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Editorial

Computer aided applications for early detection and diagnosis, histopathological image
analysis, treatment planning and monitoring, as well as robotised and guided surgery will
positively impact health care during the new few years. The scientific community needs
of prepared entrepreneurships with a proper ground to tackle these topics. The Joint
Master Degree in Medical Imaging and Applications (MAIA) was born with the aim to
fill this gap, offering highly skilled professionals with a depth knowledge on computer
science, artificial intelligence, computer vision, medical robotics, and transversal topics.

The MAIA master is a two-years joint master degree (120 ECTS) between the Uni-
versité de Bourgogne (uB, France), the Università degli studi di Cassino e del Lazio
Meridionale (UNICLAM, Italy), and the Universitat de Girona (UdG, Spain), being the
latter the coordinating institution. The program is supported by associate partners,
that help in the sustainability of the program, not necessarily in economical terms, but
in contributing in the design of the master, offering master thesis or internships, and
expanding the visibility of the master. Moreover, the program is recognised by the Eu-
ropean Commission for its academic excellence and is included in the list of Erasmus
Mundus Joint Master Degrees under the Erasmus+ programme.

This document shows the outcome of the master tesis research developed by the
MAIA students during the last semester, where they put their learnt knowledge in prac-
tice for solving different problems related with medical imaging. This include fully
automatic anatomical structures segmentation, abnormality detection algorithms in dif-
ferent imaging modalities, biomechanical modelling, development of applications to be
clinically usable, or practical components for integration into clinical workflows. We
sincerely think that this document aims at further enhancing the dissemination of infor-
mation about the quality of the master and may be of interest to the scientific community
and foster networking opportunities amongst MAIA partners.

We finally want to thank and congratulate all the students for their effort done during
this last semester of the Joint Master Degree in Medical Imaging and Applications.

MAIA Master Academic and Administrative Board
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Luisana Álvareza,b, Sergi Valverdea, Xavier Lladób
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Abstract

Multiple sclerosis (MS) is a chronic autoimmune disease that represents the most common cause of non-traumatic
disability in young adults. Accurate detection of MS lesions from magnetic resonance imaging plays a crucial role
in clinical practice, from initial diagnosis to disease prognosis and treatment evaluation. Recent advancements in
deep learning-based automatic MS lesion segmentation have shown promising results. However, these models often
suffer from limited generalizability when applied to data with domain shifts, such as variations in image acquisition
protocols, scanner, contrast, noise level or magnetic field strength. Transfer learning techniques offer a potential
solution by leveraging knowledge from a source domain to adapt the model to a new target domain. While being
successful in achieving target domain adaptation, transfer learning can lead to catastrophic forgetting, resulting in a
significant performance drop on the source domain. Continuous learning aims to address this issue by enabling the
model to retain knowledge from previous domains while adapting to new ones.

This work investigated the potential of continuous learning techniques, more specifically focusing on Elastic Weight
Consolidation (EWC), to mitigate catastrophic forgetting in the context of domain-incremental learning for MS lesion
segmentation. It further explored the application of EWC in a few-shot domain adaptation setting to analyze the
potential for reducing the number of target domain images required for successful adaptation while preserving source
domain knowledge. To evaluate the proposed approaches, several public international and in-house datasets were
employed. The results demonstrated the effectiveness of EWC in mitigating catastrophic forgetting in both full-
training and few-shot scenarios, enabling proper adaptation to the target domain. Additionally, EWC eliminated the
need for source domain images during target domain training, addressing storage requirements and potential privacy
concerns associated with medical data.

Keywords: Multiple sclerosis, lesion segmentation, continuous learning, transfer learning, catastrophic forgetting

1. Introduction

Multiple sclerosis (MS) is a chronic autoimmune and
degenerative disease that affects the central nervous sys-
tem, characterized by areas of inflammation, demyeli-
nation and chronic clerotic plaques (lesions), mainly in
the white matter tissue (Compston and Coles, 2008). It
is the most common cause of non-traumatic disability
among young adults. MS is a very prevalent disease,
reaching 2.9 million diagnosed patients in 2023, which
means a prevalence of 36 per 100.000 people around
the world. It is more common among women (69%)
than among men (31%), and several studies have shown
a higher prevalence in regions further from the equa-

tor, probably linked to lower vitamin D levels (Multiple
Sclerosis International Federation, 2021).

Magnetic resonance imaging (MRI) is one of the
main tools for diagnosis and follow-up of MS. MRI
scans can provide quantitative information such as the
number and volume of lesions, brain atrophy, as well as
the appearance of new lesions in follow-up scans of the
same patient. This quantitative analysis allows the as-
sessment of disease progression and evaluation of ther-
apies (Lladó et al., 2012). McDonald criteria (Filippi
et al., 2022) states that MRI scans should show evi-
dence of damage in at least two separate areas of the
central nervous system, including brain, spinal cord and

1.1



Mitigating Catastrophic Forgetting for MS Lesion Segmentation using Elastic Weight Consolidation 2

optic nerves (dissemination in space) and at different
points in time (dissemination in time) in order to di-
agnose a patient with MS. Several MRI sequences are
used in the context of MS, such as T2-weighted (T2w),
T1-weighted (T1w) or fluid-attenuated inversion recov-
ery (FLAIR), sometimes together with Gadolinium en-
hancement. As illustrated in Figure 1, MS lesions can
be seen as areas of low signal intensity in T1w images
or hyperintensity areas in T2w or FLAIR images. T2w
sequences can be used to detect MS lesions, but they
present the major drawback of having similar intensities
between lesions and cerebrospinal fluid. On the other
hand, FLAIR images provide better discrimination be-
tween lesions and healthy tissues, while T1w scans pro-
vide the best contrast between different tissues.

Since a quantitative analysis of the lesions is key to
assess the progression of the disease and evaluate dif-
ferent treatment options, segmentation of lesions be-
comes an important tool in clinical practice. This can
be achieved manually, but this is not only time consum-
ing and tedious, but it is also affected by intra-observer
and inter-observer variability (Zeng et al., 2020). On the
other hand, automatic segmentation is not trivial. Some
of the main challenges are the changes in shape, loca-
tion and volume of lesions across patients, the presence
of artifacts or the low resolution of MRI scans, the in-
tensity distribution overlap between healthy tissue and
lesions or the high imbalance between the volume of
the plaques and healthy tissue.

Many different automatic segmentation methods have
been developed, and the focus on the recent years has
been on deep learning approaches, in particular, Con-
volutional Neural Networks (CNNs). To further ad-
vance the field and objectively compare different tech-
niques, several public challenges have been organized,
providing benchmark datasets and evaluation metrics.
These challenges include the MICCAI 2016 MS Lesion
Segmentation Challenge (Commowick et al., 2018), the
MICCAI 2021 Challenge focusing on newly appearing
lesions (Commowick et al., 2021), the White Matter
Hyperintensity MICCAI 2017 Challenge (Kuijf et al.,
2019) and the Shifts Challenge 2023 on MS lesion seg-
mentation simulating domain shifts scenarios (Malinin
et al., 2022).

One of the main drawbacks of deep learning mod-
els is their lack of adaptability (Pianykh et al., 2020)
when tested on data that differs from the one they were
trained on (see Figure 2 (a)). This phenomenon, known
as domain shift, occurs when the statistical distribution
of the inference data (data the model is applied to) dif-
fers from the source data (data the model was trained
on) (Guan and Liu, 2022). This becomes very impor-
tant in medical imaging, where variations in image ac-
quisition, scanner, contrast, noise level, magnetic field
strength (1.5T vs. 3T) or presence of bias field (inten-
sity inhomogeneity) usually lead to poor generalization
capabilities (Valverde et al., 2019).

Figure 1: Variations in MS lesion appearance across MRI modalities.
Arrows point to example lesions to illustrate the differences in con-
trast. MRI scans of an MS patient in four modalities: (a) FLAIR, (b)
T1-weighted (T1w), (c) T2-weighted (T2w), and (d) Proton Density
(PD). Data source: Shifts Challenge 2023 (Malinin et al., 2022).

Transfer learning (TL) emerges as a possible solution
to the above mentioned problem, by using the knowl-
edge gained in solving a specific problem to improve
the performance on a target task with a different under-
lying data distribution (Karimi et al., 2021). It is widely
adopted in the medical domain to adapt a model to a new
dataset, specially if there is limited available data. How-
ever, the main focus of TL is to leverage prior knowl-
edge, rather than retaining it, leading to an abrupt loss in
performance in the source dataset once the model is re-
trained on the target dataset (Pianykh et al., 2020). This
phenomenon is known as catastrophic forgetting (see
Figure 2 (b)). Continuous learning (CL) arises as a solu-
tion to this issue, with the objective of retaining knowl-
edge from previous tasks while adapting to new tasks.
Therefore, it can be stated that, while TL only focuses
on the target domain, CL focuses both on the source
and target domains (Kumari et al., 2024). In essence,
CL aims to continuously expand the model’s capacity
in an incremental way, allowing it to learn and integrate
new information without forgetting past knowledge (see
Figure 2 (c)). CL comes with different variants, such as
task incremental learning (Baweja et al. 2018, Kausta-
ban et al. 2022), class incremental learning (Ozdemir
et al. 2018, Liu et al. 2022) or domain incremental learn-
ing (Karani et al. 2018, van Garderen et al. 2019). The
ability to continuously learn and solve new tasks with-
out catastrophic forgetting makes CL a highly desirable
approach in various deep learning applications. Given
its potential to overcome limitations of current models
and enable real-world applications that require knowl-
edge preservation, CL is currently a hot topic in the deep
learning research field.
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Figure 2: Schematic representation of the problems faced in this work.
(a) Baseline models fail to generalize to unseen data with different
distributions (domain shift) . (b) TL effectively adapts the model to the
target domain, but at the cost of catastrophic forgetting of the source
domain. (c) CL aims to mitigate catastrophic forgetting while still
allowing the model to adapt to the target domain.

1.1. Objectives and contributions

The main objective of this work is to study the do-
main shift problem in MS lesion segmentation using
deep learning models, incorporating CL strategies to
tackle the catastrophic forgetting issue present in deep
learning models and TL strategies. To this end, a deep
learning model using 3D patches is developed for MS
lesion segmentation. A simple U-Net architecture is
chosen in order to clearly understand the impact of TL
and CL techniques and to avoid architectural complex-
ities influencing this evaluation. The performance of
this baseline model is evaluated on in-domain and out-
domain images from both public (White Matter Hyper-
intensity Challenge 2017 (Kuijf et al., 2019) and Shifts
Challenge 2023 (Malinin et al., 2022)) and in-house

(Vall d’Hebron Hospital in Barcelona, Spain) datasets,
to assess the severity of the domain shift problem.

To improve generalizability, TL is employed as a do-
main adaptation technique. Different experiments are
conducted to understand the effect of unfreezing dif-
ferent sections of the encoder and the encoder of net-
work. Moreover, one-shot and few-shot domain adap-
tation approaches are explored, due to their potential to
improve generalizability with minimal data from the tar-
get domain. This is particularly advantageous in med-
ical imaging where acquiring large amounts of labeled
data can be expensive and time-consuming.

Finally, in order to alleviate catastrophic forgetting
in the source domain, different regularization-based CL
approaches are studied. These techniques show success-
ful results in preserving previously acquired knowledge
while effectively learning on the new domain, in both
full-training and few-shot domain adaptation scenarios.
Notably, this is achieved without requiring the source
domain data to be present during training. This over-
comes a major limitation of traditional adaptation tech-
niques, which often need access to the original data for
retraining.

2. Related work

2.1. MS lesions segmentation
The first proposals for MS lesion segmentation relied

on traditional techniques. Some of them were based on
segmenting brain tissues and detected lesions as outliers
that were not well explained by a statistical model such
as expectation-maximization (Van Leemput et al. 2001,
Roura et al. 2015). Some other approaches, were based
on directly detecting lesions based on their properties
in the images, for example, by training a classifier like
K-Nearest Neighbors using the image intensities and
manual segmentations (Petronella et al., 2005). How-
ever, the emergence of deep learning has significantly
advanced the field of MS lesions segmentation, thanks
to the ability of these models to learn complex patterns
without the need of explicit feature engineering. The
superior performance and robustness of deep learning
methods compared to traditional approaches have led to
a significant shift in research focus towards deep learn-
ing for MS lesion segmentation.

Early attempts at deep learning for MS lesions seg-
mentation often relied on architectures composed by a
series of convolutional layers for feature extraction fol-
lowed by fully-connected layers for pixel-based clas-
sification (Valverde et al. 2017). Even though these
approaches achieved successful results, they tended to
lose spatial context. Nowadays, to address this limi-
tation, the main focus of research is on U-Net-shaped
architectures, that incorporate skip connections linking
the feature maps from the encoder to the decoder in
order to preserve spatial information. Due to the suc-
cess of U-Net models in this task (Ronneberger et al.,
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2015), most of the recent work has been focused on
variations of this architecture, such as the incorpora-
tion of attention mechanisms (hu et al. 2020, Hashemi
et al. 2022, Gamal et al. 2023), the creation of multiple
branches to handle feature extraction separately for each
modality (Aslani et al., 2019), the substitution of the
U-Net encoder with a pre-trained network like VGG19
(Krishnamoorthy et al., 2022) or the addition of pre-
activation residual blocks (Ashtari et al., 2022). Some
other authors opted for keeping the U-Net original ar-
chitecture but proposing novel techniques like a lesion-
specific loss function (Zhang et al., 2021) or sequence
dropout (Feng et al., 2019). Finally, the nnU-Net frame-
work (Isensee et al., 2021) has emerged as a standard for
medical image segmentation challenges due to its abil-
ity to achieve high performance with minimal user in-
tervention. nnU-Net leveraged the U-Net architecture’s
strengths by incorporating self-adaptation capabilities,
allowing the model to automatically configure its pa-
rameters based on the specific input dataset, reducing
the need for extensive manual tuning.

Regarding how data is fed into network, the gen-
eral tendency in MS lesions segmentation is to work
with patches instead of full volumes. Authors have pro-
posed different strategies, including 2D (Krishnamoor-
thy et al., 2022), 2.5D (Zhang et al., 2019) and 3D ap-
proaches (Valverde et al., 2017). The current trend is
to employ 3D approaches, due to their ability to capture
spatial context more effectively. Furthermore, the se-
lection of the imaging modality is also diverse. FLAIR
is the principal modality used nowadays for automatic
MS segmentation, becoming a standard in MS imaging
protocols. This is due to the good contrast this modality
offers between lesions and healthy brain tissue. Even
though it can be used together with other modalities
such as T1w, T2w, or PD, recent automatic approaches
have been mainly focused on using only FLAIR for au-
tomatic segmentation.

2.2. Transfer learning for domain adaptation

TL is widely used in the medical domain in order to
take advantage of pretrained networks in cases of lim-
ited labeled data, a common scenario in medical imag-
ing segmentation applications. Ghafoorian et al. (2017)
analysed the effect of the training set size and the num-
ber of unfreezed layers when performing TL for domain
adaptation applied to MS lesion segmentation.Valverde
et al. (2019) also studied the impact of the amount of
unfreezed parameters but in one-shot domain adapta-
tion scenarios, assessing how did the lesion load of the
chosen subject impact in the TL results. Unsupervised
approaches have also been proposed for MS lesions seg-
mentation. This is the case of the work of Kushibar
et al. (2021) in which a transductive TL approach was
proposed, aiming to align the feature distribution of the
source and target domains. The convolutional and fully

connected layers were forced to produce similar acti-
vation maps by minimising the histogram distribution
differences.

Nevertheless, what all the previous works had in
common was that they employed architectures with con-
volutional layers for feature extraction followed by fully
connected layers rather than U-Net shaped networks.
Existing literature investigating optimal approaches for
TL with U-Net shaped architectures is limited, particu-
larly regarding the selection of layers to unfreeze dur-
ing training. Shirokikh et al. (2020) conducted differ-
ent experiments with the U-Net architecture, compar-
ing the results of unfreezing layers on the encoder, the
decoder and the full network for domain adaptation in
brain structures segmentation. They concluded that en-
coder layers contain more domain specific information
than decoder layers, being a best choice in domain adap-
tation problems. However, this area of research has not
been extensively studied and represents an opportunity
for further exploration in the field of MS lesion segmen-
tation.

2.3. Continuous learning
CL scenarios can be categorized according to the dif-

ferences between the source and target datasets (Kumari
et al., 2024):

• Data-incremental or instance incremental sce-
nario if the data comes from the same data dis-
tribution. It is the least challenging among all sce-
narios (Ravishankar et al. 2019, Kaustaban et al.
2022).

• Class-incremental scenario if the goal is to adapt
the model to incorporate new classes (Ozdemir
et al. 2018, Liu et al. 2022).

• Task-incremental scenario if each episode has a
disjoint label space, meaning it would be evalu-
ated only on the current episode data (Baweja et al.
2018, Kaustaban et al. 2022).

• Domain-incremental scenario if the shifts of the
data are due to different domains (different imag-
ing modality, acquisition protocols, scanners, con-
trast agents...). It is one of the most common sce-
narios in medical imaging (Karani et al. 2018, van
Garderen et al. 2019).

Moreover, the are several different CL strategies
to prevent catastrophic forgetting when learning new
tasks:

• Rehearsal-based approaches store previous
tasks’ data in a small memory buffer to be used
while training on new tasks. The stored data can
be the original images (experience-replay based)
(Perkonigg et al., 2021), deep features (latent
replay-based) (Srivastava et al., 2021) or generated
pseudo samples (generative replay-based) (Li
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et al., 2023) and can be selected via different
heuristics. These kind of approaches can violate
privacy concerns, specially when storing the
original images, which is a problem when dealing
with medical data, and usually have high memory
requirements.

• Regularization-based methods aim to control
weight update within the training of the model
to minimize forgetting the previous learning, ei-
ther through knowledge distillation from a teacher
model to a student model (data-focused regular-
ization) (Li and Hoiem, 2018) or by penaliz-
ing large changes on important parameters for
previous tasks (prior-focused regularization) (van
Garderen et al., 2019).

• Architectural-based methods assign to each task
a set of parameters, either by fixing the architec-
ture (limited by the network’s capacity) (Bayasi
et al., 2021) or dynamically extending the network
(increasing memory requirements with each new
task) (Yan et al., 2021).

Depending on the level of supervision, CL methods
can be classified into task aware or task agnostic de-
pending on if they require or not information about
which task the samples belong to. Moreover, new tasks
can be introduced in a rigid from (abrupt change from
one episode to another) or in a non-rigid way, by inter-
leaving samples of the previous and current task or by
gradually increasing the amount of new data while de-
creasing the amount of old data.

From now on, the focus will be on regularization-
based CL methods. This choice was motivated by sev-
eral key advantages. Firstly, unlike rehearsal-based
methods, they do not require storing data from previ-
ous tasks during training on new tasks. This eliminates
potential privacy concerns associated storing with med-
ical images and reduces memory requirements. Sec-
ondly, they avoid the substantial memory overhead in-
curred by some architectural-based methods that dy-
namically expand the network for each new task. Fi-
nally, they offer more flexibility compared to strictly as-
signing network parts to each task in other architectural
approaches. Within the realm of regularization-based
methods, a particular focus is placed on prior-focused
approaches, since data-focused methods require an ad-
ditional model for the new task (student model) to per-
form knowledge distillation from the previous task’s
model (teacher model). Prior-focused methods, on the
other hand, leverage information about the model’s pre-
vious state directly, making them more lightweight and
efficient.

One of the most well-known prior-based regulariza-
tion methods is Elastic Weight Consolidation (EWC),
proposed by Kirkpatrick et al. (2017) for supervised im-
age classification tasks and reinforcement learning sce-
narios for video games. This method aimed to emulate

synaptic consolidation of human brains to reduce catas-
trophic forgetting by adding a penalty term in the loss
function that slowed down learning on specific weights
that were important for previous tasks. The importance
of each weight was computed based on an approxima-
tion of the Fisher information matrix of the outputs of
the network for the previous tasks data. EWC has been
adapted to different medical tasks. For instance, van
Garderen et al. (2019) applied it for a glioma segmen-
tation problem, in order to perform TL from a pub-
lic dataset containing low and high-grade glioma to an
in-house dataset containing non-enhancing low-grade
glioma. Another example is the work of Baweja et al.
(2018), who used EWC to learn sequentially two dif-
ferent tasks: first, brain tissue segmentation and then,
white matter lesions segmentation. Finally, Chen and
Tang (2022) developed a CL pipeline with EWC penalty
for breast tumor classification in two different scenarios
(class-incremental and instance-incremental).

Memory Aware Synapses (MAS) was proposed by
Aljundi et al. (2018) as a regularization-based CL
method, and was also based on the idea of keeping
important parameters learnt for previous tasks. It dif-
fered from EWC in how the importance of the param-
eters was computed. In this case, it was based on the
gradients of the squared l2 norm of the learned func-
tion output. This approach was adapted for domain-
incremental CL for brain segmentation by Özgün et al.
(2020), who also proposed an alternative regularization
approach, employing the importance of parameters to
define parameter-specific learning rate to protect perfor-
mance on previous tasks, instead of applying the regu-
larization as an extra loss term. Moreover, they pro-
posed a pruning strategy by freezing important parame-
ters during training on new tasks.

Zhang et al. (2023) developed a regularization
method that, as in EWC and MAS strategies, penalized
changes on parameters that were important for previ-
ous tasks. However, this method differentiated itself by
focusing on parameters sensitive to shape and seman-
tic features, aiming to specifically retain such knowl-
edge from past tasks. Synaptic Intelligence (Zenke
et al., 2017) reduced catastrophic forgetting by identify-
ing connections that were not strongly tied to previous
tasks so, when new tasks arrived, the network focused
on adapting the weights of these uncommitted synapses.
The main drawback of this method is that it requires
extra parameters to label committed synapses. Fi-
nally, Distributed Weight Consolidation (McClure et al.,
2018) allowed training different networks for each task,
in this case brain segmentation datasets from different
sites, and later consolidate those weights on a single net-
work.

While a review of state-of-the-art CL methods
revealed promising techniques for alleviating catas-
trophic forgetting in general, its application to domain-
incremental MS lesion segmentation remains an under-
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Table 1: Continuous learning for medical imaging state-of-the-art overview.

CL strategy Reference CL scenario Task description

Rehearsal-based
Latent replay

Ravishankar et al. (2019) Data-incremental X-ray pneumothorax classification
Srivastava et al. (2021) Domain-incremental Chest X-ray classification

Liu et al. (2022) Task-incremental CT multi-organ segmentation
Karthik et al. (2022) Domain-incremental MS lesion segmentation

Experience replay Perkonigg et al. (2021) Domain-incremental
Cardiac segmentation and

lung nodule detection
Generative replay Li et al. (2023) Domain-incremental Cardiac image segmentation

Regularization-based

Data-focused Ozdemir et al. (2018) Class-incremental Segmentation of different structures

Prior-focused

Baweja et al. (2018) Task-incremental
From brain segmentation to

white matter lesions segmentation
van Garderen et al. (2019) Domain-incremental Glioma segmentation

Özgün et al. (2020) Domain-incremental Brain structure segmentation
Chen and Tang (2022) Class and data-incremental Breast tumor tissue classification

Zhang et al. (2023) Domain-incremental
Prostate and optic cup
and disk segmentation

Architectural-based
Karani et al. (2018) Domain-incremental Brain structure segmentation

McClure et al. (2018) Domain-incremental Brain structure segmentation
Bayasi et al. (2021) Domain-incremental Skin lesion classification

Regularization and rehearsal-based Kaustaban et al. (2022) Data and task-incremental Tumor hystopathology classification

explored area. Karthik et al. (2022) were the first to
apply CL in this specific scenario, through a rehearsal-
based approach. Data from previous tasks was stored
in a memory buffer and interleaved with the current do-
main data. The main disadvantage of this method is the
necessity of having data from previous tasks available
for training which, as mentioned before, not only leads
to high storage requirements but also can provoke pri-
vacy violation issues.

