experiment and determine an op-
timal set of transformation parameters for the SynthSeg
Generative model. We believe that exhaustive tuning
of spatial and intensity parameters applied to the im-
ages can further increase the dataset’s diversity. More-
over, incorporating brain images without skull stripping
could improve the model’s robustness to potential arte-
facts that can occur if it is performed with errors as well
as potentially eliminate the need for this pre-processing
step.

In the SSL training stage, Chen et al. (2020) demon-
strated that large batch size leads to better performance.
Although longer training can partially mitigate the ef-
fects of smaller batch sizes, we did not specifically study
how batch size affects our SSL stage. Moreover, in the
multi-task SSL setting, we did not explore weighting
schemes for the contrastive and segmentation losses due
to time and GPU constraints, despite studies suggesting
potential benefits (Lin et al., 2021a).

Finally, we have not experimented with different DL
architectures for our base segmentation model, although
there are many new architectures based on Transformers
that show promising results in the medical image seg-
mentation field (Liu et al., 2021) as well as U-Net vari-
ations. We have chosen to use a simple and lightweight
U-Net model that made possible an extensive explo-
ration of the proposed solutions given our computa-
tional constraints.

5.2. Conclusions

Synthetic data generation and self-supervised learn-
ing are two powerful tools that can address challenges
in the development and deployment of DL models for
recognition and segmentation tasks. In this study, we
have demonstrated that by employing synthetic data
within a self-supervised learning framework that en-
ables the model to learn unique cortical morphology
representations, we can achieve results that are compa-
rable to state-of-the-art methods in central sulcus seg-
mentation. These approaches alleviate the need for
costly and error-prone pre-processing steps, allowing
the training of robust and generalizable DL models that
can be adapted to new cohorts without requiring any
ground truth labels and work efficiently even with lit-
tle available training data.
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Abstract

Advancements in 3D surface representation have been followed by tremendous achievements in computer vision
tasks such as detailed scene reconstruction and view synthesis. The potential these advancements pose in medical
imaging has been largely unexplored, primarily due to the lack of detailed organ reconstruction emphasizing surface
accuracy. The aim of this thesis is to bring the recent advancements in 3D geometric computer vision to medical
imaging by enabling detailed and accurate organ surface reconstruction. First, we explore explicit surface representa-
tion in the form of 3D surface mesh reconstruction directly from 3D CT volumes. The explicit representation requires
geometrical primitives, such as triangles in this case, for discrete representations of the surfaces. Implicit representa-
tions, on the other hand, are continuous in nature as they do not rely on geometric primitives but rather on decision
boundaries such as level-sets, and hence are not limited by resolution. Given these benefits of implicit representations,
we progress with implicit surface generation for further improvement of the reconstruction. Our contribution can be
summarized as follows: i) End-to-end implicit 3D surface generation based on occupancy values from sampled query
points; ii) Sampling technique designed to eliminate reliance on ground truth for training and testing; iii) Optimization
of implicit pipeline with the new sampling method. Our optimization of the implicit pipeline with the new sampling
method resulted in a 20-fold increase of the reported chamfer distance, with resulting predicted surface reconstruc-
tions of the liver organ having Hausdorff Distance of 3.671 ± 1.995 mm and Average Symmetric Surface Distance of
1.428 ± 0.716 mm.

Keywords: Surface Reconstruction, Implicit Representation, Mesh Reconstruction, 3D Computer Vision, Geometric
Deep Learning, Deep Learning

1. Introduction

Computer vision techniques have recently made sig-
nificant strides in capturing and analyzing 3D surface
information across diverse applications. However, their
specific application and potential impact in the medi-
cal domain necessitate further exploration and investi-
gation.

Prior works in the computer vision domain focused
on rendering objects using explicit representations,
though implicit ones have gained more favor due to their
ability to represent surfaces continuously without the
typical restraints of resolution caused by discrete rep-
resentations (Tewari et al., 2020). Explicit representa-
tions, such as point clouds, triangular meshes, or voxel
grids, require geometric primitives for the description

of geometric objects as presented in Figure 1. Implicit
representations map the object from its 3D space to a
continuous domain by defining the surface of the object
as the level-set of a function. This can be the zero-level
set for the signed-distance functions (Park et al., 2019),
or occupancy values (Mescheder et al., 2019). Due to
triangular meshes being most commonly used by ren-
dering tools, most other representations are converted
into meshes. The implicit representations are often ras-
terized into explicit representations and converted into
meshes by marching cubes for visualization.

While explicit representations were common, they
are significantly limited by memory requirements,
which increase greatly with the spatial resolution, grow-
ing cubically. Additionally, these methods do not offer
accurate representations of surfaces, requiring higher
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Figure 1: Explicit representations of voxels, mesh, and point cloud. The implicit representation of SDF is presented as the opposite of the functional
representation, hence why the distance of the object surface from a bounding box forms the heatmap values with the bounding box as the zero
level-set. Typically points inside the object are negative and outside are positive, with the magnitude increasing with the distance from the surface.
Occupancy is an implicit representation that bases the surface as the decision boundary, where points inside are assigned 1 and points outside are 0.

resolution than is practically possible in order to repre-
sent surfaces in their necessary details. This formed the
major limitation in the representation of large objects of
scenes, as sufficient detail was difficult to capture.

The use of implicit representation overcomes the lim-
itations of explicit representations and has thus revo-
lutionized the field by producing works such as neu-
ral rendering for photorealistic view synthesis of scenes
(Mildenhall et al., 2021), generalized shape reconstruc-
tion of objects and their inner structures (Chibane et al.,
2020b), high-resolution digitization of clothes humans
(Saito et al., 2019). All of these works, and more, have
the characteristic of detailed and accurate surface ren-
dering.

In this work, we aim to leverage these advancements
in computer vision within the medical field, particu-
larly for enhancing the understanding and diagnosis of
diseases through comprehensive organ surface analysis.
We focus on the explicit and implicit techniques for liver
mesh reconstruction using pre-operative CT and MRI
images, with a particular emphasis on preserving the in-
tricate details of the reconstructed organs’ surfaces.