A concise overview of the related works in CL is
provided in Table 1. Motivated by the gap in research
on applying CL to domain-incremental learning for MS
lesion segmentation, this work aimed to address the
limitations of TL by studying CL techniques that can
effectively mitigate catastrophic forgetting during do-
main adaptation for MS lesion segmentation. The study
specifically focused on CL methods that meet the fol-
lowing requirements, which are of special interest for
companies that work on developing deep learning sys-
tems for medical image analysis:

• The method should not require images from the
previous domain when training on the new domain.

• The approach should be memory-efficient, avoid-
ing the addition of extra network parameters, train-
ing of separate networks, or storing images from
the previous domain.

Considering these requirements, prior-focused
regularization-based methods such as EWC or MAS
emerged as suitable CL strategies for this investigation.
Furthermore, the study explored the application of
these CL techniques in the context of few-shot domain
adaptation to analyze the potential for significant re-
duction in the number of target domain images required
for successful adaptation.

3. Material and methods

3.1. Datasets

3.1.1. White Matter Hyperintensity MICCAI challenge
2017 (WMH2017)

The WMH2017 dataset contained multimodal 3D
brain MRI scans from 60 subjects acquired from five
scanners from three different vendors (Simenes, Philips
and General Electric) in three hospitals in the Nether-
lands and Singapore, as it can be seen in Table 2 (Kuijf
et al., 2019). For each subject, T1w and FLAIR modal-
ities were provided. For the T1w images, the dataset
contained the original 3D T1w image, with the face
removed, and also the 3D T1w scan registered to the
FLAIR image. For both the FLAIR and the two T1w
volumes, the bias field corrected versions were also in-
cluded, processed using SPM12 software (Functional
Imaging Laboratory, 2014). Moreover, the dataset con-
tained a manual reference standard, consisting on man-
ually segmented white matter lesions according to the
STandards for ReportIng Vascular changes on nEu-
roimaging (STRIVE), made by four expert observers,
in the space of the FLAIR image.

In this case, even though the organization provided
a pre-processed version of the images, it was preferred
to use the original images and process them as needed.
The pre-processing steps included affine registration to
the MNI 1 × 1 × 1 mm template, skull stripping using
HD-BET (Isensee et al., 2019) and bias field correction
using the N4 algorithm (Tustison et al., 2010). Exam-
ples of each pre-processing step can be seen in Figure
3.

For this work, the images of the 60 patients were split
into 41 images for training, 7 for validation and 12 for
testing, ensuring that in each split there was approxi-
mately the same number of images from each scanner.
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Table 2: Description of the datasets used for MS lesion segmentation. Scanner manufacturer and location are provided. Resolution is indicated in
mm³ . Train, Val., Tes., and Total columns represent the number of samples used for training, validation, testing, and total, respectively.

Dataset Location Scanner Resolution (mm3) Train Val. Test Total

WMH2017
UMC Utretch 3T Philips Achieva 0.96 × 0.95 × 3.00 12 4 4 20

NUHS Singapore 3T Siemens TrioTim 1.00 × 1.00 × 3.00 15 1 4 20
VU Amsterdam 3T GE Signa HDxt 1.20 × 1.21 × 1.30 14 2 4 20

Shifts
MSSEG-1

Rennes 3T Siemens Verio 0.50 × 0.50 × 1.10 8 2 5 15
Bordeaux 3T GE Discovery 0.47 × 0.47 × 0.90 5 1 2 8

Lyon
1.5T Siemens Aera 1.03 × 1.03 × 1.25

10 2 17 29
3.0 Philips Ingenia 0.74 × 0.74 × 0.70

ISBI Best 3T Philips Medical 0.82 × 0.82 × 2.20 10 2 9 21
VH Vall d’Hebron Barcelona 3T Siemens TrioTim 0.49 × 0.49 × 3.00 25 5 27 57

Figure 3: Pre-processing pipeline for WMH2017 dataset. (a) Original
image. (b) Image after affine registration to the MNI space. (c) Image
after skull stripping with HD-BET (Isensee et al., 2019). (d) Image
after bias field correction using N4 algorithm (Tustison et al., 2010).

In this case, 5 different splits were chosen to perform a
5-fold cross-validation.

3.1.2. Shifts challenge 2023
The Shifts dataset aimed to simulate real-world sce-

narios in which there is a distributional shift between
training and testing or deployment data (Malinin et al.,
2022). This dataset was constructed following a canon-
ical partition, meaning that there were in-domain train-
ing, development and evaluation subsets, and also out-
domain or shifted development and evaluation subsets.
As it can be seen in Table 2, it combined several pub-
lic datasets such as ISBI, MMSSEG-1 and PubMRI,
coming from different institutions and scanners and a
dataset provided by the university of Lausanne. The lat-
ter was the hidden evaluation set, thus it was not pro-
vided. Images from Rennes, Bordeaux, Lyon and Best
were treated as in-domain data, while Ljiublana’s corre-

spond to the the out-domain validation set. In this work,
only the in-domain data was employed, since it was pre-
ferred to use the in-house dataset as a domain-shift ex-
ample (see Section 3.1.3), as there were more available
images and they corresponded to real-life scans.

In this dataset1, the images were already pre-
processed, and the original images were not available.
The pre-processing included denoising with non-local
means (Coupe et al., 2008), skull stripping using HD-
BET (Isensee et al., 2019), bias field correction with a
N4 algorithm (Tustison et al., 2010) and interpolation
to the 1 mm isovoxel space. In this case, as the raw
images were not provided, the affine registration to the
MNI 1 × 1 × 1 mm template was performed afterwards.

The Shifts dataset contained T1w and FLAIR brain
MRI scans from 98 different subjects. The ground-
truth segmentation mask was obtained as a consensus of
seven expert annotators, except for Best and Lausanne,
in which only one expert rater participated. In this case,
as mentioned above, the splits were already provided
by the challenge organisation, containing scans from 33
subjects for training, 7 for validation and 33 for test-
ing (all these 73 subjects were considered as in-domain
samples). The remaining 25 images corresponded to the

1Data were generated by participating neurologists in the frame-
work of Observatoire Français de la Sclérose en Plaques (OFSEP),
the French MS registry (Vukusic et al. 2020). They collect clinical
data prospectively in the European Database for Multiple Sclerosis
(EDMUS) software (Confavreux et al. 1992). MRI of patients were
provided as part of a care protocol. Nominative data are deleted from
MRI before transfer and storage on the Shanoir platform (Sharing
NeurOImagingResources, shanoir.org). Vukusic S, Casey R, Rollot
F, Brochet B, Pelletier J, Laplaud D-A, et al. Observatoire Français
de la Sclérose en Plaques (OFSEP): A unique multimodal nation-
wide MS registry in France. Mult Scler. 2020;26(1):118–22. Con-
favreux C, Compston DAS, Hommes OR, McDonald WI, Thomp-
son AJ. EDMUS, a European database for multiple sclerosis. J Neu-
rol Neurosurg Psychiatry 1992; 55: 671-676. Andrey Malinin, An-
dreas Athanasopoulos, Muhamed Barakovic, Meritxell Bach Cuadra,
Mark JF Gales, Cristina Granziera, Mara Graziani, Nikolay Karta-
shev, Konstantinos Kyriakopoulos, Po-Jui Lu, Nataliia Molchanova,
Antonis Nikitakis, Vatsal Raina, Francesco La Rosa, Eli Sivena,
Vasileios Tsarsitalidis, Efi Tsompopoulou, Elena Volf. Shifts 2.0:
Extending The Dataset of Real Distributional Shifts, arxiv preprint
https://arxiv.org/abs/2206.15407
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Figure 4: Schematic representation of the 3D U-Net architecture employed for MS lesion segmentation. This model served as a baseline to study
TL and CL techniques.

out-domain samples that, as explained before, they were
not used in this work.

3.1.3. Vall d’Hebron dataset
This in-house dataset came from the Vall d’Hebron

(VH) University Hospital in Barcelona, Spain. It con-
tained MRI scans from 57 subjects acquired from a 3T
Siemens scanner. For each subject, both FLAIR and
T1w modalities were provided. In this case, the images
were pre-processed as stated by Valverde et al. (2019),
including skull stripping, N3 bias field correction, co-
registration to T1w (FSL-FLIRT) and interpolation to
1mm isovoxel space.

Since in this dataset all the images were obtained with
the same scanner, they were randomly split into 25 sam-
ples for training, 5 for validation and 27 for testing (see
Table 2).

3.2. MS lesion segmentation framework

In this section, the proposed architecture, data manip-
ulation and training strategies for MS lesion segmenta-
tion will be described in detail. This will be the baseline
framework to later study TL and CL strategies within
the domain shift problem.

3.2.1. Baseline architecture
In this work, a 3D U-Net architecture (Çiçek et al.,

2016) was employed for the segmentation. While more
advanced U-Net variations have been proposed in the
literature, a simpler configuration was chosen in this
work. This choice aimed to minimize the impact of ar-
chitectural modifications on the evaluation of CL and
TL methods. This allowed for a clearer understanding
of how these techniques influenced the network’s per-
formance in domain-incremental learning scenarios.

The chosen model utilized an encoder-decoder struc-
ture with skip connections for efficient feature extrac-
tion and propagation. It was composed by 4 layers of
convolutional blocks, with 16, 32, 64 and 128 filters per

layer. In the encoder side, each convolutional block con-
tained two sequences of convolution - batch normaliza-
tion - Leaky ReLU activation, followed by a maxpool-
ing layer for downsampling. On the other hand, each de-
coder block was formed by an up convolution sequence
(transposed convolution - batch normalization - Leaky
ReLU activation) for upsampling followed by a convo-
lution block equal to the ones in the encoder side. A di-
agram on the described architecture can be seen in Fig-
ure 4. The decision of constructing each layer with two
convolutions was based on experimental results, where
this helped in obtaining better generalization to other
domains.

3.2.2. Patch sampling

A patch-based segmentation approach was chosen for
this work. The patch sampling strategy is a key feature
of the segmentation pipeline. Following the patch size
selection in related works by Fenneteau et al. (2021) and
Salem et al. (2022), 5000 patches of 32×32×32 voxels
were extracted from each image. To address the prob-
lem of class imbalance, an equal number of positive and
negative patches were sampled. A patch was labelled
as positive or negative according to the class of its cen-
tral voxel. To ensure that the selected patches provided
different information from the entire anatomy of the pa-
tient, they were not randomly sampled, but uniformly
extracted from both the lesions and the healthy tissue.

Patches from both FLAIR and T1w modalities were
fed into the network in two separate input channels.
While FLAIR MRI provided good contrast between le-
sions and healthy tissue, T1w sequences contributed
with more structural information of the brain tissues. It
is worth mentioning that, before sampling the patches,
each image was normalized by subtracting its mean and
dividing it by its standard deviation. For these compu-
tations, only the intensities inside the brain region were
considered.
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3.2.3. Training strategy

The network was trained with batches of 32 patches
to balance computational efficiency with gradient up-
date quality. To address the class imbalance problem,
balanced batches were constructed, ensuring an equal
number of positive and negative patches within each
batch. Compared to random batch construction, bal-
anced batches have shown empirically to improve the
model’s ability to learn from the minority class (le-
sion) and achieve better overall segmentation perfor-
mance. Cross-entropy was used as the loss function
and the model was trained for a maximum of 300
epochs. Alternative segmentation loss functions were
explored, including DiceFocal loss and DiceCE loss.
While these functions achieved performance compara-
ble to the cross-entropy loss, they exhibited slower con-
vergence rates. Therefore, the cross-entropy loss func-
tion was chosen and maintained throughout the study
for consistency. Early stopping was applied if the val-
idation loss did not improve in the last 20 epochs, to
avoid over-fitting. Adam optimizer was selected, with
an initial learning rate of 10−4 and a weight decay of
10−6. To manage the learning rate during training, a
reduce-on-plateau scheduler was implemented. This
scheduler automatically reduced the learning rate by a
factor of 10 if the validation loss plateaued for 7 epochs,
preventing the model from getting stuck in local min-
ima. To enhance model generalization, data augmen-
tation was implemented. This technique created varia-
tions of the original patches by applying random trans-
formations with a 30% probability. Specifically, patches
underwent random rotations within a range of - π2 to π

2 ra-
dians, flipping along any spatial axis and affine transfor-
mations combining small rotations (-0.1 to 0.1 radians)
and shearing (-0.1 to 0.1).

Three different models were trained using this strat-
egy, one for each dataset presented in Section 3.1. These
were the baseline models that were used as reference
for each domain. Each model was evaluated on its cor-
responding testing set and on the other two datasets to
assess the impact of domain shift.

For inference, a sliding window approach was em-
ployed with a 25% overlap between patches. To account
for the overlap, the average probability was computed
in the overlapping regions. Once the probability map
for the whole volume was obtained, detected lesions
smaller than 3 voxels were filtered out, as different stud-
ies have stipulated a minimum detectable diameter of 3
mm as a diagnostic criteria (Grahl et al. 2019, Filippi
et al. 2019). This aimed to reduce the number of false
positive lesions, at the cost of a reduction in sensitiv-
ity. The binarization threshold (Tbin) was optimized for
each dataset to achieve the best trade-off between true
positive and false positive lesions. This optimization in-
volved evaluating the detection F-score for a range of
threshold values from 0.1 to 0.9 with increments of 0.1.

The threshold that yielded the highest F-score was then
selected for each dataset.

3.3. Transfer learning for domain adaptation

TL was studied as a solution for the domain shift
problem. Moreover, it allowed to investigate the ex-
tent to which the model’s performance on the source
domain degraded after adapting to the target domain
(catastrophic forgetting). The WMH2017 dataset was
chosen as the source dataset due to the greater con-
trol over pre-processing steps, as opposed to the Shifts
dataset, that was provided already pre-processed by the
organization of the challenge. The VH dataset served
as the target domain, because it represented a larger do-
main shift compared to the Shifts dataset, as it will be
seen in Section 4.1.

To assess the impact of progressive unfreezing on
adaptation, different number of layers in the encoder
or decoder were progressively unfrozen and fine-tuned
during training on the VH dataset. More specifically,
this involved unfreezing 1 or 2 layers from the encoder
or decoder and also, training with all the layers un-
frozen.

To evaluate the number of images required for adap-
tation to the target domain, one-shot and few-shot TL
approaches were also analyzed. This involved fine-
tuning the model with a limited number of images (1,
2, 3, 5, or 10) from the VH dataset. The images were
selected based on the lesion volume of each subject to
provide as much variability as possible in this regard.
Two validation images were also selected and kept fixed
through all the experiments. Based on the findings from
the unfreezing experiments, all one-shot and few-shot
experiments were performed with the best unfreezing
strategies: unfreezing all layers and unfreezing the last
two encoder or decoder layers.

Due to the small number of training images in the
one-shot and few-shot experiments, a different patch
extraction approach was employed. Instead of a fixed
number of patches, all possible patches were extracted
centered on every positive voxel in the image. An equal
number of negative patches was also extracted to main-
tain balanced training.

The hyperparameter configuration that yielded the
best performance during the base model training on
the WMH2017 dataset was maintained for all TL ex-
periments. While adjustments to the learning rate to-
wards smaller values and increased weight decay were
explored to potentially reduce overfitting, the original
hyperparameter settings consistently led to superior per-
formance.

After all TL experiments, inference was performed
on both the target and source domain to evaluate the
model’s adaptation to the new domain and assess po-
tential catastrophic forgetting, respectively.
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3.4. Continuous learning

In order to study CL techniques for mitigating catas-
trophic forgetting during domain adaptation, different
prior-focused regularization techniques were studied:
Elastic Weight Consolidation (EWC), Memory Aware
Synapses (MAS) and importance-based parameter-
specific learning rate strategies.

3.4.1. Elastic Weight Consolidation (EWC)
EWC is a prior-focused regularization-based CL

technique proposed by Kirkpatrick et al. (2017) to al-
leviate catastrophic forgetting. As it was explained in
Section 2.3, it aims to protect parameters (weights and
biases) that are important for the source domain while
learning the target domain.

Training a network consists on optimizing the value
of a set of parameters θ by minimizing a loss function
L. Due to the high amount of parameters in a neural net-
work, there should be different sets of parameter values
that result in the same performance. This means that
there should be a solution for task B (target domain),
represented by its optimal parameters θ∗B, that is close to
the previous solution for task A (θ∗A) (source domain).
The goal of EWC is to find this particular solution, by
forcing the network to learn the task B by finding θ∗B
as close as possible to θ∗A in the parameter space. EWC
achieves this by adding a penalty to the loss function for
task B LB. The particular thing about this penalization
is that it is ”elastic” (it is different for each parameter).
This means that the penalty should be higher for:

• Parameters that are important for the performance
in task A.

• Parameters that are getting further from the opti-
mal values for task A.

The loss function to minimize in EWC is defined as
follows:

L = LB +
∑

i

λ

2
Fi(θi − θ∗A,i)2 (1)

In this equation:

• Fi represents the importance of parameter i.

• θi represents the value of the parameter i in the cur-
rent iteration (training on task B).

• θ∗A,i represents the optimal value of the parameter i
for the previous task A.

• λ controls the weight given to the old task A com-
pared to the new one B. A higher value of λ means
a stronger emphasis on preserving A’s knowledge.
However, very high values can lead to the network
not learning the new task, so it is important to find
a trade-off.

As it can be seen in the Equation 1, this new term in
the loss forces the network to minimize the difference

between the current parameters and the optimal ones for
the previous task A (θi−θ∗A,i) weighted by the importance
of each parameter Fi. Finally, the penalization term is
computed as the sum of the penalization terms of each
parameter.

The key component here is the parameter importance
F. It is calculated as the diagonal of the Fisher informa-
tion matrix, which measures the amount of information
about a parameter θi that is provided by a data sample
X j (in this case, a patch). It is computed as the average
of the squared 1st derivatives of the log-likelihood func-
tion with respect to the parameters. This means that the
slope of the likelihood function at the true parameter θ
is a measure of the amount of information provided by
the observed data regarding the parameter θ.

As explained above, the Fisher information for pa-
rameter i is computed as follows:

Fi =
1
N

N∑

j

(
d

dθi
log

[
p
(
X j|θ

)])2

(2)

Here:

• N is the number of samples in the dataset A.

• X j represents the sample j of dataset A.

• p
(
X j|θ

)
represents log-likelihood, the probability

of sample j given the model parameters (optimized
for task A).

The interest here is to know how much information
does each parameter from the model trained on task
A provide about the dataset A. Knowing the definition
of the Fisher information, we can compute the param-
eter importance as shown in Equation 2. In practice,
log

[
p
(
X j|θ

)]
is computed as the logarithm of the output

probabilities of the model trained on task A. Then, the
squared 1st derivative of these log-probabilities are com-
puted with respect to the optimal parameters for task A
and averaged across all samples in the dataset. This way,
an importance value for each parameter in the model is
obtained to be used in the loss as part of the penalty
term.

The advantage of this method is that the parameter
importance for the source domain can be computed after
training on the source domain with a forward pass of
the whole dataset (without parameter update) and then,
this source dataset is not needed anymore for training on
the target domain. Additionally, the only extra memory
required is to store the importance scores and optimal
parameters from the source task.

3.4.2. Memory Aware Synapses (MAS)
This method, proposed by Aljundi et al. (2018),

shares the core principle of EWC: constraining param-
eters crucial for the previous task (source domain) to
stay close to their optimal values during training on
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the new domain (target domain). However, MAS dif-
fers from EWC in how it calculates the parameter im-
portance Ω. Instead of relying on the Fisher informa-
tion matrix, MAS computes the importance based on
the average gradient of the network’s output probability
l2 norm with respect to the optimal parameters for task
A across all samples in the dataset A (see Equation 3).
This essentially reflects how sensitive the network’s out-
put function is to changes in specific parameters. These
importance values are incorporated into the loss func-
tion in the same way as in EWC, as shown in Equation
1.

Ωi =
1
N

N∑

j

∥∥∥∥∥
d

dθi
l2

(
p
(
X j|θ

)) ∥∥∥∥∥ (3)

3.4.3. Importance-based parameter-specific learning
rate

Özgün et al. (2020) utilized the parameter impor-
tance to define a learning rate specific to each parameter,
rather than adding a penalty term to the loss function.
This means that parameters that are important for the
previous task (higher importance) will have a reduced
learning rate during training on the target domain. Con-
versely, less important parameters can adapt more freely
to the new task. The parameter-specific learning rate for
parameter i in domain d is defined as:

αd
i = (1 −Ωi)αd (4)

Here, αd represents the base learning rate for training
on domain d, Ωi represents the importance of parame-
ter i and αd

i represents the specific learning rate for pa-
rameter i and domain d. This approach offers compu-
tational efficiency as it avoids calculating an additional
loss term and does not require to tune the hyperparam-
eter λ (present in EWC and MAS). In this work, this
parameter-specific learning rate was evaluated employ-
ing the parameter importance computed both in EWC
and MAS, and will be refered to as EWC-LR and MAS-
LR, respectively.

3.4.4. Experimental setup
To evaluate the effectiveness of CL techniques in mit-

igating catastrophic forgetting during domain adapta-
tion, the investigation started by identifying the most
suitable approach among the four presented methods:
EWC, MAS, EWC-LR and MAS-LR. As it will be an-
alyzed in the obtained results, EWC was the method
which better preserved previous knowledge while al-
lowing the network to adapt to the target domain. For
this reason, it was selected for further study.

To better understand how the penalization weight af-
fected the performance on both the source and target
domains, different values of the hyperparameter λ were
tried (0.001, 0.01, 0.1, 1, 10, 10 and 1000). The opti-
mal λ value was selected based on a trade-off between

learning the target domain and preserving the source do-
main knowledge, and was kept fixed for the rest of the
experiments.

The following step was to assess the impact of the
number of training images on the effectiveness of EWC.
Similar to the one-shot and few-shot learning experi-
ments in TL, fine-tuning with EWC was performed us-
ing 1, 2, 3, 5, 10, or all available images from the
VH dataset. For consistency in result comparison, the
patch sampling strategy and training hyperparameters
employed during the EWC experiments were the same
as those used in the TL experiments. This allowed for a
direct comparison of the effectiveness of EWC against
TL approaches.

3.5. Evaluation metrics

Perfect delineation of lesions is not always clinically
relevant; however, accurate detection and localization
of lesions are crucial for diagnosis and treatment plan-
ning. Given the clinical importance of lesion detec-
tion, lesion-wise metrics were prioritized over voxel-
wise segmentation metrics, indicated by subindices d
and s, respectively. The employed evaluation metrics
include:

• Dice Similarity Coefficient (DSC).

DS C =
2 · T P

FN + FP + 2 · T P
(5)

This metric was evaluated in two ways:

– Voxel-wise DSC (DS Cs): measures the over-
lap between the predicted segmentation and
the ground truth at the voxel level.

– Lesion-wise DSC (DS Cd): assesses the over-
lap between the predicted lesions and the
ground truth as whole objects.

• Detection True Positive Fraction (T PFd): this met-
ric counts the number of lesions correctly identi-
fied by the model. It was also computed per lesion
size to analyze the model’s performance across dif-
ferent lesion scales: small (1-10 voxels), medium
(11-50 voxels) and large lesions (> 50 voxels).

• Detection False Positive Fraction (FPFd): this
metric counts the number of lesions incorrectly
identified by the model.

T PFd =
T P

T P + FN
FPFd =

FP
FP + T P

(6)

• Detection F-score: this metric combines the preci-
sion and sensitivity for lesion detection, providing
a more balanced evaluation between TP and FP.

F − scored =
T P

T P + 0.5 · (FP + FN)
(7)
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Table 3: Segmentation and detection results of the baseline models trained on each of the available datasets. The models trained on public datasets
(Shifts and WMH2017) were also tested in the other datasets to assess the impact of domain shift.

Training dataset Inference dataset Tbin DS Cs DS Cd T PFd FPFd F − scored

Shifts
Shifts 0.4 0.635 ± 0.151 0.657 ± 0.139 0.665 ± 0.171 0.286 ± 0.197 0.657 ± 0.139

WMH2017 0.2 0.503 ± 0.210 0.545 ± 0.165 0.765 ± 0.102 0.544 ± 0.191 0.545 ± 0.165
VH 0.4 0.359 ± 0.216 0.437 ± 0.192 0.601 ± 0.195 0.628 ± 0.204 0.437 ± 0.192

WMH2017
Shifts 0.4 0.498 ± 0.149 0.591 ± 0.133 0.597 ± 0.184 0.319 ± 0.212 0.591 ± 0.133

WMH2017 0.2 0.743 ± 0.107 0.751 ± 0.101 0.810 ± 0.092 0.281 ± 0.117 0.752 ± 0.074
VH 0.4 0.342 ± 0.202 0.472 ± 0.193 0.629 ± 0.196 0.594 ± 0.207 0.472± 0.193

VH 0.4 0.506 ± 0.168 0.610 ± 0.167 0.599 ± 0.184 0.338 ± 0.193 0.610 ± 0.167

Figure 5: Results of the models trained and infered in the same dataset: S hi f ts → S hi f ts, WMH2017 → WMH2017, VH → VH (baseline). (a)
TPF per lesion size across datasets. (b) Lesion volume (mL) correlation between segmentation and ground truth. (c) Number of lesions correlation
between segmentation and ground truth.

3.6. Implementation details

In this project, PyTorch version 2.2.0 (Paszke et al.,
2019) and PyTorch Lightning version 2.2.1 (Falcon,
William and The PyTorch Lightning team) were em-
ployed for deep learning model development and train-
ing. Code execution and hardware acceleration were
achieved using CUDA version 12.1. The computa-
tional resources for this work were provided by a server
equipped with three NVIDIA GeForce GTX 1080 Ti
GPUs with 12Gb of memory each.

4. Results

4.1. Baseline: MS lesion segmentation

The results obtained with the baseline models trained
on each individual dataset (Shifts, WMH2017 and VH)
can be seen in Table 3. The WMH2017 and Shifts mod-
els were tested in the same dataset they where trained
on and in the other two datasets. Both models exhib-
ited a significant drop in performance when evaluated
on datasets different from their training data compared
to the performance of the models trained with the same
dataset. This confirmed the presence of a domain shift
between the datasets.

Further analysis was conducted to understand the
model’s behavior across different lesion sizes. Box-
plot Figure 5(a) depicted the sensitivity of each model
for small, medium and large lesions. These results re-
vealed variations in sensitivity based on lesion size. For

all the models, the sensitivity increased with the lesion
size. For small lesions, the mean sensitivity was lower
compared to bigger lesions and with higher variability
across the different images in the dataset.

The correlation between the models’ performance
and the ground truth is shown in Figures 5(b) and 5(c).
Figure 5(b) presents a correlation plot between the vol-
ume of lesions detected by the models and the volume
of lesions in the ground truth. This visualization helped
assess the model’s ability to accurately segment lesion
sizes (segmentation). Similarly, Figure 5(c) shows the
correlation between the number of lesions detected and
the actual number of lesions present in the ground truth,
providing insights into the model’s lesion detection per-
formance. Analyzing these correlations, it was ob-
served that the WMH2017 model exhibited a tendency
to undersegment lesions (Figure 5(b)), while detecting
a higher number of false positives (Figure 5(c)). This
suggested that the model might be capturing a higher
number of small false positive lesions. In contrast, the
analysis of the other two datasets (Shifts and VH) did
not reveal any clear trends regarding undersegmentation
or overdetection of lesions.

Qualitative segmentation examples from each model
are showcased in Figure 6. For each example, the Fig-
ure displays the FLAIR image, the ground truth seg-
mentation (overlaid in red), and the model’s segmenta-
tion (overlaid in green). Even though T1w images were
also employed for the segmentation, only FLAIR im-
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Figure 6: Qualitative results of the baseline models trained on three datasets: Shifts (a, b), WMH2017 (c, d) and VH (e,f). For each example, at the
left is displayed the FLAIR scan, in the middle the ground truth is overlayed in red and in the right the model’s segmentation is overlayed in green.

ages are included in the results Figures because of their
good contrast between lesions and healthy tissue.

Based on the overall performance in Table 3, the
WMH2017 model was chosen as the baseline for sub-
sequent TL and CL experiments. This selection was
justified by its good performance and the fact that the
WMH2017 dataset was preprocessed in-house, allow-
ing for greater control compared to the pre-processed
Shifts dataset. Furthermore, Table 3 demonstrates a
significant performance gap between the WMH2017
model’s performance on the VH dataset and the upper
bound (the model trained directly on VH data) (p-value
< 0.01). More specifically, even though the sensitivity
is even higher than the one of the model trained on the
VH dataset, it results in a high number of false positive
lesions, leading to a high gap in the detection F-score.
This gap signifies the potential for improvement achiev-
able through TL and CL strategies, that will be explored
in the following sections.

4.2. Transfer learning for domain adaptation

Table 4 presents the results of the analysis investigat-
ing which sections of the U-Net architecture were most
effective for unfreezing during domain adaptation, as
mentioned in Section 3.3. The Table 4 also includes re-
sults for the lower and upper bounds. The lower bound
represents the performance of the WMH2017 model di-
rectly applied to the VH dataset without any adapta-
tion (WMH2017 → VH), while the upper bound cor-

responds to the performance of a model trained directly
on the VH dataset (VH→VH). Analysis of these results
revealed that unfreezing only one layer, either from the
encoder or the decoder, did not significantly improve
the model’s ability to adapt to the target domain (VH)
(p-value > 0.05 in both cases). This limited adaptation
is reflected in the persistence of a high number of false
positive lesions detected by the model. Conversely, un-
freezing all layers resulted in a significant improvement
(p-value < 0.01), reaching a performance very similar
to the model directly trained on the VH dataset (upper
bound). Finally, unfreezing two layers, either from the
encoder or the decoder led to a decrease in the false pos-
itive ratio compared to the baseline model (p-value <
0.01 in both cases), although not as substantial as the
complete unfreezing approach. Based on these findings,
the subsequent few-shot domain adaptation experiments
were conducted using models with the best unfreezing
configurations: all layers unfrozen, or two layers un-
frozen from either the encoder or the decoder.

4.2.1. Few-shot transfer learning
Figure 7 shows the influence of the target domain

training set size and the unfreezing strategy on model
performance. The experiment evaluated the WMH2017
model (with the best unfreezing configurations) re-
trained on the VH dataset using 1, 3, 5, 10, or all avail-
able images. The results for one-shot domain adaptation
(1 training image) revealed that unfreezing only two lay-
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Table 4: Results of the unfreezing tests during TL. The Table shows the results of fine tuning different layers of the WMH2017 model with all the
training images of the VH dataset. The last rows represent the reference results: VH→ VH is the upper bound (model trained and tested on VH)
and WMH2017→ VH is the lower bound (model trained on WMH2017 and tested on VH).

Unfreezed layers Tbin DS Cs DS Cd T PFd FPFd F − scored

1 layer encoder 0.4 0.467 ± 0.193 0.486 ± 0.178 0.631 ± 0.145 0.575 ± 0.193 0.486 ± 0.178
2 layers encoder 0.4 0.506 ± 0.185 0.569 ± 0.191 0.596 ± 0.206 0.443 ± 0.199 0.569 ± 0.191
1 layer decoder 0.4 0.442 ± 0.193 0.501 ± 0.181 0.624 ± 0.191 0.555 ± 0.196 0.501 ± 0.181
2 layers decoder 0.4 0.509 ± 0.183 0.608 ± 0.174 0.643 ± 0.191 0.392 ± 0.208 0.608 ± 0.174

All layers 0.4 0.507 ± 0.178 0.634 ± 0.152 0.635 ± 0.181 0.347 ± 0.168 0.634 ± 0.152
VH→ VH 0.4 0.506 ± 0.168 0.610 ± 0.167 0.599 ± 0.184 0.338 ± 0.193 0.610 ± 0.167

WMH2017→ VH 0.4 0.342 ± 0.202 0.472 ± 0.193 0.629 ± 0.196 0.594 ± 0.207 0.472 ± 0.193

Figure 7: Few-shot domain adaptation results on the VH dataset (tar-
get domain). Detection F-score for different number of training im-
ages of the VH dataset (1, 2, 3, 5, 10 or all the available) unfreezing
different sections of the network trained on WMH2017 (2 layers of the
encoder or decoder, or all the layers). The lower bound corresponds
to the model trained on WMH2017 and tested on VH (WMH model)
and the upper bound corresponds to the model trained and tested on
VH (VH model).

ers of the encoder or decoder led to a decrease in perfor-
mance compared to the lower bound (WMH2017 model
directly applied to VH). In contrast, unfreezing all lay-
ers in the one-shot scenario already improved the results
compared to the base model and achieved similar per-
formance to training with 3 images when using the other
unfreezing strategies (two layers unfrozen in encoder or
decoder). When unfreezing all the layers, training with
only 5 images was enough to reach a performance com-
parable to the upper bound (model trained directly on
VH). Given that retraining all the layers yielded the best
results in both the few-shot experiments and full train-
ing scenario, this strategy was chosen for the subsequent
CL analysis.

4.3. Continuous learning
While TL offered a solution to domain shift by

leveraging a pre-trained model on a source domain
(WMH2017) for adaptation to a new target domain
(VH), it suffered from catastrophic forgetting, leading
to a significant performance drop in the source domain
(p-value < 0.01).

The next step focused on mitigating catastrophic for-
getting during domain adaptation. To achieve this, the
first step involved identifying the most suitable method
among various CL strategies based on prior-focused
regularization. Four methods were quantitatively eval-
uated: EWC, MAS, EWC-LR and MAS-LR. Table 5
summarizes the results obtained when retraining the en-
tire WMH2017 model using all VH images. The Ta-
ble presents performance metrics for both the source
and target domains, along with the optimal λ values for
MAS and EWC (the selection of the optimal λ was ex-
plained in Section 3.4.4). Notably, EWC-LR and MAS-
LR did not require hyperparameter tuning for this spe-
cific learning rate adaptation strategy. These results re-
vealed that EWC emerged as the most effective method
in preserving the source domain knowledge, with a sig-
nificant improvement with respect to TL techniques (p-
value < 0.01), so it was chosen as the preferred strategy
for further CL experiments.

To understand how the penalization weight (λ) in
EWC affected performance on the source and target do-
mains, different λ values were explored. Figure 8 de-
picts the results of these experiments. The graph reveals
a trade-off between source domain knowledge preserva-
tion and target domain learning flexibility. This is re-
flected in the tendency for higher values of the hyper-
parameter λ to correspond with greater preservation of
source domain knowledge, but also with a potentially
more restricted ability for the model to learn and adapt
to the target domain.

Figure 9 provides qualitative results to visualize the
performance differences between the baseline model,
TL strategies, and CL with EWC in both the source
and target domains. The upper section of the Figure
shows the source domain results. Here, the baseline
model achieved good performance with a segmentation
very close to the ground truth. However, due to catas-
trophic forgetting, the TL strategies exhibited a high
number of false positive lesions in the source domain.
In the target domain, the baseline model showed poor
performance due to the domain shift, again evident by
the presence of numerous false positive lesions. Follow-
ing a TL strategy, the model successfully adapted to the
target domain, achieving a segmentation comparable to
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Table 5: Comparison of different prior-focused regularization-based CL methods. The upper row shows the results of TL as a reference.

Target domain (VH) Source domain (WMH2017)
CL method Lambda Tbin DS Cd T PFd FPFd F − scored Tbin DS Cd T PFd FPFd F − scored

Naı̈ve TL - 0.4 0.634 0.635 0.347 0.634 0.1 0.544 0.583 0.465 0.544
EWC 0.1 0.4 0.620 0.599 0.301 0.620 0.1 0.627 0.610 0.342 0.630
MAS 1 0.4 0.608 0.639 0.400 0.608 0.1 0.614 0.715 0.450 0.614

EWC - LR - 0.4 0.648 0.579 0.237 0.648 0.1 0.609 0.564 0.318 0.609
MAS - LR - 0.4 0.630 0.556 0.238 0.630 0.1 0.599 0.571 0.356 0.599

Figure 8: Detection F-score for different values of λ in EWC penal-
ization, for both the target domain (VH, in yellow) and the source
domain (WMH2017, in green). Also, the results of TL are included
for reference, for both the target domain (orange) and the source do-
main (blue).

the ground truth. Finally, EWC results demonstrate the
ability of this technique to balance the trade-off between
source and target domain performance. Compared to
TL, EWC preserves source domain knowledge, result-
ing in segmentation more similar to the baseline model,
while still adapting to the new target domain.

4.3.1. Few-shot continuous learning

Having established EWC’s effectiveness in preserv-
ing source domain knowledge, the same few-shot TL
experiments were replicated, but with EWC penalty ap-
plied (λ = 0.1 was selected as the optimal value for all
the experiments). Figure 10 presents the results for both
the source and target domains. The results demonstrated
that EWC did not prevent the network from learning the
target domain, as the performance was very similar to
that achieved with regular TL. Importantly, this method
successfully alleviated catastrophic forgetting, reducing
the performance drop in the source domain compared to
TL alone. Additionally, EWC provided more stable per-
formance in the source domain when compared to TL,
where the extent of forgetting seemed unpredictable.

5. Discussion

This work investigated different techniques to solve
the domain shift problem in the context of MS lesion
segmentation, while mitigating catastrophic forgetting
in the source domain. The results demonstrated the
effectiveness of these approaches in improving model
performance on a target domain (VH) while preserving
knowledge from a source domain (WMH2017).

The baseline models trained on each public dataset
(WMH2017 and Shifts) achieved detection results com-
parable to the state-of-the-art. For instance, on the
WMH2017 dataset, the baseline model achieved a TPF
of 0.810 and an F-score of 0.752. These values are
competitive with the winning entry in the correspond-
ing segmentation challenge, which reported a TPF of
0.84 and an F-score of 0.76 (Kuijf et al., 2019). More-
over, these baseline models confirmed the presence of
a domain shift between the datasets. This was evident
from the drop in performance observed when evaluat-
ing the models on datasets different from their training
data (Table 3). The analysis of lesion size sensitivity
(Figure 5(a)) highlighted the challenges associated with
detecting small lesions (1-10 voxels), where all models
exhibited lower sensitivity compared to larger lesions.

The TL experiments explored unfreezing different
sections of the U-Net architecture during fine-tuning on
the VH dataset (Table 4). Unfreezing one layer, either
from the encoder or the decoder, did not significantly
improve adaptation, likely because the model lacked
enough flexibility to learn the new domain character-
istics. While unfreezing two layers (from the encoder
or decoder) resulted in a better adaptation to the source
domain, the best configuration was to unfreeze all lay-
ers, which resulted in performance comparable to train-
ing directly on VH data. This suggests that for larger
domain shifts, extensive adaptation of the model is nec-
essary.

The investigation into the impact of the target train-
ing set size (Figure 7) revealed that unfreezing all layers
yielded the best results in both few-shot and full train-
ing scenarios. In this case, employing only 5 training
images was enough to adapt to the target domain. In
contrast, one-shot domain adaptation with partial un-
freezing led to a decrease in performance compared to
the lower bound, suggesting that finetuning such a small
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Figure 9: Comparison of TL and CL segmentation results on the source and target domain. (a) FLAIR image. (b) Ground truth. (c) Baseline
model: effective on the source domain but it fails to generalize to the target domain (domain shift). (d) TL achieves successful adaptation to the
target domain, but suffers from catastrophic forgetting on the source domain. (e) EWC shows good performance in both the source and target
domains.

number of parameters might hinder effective adaptation
with such a small training set. For small number of
training images, the results of unfreezing two layers of
the encoder or the decoder were similar. However, with
the full training set, opposed to what Shirokikh et al.
(2020) stated, finetuning the decoder resulted in better
adaptation to the VH dataset compared to finetuning the
encoder. This might be due to the fact that preserving
the pre-trained feature hierarchy of the encoder and only
adjusting the reconstruction for the new domain allowed
the model to focus on the specific task requirements of
the VH dataset without disrupting the general feature
extraction capabilities learned during pre-training. This
can lead to faster adaptation and potentially better per-
formance on the new domain.

Among the evaluated CL techniques (EWC, MAS,

EWC-LR, and MAS-LR), EWC emerged as the most
effective method for preserving knowledge from the
source domain (WMH2017) while still adapting to the
target domain (VH) (Table 5). The main advantage of
EWC-LR and MAS-LR is that these methods do not re-
quire tuning the hyperparameter λ. However, the fact
that the parameter-specific learning rate is computed be-
fore training based on the parameter’s importance for
the source domain, makes it less adaptive than MAS
and EWC. These methods adapt the penalization dur-
ing training at each step, based on both the importance
of the parameter and the difference between its current
value (training on the target domain) and optimal value
(trained on the source domain), leading to a more flex-
ible technique. MAS has shown promising results but,
in this case EWC led to slightly better performance on
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Figure 10: Few-shot domain adaptation comparison between TL and EWC with λ = 0.1. (a) Target domain (VH): the upper bound is the model
trained and tested on VH (VH model), and the lower bound corresponds to the model trained on WMH2017 and tested on VH (WMH model). (b)
Source domain (WMH2017): the upper bound corresponds to the model trained and tested on WMH2017.

both the source and target domain, and the best perfor-
mance among the four methods on the source domain.
The exploration of the penalization weight (λ) in EWC
(Figure 8) emphasized the importance of careful hyper-
parameter tuning for balancing source domain knowl-
edge preservation and target domain learning flexibility.
As the λ value increased, the model allowed less flex-
ibility for learning the target domain. Conversely, for
the source domain, a higher λ value translated to bet-
ter knowledge preservation. However, excessively high
λ led to a decrease in source domain performance. This
was likely because a very strong penalty resulted in high
loss values during training, which in turn led to signif-
icant changes in model parameters, hindering the de-
sired behavior of preserving previous knowledge. Care-
ful tuning of this parameter is therefore crucial.

The few-shot TL experiments with EWC (Figure 10)
demonstrated that EWC successfully mitigated catas-
trophic forgetting compared to regular TL. This was ev-
ident from the reduced performance drop in the source
domain (WMH2017) when using EWC. Additionally,
EWC provided more stable performance in the source
domain across different training set sizes compared to
TL alone. The qualitative results (Figure 9) further sup-
ported these findings.

5.1. Limitations and future work

While this work demonstrated the potential of EWC
for mitigating catastrophic forgetting in domain adapta-
tion scenarios for MS lesion segmentation, some limita-
tions need to be addressed in future studies.

One key limitation is the careful tuning required for
the EWC penalty term (λ). While effective in this in-
stance, the optimal value for λ may not generalize well
to other datasets, particularly those with varying levels
of domain shift or lesion characteristics. This highlights

the need to explore more robust hyperparameter selec-
tion techniques or even investigate alternative CL meth-
ods that are less reliant on manual tuning.

Even though the proposed work achieved a good bal-
ance between source domain knowledge preservation
and target domain adaptation, there is still room for
improvement. One potential future work is to explore
domain adaptation techniques specifically designed to
reduce the initial domain shift between source and
target data. Additionally, focusing on advanced pre-
processing techniques that normalize image intensities
or address potential artifacts across datasets could fur-
ther enhance model performance.

Finally, the ability to achieve good results in both the
source and target domain with few images is promis-
ing. However, reducing the amount of necessary im-
ages even further would enhance the practicality of
these methods in real-world settings where acquiring
large amounts of labeled target data might be challeng-
ing. Here, investigating modifications to patch sampling
techniques during training could be beneficial. Addi-
tionally, a more extensive study is necessary to solidify
these findings. Repeating the few-shot learning experi-
ments with various image combinations would provide
valuable insights into how sensitive the results are to
the specific selection of images in such scenarios. This
would provide a more robust understanding of the gen-
eralizability of the approach with minimal source do-
main data.

By addressing these limitations and exploring the
proposed future directions, the effectiveness of this ap-
proach for CL in MS lesion segmentation tasks with do-
main shift can be further strengthen.
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6. Conclusions

In this work, a deep learning framework based on a
U-Net architecture was developed for MS lesions seg-
mentation. Several public international and in-house
datasets were used to evaluate the performance of the
model on in- and out-domain images, to assess the do-
main shift problem. TL techniques were studied for do-
main adaptation, and CL techniques were explored to
mitigate catastrophic forgetting suffered by TL meth-
ods. For both CL and TL techniques, few-shot ap-
proaches were analyzed due to the high interest in re-
ducing the number of training images needed for do-
main adaptation.

The analysis of the baseline model revealed a signifi-
cant drop in performance when testing the source model
on the target domain, with an average F-score decrease
of around 14%. While TL achieved full-domain adapta-
tion with only 5 target images, using only 3 images led
to an F-score improvement of almost 10%.

Furthermore, EWC demonstrated its effectiveness in
mitigating catastrophic forgetting. Notably, this work
was the first to apply EWC for domain-incremental
learning in MS lesion segmentation. Results showed
that the source model’s performance drop during adap-
tation to the target domain using TL ranged from 20%
to 37% in terms of F-score. EWC successfully reduced
catastrophic forgetting by 8% to 19% across different
training set sizes. Moreover, EWC achieved compara-
ble performance on the target domain as TL techniques,
even in few-shot and full-training settings.

Finally, a significant advantage of EWC is its effi-
ciency. It enables adaptation without requiring source
domain images during target domain training. This not
only translates to memory efficiency but also addresses
critical privacy concerns within the medical domain.
Additionally, EWC avoids introducing new network pa-
rameters, eliminates the need for domain labels during
inference, and does not require training separate neural
networks. These characteristics make EWC a promis-
ing approach for real-world applications, particularly
for companies that operate in the medical image anal-
ysis sector.
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Abstract

Background: Lung cancer screening relies heavily on accurately classifying the lung nodules malignancy. Current
AI solutions, despite their high accuracy, often face skepticism from radiologists due to lack of interpretability and
uncertainty associated with malignancy classification. To bridge this gap, we propose an interpretable approach us-
ing four distinct “archetypes” of lung nodules—Size, Spiculations, Lobulations, and Attachments—each contributing
to the malignancy classification process. This study estimates the performance of interpretable archetypes against
traditional radiomics features for malignancy classification. Methods: Our approach computed the archetypes us-
ing area distortion metric from angle-preserving spherical parameterization and used region growing concepts for
accurate lung nodule, and vessel/wall attachment segmentation. We then integrated the archetypes into decision
tree and neural network models to provide transparent and understandable classification results. The contribution of
each archetype to malignancy prediction was quantified from SHAP (SHapley Additive exPlanations) values. We
conducted a comprehensive evaluation using multiple datasets, including the LIDC, LungX, and Private Duke Lung
Cancer Screening Dataset. Additionally, we incorporated uncertainty estimations to assess the reliability of classifica-
tion results, comparing models based on interpretable archetypes against those based on traditional radiomics features.
Results: By using archetypes, we achieved better AUC scores as compared to radiomics. Our models were trained
on weakly-labeled radiological malignancy (LIDC RM) cases and tested on strongly labeled pathological malignancy
(LIDC PM) cases, as well as externally available LungX and Duke cases. Uncertainty estimations also indicated that
the archetypes-based neural network model provided more reliable results compared to the radiomics-based neural
network model. Conclusion: Our proposed approach offers a reliable and transparent tool for classifying lung nodule
malignancy, which has the potential to foster greater trust among radiologists. By effectively balancing accuracy and
interpretability, the archetypes approach holds promise for enhancing clinician confidence in AI-assisted diagnoses.
Incorporating uncertainty estimations further confirms the model’s reliability, making it a valuable asset in clinical
settings.

Keywords: Spiculations, Radiomics, Interpretable AI, Lung Cancer Screening

1. Introduction

Over recent years, artificial intelligence (AI) solu-
tions have significantly impacted both industry and
academia, revolutionizing radiologic research. Numer-
ous studies have employed AI techniques to address
complex medical imaging challenges (Hosny et al.,
2018), often demonstrating that AI models can surpass
human radiologists in performance (McKinney et al.,
2020) (Hou et al., 2021) (Ardila et al., 2019). As a re-
sult, an increasing number of AI-driven products have

been developed for clinical applications (van Leeuwen
et al., 2021), profoundly influencing clinicians’ daily di-
agnostic practices.

A significant challenge hindering the widespread
adoption of AI in critical decision-making areas like
healthcare is the lack of model interpretability and trans-
parency (Rudin, 2019) (Reyes et al., 2020) (Caspers,
2021). It is essential to develop AI models that are both
reliable and explainable for clinical use. For AI to serve
as a valuable second opinion for radiologists, it must
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provide diagnostic results that are both accurate and un-
derstandable. Addressing the “black box” nature of AI
has become a key research priority, focusing on two
main approaches to interpreting AI models: the “why”
approach, which seeks to explain the rationale behind
diagnostic outcomes, and the “where” approach, which
aims to visualize the key regions the AI considers im-
portant.