We investigate and compare two approaches for 3D
mesh reconstruction directly from CT and MRI im-
ages in an end-to-end manner. Since most rendering
tools process meshes, our first approach is based on
Voxel2Mesh (Wickramasinghe et al., 2020), which uti-
lizes a graph-based mesh decoder network to directly
reconstruct the mesh representation from a 3D CT im-
age. The second approach involves an implicit pipeline
utilizing IF-Nets (Chibane et al., 2020a), which de-
codes the implicit surface representation using features
learned from the input image.

The explicit pipeline in its current form suffers from
a notable limitation, as it tends to produce overly
smoothed surfaces as outputs, thereby compromising
the preservation of fine surface details. This smoothing
effect can lead to the loss of critical information neces-
sary for accurate organ reconstruction, and attempting
to recover finer details can produce noisy meshes. On
the other hand, the implicit pipeline, while capable of
restoring surface details for already reconstructed ob-

jects, does not fully leverage the potential of utilizing
learned features from 3D images directly for recovering
such intricate details and instead heavily relies on prior
knowledge of the target object by taking pre-computed
binary segmentation masks as inputs.

In our research, we aim to address these limitations
by proposing ideas for both the explicit and implicit
pipelines. For the explicit pipeline, we explore tech-
niques to mitigate the issue of over-smoothing and im-
prove the preservation of surface details during the re-
construction process while suppressing the noisy arti-
facts introduced in the mesh generation process.

In the case of the implicit pipeline, we exploit its ca-
pabilities of reproducing highly detailed surfaces from
learned features by directly incorporating the informa-
tion from the 3D images into the detail recovery pro-
cess. We do so with careful optimization of the learning,
as the network is prone to over-fitting in plenty of cases
by virtue of its capabilities in learning detailed surfaces.
We also utilize rigorous pre-processing methods to en-
sure spatial alignments, which serve as an important
step in fully utilizing the abilities of the implicit feature
decoder. This enables us to produce more comprehen-
sive surface reconstruction bypassing the intermediary
step of obtaining a coarse object reconstruction for the
IF-Net to work, making the process an end-to-end one
completely trainable from scratch.

These adaptations of the explicit and implicit pipeline
for retaining more surface information during organ re-
construction offer immense potential for conducting de-
tailed surface analysis of reconstructed organs for dis-
ease diagnosis and progression assessment. One such
downstream application is the liver surface nodularity
(LSN) computation to diagnose liver cirrhosis. The di-
agnosis, in this case, is primarily invasive, requiring
biopsy for confirmation as the gold standard (Ginès
et al., 2021). Non-invasive alternatives utilizing pre-
operative CT or MRI images have emerged in recent
years, possessing the potential to replace the invasive
procedures. LSN is one such measure which provides
an indication of the degree of cirrhosis (Catania et al.,
2021; Elkassem et al., 2022; Smith et al., 2016).
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Figure 2: Semi-automated approach of computing liver surface nodu-
larity (Smith et al., 2016).

By analyzing the irregularities or abnormalities on
the outer surface of the liver, LSN can provide valuable
information for assessing the extent of cirrhosis with-
out the need for invasive interventions. Currently, the
assessment of LSN relies on manual or semi-automated
methods. These approaches, including those that em-
ploy statistical evaluation or machine learning tech-
niques Kim et al. (2020); Kotowski et al. (2023), com-
monly utilize a limited number of 2D slices for analysis.
The typical methodology begins with outlining the ex-
ternal surface of the liver on a 2D slice, which serves as
a reference for the location from which the LSN is sub-
sequently measured (Figure 2. Despite relying on the
boundary contour for quantifying LSN, these methods
often neglect to fully leverage the 3D surface informa-
tion for more comprehensive measurements. This uti-
lization of 3D surface information is constrained by the
scarcity of automated tools capable of directly recon-
structing organs from CT or MRI images while priori-
tizing the preservation of surface details.

Our main contribution therefore can be summarized
as follows:

• End-to-end implicit pipeline to provide high-
resolution organ reconstruction directly from the
3D images.

• Sampling strategy independent of the ground truth
for enforcing non-reliance of ground truth at test
time.

• We further showcase the ability of the pipeline to
generalize on images from different sources with
no predefined knowledge of the location of the tar-
get organ by making our pipeline applicable on the
diverse TotalSegmentator (Wasserthal et al., 2022)
dataset.

• Improvement of end-to-end explicit pipeline to ob-
tain detailed organ surface reconstruction.

By further elaborating on the implicit pipeline and
performing a comparative analysis with the explicit
pipeline, we aim to overcome the limitations of previous
methods and achieve more accurate and detailed organ
surface reconstructions.

2. State of the art

Most surface reconstructions in computer vision re-
volve around representations that can be categorized as
either explicit or implicit. Explicit surface representa-
tions, including voxel grids, point clouds, and meshes,
involve the discretization of the surface into distinct el-
ements with each representation having their own ad-
vantages and disadvantages. Implicit surface represen-
tations such as SDFs and occupancy functions have the
capacity to represent surfaces continuously, and have
thus gained much traction in the recent years. The sub-
sequent sections provide a detailed explanation of these
various representations and their architectures in organ
reconstruction. While extensive work exists in 3D re-
construction from single-view and multi-view 2D im-
ages (Fu et al., 2021; Han et al., 2019), we emphasize
more on 3D surface reconstruction from 3D images, in
particular use case in organ reconstruction.

2.1. Voxels
Voxelized representations are the most common dis-

crete representations found in 3D medical segmenta-
tion. In this case, the entire object is the form of 3D vox-
els occupying a 3D box grid in locations where there the
object exists. Surface representations using voxelized
outputs are not typical in medical images, as other forms
receive more preference. Typically, the resolution is a
huge constrain in these sort of representations, as accu-
rate representation of the object and its surface bound-
ary is possible with higher resolution. However, in-
creasing the resolution dramatically increased the stor-
age allocated, as well as processing of voxelized outputs
are computationally expensive.