(Ribeiro et al., 2016) introduced the ”LIME” method,
which aims to explain AI models by pinpointing in-
formative segments within the input data. This ap-
proach has found success in natural language process-
ing (NLP) and has been adapted for use in computer
vision. Similarly, (Ghorbani et al., 2019) proposed a
concept-based explanation technique that seeks to iden-
tify human-interpretable regions within input images.
Furthermore, instance-based methods have been devel-
oped to uncover relationships between training data and
test data by locating similar examples within the train-
ing set (Chen et al., 2019).

Unlike the previously mentioned methods that fo-
cus on explaining AI model predictions, class activation
mapping (CAM) techniques (Zhou et al., 2016) (Sel-
varaju et al., 2017) create saliency maps to highlight
the regions that the AI model activates. Some CAM-
based methods have been utilized in various healthcare
applications, including COVID-19 diagnosis (Oh et al.,
2020), skin lesion detection (Zhang et al., 2019), de-
termining the lymph node status in early-stage breast
cancer (Zheng et al., 2020), and predicting extracap-
sular extension in prostate cancer (Hou et al., 2021).
However, CAM-based methods have several limita-
tions. They struggle with precise localization of the re-
gions contributing to the decision, especially in complex
images where features are subtle or overlapping (Arun
et al., 2021). Additionally, while CAMs provide a vi-
sual explanation of what the model focuses on, the ex-
planations can be coarse and may not always be easy
for clinicians to interpret. Furthermore, CAMs cannot
not generalize well across different datasets, and they
primarily offer qualitative insights without quantitative
measures of feature importance, which limit their use in
clinical settings (Rudin, 2019).

Lung cancer is the leading cause of cancer-related
deaths worldwide (Bade and Cruz, 2020). For many
years, computer-aided diagnosis (CAD) models have
been developed to assist in the evaluation of pulmonary
nodules (Zhao et al., 2012) (Cao et al., 2020). These
CAD systems primarily focus on two tasks: the detec-
tion of nodules and their classification. Historically,
most research has prioritized improving the accuracy
of these models, often at the expense of model inter-
pretability (Xie et al., 2018) (Xie et al., 2019). CAD
systems are intended to support clinicians by providing
a second opinion, aiding in accurate diagnoses. How-
ever, the lack of interpretability in these models poses
a significant challenge, as it hinders radiologists’ abil-

ity to validate or refute the CAD system’s predictions.
This lack of transparency is a major barrier to the inte-
gration of AI models into everyday clinical practice. In
recent years, researchers have increasingly recognized
the importance of interpretability in AI models. Several
studies have focused on creating explainable diagnostic
models for pulmonary nodules by providing predicted
clinical characteristics, such as calcification, sphericity,
and subtlety (Shen et al., 2019) (Liu et al., 2019).

In recent years, when evaluating lung nodules for ma-
lignancy, specific archetypes such as the size of the nod-
ules, number of spiculations, number of lobulations, and
number of attachments are proving critical according to
guidelines by organizations like the Food and Drug Ad-
ministration (FDA) and the Fleischner Society. These
archetypes are considered interpretable as they provide
clear, understandable criteria that can be used to as-
sess the likelihood of malignancy. For instance, lung
nodules smaller than 6 mm generally have a very low
risk of malignancy typically less than 1 percent, but
the risk increases with size. Nodules measuring 6-8
mm in high-risk patients require follow-up, and those
larger than 8 mm may need immediate further diagnos-
tic procedures like CT scans, PET/CT, or biopsy (Gould
et al., 2015) (MacMahon et al., 2017). The presence
of spiculations, which indicates spiky or irregular mar-
gins, also significantly raises the suspicion of cancer and
warrants further investigation regardless of nodule sizes.
Similarly, lobulated nodules with uneven or lobed mar-
gins suggest abnormal growth patterns often associated
with cancer (Larici et al., 2017). Nodules attached to
the vessels/walls of the lung or pleura are also consid-
ered more suspicious, particularly when combined with
other malignancy archetypes such as spiculations and
lobulations, requiring careful evaluation and follow-up
(MacMahon et al., 2017). These archetypes are not
only crucial for assessing malignancy but are also con-
sidered interpretable because they can be directly ob-
served, measured, and evaluated in a consistent manner.

In our proposed work, we present a comprehensive
pipeline to measure and utilize interpretable archetypes
of nodules such as size, lobulations, spiculations, and
vessel/wall attachments, and use them for the malig-
nancy classification purpose.

The contributions of our research are as follows:

1. Key interpretable lung nodule archetypes for ma-
lignancy estimation are computed by using area
distortion metric from angle-preserving spherical
parameterization technique.

2. Region growing segmentation concepts are used
for accurate lung nodule segmentation, and ves-
sel/wall attachment segmentation. This approach
leads to accurate spiculation quantification because
it helps to exclude the attachments from spicula-
tions present on the lung nodule surface.

3. Moreover, a malignancy classification model is
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introduced, which only uses four interpretable
archetypes (size, spiculations, lobulations, ves-
sel/wall attachments) and has the advantage of
utilizing weak-labeled training data. These
archetypes are integrated into a decision tree
and neural network for malignancy classification.
Also, the contribution of each archetype to the
malignancy is calculated based on SHAP values,
which use game theory to assign credit for malig-
nancy prediction to each archetype.

4. Monte Carlo dropout uncertainty estimations were
incorporated to assess the neural network’s relia-
bility. The uncertainty estimation trends showed
that the archetype-based neural network model
provided more reliable classification results than
the radiomics-based neural network model.

2. State of the art

For malignancy classification, radiomics, which in-
volves the extraction of a large number of quantitative
features from medical images, can indeed be challeng-
ing to interpret. This complexity arises from the high
dimensionality and abstract nature of the features ex-
tracted, which often lack direct and intuitive clinical
meaning. Many radiomics features include higher-order
statistical measures, texture patterns, and wavelet trans-
forms, which can be difficult for clinicians to under-
stand without a clear context of their relevance to clini-
cal outcomes. Additionally, the lack of standardization
in feature extraction and reporting across studies fur-
ther complicates the interpretability of radiomics data.
While some radiomics features show promise in corre-
lating with clinical outcomes like tumor grade or patient
prognosis, many lack direct clinical correlation, making
it challenging to translate these features into actionable
insights.

Recent advancements in radiomics have enabled the
application of this technology in various clinical set-
tings (Hawkins et al., 2016). By extracting a multitude
of quantitative features from medical images and em-
ploying data mining techniques, radiomics studies can
predict tumor responses and patient outcomes with en-
hanced precision. This approach has led to more accu-
rate predictions of local tumor control and overall pa-
tient survival. For an in-depth review of radiomics and
radiogenomics research focused on forecasting clinical
outcomes in lung cancer, you can refer to the compre-
hensive study (Thawani et al., 2018).

Radiomics analysis for lung cancer screening has
been investigated by several researchers. For instance,
(Hawkins et al., 2016) developed a random forest clas-
sifier that utilized 23 radiomics features for malignancy
classification. In a similar vein, (Buty et al., 2016)
proposed another random forest classifier, which em-
ployed spherical harmonics feature extractor for 400

shape features, and also utilized a pre-trained deep neu-
ral network-based feature extractor for 4096 appearance
features. The spherical harmonics technique provide a
decomposition of frequency-space basis for represent-
ing all the functions defined over sphere. They are es-
sential for accurately describing the overall shape of
an object. Moreover, while effective for describing the
general shape, spherical harmonics are less capable of
capturing localized features, such as spiculations, that
are specific to certain regions of a shape.

In another study, (Kumar et al., 2017) introduced a
deep neural network model that leveraged five thousand
distinct features for the detailed analysis. (Liu et al.,
2017) also proposed a linear classifier model based
on twenty-four image characteristics that were visually
recorded by the physicians. Also, (Choi et al., 2018)
created a malignancy classification framework for lung
nodules by utilizing the support vector machine classi-
fier combined with a selection operator and, a least ab-
solute shrinkage, by employing just two radiomics fea-
tures, texture and, size. Although these radiomics stud-
ies have enhanced classification accuracy, they are lim-
ited by the lack of clinical and biological interpretabil-
ity.

Efforts to improve interpretability include feature re-
duction techniques, robust clinical validation, and ad-
vanced visualization tools to better understand the spa-
tial distribution and relevance of radiomics features
within anatomical and pathological contexts. Despite
its potential to enhance diagnostic and prognostic ac-
curacy, improving the interpretability of radiomics re-
mains a critical area of ongoing research (Lambin et al.,
2017) (Zwanenburg et al., 2020).

The edge characteristics of lung nodules, such as
spiculations, which are spike-like projections on the
nodule’s surface, can play a crucial role in assessing ma-
lignancy risk (Swensen et al., 1997). Malignant nodules
often exhibit irregular and blurred boundaries, in con-
trast to benign nodules, which tend to have well-defined
and smooth edges. To streamline lung cancer screening
using CT images, the American College of Radiology
developed the Lung Imaging Reporting and Data Sys-
tem (Lung-RADS). This system standardizes lung can-
cer assessments based on nodule size, appearances (in-
cluding lobulations, spiculations and vessel/wall attach-
ments), as well as calcification (McKee et al., 2016).
According to Lung-RADS, the presence of spiculation
is a significant indicator that increases the likelihood of
malignancy, thereby enhancing the accuracy of predic-
tions.

Quantifying spiculations in pulmonary nodules has
been explored, though not primarily for malignancy pre-
diction. (Niehaus et al., 2015) developed a computer-
aided diagnosis (CAD) system that utilized shape fea-
tures dependent on nodule size to measure spiculations.
Similarly, (Ciompi et al., 2015) introduced a frequency-
based shape descriptor aimed at evaluating spiculations
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in detected nodules for the lung cancer screening pur-
pose. (Dhara et al., 2016) concentrated on quantify-
ing spiculations on a surface mesh derived from binary
mask of segmented nodules. They employed geodesic
distance transformation and mean curvature to detect
spiculations and identified the baseline by tracking sud-
den surface changes. However, their method’s accuracy
was compromised by its sensitivity to local surface vari-
ations, making it challenging to precisely identify the
baseline for noisy spiculation peaks.

3. Material and methods

The first part of our proposed methodology focuses
on quantifying sharp spikes present on lung nodules in
an interpretable way. The visual steps have been shown
in Figure 1.

3.1. Quantifying Spikes Pipeline

We use the conformal spherical parameterization to
map the shape of a nodule onto a sphere while pre-
serving angles, enabling accurate measurement of the
spikes. In our case, the conformal spherical parameteri-
zation involves several steps in the following order: -

(i) Nodule Surface Division:

We take the shape of the lung nodule as a three-
dimensional surface S . The surface S is divided
into two disk-like parts by calculating the eigen-
function of the Laplace-Beltrami operator, ∆B,
which helps identify a boundary Γ that splits S
into two parts, S 1 and S 2.

∆Bϕ = λϕ

Here, ∆B is the Laplace-Beltrami operator, ϕ is the
eigenfunction, and λ is the eigenvalue. The bound-
ary Γ is defined where the eigenfunction ϕ takes a
specific value, often zero (the nodal line):

Γ = {x ∈ S | ϕ(x) = 0}
The surface S is then divided into:

S 1 = {x ∈ S | ϕ(x) > 0}
S 2 = {x ∈ S | ϕ(x) < 0}

(ii) Spherical Mapping:
- Flattening the Disk-like Parts: After dividing
the surface, each disk-like part is flattened using
the Ricci flow algorithm, which ensures that the
angles of the original nodule shape are preserved
during the flattening process. The Ricci flow is
described by the following equation:

∂gi j

∂t
= −2Ri j

where gi j is the metric tensor, t is the time
parameter, and Ri j is the Ricci curvature tensor.

- Projecting the Flattened Parts onto a Sphere:
Once the parts are flattened, they are reassembled
into a spherical shape through a process called
stereographic projection. The stereographic
projection maps the flat parts onto a sphere and is
given by:

x =
2u

1 + u2 + v2

y =
2v

1 + u2 + v2

z =
1 − u2 − v2

1 + u2 + v2

where (u, v) are coordinates in the plane and
(x, y, z) are coordinates on the sphere.

(iii) Spikes Detection:
In the process of mapping the lung nodule surface
onto a sphere, the areas of the nodule surface get
distorted. Area distortion refers to the changes
in the size of different regions of the nodule sur-
face as they are transformed to fit onto the sphere.
We measure this distortion because when a region
on the nodule surface shrinks (i.e. negative dis-
tortion), it indicates the presence of spikes. This
shrinkage is important because it precisely char-
acterizes the sharp spikes on the nodule surface.
To quantify the spikes, we measure the amount of
distortion at each point on the nodule surface us-
ing the following equation.

ϵi := log
∑

j,k A([ϕ(vi), ϕ(v j), ϕ(vk)])
∑

j,k A([vi, v j, vk])

where, ϵi calculates the logarithm of the ratio of
the summed areas in the transformed space ϕ(vi)
to the original space. This ratio indicates how
much the area has changed during the transforma-
tion. The detection process involves these steps:

- Baseline and Apex Detection: We identify
baseline points, where the area distortion is zero,
and apex points, where the area distortion reaches
its maximum, indicating the sharpest spikes.

- Height and Width Calculation: For each
detected spike, we calculate its height (the vertical
extent of the spike) and width (the horizontal
extent at half the height). This method allows us
to precisely characterize the spikes on the lung
nodule surface by analyzing the area distortion
patterns.

By successfully applying the Quantifying Spikes
Pipeline, we detected the spikes present on the nodule
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Figure 1: Quantifying Spikes Pipeline (i) Nodule Surface Division: The first significant eigen function of the Laplace-Beltrami operator is computed
for the nodule’s surface (mesh). This step identifies a boundary (light blue curve) that divides the nodule’s surface into two halves. (ii) Spherical
Mapping: Each half is flattened and then mapped onto a sphere while preserves angles. (c) Spikes Detection: The area distortion metric is used
here. Areas with significant shrinkage (light blue Xs) indicate the highest points of spikes. The dark blue curves measure the height of these spikes.

surface. As we know, malignant lung nodules often ex-
hibit irregular, lobulated, or spiculated margins due to
the invasion of malignant cells into the pulmonary in-
terstitium. Thus, our Quantifying Spikes Pipeline can
identify both lobulations and spiculations. By classify-
ing detected spikes into spiculations (sharp peaks) and
lobulations (curved peaks), we enhance the archetypes
for malignancy classification. To differentiate the lob-
ulations from spiculations, we use a thresholding ap-
proach based on height threshold (Th ≥ 3 mm) and
solid angle (TΩ ≤ 0.65 sr). The height and solid angle
thresholds were recommended in (Dhara et al., 2016).
Additionally, we employed the full width at half maxi-
mum (FWHM) concept to achieve more accurate width
measurements, considering the surface and its area dis-
tortion.

3.2. Region Growing Segmentation

We employed region growing segmentation methods
to precisely preserve spikes and segment the vessel/wall

attachments of the nodules. For each nodule, a consen-
sus contour was created by merging two or more con-
tours utilizing the simultaneous truth and performance
level estimation method (Warfield et al., 2004) (Choi
et al., 2016), which served as our ground truth. While
numerous region growing segmentation methods exist
for nodule segmentation, most focus on the core regions
of the nodule and are often complex to implement. To
ensure reliability in segmentation, we incorporate two
well known and established straightforward techniques:
Chest Imaging Platform (CIP) segmentation (Yip et al.,
2017) and the GrowCut (Vezhnevets and Konouchine,
2005) segmentation.

The GrowCut method is a region growing segmenta-
tion technique that utilizes two sets of seed points: one
for the foreground and the other one for the background.
These seed points compete to expand their respective re-
gions until the algorithm converges. GrowCut is known
for its simplicity and effectiveness in segmenting com-
plex structures. One of its main advantages is its ro-
bustness in handling noisy images, which is particularly
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Figure 2: Region-growing segmentation and vessel/wall attachments detection. (Left Images) Segmentation results on an axial slice (red dashed line:
CIP segmentation, blue dashed line: GrowCut segmentation, and white line: final segmentation). (Middle Images) 3D shapes of final segmentation
and attachment regions (pink region: attachments). (Right Images) Spikes classification results (blue lines: baselines, green Xs: spiculations, white
Xs: lobulations, blue Xs: attachments).
Case 1 results explanation: Archetypes classification results. (number of spiculations: 14, number of lobulations: 1, number of attachments: 9).
Case 2 results explanation: Archetypes classification results. (number of spiculations: 4, number of lobulations: 3, number of attachments: 5).

useful for medical image segmentation where noise can
be an issue. Additionally, GrowCut is quite simple to
implement and only requires minimal parameter tuning,
making it easily accessible for various applications. The
method uses iterative updates to propagate the seeds,
ensuring detailed segmentation. However, due to its ag-
gressive region-growing nature, it can sometimes extend
into surrounding areas, such as the airway walls, chest
wall, and vessel-like structures. Despite this, its abil-
ity to produce detailed and accurate segmentations with
minimal user input makes it a valuable tool in medical
imaging (Vezhnevets and Konouchine, 2005).

The CIP method is the level set-based segmentation
algorithm that employs a front propagation strategy,
starting from the seed point placed within the lung nod-
ule. This segmentation approach, is guided by the fea-
ture maps of surrounding structures in order to prevent
leakage into the adjacent areas. However, CIP method

can sometimes miss parts of the tumor due to inaccu-
rate wall and vessel feature maps. To overcome these
limitations and leverage the strengths of both meth-
ods, we combined the GrowCut and CIP segmentation
techniques. GrowCut’s robustness in noisy environ-
ments and aggressive region-growing capabilities com-
plement CIP’s precise front propagation, resulting in
improved vessel/wall attachments detection. This hy-
brid approach helps to mitigate the individual shortcom-
ings of each method. Both GrowCut and CIP segmen-
tation methods are publicly available in the 3D Slicer
platform (Fedorov et al., 2012), making them accessible
for research and clinical applications. CIP’s advantage
lies in its ability to accurately follow the nodule bound-
aries when the feature maps are reliable, while GrowCut
provides a more robust segmentation in the presence of
noise and complex anatomical structures. By integrat-
ing these methods, we aim to achieve more accurate and
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reliable nodule segmentation (Yip et al., 2017).

3.2.1. Radiomics Features
Following the implementation of our Region Grow-

ing Segmentation Pipeline to segment lung nodules, we
also extracted a comprehensive set of 103 radiomics fea-
tures from each lung nodule to quantitatively assess its
intensity, texture, and shape characteristics (Choi et al.,
2018):

(i) Intensity features
These first-order statistical measures capture the
distribution and levels of CT attenuations within
a nodule. Key intensity features include Mini-
mum, Mean, Median, Maximum, Standard Devia-
tion, Kurtosis, and Skewness, providing a detailed
profile of the nodule’s intensity variations.

(ii) Shape features
These features describe the geometric proper-
ties of the nodules. We measured the diam-
eter, volumn, roundness, elongation, and flat-
ness, which collectively characterize the three-
dimensional structure and form of the nodules.

(iii) Texture features
To quantify the tissue density patterns, we
employed advanced texture analysis methods.
Specifically, we employed the Gray Level Co-
occurrence Matrix (GLCM) and Gray Level Run
Length Matrix (GLRM) techniques. From the
GLCM, we derived features such as Correla-
tion, Inertia, Cluster Prominence, Entropy, Haral-
ick’s Correlation, Energy, Cluster Shade, and In-
verse Difference Moment. From the GLRM, we
extracted Gray-Level Non-uniformity, Short-Run
Low Gray-Level Emphasis, Long-Run Empha-
sis, High Gray-Level Run Emphasis, Long-Run
High Gray-Level Emphasis, Low Gray-Level Run
Emphasis, Short-Run High Gray-Level Emphasis,
Long-Run Low Gray-Level Emphasis, Short-Run
Emphasis, Run Length Non-uniformity. To en-
sure rotational invariance of these texture features,
we computed their mean and standard deviation
across 13 different directions.

3.3. Malignancy Classification Model

For malignancy classification, we evaluated our in-
terpretable archetypes against the uninterpretable ra-
diomics features extracted from lung nodules. To
compare models’ performances, we exclusively used
archetypes measures, and integrated them into both de-
cision tree and neural network models for predictions.
After making prediction, we calculated the contribution
of each archetype for the malignancy prediction using
SHAP values, thus giving prediction insights made by
the model to the radiologists.

3.3.1. SHAP values
SHAP values are a concept from cooperative game

theory to fairly distribute the total gains to all players
based on their contribution to the total outcome. In our
prediction model, SHAP values are used to explain the
output of the prediction model by attributing the contri-
bution of each archetype to the final prediction. SHAP
values ensure fairness by distributing the contribution
of each archetype based on its marginal contribution to
different subsets of archetypes. Each archetype is con-
sidered a player in a coalition, and the SHAP value rep-
resents the average contribution of an archetype over all
possible coalitions. The concept of marginal contribu-
tion is essential, as it quantifies the value added by in-
cluding an archetype in a coalition of other archetypes
(Lundberg and Lee, 2017).

Here is the detailed explanation to calculate the
SHAP values of each archetype towards the final pre-
diction.

- Permutations of Archetypes: Consider all possible
permutations of the archetypes.

- Marginal Contribution: For each permutation,
compute the marginal contribution of an archetype by
comparing the model’s output with and without the
archetype.

- Average Contribution: Average the marginal
contributions of the archetype over all permutations.

For an archetype i, the Shapley value ϕi is calculated
as:

ϕi =
∑

S⊆N\{i}

|S |! · (|N| − |S | − 1)!
|N|! (v(S ∪ {i}) − v(S ))

where,

• N is the set of all archetypes

• S is the subset of archetypes excluding i

• |S | is the number of archetypes in subset S

• v(S ) is the value (e.g., prediction) of the subset S

• v(S ∪{i}) is the value of the subset S with archetype
i included

In parallel, we employed radiomics features, inte-
grating them into decision tree and deep neural net-
work models to assess their overall performance com-
pared to the archetype-based predictions. Prior to
feeding the radiomics features into these models, we
performed feature selection using Recursive Feature
Elimination (RFE) with a Logistic Regression estima-
tor. The RFE method identifies the most relevant
features by recursively removing the least important
ones and fitting the model multiple times. Through
this process, we selected 10 features that contribute
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Figure 3: Malignancy Prediction Assessment Flowchart: Pipeline illustrating the process of lung nodule malignancy prediction assessment and
explanation. The workflow begins with a test image of a lung nodule, which is processed to measure archetypes such as size of the nodule,
number of spiculations, number of lobulations, and number of attachments through Quantifying Spikes Pipeline, Region Growing Segmentation,
and (geometric property of volume for the size measurement). These archetypes are fed into two prediction models: a decision tree and a neural
network for the prediction. After prediction on the test image, we measure SHAP credit of each archetype. Positive SHAPs values credits towards
malignancy (+ sign is the malignancy class magnitude) and negative SHAPs values credits towards benign (- sign is the benign class magnitude).
For the same test image case use here in Figure 3, we already calculated the Archetypes Measures (Refer to Case 1 of Figure 2): Size of Nodule =
6.8 mm, number of spiculations =14, number of lobulations = 1, number of attachments =9
Results of Explanation: For this test case, the malignancy class has an aggregated SHAP credit of + 3.7, which is significantly higher than the
benign class aggregate SHAP credit of - 0.15. This indicates that the prediction made by the model also considers a strong influence from the
nodule size of 6.8 mm (considered high risk), the number of spiculations (14 – considered high), and the number of attachments (9 – considered
high) in predicting the test case as malignant. This whole assessment can help the radiologists whether they should consider the prediction made
by the model by looking at the calculated archetypes measures and then the prediction made by the model on the test case along with quantified
SHAP scores showing the importance of each archetype in the final decision made by the model.

the most to the classification task: BoundingBox-
Size1, BoundingBoxSize2, EquivalentSphericalPerime-
ter, MeanOfLongRunEmphasis, OrientedBounding-
BoxSize1, OrientedBoundingBoxSize3, PrincipalMo-
ments1, StandardDeviationOfGreyLevelNonuniformity,
StandardDeviationOfLongRunEmphasis, and Standard-
DeviationOfRunLengthNonuniformity. These features
were found to be the most significant in classifying ma-
lignancy, providing a robust subset for further analy-
sis but lack clinical interpretation to understand predic-
tions.