2.2. Points
Point clouds are a representation of an object us-

ing numerous unconnected points in the 3D coordinate
space. However, sparse point clouds often lack detailed
representation, and increasing the number of points to
capture more details significantly increases the required
storage space for data. The absence of connectivity be-
tween points significantly limits the information con-
tained by point clouds, and does not allow closed sur-
face representations. Most medical imaging tasks using
point clouds focus on segmentation, with emphasis on
surface points. PC-UNet (Ye et al., 2021) utilizes Point-
Net (Qi et al., 2017) for point cloud reconstruction of
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cardiac walls and for further refinement of their segmen-
tation output. Balsiger et al. (2019); Cai et al. (2019);
Yao et al. (2020) integrate point cloud reconstruction
into their pipeline for the same purpose.

2.3. Meshes
A mesh is a representation that discretizes surfaces

or volumes in three-dimensional space (Hoppe et al.,
1993). It comprises interconnected geometric elements
called vertices, edges, and faces, which collaboratively
determine the object’s shape, topology, and character-
istics. Specifically, in a triangular mesh, these elements
form triangles, with three vertices and three edges form-
ing each triangle. The vertex positions are defined by
the 3D coordinates of the points in space, and each ver-
tex is connected to one other points by their edge. 3
such neighbouring vertices connected by their edges to
form an enclosed 2D plane, which is the triangular face.

Whole organ mesh generation from 3D CT or MRI
image in Voxel2Mesh (Wickramasinghe et al., 2020),
MeshDeformNet (Kong et al., 2021), and Vox2Cortex
(Bongratz et al., 2022) follow similar methodology. The
architectures contain 3D CNN Encoder-Decoder that
are UNet variants for feature extraction, and Graph Con-
volution Networks as the mesh decoder, based on the
initially proposed Pixel2Mesh (Wang et al., 2018) for
mesh generation from 2D RGB images. The mesh de-
coder utilizes features obtained from the CNN backbone
to deform a initial, usually spherical template mesh,
through a series of deformation blocks. This is made
possible by the treatment of the meshes as graphs where
the vertices are the nodes and the faces are the connec-
tions. Each blocks receives features from a different
resolution through spatially correlated unpooling of fea-
tures, allowing both global and local learned features to
be used. The features are extracted from both the en-
coder and the decoder of the CNNs by MeshDeformNet
and Vox2Cortex, while Voxel2Mesh only extracts de-
coder features.

Voxel2Mesh reports more generalization, while the
latter two emphasize and evaluate on one specific or-
gan for their design. One key component in the pipeline
are the use of initial meshes which are aligned in ei-
ther shape (Vox2Cortex using smoothed version of the
ground truth organ meshes), or spatially (MeshDeform-
Net spatially align their spheres first to correspond to the
organ location), which limits the scope of generalization
on different datasets.

Additionally, the loss functions used, while all have
mostly similar components, treat the mesh regulariza-
tion factors in the loss differently to suit their respec-
tive purposes. Voxel2Mesh and MeshDeformNet in-
crease the coefficients of the regularization terms to pro-
mote smoother surfaces, which generalizes on the gen-
erated meshes to the extent of eroding all surface details.
Vox2Cortex use different empirically found the coef-
ficients for each organ, reporting different optimums

for each organ. The key component reported by them
is the curvature-weighted chamfer loss, which allows
more accurate surface reconstruction by emphasizing
on the curvature of the surface. One major disadvan-
tage of meshes is that while they provide information
regarding connectivity of the surface points, they can
self-intersect, or the architectures may only allow work-
ing with limited resolution (Liao et al., 2018). Typi-
cally generation of mesh from other forms of 3D rep-
resentations use marching cubes (Lorensen and Cline,
1987), but this can induce stair-case artifacts which re-
quire postprocessing for removal, hence making direct
mesh generation a more desirable approach.

2.4. Signed Distance Functions
Signed distance functions implicitly represent the lo-

cation of a point on the surface as the zero level set, and
represent all other points with respect to the zero level
set surface (Park et al., 2019). In DeepSDF, the function
assigns a signed distance value to each point in space,
indicating its proximity to the surface by the decreas-
ing magnitude, and represents the location of the points
as either inside or outside the surface by assigning nega-
tive or positive sign, and outputs zero to represent points
exactly on the surface. The architecture takes a 3D co-
ordinate (x,y,z) as input and outputs the corresponding
signed distance value. At inference the shape’s surface
is estimated by querying the network for signed distance
values at different points in space. The continuous na-
ture of the SDF representation allows for high-quality
surface reconstruction, even in regions with complex
geometry or limited data, though DeepLS (Chabra et al.,
2020) and SIRENs (Sitzmann et al., 2020) for mesh re-
construction have further improved upon the level of de-
tails.

Works of Dangi et al. (2019); Navarro et al. (2019);
Xue et al. (2020) apply SDF generation to monitor
3D organ segmentation outputs, with reported improve-
ments compared to other widely used methods that do
not take shape into consideration. Liu et al. (2022) notes
the necessity of regularization for the SDF loss function
to work, and monitor SDF alongside region and pixel-
based loss functions for regularization. Xue et al. (2020)
reports unstable learning when solely using the L1 loss
from DeepSDF (Park et al., 2019) for the SDF regres-
sion, and thus makes further modifications for the loss
for stabilization. The architectures used in these works
are all primarily UNet-based CNNs, and differ drasti-
cally from that proposed in Park et al. (2019) for SDF
formulation. In the DeepSDF framework, at the start of
training, each data point is assigned a randomized token
as the latent vector. These latent vectors and coordi-
nates of the data points are inputs of the autodecoders.
At training time, these latent vectors along with the de-
coder weights are updated simultaneously. At inference
phase, the optimal latent vector is estimated for each
data point by the decoder.
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2.5. Occupancy Functions
Occupancy functions use deep features of query

points of a 3D object to identify if the point belongs
inside or outside the object, and is essentially a form of
binary classification first introduced for 3D reconstruc-
tion from 2D images, Point Clouds, and 3D images in
Occupancy Networks (Mescheder et al., 2019). This is
achieved in the continuous domain by feature sampling
from query point features to make predictions of the oc-
cupancy for not only the existing surface points, but also
other possible surface points around the surface, primar-
ily obtained by dense sampling of query points from the
object, either uniformly throughout the cubical bound-
ing box containing the object (Mescheder et al., 2019)
or concentrated around the surface boundary (Chibane
et al., 2020a). These sampling strategies also makes 3D
shape reconstruction at resolutions higher than the input
image possible. For 3D images, the typically architec-
ture follows a 3D CNN encoder for feature extraction
from the image, and fully-connected layers as the de-
coder for classification of the points.