3.3.2. Uncertainty Estimations
Uncertainty estimations were also incorporated in or-

der to assess the neural network’s prediction’s reliabil-
ity. Uncertainty estimation in neural networks helps
quantify the confidence in the predictions made by the
model. This is particularly important for our proposed
prediction model, where understanding the reliability
of the model’s predictions is also very important. We
have used the Monte Carlo (MC) Dropout technique to

estimate model uncertainty (epistemic uncertainty) in
neural networks (Gal and Ghahramani, 2016). It in-
volves using dropouts during both training and infer-
ence phases to approximate the uncertainty.

Given below is the mechanism of MC Dropout tech-
nique we used to estimate the uncertainty estimations:-

(i) Dropout during training
• Dropout is a regularization technique where,
during each training iteration, a fraction of the
neurons are randomly dropped (i.e., set to zero).
This prevents the network from overfitting and en-
courages it to learn robust features.
• In our neural network prediction model, dropout
is applied with a probability of 0.5.

(ii) Dropout during inference
•During inference, dropout is usually turned off to
use the full network for predictions. However, for
Monte Carlo Simulations, dropout is kept on, and
multiple stochastic forward passes are performed.
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Figure 4: Prediction Model Evaluation Criteria

• Each forward pass uses a different random
subset of the network, simulating the effect of
sampling from an ensemble of models.

(iii) Predictive Distribution
• By performing multiple forward passes (in our
case: 50), we obtain a distribution of predictions
for each input.
• The mean of these predictions gives the final pre-
dicted output.
• The standard deviation of these predictions pro-
vides an estimate of the uncertainty.

4. Results

4.1. Data Preparation
The Lung Image Database Consortium dataset

(LIDC) (Armato III et al., 2011), LungX dataset (Ar-
mato III et al., 2016), and a few samples from the Pri-
vate Duke Lung Cancer Screening dataset were used to
evaluate our proposed methodology.

The LIDC dataset contains 1,018 cases with low-
dose screening thoracic Computed Tomography scans
and annotated lesions. Four experienced radiologists
annotated nodules. Out of the entire dataset, 883 cases
included nodules with contour annotations. For each
case, we employed our region growing segmentation ap-
proach to segment lung nodules while preserving spikes
present on the nodule surface. The accuracy of our re-
gion growing segmentation approach was measured by
the Dice coefficient, resulting in a score of 0.746±0.11.

The LungX dataset includes 83 strongly-labeled
pathological malignancy cases. Additionally, we uti-
lized 335 cases from the Duke Lung Cancer Screen-
ing dataset. We applied the same region-growing seg-
mentation approach to the nodules in each case of these
datasets to accurately segment lung nodules and detect
vessel/wall attachment regions.

For a detailed performance analysis of our classifica-
tion model, we used two different subsets of the LIDC
dataset: a strongly-labeled subset of pathological ma-
lignancy cases LIDC PM and a weakly-labeled subset

of radiological malignancy cases LIDC RM. We fur-
ther subdivided the LIDC RM subset into two groups
for model training and internal validation purposes.

For the independent validation of our classification
model, we first validated the model on the strongly-
labeled pathological malignancy cases LIDC PM. Ad-
ditionally, we performed external validation using the
LungX and Duke cases as shown in the Figure 4.

4.2. Archetypes Distribution

After implementing the Quantifying Spikes Pipeline,
and Region Growing Segmentation on LIDC RM cases,
we were able to compute the lung nodule archetypes
such as the size of the nodule, number of spiculations,
number of lobulations, and number of attachments be-
fore feeding them into the training models. We classi-
fied the spiculations and lobulations out of spikes based
on height and solid angle thresholds. Using the same
thresholds as in (Dhara et al., 2016), we clearly differ-
entiated spiculations from lobulations and detected as
many spiculations as possible without false positives.
The final selected thresholds were height (Th ≥ 3 mm)
and solid angle (TΩ ≤ 0.65 sr).

The bar plots in Figure 5 illustrate the percentage dis-
tribution of various lung nodule archetypes for both ma-
lignant and benign cases in the LIDC RM dataset. The
first plot, showing the percentage distribution of size,
indicates that smaller nodules (less than 4mm) are pre-
dominantly benign with approximately 90% benign and
10% malignant. Nodules in the size range of 4mm-6mm
show around 75% malignancy, while those in the 6mm-
8mm range have more than 80% malignancy. Nodules
in the 8mm-10mm range also reach around 80% malig-
nancy. This trend suggests that nodule size is a signifi-
cant indicator of malignancy.

The second plot, displaying the percentage distribu-
tion of the number of spiculations, reveals that benign
nodules typically have zero or very few spiculations,
with about 80% of nodules having 0-1 spiculations be-
ing benign and 20% being malignant. As the number
of spiculations increases, the percentage of malignant
nodules also increases significantly. For nodules with

2.9



Interpretable Lung Nodule Archetypes for Malignancy Classification 10

Figure 5: Bar plot results showing the percentage of malignant and benign cases for each lung nodule archetype (size, number of spiculations,
number of lobulations, and number of attachments) across LIDC RM cases. The x-axis represents different ranges and counts of the nodule
archetypes, while the y-axis represents the percentage of nodules within each range or count. The blue bars represent benign nodules (Malignancy
= False), and the orange bars represent malignant nodules (Malignancy = True).

1-4 spiculations, around 50% are malignant, while for
those with 4-6 and 6-8 spiculations, the malignancy rate
rises to about 80%. Nodules with 8-10 spiculations are
almost entirely malignant. This indicates that the pres-
ence of multiple spiculations is a strong predictor of ma-
lignancy.

The third plot, showing the percentage distribution of
the number of lobulations, indicates that benign nod-
ules generally have zero lobulations, with about 80%
being benign and 20% malignant. As the number of
lobulations increases, the malignancy percentage also
increases. Nodules with one lobulation have around
40% malignancy, those with two to three lobulations
have about 70-80% malignancy. Although lobulations
are less impactful than size and spiculations, their pres-
ence still increases the likelihood of malignancy.

Finally, the fourth plot, showing the percentage dis-

tribution of the number of attachments, indicates that
benign nodules generally have zero or few attachments,
with more than 80% of nodules having 0-1 attachments
being benign and about 20% being malignant. For nod-
ules with 1-4 attachments, the malignancy rate rises to
about 40%, while for those with 4-6 and 6-8 attach-
ments, the malignancy rate increases to approximately
80-85%. Nodules with 8-10 attachments shown almost
sure chances of malignancy. This suggests that the pres-
ence of several attachments can also be an indicator of
malignancy.

These bar plots provide a clear visualization of how
different lung nodule archetypes are associated with ma-
lignancy, which is crucial for developing accurate and
interpretable predictive models.
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Datasets Archetypes based Decision Tree Model Radiomics based Decision Tree Model
AUC Upper Bound Lower Bound AUC Upper Bound Lower Bound

LIDC-RM 0.9192 0.9595 0.8648 0.8721 0.9347 0.8037
LIDC-PM 0.7286 0.8380 0.6318 0.7506 0.8560 0.6424

LungX 0.7085 0.8250 0.6608 0.6783 0.7946 0.5687
DUKE 0.8504 0.9102 0.7818 0.7734 0.8417 0.7064

Table 1: Comparison of Archetypes based and Radiomics based Decision Tree Model Results

Datasets Archetypes based Neural Network Model Radiomics based Neural Network Model
AUC Upper Bound Lower Bound AUC Upper Bound Lower Bound

LIDC-RM 0.9228 0.9626 0.8676 0.8918 0.9496 0.8052
LIDC-PM 0.7632 0.8566 0.7047 0.7419 0.8467 0.6234

LungX 0.7166 0.8267 0.6773 0.7538 0.8493 0.6422
DUKE 0.8511 0.9279 0.7834 0.7786 0.8621 0.6791

Table 2: Comparison of Archetypes based and Radiomics based Neural Network Model Results

4.3. Malignancy Classification Models
(i) Decision Tree:

The decision tree model based on archetypes
outperformed the radiomics-based model across
various datasets. The archetype-based model
achieved an AUC of 0.919 on LIDC RM cases,
0.728 on LIDC PM cases, 0.708 on LungX
cases, and 0.850 on Duke cases. In comparison,
the radiomics-based model showed lower AUC
scores: 0.872 on LIDC RM, 0.678 on LungX, and
0.773 on Duke cases. Table 1. illustrate highlight-
ing the superior performance of the archetype-
based decision tree model.
To quantify the reliability of these results, we
calculated the confidence intervals for the AUC
scores using bootstrap simulations. Bootstrap
simulations involve repeatedly resampling the
dataset with replacement to create numerous
simulated samples. From these samples, we can
estimate the distribution of the AUC scores. The
confidence interval provides an upper and lower
bound, indicating the range within which the true
AUC score is likely to lie with a specified level of
confidence (typically 95 percent ). For instance,
the confidence interval for the archetype-based
decision tree model on LIDC RM cases ranged
from 0.864 to 0.959. A narrower gap between
the upper and lower bounds indicates more
precise and reliable estimates. Conversely, a
wider gap suggests greater variability and less
certainty in the results. In our comparisons,
the archetype-based model generally exhibited
narrower confidence intervals compared to the
radiomics-based model, indicating more reliable
and consistent performance.

(ii) Neural Network
Table 2 provides a comprehensive comparison
of the performance of archetypes-based and

radiomics-based neural network models across
various datasets, highlighting their respective
AUC scores and 95% confidence intervals. The
archetypes-based neural network model consis-
tently achieved higher AUC scores compared
to the radiomics-based model for most datasets.
For the LIDC-RM dataset, the archetypes-based
model achieved an AUC of 0.922, with a con-
fidence interval ranging from 0.867 to 0.962,
whereas the radiomics-based model had an AUC
of 0.891 with a wider confidence interval from
0.805 to 0.949. This narrower confidence inter-
val of the archetypes-based model indicates more
reliable and consistent performance.
In the LIDC-PM dataset, the archetypes-based
model attained an AUC of 0.763, with a con-
fidence interval from 0.704 to 0.856, compared
to the radiomics-based model’s AUC of 0.741
and confidence interval from 0.623 to 0.846.
This further underscores the more precise and
consistent performance of the archetypes-based
model. Similarly, for the LungX dataset, al-
though the radiomics-based model had a slightly
higher AUC of 0.753 compared to the archetypes-
based model’s AUC of 0.716, the archetypes-
based model’s narrower confidence interval from
0.677 to 0.826 indicates greater reliability.
For the Duke dataset, the archetypes-based model
achieved an AUC of 0.8511, with a confidence in-
terval from 0.783 to 0.927, while the radiomics-
based model had an AUC of 0.778 and a confi-
dence interval from 0.679 to 0.862. Again, the
archetypes-based model demonstrates a narrower
confidence interval, highlighting its more reliable
performance. Overall, the confidence intervals for
the archetypes-based model are consistently nar-
rower across all datasets, suggesting greater relia-
bility and less variability in its performance. This
indicates that the archetypes-based neural network
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model not only outperforms the radiomics-based
model in terms of AUC scores but also provides
more consistent and reliable predictions, making
it a more robust tool for lung nodule classification.

4.4. Uncertainty Estimations Results

MC Dropout was used to estimate the uncertainty
in neural network predictions by performing multiple
stochastic forward passes with dropout enabled, re-
sulting in a distribution of predictions for each input.
The mean of these predictions gives the final output,
while the standard deviation estimates the uncertainty.
Lower standard deviation values indicate more con-
sistent and reliable predictions, which is crucial for
clinical decision-making. Figure 6 show the cumula-
tive mean uncertainty performance curves across dif-
ferent datasets, comparing neural network models us-
ing archetype features and radiomics features. For the
LIDC-RM dataset, the archetype-based model starts
with an uncertainty of 0.15, stabilizing around 0.05,
while the radiomics-based model starts at 0.25, stabi-
lizing at 0.15. In the LIDC-PM dataset, the archetype-
based model stabilizes at 0.06, compared to 0.20 for
the radiomics-based model. The LungX dataset shows
the archetype-based model stabilizing at 0.05, while the
radiomics-based model stabilizes between 0.20 to 0.25.
For the Duke dataset, the archetype-based model sta-
bilizes around 0.04, while the radiomics-based model
stabilizes at 0.08. Across all datasets, the archetype-
based model consistently demonstrates lower cumu-
lative mean uncertainty, indicating more reliable and
consistent predictions compared to the radiomics-based
model. This highlights the archetype-based model’s po-
tential for improving clinical decision-making in lung
nodule malignancy assessment by providing more de-
pendable outputs.

5. Discussion

In this study, we introduced a novel approach for
predicting lung nodule malignancy using interpretable
lung nodule archetypes. Our results indicate that these
archetypes provide a robust framework for malignancy
prediction, outperforming traditional radiomics features
in both accuracy and interpretability.

1. Connection to Existing Literature
The need for interpretability in AI models, partic-
ularly in high-stakes fields like medical diagnos-
tics, has been well-documented. Previous studies
have highlighted the ”black box” nature of many
AI systems as a significant barrier to clinical adop-
tion. Our approach directly addresses this issue by
focusing on archetypes that are both clinically rel-
evant and easily interpretable. For instance, the as-
sociation between nodule size and malignancy risk

is well-established, with larger nodules posing a
higher risk. Similarly, spiculations and lobulations
are recognized as critical indicators of malignancy,
contributing to the suspicion of cancer. By leverag-
ing these known indicators, our model not only en-
hances predictive accuracy but also provides clear,
understandable reasons for its predictions.

2. New Understandings
Our findings extend the current understanding of
lung nodule assessment by demonstrating that
a model based on interpretable archetypes can
achieve superior performance compared to tradi-
tional radiomics-based models. This is particu-
larly significant given the complexity and often ab-
stract nature of radiomics features, which can be
challenging for clinicians to interpret. The use of
SHAP values to quantify the contribution of each
archetype further enhances the transparency of our
model, providing detailed insights to radiologists
on how each archetype influences the prediction.
The incorporation of uncertainty estimations us-
ing Monte Carlo Dropout is another critical ad-
vancement. Uncertainty quantification is cru-
cial for clinical settings, where the confidence
in a model’s predictions can significantly im-
pact decision-making. Our results show that the
archetype-based models not only provide more ac-
curate predictions but also exhibit lower uncer-
tainty, making them more reliable for clinical use.

3. Significance of the Results
The significance of our results lies in their poten-
tial to bridge the gap between AI model perfor-
mance and clinical usability. By focusing on in-
terpretable archetypes that clinicians are already
familiar with, our model can foster greater trust
and acceptance among radiologists. This is a cru-
cial step toward the integration of AI-assisted di-
agnostics in routine clinical practice. Moreover,
the improved performance and reduced uncertainty
of our model highlight its potential for enhancing
clinical decision-making and ultimately improving
patient outcomes.

6. Conclusions

In conclusion, our interpretable approach to lung nod-
ule malignancy prediction represents a significant ad-
vancement in the field of medical AI. By balancing
accuracy with interpretability and incorporating uncer-
tainty estimations, our approach provides a reliable and
transparent tool for clinical decision-making, paving the
way for greater adoption of AI in lung cancer screening.

Future work could focus on refining the segmentation
techniques to improve the accuracy of archetype quan-
tification further. Additionally, expanding the model
to include other interpretable archetypes and validat-
ing it across a broader range of datasets could enhance
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Figure 6: Neural Network Uncertainty Estimation Trends on different datasets2.13
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its generalizability and robustness. Integrating this ap-
proach with existing clinical workflows and assessing
its impact on diagnostic decision-making and patient
outcomes would be critical next steps in translating this
research into practical clinical applications.
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Abstract

Understanding the human cerebral cortex is vital due to its role in higher-level brain functions. However, its thin, con-
voluted structure makes imaging challenging, especially at ultra-low-field (ULF) magnetic resonance imaging (MRI)
strengths. While artificial intelligence (AI) advancements have enhanced segmentation at high-field (HF) strengths,
setting a baseline for cortical reconstruction; there is a paucity of research on cortex segmentation at ULF. This study
adapts and fine-tunes AI-driven segmentation models including U-Net, SegResNet, and nnU-Net as well as investi-
gates coupling these with advanced preprocessing techniques like resampling, bias-field correction, denoising, and
skull-stripping for enhanced ULF cortical segmentation. The study utilized two comprehensive datasets, including
adults (ages 20-69) and infants (ages 12-18 months), with both HF and ULF MRI to train and validate the models.
Quantitative evaluations from this research demonstrated that nnU-Net outperformed other models, achieving the
highest mean Dice Coefficient scores (0.9078 and 0.9132 in adults; 0.8472 in infants) and the lowest mean Hausdorff
Distances (7.6419mm and 8.6077mm in adults; 9.7682mm in infants) across three ULF tested samples. Using the op-
timized BOUNTI (Brain vOlumetry and aUtomated parcellatioN for 3D feTal MRI) pipeline, adapted from the dHCP
neonatal version, we successfully extracted cortical surfaces from ULF infant datasets, enabling detailed analysis
of cortical surface area and morphology, which is vital for neurodevelopmental assessment. Our proposed nnU-Net
segmentation framework therefore establishes a foundation for cortical surface reconstruction. It is accessible via
MScThesis.

Keywords: Brain Cortex, Ultra-low-field MRI, AI-driven Segmentation, Surface Reconstruction.

1. Introduction

The cerebral cortex, is the brain’s outer neural tissue
layer in humans and mammals, playing a pivotal role
in neural integration. It comprises four lobes: frontal,
parietal, temporal, and occipital, collectively facilitat-
ing high-level brain functions such as sensory percep-
tion, motor control, and complex cognition (Javed et al.,
2023; Molnár et al., 2019; Stiles and Jernigan, 2010).
The brain’s complexity renders direct examination time-
consuming and skill-intensive, underscoring the need
for medical imaging (Keith, 2023; Langen et al., 2017).
Neuroimaging, has thus, become an essential procedure
for exploring the structure or activity of the brain as well
as for identifying changes linked to neurological disor-

ders (Vasung et al., 2019).

Modern healthcare increasingly relies on magnetic
resonance imaging (MRI) to noninvasively visualize
structure and function of the brain, including the cere-
bral cortex. This technology has significantly enhanced
our understanding of neural activities and brain devel-
opment (Shetewi et al., 2020). MRI’s safe, nonioniz-
ing, quantitative analysis capabilities, and 3D imaging
make it ideal for advanced, AI-driven neurological diag-
nostics (Tocchio et al., 2015). However, the high costs
(greater than £1 million) of high-field (1.5T or 3T) MRI
scanners, limit their global accessibility, even in devel-
oped countries (Liu et al., 2021). For example, West
Africa has only 84 MRI units for over 372 million peo-
ple, with Ghana having 0.48 units per million and Nige-
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ria 0.30 units per million (Ogbole et al., 2018).
Conversely, ultra-low-field (ULF) MRI scanners like

the 0.064T Hyperfine Swoop promise a revolution in
healthcare for low- and middle-income countries (Abate
et al., 2024; Arnold et al., 2023). Affordable and
portable, the Hyperfine operates from a standard elec-
trical outlet, allowing bedside or field scans. Despite
their potential in diagnosing conditions like strokes and
tumours (Shoghli et al., 2023), these ULF MRI scan-
ners grapple with issues such as low resolution, image
noise, and extended scan times, which currently limit
their broader use (Liu et al., 2021).

Artificial Intelligence (AI) (Holmes et al., 2004), on
the other hand, is revolutionizing medical imaging, par-
ticularly in MRI technology, by improving image qual-
ity and reducing artifacts without the high costs associ-
ated with traditional HF MRI scanners (Ertl-Wagner and
Wagner, 2023). Deep Learning (DL) Networks (Choi
et al., 2020; Shen et al., 2017), are at the forefront of this
transformation, using large datasets to refine and accel-
erate the development of ULF MRI, making advanced
diagnostic capabilities more accessible and affordable
(Islam et al., 2023).

DL-based convolutional neural networks (CNNs)
(O’shea and Nash, 2015) and U-Nets (Ronneberger
et al., 2015) are particularly beneficial for segmenta-
tion tasks due to their ability to learn complex patterns
from large datasets. These models excel in differentiat-
ing between various brain tissues, such as cerebrospinal
fluid (CSF), ventricles (VEN), white matter (WM), deep
grey matter (grey matter subcortex; GMS), cortical grey
matter (grey matter cortex; GMC), brainstem (BS), and
cerebellum (CB). This capability enhances understand-
ing of neurological conditions, enables precise mapping
of functional areas, and facilitates detailed statistical
analysis (Singh et al., 2022).

Historically, automatic segmentation algorithms have
succeeded in identifying tissue types and anatomical
features in MRI scans, relying heavily on clear tissue
contrasts (Hamghalam et al., 2020; Jalab and Hasan,
2019). Key advancements include atlas-based segmen-
tation (Cabezas et al., 2011), which utilizes pre-labeled
atlases to guide the segmentation of new images; thresh-
old methods (Al-Amri et al., 2010), which segment im-
ages by setting intensity value thresholds to separate
regions; region-growing (Dehdasht-Heydari and Gho-
lami, 2019), which expand regions based on similar-
ity criteria from seed points; and watershed transfor-
mations (Kwon et al., 2016), which treat the image
as a topographic surface and segment it by simulating
water flow. Recently, CNNs like 3D Unet and Deep-
SCAN have outperformed traditional methods for lesion
and brain segmentation in multiple sclerosis (McKin-
ley et al., 2021). Additionally, machine learning super-
resolution (SR) algorithms have improved segmenta-
tion accuracy and diagnostic performance in ULF MRI
(Iglesias et al., 2022). Despite these advancements,

there remains a paucity in research on applying these
algorithms to ultra-low contrast images for cortical seg-
mentation. Accurate segmentation of ULF cortex is
therefore crucial as it provides essential brain maps for
surface reconstruction.

Surface reconstruction in neuroimaging is a so-
phisticated computational process used to create a
smooth, continuous, two-dimensional representation of
the brain’s surface from 3D volumetric MRI data (Ren
et al., 2022). This technique is paramount in medical
imaging as it facilitates a detailed examination of the
brain’s anatomy, offering relevant insights into its com-
plex structures and functions. Specifically, for the cere-
bral cortex, the brain’s outer layer, surface reconstruc-
tion allows clinicians and researchers to analyze cortical
thickness, surface area, and gyrification patterns, which
are vital for diagnosing and understanding a variety of
neurological conditions, such as Alzheimer’s disease,
schizophrenia, and epilepsy (Fernández-Pena, 2023).

One of the most renowned techniques for cortical
surface reconstruction is the “recon-all” pipeline from
FreeSurfer (Fischl, 2012), a comprehensive suite used
for the processing and analysis of brain MRI data. This
pipeline involves a series of stages including motion
correction, skull stripping, segmentation, normaliza-
tion, and tessellation of the GMC, culminating in the
creation of cortical surface models. While highly effec-
tive, the traditional “recon-all” pipeline is optimized for
adult T1-weighted (T1w) images that provide high con-
trast and spatial resolution (Buxton et al., 1987),making
it less effective with T2-weighted (T2w) or ULF MRI.
This has spurred the creation of new surface reconstruc-
tion pipelines designed to overcome the challenges as-
sociated with lower-quality imaging modalities. Ad-
vanced segmentation models are central to these inno-
vations, vital for accurate surface reconstruction, espe-
cially for precise differentiation between GMC and WM
boundaries in ULF MRI.

This project addresses the challenges of ULF MRI by
refining AI segmentation algorithms to enhance its ca-
pabilities. This approach broadens neuroimaging appli-
cations, lays the groundwork for surface reconstruction,
and improves the diagnosis and understanding of neuro-
logical conditions, especially in populations where con-
ventional HF MRI is less effective or accessible.

2. State of the art

Advancements in DL (Choi et al., 2020; Shen et al.,
2017) shown in Figure 1, especially with CNNs
(O’shea and Nash, 2015), U-Net (Ronneberger et al.,
2015), and ResNet (He et al., 2016), have revolutionized
medical image segmentation by significantly enhancing
precision and reliability in partitioning images to iden-
tify and delineate anatomical structures. CNNs excel
in medical imaging tasks due to their hierarchical fea-
ture learning, which captures both low-level and high-
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Figure 1: Timeline of the most popular DL algorithms in medical image segmentation (Rayed et al., 2024).

level features. U-Net’s encoder-decoder structure with
skip connections allows for efficient capture of spatial
context and precise localization of anatomical features.
Notable application include Lee et al. (2020), who used
a Patch-wise U-net to segment healthy T1 OASIS and
IBSR brain tissues, achieving an average Dice Similar-
ity Coefficient (DSC) of 0.93 for CSF, GM, and WM in
the OASIS dataset.

The ResNet architecture, developed by He et al.
(2016), incorporates residual learning to improve the
training of deep neural networks. It has been effectively
used in conjunction with U-Net for enhancing segmen-
tation tasks. For instance, Ramzan et al. (2020) used
3D CNNs with residual learning to segment T1w, reg-
istered T1w, and FLAIR images from several datasets,
including MICCAI 2012, achieving DSCs of 0.879 for
brain tissues segmented into 3 regions and 0.914 for 9
regions.

nnU-Net (“no-new-Net”), proposed by Isensee et al.
(2021), is a self-adapting framework that dynamically
configures its architecture based on dataset character-
istics. It has set new standards in medical image seg-
mentation by automating preprocessing, training, and
post-processing steps. Baniasadi et al. (2023) employed
CNNs from the nnU-Net framework to segment T1 im-
ages from multiple datasets, including the Human Con-
nectome Project (HCP) young adults, obtaining an av-
erage DSC of 0.89 ± 0.04 for 30 brain regions.

These studies relied on ground-truth annotations,
which are challenging to obtain due to their time-
consuming nature and the requirement for expert knowl-
edge (Jacob et al., 2021; Weese and Lorenz, 2016).
SynthSeg (Billot et al., 2023), a CNN-based segmen-
tation tool, helps to handle this constraint in neuroimag-
ing, to achieve highly accurate segmentations across
various brain MRI modalities, agnostic of contrast and
resolution. The advent of advanced segmentation toolk-
its such as “segmentation-models-3D,” (Solovyev et al.,
2022) MONAI (Cardoso et al., 2022), nnU-Net (Isensee

et al., 2021) and SynthSeg (Billot et al., 2023), has fur-
ther improved segmentation performance.

Despite these advancements, there remains a signifi-
cant gap in leveraging DL models for ULF brain corti-
cal segmentation. Our project aims to segment cortical
structures from ULF brain MRI scans by adapting and
fine-tuning these models, coupled with advanced pre-
processing techniques. This effort seeks to achieve im-
proved segmentation outcomes, laying the foundation
for further surface reconstruction.

2.1. Key Terminologies and Concepts Used

In this project, segmentation involves partition-
ing medical images to identify anatomical structures.
Ultra-Low-Field (ULF) MRI operates at lower mag-
netic field strengths (0.064T), offering affordability but
with lower resolution challenges. Patch-wise pro-
cessing divides images into smaller sections for de-
tailed analysis. Key anatomical structures include cere-
brospinal fluid (CSF), ventricles (VEN), white mat-
ter (WM), grey matter subcortex (GMS), grey mat-
ter cortex (GMC), brainstem (BS), and cerebellum
(CB). Data transformation and augmentation en-
hance training datasets by modifying images to improve
model robustness. nnU-Net is a self-configuring deep
learning framework for medical image segmentation,
while SegResNet combines segmentation with residual
learning. Skip connections help mitigate vanishing gra-
dients, and transposed convolutions upsample feature
maps. The Adam optimizer and Dice loss function
are used for training, measuring overlap between pre-
dictions and true segmentations. Dropout probability
prevents overfitting by deactivating neurons randomly.
Model checkpoints save optimal model weights dur-
ing training and sliding window inference aggregates
predictions from overlapping patches. Surface recon-
struction creates a smooth representation of the brain’s
surface from segmented MRI data for detailed anatomi-
cal analysis.
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Figure 2: Overall project workflow including (1) data pre-processing, (2) segmentation, and (3) reconstruction processes.

3. Material and methods

Here, we first overview the MRI sequences, datasets
used, and data preprocessing steps. Next, we explain
the CNN/Unet architectures used in segmentation, de-
tailing the selection, adaptation, and fine-tuning of -
our selected models for ULF MRI scans and their
evaluation methods. Finally, we elucidate the seg-
mentation process and detail the reconstruction phase
employing the surface reconstruction from the neona-
tal dHCP (developing Human Connectome Project)
pipeline (Makropoulos et al., 2018). The project work-
flow is illustrated in Figure 2.

3.1. MRI Sequences / Image Dataset

MRI sequences like T1w and T2w images are essen-
tial in neuroimaging. Both offer high anatomical de-
tail and distinct contrasts due to different quantum re-
laxation processes. T1w is typically used for adult and
infant segmentation, highlighting grey and white matter,
while T2w is particularly useful for neonatal segmenta-
tion. These sequences are vital for effective image pre-
processing and segmentation in both HF and ULF MRI.
This study specifically utilizes the T2w MRI sequence
shown in Figure 3 (i).

The MRI scans used in this research come from a
neurodevelopmental study that includes various scanner
types and settings for thorough analysis. The dataset
includes images from two primary sources: (1) HYPE
Data - For this study, participants included 23 healthy
adults, balanced by gender (2/3 male and 2/3 female),

across five age-defined strata: 20-29, 30-39, 40-49, 50-
59 and 60-69 years old. They were scanned using a
HF GE Premier MRI scanner (3T, 1x1x1mm) and two
identical Hyperfine Swoop ULF MRI scanners (64mT,
1.5x1.5x5mm) captured along three orthogonal planes
(axial, sagittal, and coronal). The ULF scans were per-
formed at the Centre for Neuroimaging Sciences (HFC)
and Evelina Newborn Imaging Centre (HFE). Scanning
times were about 45 minutes on the GE and 1 hour
on the Hyperfine Swoop, covering both T1w and T2w
scans. (2) Khula Data (Zieff et al., 2024)- We used
a subset of the dataset containing ULF and HF T2w
MRI scans of infants at 12 and 18 months, featuring
23 subjects for each scan type. The Khula Study, a
multi-modal, multi-site longitudinal birth cohort, aims
to characterize emerging executive functions in the first
1000 days of life in South Africa and Malawi. It en-
rolled 394 mothers from Gugulethu, Cape Town, and
507 mothers from Blantyre, providing valuable insights
into early neurodevelopment. The Khula dataset offers
a unique perspective on brain development in low- and
middle-income countries, focusing on executive func-
tions development and outcomes for children in these
settings.

3.1.1. Generation of Ground-Truth Annotations
Ground-truth annotations are essential for evaluating

the accuracy of segmentation models applied to brain
MRI images. Due to the unavailability of manual la-
bels, we used SynthSeg+ as described by Billot et al.
(2023). SynthSeg+ generates precise segmentation la-
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bels, providing highly accurate reference data for super-
vised learning. For each MRI scan, target labels were
created using the “mri synthseg” function in FreeSurfer
(Fischl, 2012). These generated labels are vital for val-
idating our segmentation algorithms. Integrating varied
data sources and carefully preparing target labels, de-
picted in Figure 3 (i), ensure that our tested algorithms
perform well across diverse imaging scenarios, enhanc-
ing their applicability in clinical and research settings.

3.2. Dataset Preprocessing and Preparation
3.2.1. Image Resampling

Before resampling, images were registered using
FLIRT (FMRIB’s Linear Image Registration Tool)
(Smith et al., 2004), aligning ULF images to their HF
counterparts. This process automatically resampled
voxels. However, to maintain consistency across our
dataset (MRI scans and their corresponding target la-
bels), we used the “sitk.ResampleImageFilter()” func-
tion in SimpleITK toolkit (Yaniv et al., 2018). This
method standardizes the voxel spacing to 1mm³ for each
MRI scan, modifying original dimensions and spacings
to preserve image proportion integrity through appro-
priate transformations. For target labels, we used near-
est neighbor interpolation to avoid altering label values.
Non-label images underwent B-spline interpolation to
smooth pixel values. Figure 3 (ii) illustrates the se-
quence of brain MRI image preprocessing, starting with
resampling as the initial step.

3.2.2. Bias Field Correction
To address spatial resolution variability and in-

consistent image intensities in the HYPE and Khula
datasets, a streamlined bias field correction (BFC)
and denoising workflow was employed. Using
the “n4 bias field correction” algorithm from the
ANTsPyNet library (Tustison et al., 2010, 2021), we
initially masked each image to create a binary image,
segmenting the brain tissue from the background. The
BFC refines images in three steps: unblurring bright-
ness levels, adjusting the Gaussian brightness distribu-
tion, and smoothing adjustments with B-spline model-
ing. This process effectively corrects the bias field, en-
hancing the uniformity and clarity of the scans Figure
3 (ii) depicts BFC as the second stage.

3.2.3. Denoising
For the denoising phase, the ANTsPyNet library’s

functionality “ants.denoise image” was used post-BFC.
This procedure employs the same mask utilized in the
bias correction step to ensure specificity and effective-
ness. This streamlined procedure not only improved the
homogeneity and clarity of the images but also opti-
mized them for the detailed segmentation tasks that fol-
lowed, relevant for accurate and reliable neuroimaging
analysis. Denoising is highlighted as the third stage in
Figure 3 (ii).

3.2.4. Skull Stripping
Skull stripping is an essential preprocessing step in

MRI analysis to remove non-brain tissues and isolate
the brain matter. We used the SynthStrip tool (Hoopes
et al., 2022) from FreeSurfer for this task. Synth-
Strip, utilizing a DL approach, effectively handles im-
ages from various modalities and resolutions. The
“mri synthstrip” command was executed to remove the
skull and save the stripped image. This efficient process
preserves the quality of neural structures, essential for
accurate subsequent analysis. Figure 3 (ii) depicts how
images are skull-stripped in the last phase of the prepro-
cessing.

3.2.5. Label Mapping
As a vital data preparatory step, we merged the 99

unique regions identified by SynthSeg+ into seven cat-
egories: CSF, VEN, WM, GMS, GMC, BS, and CB.
This streamlined approach simplifies the raw MRI data,
making it more manageable and enhancing the AI mod-
els’ ability to focus on cortical structure segmentation,
central to our project’s goals.

Label mapping details include: (1) CSF: encom-
passes the 3rd ventricle, 4th ventricle, and surround-
ing CSF; (2) VEN: includes the left and right lateral
ventricles, along with their inferior lateral aspects; (3)
WM: covers the left and right cerebral white matter;
(4) GMS: consists of key subcortical structures like the
thalamus, caudate, putamen, pallidum, hippocampus,
amygdala, accumbens area, and ventral diencephalon
on both sides; (5) GMC: includes left and right cortex,
including all cortical regions specified in the data; (6)
BS: focused on the entire brain stem; (7) CB: separates
both the left and right cerebellum white matter and cor-
tex. Figure 3 (iii) depicts the conversion of ground-truth
annotations from SynthSeg+ into seven distinct tissue
classes.

3.2.6. Data Splitting and Set-up
Our pre-processed datasets were divided into train-

ing, validation, and testing sets, each containing 16, 4,
and 3 samples respectively, drawn from both the HYPE
and Khula datasets. These datasets include paired HF
(3T) and ULF (64mT) MRI data, with the HYPE dataset
comprising 1 set of HF data and 2 sets of ULF data
(HFC and HFE), and the Khula dataset containing 1 set
of HF data and 1 set of ULF data. Given the risk of
model overfitting, particularly with small sample sizes,
we validated our models using the unseen test set and
employed patch-based training techniques on most of
our models to mitigate overfitting in small datasets. This
approach not only facilitates effective validation but also
diversifies the data provided to the model during train-
ing, reducing the risk of overfitting.
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Figure 3: (i) Sample-T2w HF and ULF MRI images with SynthSeg-generated labels (for Khula ULF). (ii) Sample HYPE-HF Brain MRI image
pre-processing workflow. (iii) Tissue class label mapping.
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Figure 4: A simplified diagram of U-Net architecture.

3.3. CNN/Unet Architecture Overview
CNNs, comprising convolutional layers, pooling,

and nonlinear activations, form the backbone of many
AI-driven image segmentation models, including the
widely used U-Net architecture. Figure 4 depicts a
U-Net architecture which uses skip connections (to

concatenate low-level and high-level features) between
symmetric encoder and decoders to preserve spatial in-
formation. Encoder(z = g∅(x)): compresses input x into
a latent-space representation z. Decoder(x′ = fθ(z)):
predicts the output x’ from z, using transposed convo-
lutions (which reconstruct the original image size from
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a latent-space representation) to create a detailed seg-
mentation map. These features influenced our choice of
segmentation models based on U-Net architectures.

3.4. Segmentation Models and Model Training
With detailed descriptions of the selected models pro-

vided in the following sections, we adapted and fine-
tuned several U-Net based segmentation models, incor-
porating data augmentation, network adjustments, train-
ing epochs, and learning rate modifications. We be-
gan with a baseline U-Net Segmentation Model with
a ResNet34 (He et al., 2016) backbone for training.
Next, we explored MONAI-based toolkits (Cardoso
et al., 2022), which offer 3D-UNet and SegResNet
architectures. SegResNet, unlike traditional U-Net,
uses ResNet-inspired residual connections for infor-
mation propagation and mitigating the vanishing gra-
dient problem. It also introduces skip-connections
across resolutions, improving multiscale feature cap-
ture. These architectures are complemented by robust
data transformation and augmentation utilities within
MONAI, facilitating effective data preparation and aug-
mentation for improved model generalization and per-
formance. Lastly, we integrated the nnU-Net toolkit
(Isensee et al., 2021, 2019) for our task, which pro-
vides a self-adapting framework, reducing manual setup
and efficiently adapting to diverse imaging conditions.
To monitor and fine-tune our models’ performance dur-
ing training, we used the Dice Score Coefficient (DSC)
(Bertels et al., 2019) to assess the spatial overlap be-
tween predicted and ground truth segmentations.

3.4.1. 3D Segmentation Model with ResNet34 Back-
bone

The “segmentation-models-3D” (SM3D) repository
(Solovyev et al., 2022) tailored for Keras (Jin et al.,
2019), TensorFlow (Abadi et al., 2016) and PyTorch
(Paszke et al., 2019) was used to implement our 3D U-
Net model with a ResNet34 backbone. The original 2D
U-Net architecture (depicted in Figure 5) which was
adapted in the SM3D toolkit for 3D volumetric data,
comprises a contracting path (left side) and an expansive
path (right side). The contracting path captures context
through repeated applications of two 3x3 convolutions,
each followed by a rectified linear unit (ReLU) and a
2x2 max pooling operation with stride 2 for downsam-
pling, doubling the number of feature channels at each
step. The expansive path ensures precise localization
via upsampling, 2x2 convolutions, concatenation with
cropped feature maps from the contracting path, and
two 3x3 convolutions, each followed by a ReLU. A fi-
nal 1x1 convolution maps each 64-component feature
vector to the desired number of classes. The network
includes 23 convolutional layers in total.

We employed a 3D U-Net model with a ResNet34
backbone from the SM3D toolkit for brain tissue seg-
mentation on ULF MRI scans. Our implementation

comprised several key steps to ensure optimal perfor-
mance. Firstly, we resized data dimensions to match
the model’s requirements, given its preference for di-
mensions divisible by 32 due to its lowest resolution of
32x32x32 pixels. Following this, we performed data
preprocessing, reshaping image dimensions to accom-
modate a single channel for the input brain MRI im-
age and 8 channels for the target label, representing the
segmentation output map. Data scaling was conducted
using the min-max function to standardize it and pre-
vent bias during model training. Additionally, we pre-
pared training and validation splits to effectively moni-
tor model performance during epoch-wise training. The
segmentation model was then set up, and subsequently,
model training commenced. We configured the model
with the Adam optimizer (Zhang, 2018) and Dice loss
function to optimize accuracy and Dice Similarity Co-
efficient (DSC) metrics. The Adam optimizer’s adap-
tive learning rate adjustment facilitated efficient train-
ing, while the Dice loss function measured the over-
lap between predicted and ground truth segmentation
masks, ensuring precise segmentation. Finally, we im-
plemented callbacks for model checkpoints to save the
best weights during training.

3.4.2. MONAI-based Segmentation Architectures
The MONAI framework (Cardoso et al., 2022), a

PyTorch-based platform, facilitates the development
and deployment of medical AI models, offering archi-
tectures like U-Net and SegResNet tailored for tasks
such as image segmentation. With its extensive suite of
data transformations and utilities, MONAI streamlines
preprocessing, training, and validation of medical im-
ages, ensuring reproducibility and deterministic opera-
tions. Leveraging cropped patches during training and
employing sliding window inference, we adopt a patch-
wise segmentation approach. This method divides input
images into overlapping patches, segments each patch
individually, and aggregates results to generate the final
segmentation map, enhancing accuracy and efficiency
in healthcare AI applications.

(a) U-Net
Utilizing the U-Net architecture from the MONAI

framework, our implementation includes essential pre-
processing and data transformations to enhance the
quality and responsiveness of our data. The 3D U-Net
architecture, with 1 input channel and 8 output chan-
nels (for each of the eight tissue classes), progressively
doubles channel depths from 16 to 256, incorporating
batch normalization for efficient learning. The model
is fine-tuned to handle the constraints of ULF MRI im-
ages by adjusting the learning rate, increasing training
epochs, and modifying layer depth for better feature ex-
traction based on initial training performance on HF im-
ages. Our workflow for HF and ULF data involves set-
ting up a deterministic environment for reproducibility,
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Figure 5: 2D U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue box corresponds to a multi-channel feature map.
The number of channels is denoted on top of the box. The x-y-size is provided at the lower left edge of the box. White boxes represent copied
feature maps. The arrows denote the different operations (Ronneberger et al., 2015).

comprehensive data augmentations (normalization, ori-
entation correction, random crops), and robust training
protocols using Adam optimization and Dice loss. We
evaluate model performance using the DSC through a
sliding window inference method, ensuring high fidelity
in segmenting brain structures.

(b) SegResNet
Similarly, we utilized the SegResNet architecture

from the MONAI framework to segment brain MRI im-
ages. The 3D SegResNet architecture, with 1 input
channel, 8 output channels, initial filters set at 16, a
dropout probability of 20% (by randomly deactivating
neurons during training to improve model generalizabil-
ity), and configured blocks for downsampling (1, 2, 2, 4)
and upsampling (1, 1, 1), efficiently processes cropped
MRI images. To adapt to ULF MRI constraints, we fine-
tuned the SegResNet model by adjusting filter sizes and
layer configurations based on initial performance on HF
training data. This iterative refinement optimizes the
model for lower resolution and contrast of ULF MRI
scans. Key steps for our implementation included, set-
ting up a deterministic environment for reproducibility,
comprehensive data handling (loading, channel reorder-
ing, type conversion, orientation setting, uniform spac-
ing), and augmentations (random cropping, flipping, in-

tensity normalization, scaling, shifting). Robust train-
ing protocols using Adam optimization and Dice loss
were implemented. Model performance is evaluated us-
ing DSC through a sliding window inference method.

3.4.3. nnU-Net
nnU-Net (Isensee et al., 2021, 2019) is a self-adapting

segmentation framework that automates setup for medi-
cal image segmentation. It dynamically configures ar-
chitecture based on dataset specifics using a dataset
fingerprint, optimizing the use of 2D and 3D convo-
lutions, depth, and filter number, while also training
data patch-wise via a five-fold cross-validation. The
framework standardizes data preprocessing by choos-
ing normalization and resampling methods and employs
extensive data augmentation (rotations, scaling, elastic
deformations, gamma adjustments) to enhance robust-
ness. Training uses a combined Dice and cross-entropy
loss function with stochastic gradient descent (SGD)
and adapts learning rates and early stopping to improve
performance and prevent overfitting. During inference,
nnU-Net employs a sliding window approach and may
use ensemble methods either via hard voting (choos-
ing the class with the highest probability for each pixel)
or soft voting (averaging probabilities and selecting the
class with the maximum probability) to refine segmen-
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tation accuracy, incorporating post-processing steps for
optimal results.

Employing nnU-Net in our project involved: (1) Data
Preparation and Preprocessing: ensured data integrity
and compatibility with nnU-Net using structured han-
dling, Z-score normalization, and resampling to match
median image size and spacing. (2) Model Training and
Evaluation: initially patch-wise trained on HF images
to establish a baseline, followed by fine-tuning for ULF
MRI datasets with increased augmentation. Both 2D
and 3D models were trained, and the best model was se-
lected through an ensemble approach for inference. (3)
Performance Evaluation: assessed using DSC to ensure
high precision in tissue segmentation. The U-Net archi-
tecture used here handles both 2D and 3D inputs. The
2D U-Net begins with 32-filter convolutions, increasing
to 512, and ends with a 1x1 convolutional output layer,
trained with a batch size of 156. The 3D U-Net starts
with 32-filter convolutions, increasing to 320, and ends
with a 1x1x1 convolutional output layer with softmax
activation, trained with a batch size of 2. Predictions
are generated by forming an ensemble of learned fea-
tures from both dimensions.

3.5. Evaluation Metrics
To quantitatively evaluate the performance of our seg-

mentation models on the test data, we utilized several
metrics: DSC, Hausdorff Distance (HD) (Huttenlocher
et al., 1993), and Average Volumetric Difference (AVD).
Figure 6 provides a visual representation of the metrics.

Figure 6: (a) shows the DSC overlap between predicted (yellow)
and ground-truth (blue) segmentations, (b) illustrates the HD between
ground-truth (X; green) and predicted (Y; blue) segmentations, and (c)
depicts the AVD between predicted (blue) and ground-truth (green)
segmentations.

(i) Dice Coefficient (DSC): Measures spatial overlap be-
tween the predicted and ground truth segmentations. A
higher DSC indicates better accuracy, with values rang-
ing from 0 to 1, where 1 denotes perfect overlap.

DSC =
2 × |A ∩ B|
|A| + |B| (1)

Where A: The set of predicted voxels. B: The set
of ground-truth voxels. |A ∩ B| The number of voxels

that are common between the predicted segmentation
and the ground-truth. |A|+ |B|: The total number of vox-
els in both the predicted segmentation and the ground
truth.

(ii) Hausdorff Distance (HD): Measures the maximum
distance between the boundaries of the predicted and
ground-truth segmentations. A lower HD indicates
more similar geometry. It is measured in units of dis-
tance (millimeters; mm) and ranges from 0 (perfect
boundary match) to higher values (greater boundary dis-
crepancy).

HD(A, B) = max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)
}

(2)

Where A: The set of boundary points of the predicted
segmentation. B: The set of boundary points of the
ground-truth segmentation. d(a, b): The Euclidean dis-
tance between points a and b. sup: The supremum (or
least upper bound). inf: The infimum (or greatest lower
bound).

(iii) Average Volumetric Difference (AVD): Calculates
the average absolute volume difference between pre-
dicted and ground-truth segmentations. A lower AVD
indicates better volumetric agreement. It is measured in
units of volume and ranges from 0 (perfect agreement)
to higher values (greater discrepancy).

AVD =
1
N

N∑

i=1

|Vpred,i − Vgt,i| (3)

N: The number of segmented regions or classes.
Vpred,i: The volume of the predicted segmentation for
region i. Vgt,i: The volume of the ground-truth segmen-
tation for region i.

3.6. Segmentation Process: Conducted Experiments
We conducted two experiments: (1) HF MRI Train-

ing and (2) ULF MRI Training, using the selected archi-
tectures (Table 1): 3D-Unet with ResNet34 backbone,
MONAI architectures (U-Net, SegResNet), and nnU-
Net. The experiments segmented pre-processed brain
volumetric MRI data into tissue classes (CSF, VEN,
WM, GMS, GMC, BS, CB) based on aggregated Synth-
Seg+ labels in a supervised DL approach. The models
were trained extensively using 16 samples and validated
with 4 samples over 150 to 250 epochs to optimize accu-
racy and adaptability to different field strengths. During
training, performance was monitored using pre-defined
evaluation metrics (DSC, HD, AVD) to guide parame-
ter adjustments. Initially training on HF data assessed
model performance and informed adjustments for opti-
mal results on ULF MRI. After training, the models pre-
dicted segmentation on 3 unseen data samples. These
predictions were quantitatively assessed against Synth-
Seg+ labels using DSC, HD, and AVD. Additionally,

3.9



Segmentation of Brain Cortex from Ultra-low-field MRI: A Prerequisite for Surface Reconstruction 10

qualitative quality control (QC) was performed by vi-
sualising images with ITK-SNAP (Yushkevich et al.,
2016).