In order to eliminate any level of dependency on the
location of the query points themselves and emphasize
learning from features only, IF-Nets utilized only the
features of the query points themselves to obtain their
occupancy, and excessively sample around the query
points for obtaining the features shared by those neigh-
bouring points to promote learning in the continuous do-
main (Chibane et al., 2020a).

Khan and Fang (2022); Marimont and Tarroni (2022)
both extend the use of 3D CNN encoders with Fully-
Connected implicit decoders for implicit 3D medical
image segmentation of the lung and pancreas (Mari-
mont and Tarroni, 2022) and head and neck (Khan and
Fang, 2022) respectively.

Prior method proposed by Khan and Fang (2022) re-
lies on creating bounding boxes around the target organs
for generation of query points sampled densely around
the organs. On diverse datasets such as TotalSegmen-
tator (Wasserthal et al., 2022) where all images are not
centered around the same organ, this requires careful
crafting of bounding boxes and prior knowledge of the
organ location. Marimont and Tarroni (2022) also re-
lies on the ground truth by generating sampled points
from the ground truth segmentation mask. In order to
eliminate influence of the ground truth or prior knowl-
edge in preparation of the input, we propose a sam-
pling strategy to be reliant solely on the input image
itself for query point selection to make training data in-
dependent of the ground truth. This also ensures non-
reliance on ground truth information at test time. Our
method ignores the background completely and selec-
tively samples in and around regions containing useful
information while overcoming the necessity of the lo-
cation of the organs being predefined as in (Khan and
Fang, 2022; Marimont and Tarroni, 2022). This sim-
ple change makes our method applicable on completely

unseen images at inference mode, with no existence of
ground truth or prior knowledge of the images being re-
quired for the reconstruction. It is also non-specific and
applicable to all organs visible in the image. We fur-
ther elaborate on the different methods of processing the
learned features to find the most optimal one.

3. Material and methods

3.1. Dataset

We use the TotalSegmentator (Wasserthal et al.,
2022) dataset due to its versatility as a large-scale med-
ical image dataset containing segmentation masks for
liver as well as other abdominal organs. At the time
of retrieval, 1203 usable images existed where 923 had
liver ground truth segmentation masks with content.
The 3D end-to-end pipelines require inputs to be cu-
bical, which is achieved by padding to match the di-
mension of the largest image following resampling to
uniform voxel spacing. Given the voxel spacing being
the same for all images of the TotalSegmentator dataset,
the 53 liver images having more than 500 slices along
any axis are not included in the dataset to avoid exces-
sive padding of all the other images in the preprocess-
ing. Since images are not guaranteed to be centered on
the abdomen, images containing no liver or only frag-
ments of the liver are discarded by thresholding based
on the liver quantity present. This threshold is deter-
mined by the minimum possible liver volume of 1150
mL, derived from the mean and standard deviation of
1533 mL ± 375 reported by Perez et al. (2022) and the
average of 1410 mL ± 271.28 for the CHAOS dataset
(Kavur et al., 2020). The resulting 581 CT volumes are
split into 291 for training, 116 for validation, and 174
for testing.

3.1.1. Pre-processing
Data preprocessing steps for ground truth mesh and

images are generally the same for both the explicit
and the implicit pipeline, with some minor differences.
Original 5003 resolution meshes are generated from the
padded 3D smoothed versions of the voxelized ground
truth segmentation volumes. Each of the padded im-
ages undergo intensity normalization with the image
mean and standard deviation, following which the im-
ages and voxelized ground truth segmentation volumes
are resampled to the required resolution of 1283. The
vertices of the ground truth mesh are normalized using
the original resolution for the implicit network, which is
followed by scaling of the mesh to the target resolution
of 2563. The explicit pipeline differ in that the meshes
used are generated from the surface points of the corre-
sponding 1283 voxelized ground truths after undergoing
the same data augmentation process that is applied to
the images during training. Finally, vertex normaliza-
tion is performed.
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Figure 3: Explicit pipeline for mesh deformation using Voxel2Mesh where the 3D CNN backbone is either a UNet or a R2UNet, and feature
extraction is performed from the encoder or decoder or from both and merged. Learned neighbourhood sampling is done to extract features from
the corresponding spatial locations by considering a learned neighbourhood around the corresponding vertices. Adaptive unpooling selectively
unpools and retains vertices that have been sufficiently deformed by the mesh deformation module prior to it.

3.2. Architecture
3.2.1. Explicit

The explicit pipeline used is Voxel2Mesh (Wickra-
masinghe et al., 2020) for deforming a spherical tem-
plate mesh using a graph neural network based mesh
decoder. As seen in Figure 3, features for basing the de-
formation are extracted through learned neighbourhood
sampling from a voxel encoder-decoder CNN back-
bone. The CNN backbone used in Voxel2Mesh is a tra-
ditional 3D CNN based UNet (Çiçek et al., 2016). In
Voxel2Mesh, features from the decoder part of the UNet
are spatially sampled for the respective vertices. The
3D voxel encoder and decoder and the mesh decoder all
consist of 4 blocks. Vertices are added prior to their in-
put into the mesh decoder. Unpooling of vertices occurs
following mesh deformation, and the adaptive mesh un-
pooling selectively unpools only the vertices that under-
went sufficient deformation. This degree of deformation
is based on the distance of the newly deformed vertices
from their parent edges.