Table 1: Comparison of Segmentation Architectures
Architecture Filters Activation
SM3D 64, 128, 256, Softmax

512, 1024
MONAI 3DUNet 32, 64, 128, PReLU

256, 320
MONAI SegResNet* 16 PReLU
nnU-Net 2D 32, 64, 128, LeakyReLU

256, 512
nnU-Net 3D 32, 64, 128, LeakyReLU

256, 320

*Using initial filters of 16, the model downsamples with blocks [1,
2, 2, 4] and upsamples with blocks [1, 1, 1].

3.7. Cortical Surface Reconstruction with dHCP
Pipeline

Building on the robust segmentation results, we adopted the ap-
proach outlined by Makropoulos et al. (2018) for cortical surface
reconstruction. This method, developed as part of the dHCP, in-
volves fitting surfaces to our segmentations using the neonatal sur-
face code by Schuh et al. (2017). To achieve this, we refined the
cortical surface extraction process using a method adapted from the
dHCP neonatal pipeline developed by Uus et al. (2023). This is ac-
cessible publicly at(https://hub.docker.com/r/fetalsvrtk/
segmentation, tag brain bounti tissue). Our optimized version, (fe-
talsvrtk/surface:daniel v1), was then employed to precisely extract
cortical surfaces demonstrated in Figure 9. For the surface fitting
process to function optimally, a corpus callosum mask was essen-
tial. Consequently, we manually annotated the corpus callosum in
two samples using ITK-SNAP as a proof-of-concept. This integrated
approach ensures accurate and reliable extraction of cortical surfaces
demonstrated in Figure 10.

4. Results

4.1. Quantitative/Qualitative Analysis
Here, highlighted results are for easy glance. For HF test results,

mean model performances are in Tables 2 and 3, and tissue-specific
results are in Tables 7 and 8. For ULF test results, mean performances
are in Tables 4-6, and tissue-specific results are in Tables 9-11. Fig-
ures 7, 11, 12, 13 and 14 illustrate visual representations. Figure 8
provides a qualitative analysis of the segmentation models on Khula-
ULF.

Table 2: Models Performance on HYPE-HF (Mean DSC, Mean HD,
Mean AVD)

MODEL DSC HD AVD

nnU-Net 0.9356 11.1188 0.0138
MONAI 3DUNet 0.9241 14.9077 0.0165
MONAI SegResNet 0.8959 23.2476 0.0393
Unet(ResNet34) 0.9019 34.6234 0.0387

Table 3: Models Performance on Khula-HF (Mean DSC, Mean HD,
Mean AVD)

MODEL DSC HD AVD

nnU-Net 0.9103 11.4457 0.0297
MONAI 3DUNet 0.8946 13.3780 0.0266
MONAI SegResNet 0.8586 47.9888 0.0949

Table 4: Models Performance on HYPE-ULF (HFC Samples)

MODEL DSC HD AVD

nnU-Net 0.9078 7.6419 0.0357
MONAI 3DUNet 0.9047 9.8645 0.0377
MONAI SegResNet 0.8779 16.0166 0.0510

Table 5: Models Performance on HYPE-ULF (HFE Samples)

MODEL DSC HD AVD

nnU-Net 0.9132 8.6077 0.0302
MONAI 3DUNet 0.9067 12.1760 0.0258
MONAI SegResNet 0.8857 11.9314 0.0573

Table 6: Models Performance on Khula-ULF (Mean DSC, Mean HD,
Mean AVD)

MODEL DSC HD AVD

nnU-Net 0.8472 9.7682 0.1180
MONAI 3DUNet 0.8432 15.2485 0.1033
MONAI SegResNet 0.8200 10.4125 0.1359
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Figure 7: Illustration of DSC values for different brain tissues pre-
dicted by various models. Box plots show individual subject varia-
tions.
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Table 7: Tissue-Specific DSC Performance of Models on HYPE-HF
MODEL SUBJECT CSF VEN WM GMS GMC BS CB
nuU-Net 1 0.8195 0.9559 0.9506 0.9486 0.9253 0.9638 0.9779

2 0.8466 0.9762 0.9488 0.9451 0.9195 0.9578 0.9628
3 0.8245 0.9386 0.9532 0.9550 0.9332 0.9696 0.9793

MONAI 3DUNet 1 0.8276 0.9427 0.9360 0.9250 0.9091 0.9525 0.9735
2 0.8379 0.9687 0.9319 0.9167 0.9005 0.9524 0.9609
3 0.8162 0.9205 0.9399 0.9372 0.9184 0.9627 0.9748

MONAI SegResNet 1 0.8276 0.9427 0.9360 0.9250 0.9091 0.9525 0.9735
2 0.7987 0.9593 0.9092 0.8693 0.8723 0.9360 0.9423
3 0.7616 0.8796 0.9207 0.8939 0.8947 0.9385 0.9568

Unet(ResNet34) 1 0.8085 0.9044 0.9312 0.8894 0.9043 0.9114 0.9621
2 0.8145 0.9413 0.9227 0.8871 0.8863 0.9097 0.9520
3 0.7892 0.8735 0.9347 0.9166 0.9112 0.9255 0.9650

Table 8: Tissue-Specific DSC Performance of Models on Khula-HF
MODEL SUBJECT CSF VEN WM GMS GMC BS CB
nuU-Net 1 0.7841 0.9559 0.9251 0.9469 0.9204 0.9506 0.9826

2 0.7746 0.9207 0.9199 0.9483 0.9141 0.9546 0.9812
3 0.7617 0.9374 0.9374 0.9100 0.9007 0.8590 0.9686

MONAI 3DUNet 1 0.7439 0.9505 0.9022 0.9345 0.8949 0.9346 0.9741
2 0.7364 0.9105 0.8964 0.9336 0.8883 0.9490 0.9755
3 0.7368 0.9306 0.8792 0.9043 0.8731 0.8729 0.9650

MONAI SegResNet 1 0.6751 0.9317 0.8757 0.8960 0.8630 0.9363 0.9592
2 0.6607 0.8622 0.8529 0.8852 0.8446 0.9273 0.9493
3 0.6758 0.9060 0.8375 0.8508 0.8362 0.8495 0.9563

Table 9: Tissue-Specific DSC Performance of Models on HYPE-ULF (HFC Samples)
MODEL SUBJECT CSF VEN WM GMS GMC BS CB
nuU-Net 1 0.7823 0.7823 0.7823 0.9269 0.8996 0.9532 0.9668

2 0.7780 0.7780 0.7780 0.7780 0.8977 0.9599 0.9613
3 0.7358 0.8986 0.9323 0.9138 0.8867 0.9494 0.9552

MONAI 3DUNet 1 0.8122 0.9335 0.9205 0.9024 0.8790 0.9554 0.9531
2 0.8255 0.9514 0.9162 0.8910 0.8776 0.9497 0.9488
3 0.7874 0.8958 0.9191 0.9014 0.8774 0.9461 0.9564

MONAI SegResNet 1 0.7628 0.9053 0.9028 0.8718 0.8534 0.9413 0.9542
2 0.7756 0.9332 0.8949 0.8576 0.8427 0.9352 0.9371
3 0.7416 0.8512 0.9005 0.8729 0.8478 0.9271 0.9266

Table 10: Tissue-Specific DSC Performance of Models on HYPE-ULF (HFE Samples)
MODEL SUBJECT CSF VEN WM GMS GMC BS CB
nuU-Net 1 0.7847 0.9325 0.9378 0.9211 0.8986 0.9526 0.9663

2 0.8110 0.9486 0.9388 0.9189 0.9042 0.9500 0.9624
3 0.7374 0.9187 0.9364 0.9366 0.8942 0.9616 0.9609

MONAI 3DUNet 1 0.8157 0.9196 0.9201 0.9076 0.8815 0.9491 0.9587
2 0.8302 0.9524 0.9178 0.9063 0.8796 0.9408 0.9497
3 0.7812 0.9108 0.9190 0.9247 0.8764 0.9502 0.9503

MONAI SegResNet 1 0.7793 0.9045 0.9045 0.8781 0.8579 0.9435 0.9545
2 0.7952 0.9426 0.9018 0.8677 0.8584 0.9410 0.9460
3 0.7540 0.8520 0.8992 0.8742 0.8511 0.9478 0.9441
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Table 11: Tissue-Specific DSC Performance of Models on Khula-ULF
MODEL SUBJECT CSF VEN WM GMS GMC BS CB
nuU-Net 1 0.7599 0.9526 0.9141 0.9241 0.8928 0.9504 0.9481

2 0.6165 0.8768 0.8797 0.8973 0.8474 0.7143 0.8990
3 0.6556 0.9005 0.8801 0.8818 0.8513 0.7025 0.8473

MONAI 3DUNet 1 0.7311 0.9476 0.8831 0.9076 0.8593 0.9394 0.9470
2 0.6264 0.8591 0.8572 0.8996 0.8188 0.9101 0.9275
3 0.6276 0.9002 0.8486 0.8619 0.8226 0.6937 0.8384

MONAI SegResNet 1 0.6708 0.9318 0.8623 0.8810 0.8357 0.9251 0.9306
2 0.5821 0.8473 0.8250 0.8643 0.7950 0.8809 0.9119
3 0.5894 0.8810 0.8276 0.8368 0.8057 0.7015 0.8341

Figure 8: Qualitative Analysis: Comparative Performance of Segmentation Model Predictions on Khula-ULF MRI Samples.
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Figure 9: cortical surface extraction workflow. Phase (a): The surface extraction pipeline reconstructs from segmented input image. Phase (b):
Surface Estimation: Calculate the boundary between white and grey matter in both hemispheres.; Boundary Refinement: Improve the initial
boundary estimate to serve as a base, using feelers to precisely outline the grey matter edge. Phase (c): Surface Visualization: Display edges as
surfaces, enabling comprehensive analysis.

Figure 10: Qualitative results of our extracted surfaces using the dHCP pipeline.
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Figure 11: Illustration of DSC values for different brain tissues pre-
dicted by various models. Box plots show individual subject varia-
tions.
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Figure 12: Illustration of DSC values for different brain tissues pre-
dicted by various models. Box plots show individual subject varia-
tions.
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Figure 13: Illustration of DSC values for different brain tissues pre-
dicted by various models. Box plots show individual subject varia-
tions.
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Figure 14: Illustration of DSC values for different brain tissues pre-
dicted by various models. Box plots show individual subject varia-
tions.

Table 12: Quantitative evaluation of extracted cortical surfaces mea-
sured in squared mm.

DATA TYPE TOTAL AREA MEAN AREA
Khula-HF 50556.5 0.4693979
Khula-ULF 46526.89 0.472892

4.1.1. Interpretation of Quantitative Analysis Across
Different MRI Data Samples

The nnU-Net consistently demonstrates superior performance
across both HF and ULF MRI data. High Mean DSC values (Tables 2,
3, 4, 5, 6) ) indicate exceptional segmentation accuracy, while the low-
est Mean HD values confirm excellent boundary detection. Moder-
ate Mean AVD values suggest good volumetric consistency, and high
tissue-specific DSC scores (Tables 7, 8, 9, 10, and 11), especially for
GMC, validate effective agreement with SynthSeg labels.

The MONAI 3DUNet also performs reliably, with consistently
high Mean DSC values across (Tables 2, 3, 4, 5, and 6) indicating
accurate tissue segmentation. However, its Mean HD varies, show-
ing some sensitivity to MRI field strength. Moderate Mean AVD val-
ues reflect decent volumetric accuracy, and consistent GMC-specific
DSC values across (Tables 7, 8, 9, 10, and 11), better agreement with
SynthSeg label.

Conversely, the MONAI SegResNet shows lower Mean DSC val-
ues, indicating less accurate segmentation. High Mean HD values,
especially in Khula-HF samples (Table 3), highlight significant edge
precision issues. Higher Mean AVD values, particularly in Khula-
ULF samples (Table 6), point to poor volumetric accuracy. Lower
GMC-specific DSC scores (Tables 7, 8, 9, 10, and 11), reveal chal-
lenges in cortex segmentation due to the model’s reduced effectiveness
in handling noise and low contrast images.

The UNet with ResNet34 backbone, tested on HYPE-HF MRI
samples, shows competent Mean DSC (0.9019, Table 2) but lags be-
hind other models. High Mean HD (34.6234, Table 2), suggests poor
edge detection, while a Mean AVD of 0.0387 (Table 2), indicates
reasonable volumetric consistency. Lower GMC-specific DSC scores
(Tables 7, 8, 9, 10, and 11), reflect limitations in precise cortex seg-
mentation.

Overall, nnU-Net, leveraging an ensemble approach for inference,
emerges as the top performer, offering superior accuracy and consis-
tency across HF and ULF MRI conditions. While MONAI 3DUNet
performs well, it shows variability with different field strengths.
MONAI SegResNet and UNet with ResNet34 backbone exhibit no-
table limitations in precision and consistency, particularly under chal-
lenging ULF MRI conditions. These findings underscore the impor-
tance of selecting models based on specific imaging characteristics
and applications.
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Figure 15: nnU-Net complete workflow and configuration (Isensee et al., 2019).

4.1.2. Best Segmentation Model Configuration and Ar-
chitecture

The nnU-Net configuration (shown in Figure 15) employs a U-
Net architecture that handles both 3D and 2D input data (shown in
Figure 16). The 2D U-Net starts with two convolutional layers (32
filters, 3x3 size, stride of 1) with InstanceNorm and LeakyReLU ac-
tivations, followed by max pooling. Encoder blocks double the filters
(64, 128, 256, 512), followed by max pooling. The decoder uses up-
convolutions and concatenates encoder feature maps, ending with a
1x1 convolutional output layer using softmax activations. The 3D U-
Net starts with 32-filter 3D convolutions, increasing through stages
(64, 128, 256, 320) with max pooling. Up-convolutions restore di-
mensions, merging with encoder features via skip connections, con-
cluding with a 1x1x1 convolution for precise volumetric segmenta-
tion. Our nnU-Net segmentation framework has been deployed via
MScThesis with accessibility features for interactive experiment as
shown in Figure 17; appendix

Figure 16: U-Net Architecture for 2D and 3D Segmentation.

5. Discussion

Our project demonstrates significant progress in brain cortex seg-
mentation using ULF MRI, particularly beneficial for regions with
limited access to HF MRI systems. The integration of AI, especially
DL techniques like CNNs and U-Nets, has been transformative in ad-
dressing ULF MRI challenges, such as low signal-to-noise ratios and
reduced contrast. Experimental results consistently showed nnU-Net
outperforming other models across various imaging conditions.

The success of these segmentation models relied heavily on ad-
vanced preprocessing techniques. Image resampling, bias field cor-
rection (BFC), denoising, and skull stripping were instrumental in en-
hancing data quality and consistency. These steps ensured optimized
input data, despite ULF MRI’s low contrast and resolution. Image

resampling standardized voxel spacing, BFC corrected uneven inten-
sities, denoising enhanced signal clarity, and skull stripping removed
non-brain tissues.

Combining these preprocessing enhancements with robust seg-
mentation algorithms enabled accurate mapping of complex brain
structures, particularly the GMC. This groundwork is essential for sur-
face reconstruction, facilitating detailed analyses of cortical thickness,
surface area, and gyrification patterns, which are key factors for diag-
nosing neurodevelopmental conditions.

The integration of the dHCP pipeline further advanced this work
by enabling precise cortical surface reconstruction from ULF MRI
scans. Utilizing high-quality segmented images from nnU-Net, the
dHCP pipeline helped with the extraction of surfaces for neurode-
velopmental assessment. Khula-HF had a larger total surface area,
indicating a potentially more detailed surface, while Khula-ULF had
a slightly higher average surface area per vertex suggesting a more
uniform distribution of vertices across the surface shown in Table 12.

Our work achieved GMC-specific DSC of (0.8928, 0.8474, and
0.8513 in Khula ULF; 0.8995, 0.8977, and 0.8867 in HYPE HFC;
0.8986, 0.9042, and 0.8942 in HYPE HFE) for the three test sam-
ples in ULF MRI segmentation tasks. This demonstrates state-of-the-
art results in a field that remains understudied, particularly leverag-
ing only ULF MRI without super-resolution techniques. Our findings
build on existing research in ULF MRI studies, such as those by Bal-
jer et al. (2024) and the SynthSR (Iglesias et al., 2022) method used
by Cooper et al. (2024), who explored super-resolution techniques for
ULF MRI, aligning with our goals of improving image quality and
diagnostic accuracy.

5.1. Challenges and Future Work

While our project has made significant strides, several challenges
remain, necessitating ongoing refinements to our methodologies.
Adapting algorithms to extremely low-resolution images and ensuring
consistent performance across different tissue types have been particu-
larly challenging. Additionally, it’s crucial to address limitations such
as the use of SynthSeg labels as ground truth, which may not fully
capture the complexities of the cortex. Despite these challenges, we
are actively pursuing avenues for improvement.

Future research efforts will focus on refining segmentation mod-
els and preprocessing techniques to enhance performance, especially
on both HF and ULF images. We plan to explore contrastive learn-
ing techniques, as proposed by (Chen et al., 2020), which leverage
sample comparisons to improve feature representation and prediction
accuracy. This approach holds promise for enhancing our segmenta-
tion results across various image resolutions and tissue types.

Moreover, integrating super-resolution methods, such as those by
Baljer et al. (2024) and the SynthSR (Iglesias et al., 2022) method
used by Cooper et al. (2024), present an exciting opportunity to en-
hance the processing of ULF MRI data. By improving image res-
olution, we aim to overcome some of the challenges associated with
low-resolution imaging, potentially enhancing the accuracy of cortical
segmentation and furthering our understanding of cortical thickness
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and surface area. These advancements not only expand the applica-
tions of neuroimaging but also contribute to setting new standards in
medical imaging, particularly in regions lacking HF MRI facilities.

6. Conclusions

Our proposed method for this project has shown that advanced AI-
driven segmentation algorithms can significantly enhance neuroimag-
ing with ULF MRI, particularly in regions without HF MRI systems.
By fine-tuning models like nnU-Net and using advanced preprocess-
ing techniques, we overcame the constraints posed by ULF MRI. Our
results show accurate segmentation of complex brain structures, with
nnU-Net achieving the highest GMC-specific DSC for the 3 test sam-
ples. This enables precise surface reconstructions essential for diag-
nosing neurodevelopmental disorders. Integrating the dHCP pipeline
further enhanced our ability to generate detailed cortical surface mod-
els from ULF MRI scans. Future work will focus on refining these
techniques for greater efficiency and accuracy. This study marks a
significant step in merging AI with ULF MRI technology, paving the
way for innovations and broader applications in medical imaging.
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Abstract

Accurate breast compression simulation is essential in medical imaging, mainly in mammography. We compare and
evaluate two established Finite Element Methods (FEM) for this purpose: NiftySim, a previously developed frame-
work for generating compressed breast phantoms using a biomechanical finite element (FE) model from Breast CT
(BCT) volumes, and FEBio, a specialized non-linear solver for biomechanics applications. The rising computational
cost of traditional FEM limits their clinical utility. This work also explores the use of a deep learning framework,
Physics-based Graph Neural Networks (PhysGNN), as a data-driven alternative for breast compression simulation.
While PhysGNN has been used for data-driven modeling in other domains, this thesis presents the first investigation
of their potential in this specific context. Unlike conventional data-driven models, PhysGNN incorporates valuable
mesh structural information and facilitates inductive learning on unstructured grids, making it well-suited for captur-
ing the complex geometries of breast tissue. The model is trained on deformations obtained from incremental FEM
simulations, and its performance is assessed by comparing the predicted nodal positions (using 3D Euclidean dis-
tance) with those extracted from the FE simulations. Our empirical evaluation demonstrates that NiftySim and FEBio
are capable of achieving a more realistic compression of breast phantoms compared to previously published BCT
simulations. FEBio simulations yielded approximations of mammographic deformation closer to those obtained with
NiftySim. However, NiftySim offers superior accuracy at the expense of higher computational cost. The investigated
deep learning architecture, PhysGNN, shows promise for achieving accurate and rapid approximations of breast de-
formation during compression. Its potential for enhanced computational efficiency makes it a suitable candidate for
real-world breast compression scenarios.

Keywords: Finite Element Analysis, CT, Data-Driven model, Graph Neural Netowrk, Meshing

1. Introduction

Breast biomechanical models are crucial tools for
simulating tissue deformations using Finite Element
Analysis (FEA). This simulation capability aids clin-
icians and medical device manufacturers in address-
ing challenges encountered during various breast pro-
cedures. Personalized models, incorporating individual
breast geometry, mechanical properties, and boundary
conditions, are essential for reliable predictions. These
models have found valuable applications in breast aug-
mentation, image-guided surgery, and tumor tracking.

In this thesis, we focus on simulating breast com-
pression using FEM. We employ two established FEM:
NiftySim (Johnsen et al., 2015) and FEBio (Maas et al.,

2012).

While the FEM has established itself as a reliable
technique for approximating soft tissue deformation, it
inherently faces a trade-off between achieving high ac-
curacy and maintaining efficient computational speed.

Therefore, in this thesis, we also propose to explore
a novel data-driven model named PhysGNN, origi-
nally designed for capturing intraoperative brain shift in
image-guided neurosurgery (Salehi and Giannacopou-
los, 2022). PhysGNN utilizes Graph Neural Networks
(GNNs) to exploit the structural information of the
FE mesh, including connectivity and distances between
nodes. This structural awareness allows PhysGNN to
accurately approximate tissue deformation, traditionally
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handled by FEM but often facing limitations in compu-
tational speed. Notably, PhysGNN offers faster com-
putation compared to FEM. To our knowledge, this is
the first application of GNNs for approximating breast
tissue behavior under compression. PhysGNN’s frame-
work integrates seamlessly with traditional FEM work-
flows, potentially enhancing simulation speed with-
out compromising accuracy. This paves the way for
applications demanding both precision and efficiency.
To assess the performance of the PhysGNN model,
we employed two strategies: hold-out and leave-one-
deformation-out. These strategies differ in how the data
is split for training, validation, and testing. We com-
pared the results obtained with PhysGNN to those from
FEA, which served as our baseline. In the hold-out
experiment, PhysGNN demonstrated the best perfor-
mance, achieving a high degree of agreement with the
ground truth data. It achieved an absolute displacement
error of less than 1 mm for 99.96% of the nodes. Addi-
tionally, PhysGNN successfully predicted breast defor-
mation under prescribed forces in 0.01 ± 0.06 seconds
on a GPU and 0.42 ± 0.04 seconds on a CPU, com-
pared to 300 and 6634 seconds required by traditional
FE methods.

An additional aim was also to develop a more simpli-
fied and homogenous framework in terms of program-
ming language and development platform compared to
existing approaches. Hence we implement the biome-
chanical modeling using Python, unlike other works
that employ different programming languages for var-
ious stages. This simplifies the workflow and stream-
lines the process.

2. State of the art

2.1. Finite element methods and application to biome-
chanical breast models

FEM discretizes an object to approximately solve
the differential equations describing the physical con-
ditions (Pasciak, 1995). The boundary conditions are
considered as input from which the algorithm approx-
imates to the corresponding solution (Pasciak, 1995).
The continuum problem is approximated by a method
where the continuum is partitioned into a finite num-
ber of elements and a finite set of parameters deter-
mines the performance of these elements. The solu-
tion of the whole system as a set of its elements pur-
sues exactly the same principles that apply to standard
discrete problems (Zienkiewicz et al., 2005). Biome-
chanical modeling (BM) of the behavior of anatomical
structures under different loads is a necessary step for
numerous academic and clinical applications. Corre-
sponding partial differential equations (PDEs) control
the physical phenomenon being modeled such as the
deformation of organs like the liver, prostate, stomach,
breast, and other virtual organs in augmented reality ap-
plications (Phellan et al., 2021a). FEM specifically for

modeling the mechanical response of breast tissue has
been used for several applications with different com-
plexities of biomechanical models and materials (Garcı́a
et al., 2018; Hipwell et al., 2016). More specifically,
the mechanical response of breast tissue under mam-
mographic compression has been modeled using FEM.
An overview of the tissues, software packages, compu-
tational time, and type of studies used is presented in
Table 1).