The 3D CNN backbone in Figure 3 is trained jointly
in parallel with the mesh decoder. Training of the voxel
encoder-decoder is monitored using standard cross-
entropy loss based on the segmentation mask predic-
tected by the UNet backbone by comparing it with the
ground truth segmentation mask generated downsam-
pled to be of the same resolution.

LTotal = LCE+λ1 ·LCD+λ2 ·Lnorm+λ3 ·Llap+λ4 ·Ledge (1)

Training of the mesh decoder takes the quality of the
mesh into consideration as well to avoid mesh intersec-
tion and excessive deformation at early stages. In the
equation 3.2.1, LCE is the segmentation loss, and LCD

is the chamfer loss computed between all the predicted
vertices of a mesh compared with the surface points
sampled from the ground truth mesh.

The quality of the output mesh is regulated by the
regularization terms, Lnorm, Llap, and Ledge respectively,
which all contribute to smoothing and non-intersection
of the mesh, as well as suppress artifacts caused by ex-
cessive deformation of vertices during mesh generation.
Lnorm is the normal consistency loss that maintains con-
sistency between normals of neighbouring faces, and
ensured smoothness since the loss is lowest when the
faces are parallel. Llap promotes fewer self-intersections
by applying another variant of smoothing based on the
normals, and Ledge specifically works to ensure all edges
are of uniform length, and hence do not deform much
from each other. The total of all of these losses con-
tribute to the training of the entire architecture.

3.2.2. Implicit
If-Net based architectures are employed to construct

the occupancy function, representing the implicit form
of the reconstructed surface. These architectures are de-
signed to learn and infer the occupancy status of points
in three-dimensional space, enabling the implicit repre-
sentation of the surface.

The baseline architecture adopts a 3D UNet to gen-
erate a voxelized segmentation of the organ, as in order
for the IF-Nets to work, a segmentation mask is needed.
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Figure 4: A) Baseline pipeline for generating occupancy function from voxelized 3D UNet outputs. B) Implicit pipeline for occupancy generation
from CT volumes in an end-to-end manner. The feature extraction from the image is performed by a 3D CNN UNet encoder for B). These features
are sampled for the input query points and further interpolated for additional arbitrary points surrounding the query points by the feature sampling
stage in both pipelines, and the features for each corresponding point processed by fully connected layers in the IF-Net decoder to output an
occupancy value for all the query as well as the additional arbitrary points.

This voxelized object serves as the input for IF-Nets
to generate the occupancy function. The mesh genera-
tion process, performed in the inference mode, employs
marching cubes to convert the occupancy values into a
surface mesh representation.

During the training process of the 3D UNet, the goal
is to minimize the standard cross-entropy loss. This loss
is computed based on the predicted segmentation mask
value for each voxel. The network is trained to mini-
mize this loss, aiming to improve the alignment between
the predicted segmentation and the ground truth. Out-
puts of the 3D UNet are then used as input for the IF-

Nets to generate the occupancies. The pipeline hence
relies on training a 3D UNet network for the voxel seg-
mentation first, followed by training of the IF-Net after-
wards.

The IF-Nets employed in the implicit pipeline are de-
signed to process inputs of dimension 1283 and generate
higher resolution meshes of 2563. This particular net-
work architecture was introduced in the study conducted
by Chibane et al. (2020a). In the baseline approach from
Figure 4 A), the first method of sampling query points
from the ground truth mesh is utilized, and all parame-
ters follow the default settings presented in the original
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Figure 5: Sampling method for query point generation of for the implicit pipeline. 1) Points are generated from the ground truth mesh, necessitating
the presence of a ground truth and the influence of it. 2) Sampling is performed directly from the image itself while still discarding excessive
background points with an intensity threshholding designed to sample in and around the organs and tissues.

work for voxel super-resolution using inputs of resolu-
tion 1283. Training of the IF-Nets uses standard binary
cross entropy loss to measure the disparity between the
predicted occupancies and the ground truth occupancies
for the input query points. The network takes a 3D voxel
volume as input alongside the list of query points for
which to generate occupancy values for. The features
used for assigning occupancy values to the query points
is computed by the learned feature extraction operations
performed by the IF-Net encoder on the IF-Net input.
The input itself is also included in the list of features.
The encoder used here by the IF-Net is a series of 3D
convolutional operations, designed to extract features
at both the global as well as the local scale. Features
are gridsampled to obtain the relevant ones belonging
to not only the query points, but also additional arbi-
trary points surrounding the query point at a distance of
the default 0.35 in different directions. This training is
not performed end-to-end, as the UNet is trained first to
generated the 3D inputs for the IF-Nets.

The second architecture in Figure 4 B) eliminates the
step of generating voxelized segmentation masks from
the images. Instead, it directly takes the 1283 3D images
as inputs along with the query points list, and produces
occupancy values to minimize the binary cross entropy
loss between the predicted and actual occupancy values.
A standard 3D CNN UNet encoder extracts global and
local learned features from the images, and the features
spatially sampled from the grid for the query points as
well as the generated additional points are processed by
the IF-Net decoder. The IF-Nets for the selected input
resolution contain 3 fully connected convolution layers
and an output layer for prediction of the probability of

the query point belonging inside the organ as the de-
coder. This proposed architecture is trained end-to-end.

f (p) : F1(Ip) × F2(Ip) × . . . × Fn(Ip) → [0, 1] (2)

The occupancy [0,1] defined at 3.2.2 is predicted by
the deep learning network f (p) for a given point p ∈ R3

is a function of the features F1(Ip)×F2(Ip)× . . .×Fn(Ip)
extraction from the image I at query point locations p in
the image.

LBCE(y, ŷ) = − 1
b · n

b∑

i=1

n∑

j=1

(
y(i) · log (σ(ŷ(i, j)))

+(1 − y(i, j)) · log (1 − σ(ŷ(i, j)))
)

(3)

The sigma (σ) function is applied element-wise to the
predicted probabilities of the occupancy ŷ(i, j) being 1.
The outer summation iterates over the batch size (b),
while the inner summation iterates over the number of
total query points, meaning the sampled ones as well
as the arbitrary generated ones (n). The binary cross-
entropy loss is computed for each element in the batch
and query points, and then averaged over the total num-
ber of elements (b · n).

3.2.3. Sampling
Explicit.
Vertices of the ground truth meshes are sampled ac-

cording to the number specified for training.
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Implicit.
Method 1: Following the IF-Nets data preprocess-

ing, 10k points are sampled from surface of the scaled
ground truth mesh. These points are subjected to dis-
placement using distances generated from a normal dis-
tribution. The default sigma values used are 0.1 and
0.01, ensuring that the final points are positioned either
inside or outside the object and not all at the bound-
aries. Occupancy values for these points are subse-
quently generated as per the original methodology de-
scribed in IF-Nets (Chibane et al., 2020a).

Method 2: To eliminate any reliance on the ground
truth for generating input points for the IF-Nets, the
specified number of points are sampled non-uniformly
from the preprocessed images. First, only points that
do not have the background intensity value are selected.
The subsequent processing steps remain consistent with
the first method. In cases where the number of points
meeting the selection criteria is lower than the desired
number of points, all eligible points are included.

The number of iterations determines the number of
times displaced points generated from the initially se-
lected points. The final number of query points are
hence the sampled points times the number of iterations.

3.3. Experimental Setup

3.3.1. Explicit
The voxel2mesh is used as the basis for the explicit

pipeline, where default parameters available are used as
a baseline for 10k sampled points. Different factors of
the regularization term Lnorm are tested with different
feature sources. In the experimental setups, features
from the only the encoder, only the decoder, and both
the encoder-decoder are passed to the mesh decoder
phase to test the best source of 3D CNN features. Ad-
ditionally, the 3D CNN backbone is replaced with a 3D
R2UNet Alom et al. (2018) backbone for further testing
the effects of having a reportedly stronger 3D CNN with
recurrent residual convolutional blocks as a feature ex-
tractor. The number of points sampled from the ground
truth for computing the chamfer loss LCD are also var-
ied, with 3k points and 100k points being tested. The
default values of λ1=1, and λ2 = λ3 = λ4 = 0.1 are used
in the loss function in equation 3.2.1. The impact of reg-
ularization is reduced to decrease the degree of smooth-
ing induced by the original pipeline.

Evaluation on the validation set is done for every
1000 iterations, and the best model is selected based
on the the lowest chamfer distance is, with the Jaccard
Score also being computed for additional monitoring.

3.3.2. Implicit
The baseline UNet architecture with batch normal-

ization was trained first with Adam optimization and a
learning rate of 1 × 10−4. Based on the lowest valida-
tion loss, the optimum model is selected and saved. The

weights of this pretrained model are used for the frozen
layers of the UNet backbone for the baseline. The vox-
elized outputs generated by the frozen UNet backbone
are used as input for the IFNet architecture designed for
superresolution of inputs of resolution 1283 to generate
outputs of occupancy in resolution 2563.

For the end-to-end pipeline, optimization is done us-
ing different learning rates for different modules of the
architecture, as well by trying different normalization
for the 3D CNN encoder. The final learning rates are
1 × 10−4 for the 3D CNN encoder, and 1 × 10−8 for the
IF-Net decoder, with Adam optimizer. ReLU activation
was used for all layers, and max pooling with kernel
size of 2 for the encoder. All reported results were ob-
tained by training with batch size of 2. Different number
of sampled points are tested for the sampling done us-
ing method 2, while the default IFNet setting of using
10,000 sampled points is kept for points sampled from
the ground truth using method 1. The hidden dimen-
sions in the 3 fully-connected layers in the decoder are
tested, with the default of 256 as well a higher value of
512 being tried for the different number of points sam-
pled.

3.4. Evaluation

The best model for each experiment is selected based
on the performance of the model on the validation set
during training. Evaluation on the test set is carried out
afterwards using the saved checkpoints. The Jaccard
Score and Chamfer Distances are reported for the reso-
lution that the output meshes are generated. Meanwhile,
for computing the 90% Hausdorff Distance and the Av-
erage Symmetric Surface Distance, the meshes are first
converted to the original resolution by reversing all the
preprocessing performed on the ground truth meshes.
The vertices are then unnormalized and the scaling re-
versed based with the voxel spacing of 1.5 mm being
taken into context. This is to ensure the computed HD
and ASSD are in mm.

4. Results

The quantitative and qualitative results of the differ-
ent pipelines tested and outlined in the previous sec-
tions are illustrated below. Typical time taken for the
explicit models to train at the resolution reported is 1-2
weeks (longer for R2UNet) on NVIDIA® V100 GPUs,
and 2-3 days for the implicit pipeline on NVIDIA®
GeForce RTX 3080. Table 1 reports the results of
the explicit pipeline, and Table 2 the evaluated re-
sults of the implicit pipeline. For the explicit pipeline,
the lowest HD, ASSD, and IOU was for the R2UNet
3D CNN backbone, with a lowered regularization of
λ2 = 0.001 for minimizing output mesh smoothing.
The lowerst CD however, was reported by the original
voxel2mesh pipeline. Based on the other scores of HD

27.9



3D End-to-End Mesh Reconstruction from Pre-Operative CT 10

8.477±13.998, ASSD 4.031±5.097, and IOU 88.92, the
explicit pipeline with R2UNet backbone, lower regular-
ization, and the decoder as the feature source is selected
for comparison with the implicit pipeline.

Additional qualitative comparison of the use of only
decoder features versus using both encoder and decoder
features are displayed in Figure 6. The original pipeline
exhibits overall smooth meshes, while the other two
pipelines with low regularization capture more surface
details similar to the ground truth. The chamfer distance
is better for some images in the different pipelines, with
visible artifacts remaining for the image in the first row
for both.

Figure 7 showcases the outputs of 3 images for the
original voxel2mesh pipeline, the pipeline with decoder
features and low regularization, and the pipeline where
the backbone was replaced with a R2UNet. Whole
the average HD, ASSD, and IOU are improved for the
R2UNet and artifacts were resolved for the first image,
the HD are lower for the other two images.

The end-to-end implicit pipeline performed better
based on initial experimentations following the opti-
mization, and further trials to obtain the best number of
sampled points and decoder hidden dimensions resulted
in HD of 3.671±1.995, ASSD 1.428±0.716, IOU 86.15,
and CD of 0.0451×10−3. This was obtained for sampled
points of 20k with the image as the source of the sam-
pling, and hidden dimensions of 512 for the decoder.

Visually, the end-to-end pipeline performance is
compared to the baseline in Figure 8, where the pre-
dicted mesh b) follows the UNet output a). In the end-
to-end pipeline, the predicted mesh c) has a shape more
similar to the ground truth d), with none of the staircase
effects of the base pipeline, and with the lower length of
the liver being captured more.

Qualitative and quantitative results of the results of
optimization are illustrated in Figure 9, where all the ar-
chitectures managed to capture the liver in details, but
some contained major artifacts. Reducing the decoder
learning rate 100 fold removed most of the artifacts, and
the consequent changes of switching from instance nor-
malization to batch normalization for the 3D CNN en-
coder, and then sampling points from the images, all
decreased the artifacts further to improve the reported
metrics.

Overall, the HD and ASSD which are reported on
the same scale of mm are much lower for the implicit
pipelines where sampling is done from the images. In
comparison, the CD, HD, and reported ASSD are much
higher for the best explicit pipeline. Figure 10 and Fig-
ure 11 report the HD of 6 images (3 with comparatively
better HD and 3 with worse HD) for the best explicit and
implicit pipelines. Not much difference is evident visu-
ally for the predicted meshes of both pipelines, but the
difference is drastic for more difficult images that have
higher HD for both pipelines. Huge artifacts, indicated
by arrows, exist in some of the meshes predicted by the

explicit pipeline as seen for images Figure 11 iv) and 11
v), while some parts are some chunks are missing or not
captured as seen for image 11 vi).

5. Discussion

Based on the comparisons outlined in section 4, the
implicit pipeline outperformed the explicit pipeline after
optimization. The explicit pipeline produced major ar-
tifacts in the mesh generation even for the best pipeline
using the R2UNet, and this was completely resolved us-
ing the implicit network.

From Table 1, using decoder versus encoder+decoder
features did not produce a major difference in HD,
ASSD, and IOU as observed when comparing the re-
sults in row 2 with 3, 5 with 6, and 10 with 11. The
most drastic improvement was with the reduction of the
λ2 from 0.1 to 0.001, which was followed by drastic
improvements in the HD, ASSD, and IOU as seen in
all the rows with 0.001 for λ2. This was made certain
by the R2UNet having an improvement of the IOU in-
creasing to 88.92 compared to the 84.58. The CD metric
in comparison is not consistent with the improvements
reported by the other metrics, since it is lowest for the
baseline despite all the other quantitative metrics being
among the worst 3. This makes the metric unreliable in
selecting the final pipeline, as the metric appears to re-
ward generic smoothing of meshes more heavily, and is
also why the pipeline with the smoothed mesh has some
of the lowest standard deviation in the HD and ASSD.

While further improvements might have resulted with
testing different factors of the regularization term, this
is not optimal as too many regularization terms exist for
the explicit pipeline where direct meshes are produced.
Comparatively, the learning of the implicit pipeline is
far simpler, as the point-based approach mean that only
binary cross entropy loss is sufficient to monitor the pre-
dicted occupancy.

The major advantage of the architecture and learn-
ing being simpler for the implicit pipeline mean easier
optimization, as not many hyperparameters need to be
fine-tuned for the optimum model to be discovered.

The baseline where the UNet is trained beforehand is
not optimized further, as Figure 8 makes it evident that
the output occupancy is overly reliant on the effective-
ness of the UNet, making the IFNet ineffective in this
context. The end-to-end pipeline is far more effective as
it is not limited by the UNet output, and also has direct
access to the features generated from the images while
also being trainable in one single step.

The fully-connected decoder of the implicit pipeline
has a tendency to overfit and produce artifacts. This
is mitigated by tuning the learning rate, with further
changes to make the model more generalizable, improv-
ing results further. The normalization to be selected was
of importance, as artifacts existed for both layer and
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Input Samples Features λ2 3D CNN HD ASSD IOU CD
1283 10k Encoder 0.1 UNet 13.830±11.048 5.828±3.704 80.94 1.136
1283 10k Decoder 0.1 UNet 12.189±10.711 5.355±1.985 83.29 0.660
1283 10k Encoder+Decoder 0.1 UNet 12.746±16.162 5.441±6.892 83.15 1.657
1283 10k Encoder 0.001 UNet 12.014±13.917 4.916±3.910 83.69 0.933
1283 10k Decoder 0.001 UNet 9.351±11.645 4.421±4.426 86.55 0.809
1283 10k Encoder+Decoder 0.001 UNet 9.429±10.367 4.456±4.183 87.02 0.796
1283 3k Encoder+Decoder 0.001 UNet 10.798±14.252 5.008±5.227 86.47 1.128
1283 100k Encoder+Decoder 0.001 UNet 9.050±12.395 4.612±5.187 87.45 0.964
1283 10k Decoder 0.1 R2UNet 11.393±15.018 4.921±5.405 84.58 1.214
1283 10k Decoder 0.001 R2UNet 8.477±13.998 4.031±5.097 88.92 0.972
1283 10k Encoder+Decoder 0.001 R2UNet 9.110±17.267 4.137±6.130 88.20 1.285

Table 1: Hausdorff Distance (HD), Average Symmetric Surface Distance (ASSD), Jaccard Score (IOU), and Chamfer Distance (CD) of the explicit
pipeline. 90% HD and ASSD reported in mm, and CD in x10−3. CD is computed between the sampled ground truth vertices and all of the predicted
vertices.

Figure 6: First column from the left indicates high resolution ground truth mesh for several liver examples, with the output of the original
voxel2mesh pipeline illustrated in the second column. Results of different feature sources from the 3D UNet backbone (only the decoder ver-
sus features from both encoder+decoder) with reduced weightage of normal loss and hence lower impact of regularization factors in the loss
function shown in the rightmost two columns. Corresponding chamfer distances computed with respect to the ground truth mesh for the outputs of
three pipelines being compared are included in the top.

instance normalization, and these were resolved when
we switched to batch normalization. Aside from that
leading to the greatest improvement in all the metrics,
sampling query points from the image improved the HD
from 12.473 to 4.198, and the CD almost 20 fold as it
decreased from 1.685×10−3 to 0.0731×10−3 as seen in
Table 2.

We hypothesize this 20-fold improvement in the CD
and the remarkable improvements in HD and ASSD due
to the alternate sampling method. This could be at-

tributed to the importance of features learned from in-
formative regions, meaning other organs, outside of the
target organ in the classification of these outside points
to the negative class. We also hypothesize that when
the 3D representation of the object already exists, the
features extracted by all points inside the object are not
that different from each other. However, for a 3D im-
age itself that has the object in a scene surrounded by
other objects and a background, the features may ap-
pear similar to features extracted from the other objects
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Figure 7: Comparison of hausdorff distance for the original explicit pipeline compared to the pipeline with a lower regularization term in the loss
function. Last column to the right indicates the same low regularized pipeline with a R2UNet replacing the backbone 3D CNN voxel architecture.

Network Sample Sample
Source

Encoder
Normalization

Decoder
Hidden

Dimensions
HD ASSD IOU CD

Baseline 10k GT - 256 - - 75.01 2.120
End-to-End 10k GT Layer 256 266.580±15.012 105.036±3.359 02.20 164.86
End-to-End 10k GT Instance 256 61.113±79.626 11.527±17.307 82.50 12.609
End-to-End 10k GT Batch 256 12.473±35.881 2.873±5.815 85.31 1.685
End-to-End 10k Image Batch 256 4.198±6.129 1.557±0.935 85.16 0.0731
End-to-End 20k Image Batch 256 3.927±2.887 1.491±0.796 85.35 0.0478
End-to-End 30k Image Batch 256 4.266±6.453 1.568±1.531 85.22 0.0831
End-to-End 10k Image Batch 512 4.070±5.337 1.512±0.806 85.52 0.0656
End-to-End 20k Image Batch 512 3.671±1.995 1.428±0.716 86.15 0.0451
End-to-End 30k Image Batch 512 3.810±3.024 1.442±0.858 85.78 0.0508

Table 2: Results of the implicit pipeline, with 90% Hausdorff Distance and Average Symmetric Surface Distance reported in mm, and Chamfer
Distance in CD x10-3. HD and ASSD not computed for the baseline. Sample source indicates GT for high resolution ground truth mesh, and Image
for the input 3D CT volumes.

(other abdominal organs with similar tissue construc-
tion in this case), and might be why training is aided by
learning of points from surrounding objects and their
features. It might also be why careful optimization of
training is necessary to ensure learning focuses on cor-
rectly identifying the points based on the features and to
remove the large amount of artifacts that result.

Further, as the entire image is sampled, increasing
the number of points samples from 10k to 20k im-
proved all the reported metrics further. Further increas-
ing the points did not result in improvement, likely due
to points repeating too often. While increasing the hid-
den dimensions of the decoder from 256 to 512 didn’t

result in any drastic changes in the metrics, the improve-
ment that resulted was still consistent for all metrics,
with the lowest standard deviation also being reported
for the HD and ASSD with this combination of param-
eters, indicating a great degree of consistency between
the results generated by the network. This makes the
implicit pipeline more reliable, as the results of the ex-
plicit pipeline were not consistent for all images, since
despite improvements in the metrics, artifacts remained
and the metrics varied and the standard deviation of the
HD and ASSD were large.

27.12



3D End-to-End Mesh Reconstruction from Pre-Operative CT 13

Figure 8: Visual results comparing the baseline and the proposed implicit pipeline. In the figure above, a) is 3D UNet output trained beforehand
to generate voxelized segmentation results, b) is the output of the IFNet applied to a), c) is the result of the proposed end-to-end pipeline where
generation of a prior voxel segmentation mask is forgone, and d) is the ground truth mesh volume for the corresponding results. As is evident from
a) and b), the output of the IF-Net follows the UNet output very closely for the baseline, while the result of the end-to-end pipeline c) remains more
truthful to the ground truth d) based on the presence of the structure on the lower side of the liver. Fewer artifacts are generated from the whole
image is used as an input in c), compared to the visibly excessive amount of staircase effects induced in the baseline b) where the IFNet encoder
performs feature extraction operations on the UNet output.

Figure 9: The resulting outputs of different optimization stages.
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Figure 10: Different views of the ground truth mesh and explicit predicted and implicit predicted mesh of 3 images i, ii, and iii.

6. Conclusions

In this work we perform a comprehensive study to
compare the benefits of explicit and implicit pipelines
for 3D surface reconstruction of the liver, and further
propose and optimize an implicit pipeline to output
occupancy values from 3D CT images in and end-to-
end manner. Our implicit pipeline with the proposed
sampling outperforms the explicit and baseline implicit
pipelines in all aspects, and exhibit great consistency in

the surface reconstructions. Artifacts produced for dif-
ficult images by the explicit pipeline are not produced
by the implicit pipeline, and training is simpler with
less time being taken by the implicit pipeline, with no
template initialization being required for the implicit
pipeline. Further analysis of the different methods of
combining features extracted from the 3D CT image us-
ing 3D CNNs with the implicit decoder will be the focus
of future work, in addition to extension of the applica-
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Figure 11: Different views of the ground truth mesh and explicit predicted and implicit predicted mesh of 3 images iv, v, and vi highlighting the
differences for difficult images as indicated by the arrows.

tion of the pipeline to other organs.
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