Although FEM have demonstrated success in regis-
tering multimodal breast images, their computational
demands can hinder their practical use in clinical set-
tings and integration into routine workflows. Addition-
ally, some approaches necessitate iterative adjustments
to various parameters, like compression thickness, ma-
terial properties, and breast rotation, to account for in-
herent uncertainties present in clinical data (referred to
as “Optim.” for optimization in Table 1). The repet-
itive nature of FEM simulations, often requiring nu-
merous computations, significantly increases the overall
processing time. Consequently, achieving accurate and
real-time modeling of soft tissue deformation remains a
significant challenge. To achieve real-time compatibil-
ity, various strategies have been explored to lessen the
computational burden associated with FEM. Notably,
some approaches have targeted improvements to lin-
ear solvers, a known bottleneck within the FEM work-
flow (Mendizabal et al., 2020). Notably, (Han et al.,
2013) explored a GPU implementation that relies on
the Total Lagrangian Explicit Dynamics (TLED) for-
mulation proposed by (Miller et al., 2007). This TLED
formulation is considered highly suitable for modeling
breast biomechanics (Mendizabal et al., 2020). More-
over, NiftySim is a GPU-based solver, used for simulat-
ing soft tissue deformations. While its applications ex-
tend beyond breast modeling, it proved to be valuable
in our study. Simulation Open Framework Architec-
ture (SOFA) represents another approach to accelerating
computations for soft tissue simulations. SOFA, known
for its effectiveness with GPU-based solvers, has been
successfully applied to studies involving prostate defor-
mation, as referenced in (Moreira et al., 2013).

2.2. Machine and deep learning algorithms
Machine learning algorithms have emerged as a pow-

erful tool for predicting the mechanical behavior of var-
ious anatomical structures (Phellan et al., 2021b). Ma-
chine learning models excel in their ability to make
real-time predictions after a preliminary training phase.
These models operate by learning complex relation-
ships from data, allowing them to forecast outcomes ef-
ficiently once trained.

Mendizabal et al. (2020) explored simulating ultra-
sound image deformations during an ultrasound-guided
breast biopsy. The researchers employed a U-net archi-
tecture trained on a limited synthetic dataset. Their pri-
mary focus was establishing a correlation between the
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Table 1: Literature review of finite element methods for breast deformation

Reference Application Tissues Computation
Time Software Studies

Azar et al. (2000)
MR

image-guided
biopsy

Adipose,
glandular and

lesion
< 30

mins

ABAQUS Clinical

Samani et al. (2001) Breast
compression

Adipose,
glandular - ABAQUS Phantom

Ruiter et al. (2002) Cancer diagnosis - - ANSYS Clinical

Ruiter et al. (2006) Image
registration

Adipose,
glandular - ANSYS Clinical

Tanner et al. (2006) Breast
compression

Adipose,
glandular - ANSYS Clinical

Chung et al. (2008) Image
registration Breast volume - CMISS Phantom

Hsu et al. (2011)

Breast
compression

(phantom
generation)

Adipose,
glandular and

skin
3 - 4 h LS-DYNA Phantom

Han et al. (2011) Breast
compression

Adipose,
glandular and

tumor

312 mins
(Explicit) ABAQUS Clinical

Hopp et al. (2013) Image
registration Breast volume

20 mins
(Optim.:120

mins)
ABAQUS Clinical

Lee et al. (2013) Image
registration Breast volume - CMISS Clinical

Mertzanidou et al.
(2014)

Image
registration Breast volume 2 h ITK Clinical

Sturgeon et al.
(2016)

Image
registration

Adipose,
glandular and

skin
2 h 13 mins FEBio Phantom

Liu et al. (2017) Simulation
compression

Adipose,
glandular - ABAQUS Clinical

Martı́nez-Martı́nez
et al. (2017)

Simulation
compression

Adipose,
glandular and

skin
- ANSYS Clinical

Garcı́a et al. (2019) Image
registration

Adipose,
glandular 61 min (Optim.) NiftySim Clinical

partial surface deformation observed under the ultra-
sound probe and the internal breast deformation. This
approach achieved real-time prediction of lesion dis-
placement with good accuracy. However, limitations
existed. The model did not account for the natural vari-
ations (heterogeneity) within real breast tissue nor the

complex boundary conditions encountered in clinical
settings. Additionally, its reliance solely on surface dis-
placement data limited its sensitivity to patient-specific
elasticity. The researchers evaluated their model’s per-
formance by comparing its predicted lesion displace-
ments with those generated by a high-fidelity FEM sim-
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ulation (considered ground truth). They used the mean
error metric to quantify this comparison. Addition-
ally, since accurate lesion prediction was crucial, they
employed the Target Registration Error (TRE) to as-
sess the difference between their predicted lesion loca-
tion and the actual position within the phantom breast.
The model was tested with varying probe displacements
ranging from less than 12.5 mm to over 27.5 mm,
achieving a mean TRE between 2.7 mm and 5.8 mm,
respectively. However, a significant limitation of their
approach was the need to retrain the model for each new
breast geometry. This restricted its applicability to spe-
cific types and numbers of compression tools, such as
various probe shapes (Mendizabal et al., 2020).

Building on MRI-derived non-linear finite element
models, previous research by (Martı́nez-Martı́nez et al.,
2017) and (Rupérez et al., 2018) explored modeling
the mechanical response of breast tissue under mam-
mographic compression. Their primary objective was
to achieve faster multimodal registration and simulate
breast tissue behavior during image-guided procedures
like biopsies. They investigated three machine learning
models for this purpose: decision trees (DT), extremely
randomized trees (ERT), and random forests (RF). Ini-
tial experiments were conducted using phantoms, fol-
lowed by extension to clinical datasets. For the evalu-
ation, they calculated the mean 3D Euclidean distance
between the nodes predicted by the models and the
nodes extracted from the FE simulation, which served
as the ground truth. Their experiments revealed that
ERT outperformed the other models, achieving an av-
erage error of only 0.62 mm. However, the study was
limited by the relatively small dataset used for evalu-
ation (10 phantoms and 10 clinical cases), potentially
hindering the model’s generalizability. Additionally, the
model only considered a 20% compression ratio, which
is significantly lower than compression levels typically
used in mammography. Finally, the model simplified
the breast tissue composition by representing it with just
three types: fatty, glandular, and skin.

Building upon a previously developed biomechan-
ical model (Hopp et al., 2012, 2013) that incorpo-
rated four tissue types (fatty, glandular, muscular, and
skin) and unloaded breast state estimation, (Said et al.,
2023) compared different machine learning models for
predicting breast deformation under realistic mammo-
graphic compression. They investigated three mod-
els: ERT, Extreme Gradient Boosting (XGBoost), and
a deep learning model called Attention-Based Bidirec-
tional Long Short-Term Memory (Att-BLSTM). They
evaluated their machine learning (ML) and deep learn-
ing (DL) models using data from 516 breasts. Biome-
chanical models were automatically generated from T2-
weighted MR images for each breast. The models were
trained and tested using a FEM simulation that mim-
icked mammographic compression at varying ratios (up
to 76% based on patient metadata). Additionally, the re-

searchers analyzed the models’ performance to factors
like compression ratio, tissue type accuracy, and overall
breast volume. The authors evaluated their models by
comparing their predicted node positions with the de-
formed nodes from their FEM simulation as the ground
truth. They calculated the Root Mean Square Error
(RMSE) for each node and then averaged it across all
nodes in a breast (one dataset). Finally, they reported
the mean and median RMSE across all datasets in the
validation set. Said et al. (2023) reported that their mod-
els achieved an average prediction error of 4.7 millime-
ters (mean RMSE) and a median error of 3.4 millimeters
across 516 breasts. Notably, these models offered a sig-
nificant speedup of roughly 240 times compared to the
original FEM model simulation.

Current machine and deep learning approaches of-
ten overlook valuable information embedded within the
finite element (FE) mesh structure. This information
includes details about how nodes are connected and
the distances between them. To address this limita-
tion, we propose adapting a well-established approach
called PhysGNN to the breast compression problem.
PhysGNN leverages Graph Neural Networks, which are
specifically designed to exploit the inherent structural
information present in graphs. In the context of our
work, this translates to effectively utilizing the con-
nectivity and distances between nodes within the FE
mesh for improved breast tissue deformation prediction.
This capability not only allows PhysGNN to incorporate
crucial information about the mesh structure but also
enhances computational efficiency when learning from
high-quality, high-node-count meshes. This efficiency
stems from the message-passing framework employed
by GNNs.

3. Material and methods

This thesis work can be summarized in the following
workflow (refer to Figure 1 for a visual representation):

1. Comparison of Traditional FEM: We com-
pared the performance of two established FEM
approaches, NiftySim and FEBio, in simulating
breast compression during mammography. While
traditionally FEM simulations have served as the
gold standard for this purpose, we explored the po-
tential of a data-driven alternative.

2. Ground Truth and Mesh Features Extraction:
Specifically, we utilized the nodal displacements
obtained from NiftySim incremental simulations
of a single FE mesh model as the ground truth data
for training a deep learning model called Phys-
GNN. Having ground truth data from just one reli-
able FEM method was sufficient to train the model
effectively. The geometric information from the in-
put breast FE mesh consists of an adjacency matrix
and a set of edge weights:
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• The adjacency matrix is a binary matrix de-
scribing the connections between nodes.
• The edge weights are calculated as the in-

verse of the Euclidean distance between
nodes, providing the network with spatial in-
formation.

3. PhysGNN for Structural Information: To lever-
age the structural information within the FE mesh,
we employed a Graph Neural Network. GNNs are
adept at handling data structured as graphs, where
nodes represent points of interest and connections
between them encode relationships. In our case,
the FE mesh itself forms the graph, with vertices
corresponding to nodes and the edges correspond-
ing to the connections between nodes within an el-
ement (Pfaff et al., 2020). Through a process called
message passing, GNNs enable nodes to exchange
information with their neighbors, considering both
their features and the connections. This allows the
adapted PhysGNN model to capture the inherent
structural information of the FE mesh, which is
critical for the accurate prediction of breast tissue
deformation under compression. Notably, GNNs
share parameters across the entire mesh, that en-
sures learning a constant number of parameters in-
dependent of the mesh size and promoting effi-
cient learning, and enabling generalization to un-
seen breast geometries.

Figure 1: Flow chart of the proposed method to simulate
the breast compression in mammography.

3.1. Breast phantoms
Computational breast models are increasingly uti-

lized in breast imaging research to assess and enhance

new imaging systems and methods (Bakic et al., 2011;
Hsu et al., 2013; Li et al., 2009; Segars et al., 2014).
They offer a practical solution for conducting studies
that would be challenging or unfeasible with human par-
ticipants due to high costs or safety risks. To optimize
and compare different imaging modalities effectively,
these phantoms must accurately simulate the breast in
various positions and compression states required by the
modalities. For instance, dedicated Breast CT (BCT)
captures images of the breast in the prone position with-
out compression, whereas mammography and tomosyn-
thesis involve the patient standing with the breast com-
pressed.

Figure 2: Phantom 3 in the dataset (Sarno et al.,
2021a,b). Uncompressed geometry (top) and its cor-
responding compressed geometry (bottom) after using
compression software (Zyganitidis et al., 2007).

The dataset of breast phantoms was accessed from
Zenodo public storage, available as an Open Access
database (Sarno et al., 2021c). This dataset includes two
separate collections: one with 150 uncompressed phan-
toms (for breast computed tomography studies (Sarno
et al., 2021a)) and another with 60 compressed phan-
toms (for digital breast tomosynthesis DBT and digital
mammography DM studies (Sarno et al., 2021b)). The
files are stored as DICOM files, where voxel values rep-
resent different materials: 0 for air, 1 for adipose tis-
sue, 2 for glandular tissue, and 3 for skin tissue. Ad-
ditionally, a datasheet accompanies the folders, listing
the pixel pitch size and slice thickness for each phan-
tom. The phantoms are named sequentially, and both
compressed and uncompressed versions corresponding
to the same clinical acquisition share the same name.

The computational breast phantoms were created
from clinical breast images previously acquired at UC
Davis (California, USA) using an in-house developed
BCT scanner. This project used 150 breast volume
datasets from 150 different patients. The images were
captured with a first-generation BCT scanner (Boone
et al., 2001) operating at 80 kV with Cu filtration. The
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flat panel detector used 2x2 binning mode with a pixel
pitch of 0.388 mm (native pixel pitch of 0.194 mm). The
scan protocols involved 500 projections with a complete
360° gantry rotation. The voxel size in the reconstructed
coronal slices varied from 0.1938 mm to 0.4274 mm in-
plane and from 0.1907 mm to 0.2375 mm in the axial
direction (slice thickness). The raw CT data, recon-
structed using the FDK algorithm, were corrected for
cone beam artifacts, geometric distortion, and cupping
artifacts. All BCT examinations were performed with
a mean glandular dose of 5 mGy. The uncompressed
computational breast phantoms were created from these
clinical images using a semi-automatic tissue classifica-
tion algorithm (Mettivier et al., 2020). This algorithm,
developed in Matlab R2019a utilizing routines from the
Segmentation toolkit, categorizes each image voxel into
one of four material types: adipose tissue, fibroglandu-
lar tissue, skin, and air.

The compressed versions of these phantoms, in-
tended for in silico investigations in DBT and DM, were
generated from the uncompressed versions using spe-
cific software described in (Zyganitidis et al., 2007) as
shown in Figure 2. This software computes the com-
pressed version of the pendant breast model based on
Young’s modulus of elasticity of the materials and the
final compressed thickness, which is extracted from the
DICOM header information of the original DM exam-
inations. This compression software has been exten-
sively described and used in previous dosimetry and
imaging studies in 2D digital mammography. The aver-
age compressed thickness for the cohort of compressed
computational phantoms was 61 mm. This compression
process allows the same ”digital patient” to be used in
both uncompressed geometry for BCT simulated exams
and compressed geometry for DM/DBT exams.

3.2. Biomechanical breast model

The biomechanical breast model is based on the
method of generating compressed breast phantoms us-
ing a biomechanical finite element model from BCT
volumes developed in the work of (Garcı́a et al., 2020),
by simulating physically realistic tissue deformation. It
estimates a configuration of the breast comparable to its
shape in mammography or breast tomosynthesis based
on the breast geometry observed with BCT in 3D. Cor-
responding mammograms or compressed image data
were not available for the BCT dataset used in our study.
So, we used the corresponding compressed phantoms
as a reference for the compression thickness of each
phantom and ground truth. An overview of generating a
biomechanical breast model is shown in Figure 3

The biomechanical breast model used for FEBio aims
to mimic the (Garcı́a et al., 2020) model, but with slight
adjustments that will be explained in the following sec-
tions. These adjustments are necessary to ensure the
model runs to completion.

Figure 3: Overview of the steps to set up and solve
for the compressed breast geometry using finite-element
analysis. Once the FE analysis is complete, the defor-
mation is applied to the phantom to reposition and com-
press the breast.

3.2.1. Mesh Construction
To acquire patient-specific breast geometry, the DI-

COM series for each phantom were converted into
NRRD images. These preclassified voxelized images
underwent resampling using Nearest Neighbor Interpo-
later to achieve voxel spacing of 0.273 mm3, ensuring
isotropic voxels, crucial for generating a high-quality
mesh for FEA. The choice of 0.273 mm3 cubic res-
olution was motivated by its negligible tissue loss in
the compressed phantom reconstruction compared to
the original uncompressed phantom, as referenced in
(Garcı́a et al., 2020).

To generate a digital representation of the breast
anatomy, a meshing technique was employed. This
technique involves discretizing the breast volume into
a collection of small, interconnected elements. These
elements, often referred to as mesh elements or simply
elements, collectively form a net-like structure that ap-
proximates the complex geometry of the breast. Un-
like a traditional net with squares, this mesh utilizes
tetrahedrons, which are three-dimensional shapes with
four triangular faces and four nodes (points). This pro-
cess of creating the mesh from a 3D object is called
meshing. The construction of the model geometry from

4.6



Comparison and evaluation of finite element analysis and deep learning methods for breast biomechanical models 7

resampled and preclassified breast images employed a
tetrahedral meshing approach. We utilized Pygalmesh
(Schlömer), a Python interface to the CGAL library
(The CGAL Project, 2024) to generate high-quality 3D
volume meshes for our breast models. Pygalmesh of-
fers various parameters to control the mesh properties.
We optimized parameters like facet angle, size, and dis-
tance, along with cell radius edge ratio. However, the
cell size (set to 3.0 in this case) had the most signifi-
cant impact on determining the overall mesh coarseness
or fineness. A smaller cell size results in a finer mesh
with more elements and nodes, leading to a more de-
tailed representation of the breast anatomy. The gen-
erated meshes exhibited variation in element and node
count depending on the specific breast anatomy. The
element count ranged from a minimum of 30,960 to a
maximum of 157,745 , with an average of 96,375 el-
ements (tetrahedrons). Similarly, the number of nodes
varied between 6,196 and 28,450, with an average of
17,170. Figure 4 is illustrative of the FE volume mesh
of the third phantom, which consists of 95,865 elements
and 17,595 nodes. Material properties for the skin, glan-
dular, and adipose components of the breast were as-
signed based on preclassified voxelized data. The as-
signment criteria were as follows:

1. Elements were labeled by mapping element centers
to corresponding pixel values from the preclassi-
fied image.

2. Any pixel value of air was adjusted to skin prop-
erties, ensuring a continuous skin layer around the
breast.

3. An additional label was assigned to elements near
the chest wall, restricting motion in the anterior-
posterior direction while allowing degrees of free-
dom in the superior-inferior and medial-lateral di-
rections as depicted in Figure 5.

The meshes consisted of continuous solid elements
without contact interfaces between different materials.

3.2.2. Material model and boundary conditions
The material model and boundary conditions define

the breast’s physical characteristics. Acquiring an ac-
curate material model tailored to each patient’s data is
impractical. In this work, the same material model is
applied to all patients, with consistent elastic constants
assigned to each tissue type. An isotropic hyperelastic
Neo-Hookean material model was employed to repre-
sent the nonlinear and incompressible behavior of the
three tissues of the breast during deformation (Wellman
et al., 1999). The material properties were assigned
stiffness measures using Young’s modulus (Eadipose =

4.46 kPa, Eglandular = 15.1 kPa, Eskin = 20.0 kPa), while
a nearly incompressible Poisson’s ratio of 0.49 was set
for all three tissues to describe the stress-strain relation-
ship of the breast tissue.

Anatomically, the breast is not firmly attached to the
body but rather rests on the thorax, connected by tissue
that permits slight movement along the thorax. During
mammographic imaging, the plates do not compress the
breast adequately to induce displacement relative to the
thorax. Therefore boundary conditions were established
to restrict the rigid motion of the breast and simulate the
connection between the breast and the body.

1. The outer triangular faces of the elements repre-
senting the chest wall surface were constrained in
the anterior-posterior direction, see Figure 5.

2. The faces located superior or inferior to the axial
midplane of the breast and in contact with plates
were constrained in the medial-lateral direction.

The implementation of these boundary conditions
permits unrestricted interaction between the breast mesh
and the opposing surfaces representing the compres-
sion plates. This unrestricted interaction is essential for
model stability and convergence, leading to the success-
ful completion of the simulation.

3.2.3. Breast compression simulation
To mimic mammographic acquisition in a cranio-

caudal projection, the breast is compressed due to the
vertical movement of a superior plate that pushes the
breast against an inferior plate. The plates were implic-
itly defined as two infinite rigid wall constraints in direct
contact with the breast. The rigid walls were enforced
using an Augmented Lagrangian approach with a pre-
scribed displacement, the convergence tolerance for the
Lagrange multipliers was set to 0.01 with a penalty fac-
tor of 1000 to control the rate of convergence. In or-
der to replicate the process, the upper plate was moved
towards the bottom plate along the longitudinal axis.
Since the breast typically rests on the inferior plate dur-
ing mammography, a minor upward offset of 18 mm
was applied by the bottom plate to flatten the model and
support the breast, as shown in Figure 6.

Certain physiological and practical factors were con-
sidered to achieve appropriate compression. For exam-
ple, recognizing that the breast is not rigidly attached
to the body, movement of faces on the chest wall side
surface was restricted in the anterior-posterior direction.
Additionally, it was assumed that the natural shape of
the breast, influenced by patient positioning on a prone
table and gravity, mimicked the manual adjustments
made by radiographers during mammography. Hence,
the effect of gravity on the reference state was neglected
(Garcı́a et al., 2020). The friction coefficient between
the plates and the breast is unknown. Therefore, the
contact problem was solved using frictionless contact,
which involved two rigid walls (both plates) and a de-
formable body (the breast).

Since the corresponding mammograms were not
available. The amount of breast compression was de-
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Figure 4: Finite element (FE) volume mesh model of phantom 3. (a) Shows the elements representing skin tissue. (b)
Shows the elements corresponding to adipose tissue. (c) Shows the elements for glandular tissue. (d) Represents a
cut view of the mesh, which consists of continuous solid elements without interfaces between different materials. The
x-axis (red) indicates the mediolateral direction, the y-axis (green) represents the superior-inferior direction, and the
z-axis (blue) represents the anterior-posterior direction

Figure 5: To illustrate the boundary conditions applied
to the mesh surface, we can see the element faces color-
coded to represent their boundary conditions. On the
top: The outer faces of the tetrahedral elements on
the posterior breast surface (red) are constrained in the
anterior-posterior direction to mimic the chest wall re-
striction. The remaining elements throughout the breast
are not restricted. On the bottom: Visualizing the mesh
lines on the surface of the breast, Red lines represent
faces with fixed anterior-posterior displacement (con-
strained), while blue lines represent faces free to move
in all directions (unconstrained).

rived from the thickness of the corresponding com-
pressed phantoms.

3.2.4. Voxelised compressed phantom reconstruction
The method for reconstructing the compressed phan-

tom is based on the approach developed by (Garcı́a
et al., 2020). After compressing the biomechanical
mesh model, it is converted into a voxelized breast

Figure 6: Compression simulation of a breast phantom
using a FE model. The left images (a) show the un-
deformed breast mesh. The right images (b) depict the
compressed breast mesh after simulating the compres-
sion process. During compression, the bottom plate
(green arrows) was moved upwards by 18 mm to flatten
the model. Simultaneously, the top plate (blue arrows)
was moved downwards until the desired breast thickness
was achieved.

phantom. A uniform grid around the model is used to
store the elements. The grid’s accuracy depends on in-
ternal factors (like grid resolution or voxel size) and ex-
ternal factors (such as the number of elements in the
model or the degree of compression). The voxel size
of 2 mm is used to define the grid, with the origin and
size determined by the axis-aligned bounding box of the
compressed model (Garcı́a et al., 2017). Each voxel in
the voxelized phantom is defined as a point within this
grid.

For each point representing a voxel in the compressed
breast phantom, the corresponding voxel in the grid is
calculated from its physical position using barycentric
coordinates. If the point lies within an element, these
coordinates are used to locate the position in the un-
compressed model. Hence, all points along a ray in the
compressed model are transferred to the uncompressed
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model, forming a curve in the BCT image. It’s impor-
tant to note that computing barycentric coordinates is a
transformation from the world reference system [x, y, z]
to the model’s internal reference system, denoted by
[E,b] = [E, b1, b2, b3, b4], where E is the element index
and b = [b1, b2, b3, b4] are the barycentric coordinates.
Each point in the physical space is uniquely represented
by one vector [E,b] and vice versa (Garcı́a et al., 2018).

The label corresponding to each point is directly ac-
quired from the preclassified BCT volume through the
method of nearest neighbor interpolation.

3.3. Deep learning for predicting breast deformation

Efforts to enhance simulation speed have led to the
development of deep-learning models aimed at replac-
ing biomechanical simulations. Recent studies have
suggested utilizing data-driven models generated by
training different machine learning algorithms, such as
random forests and artificial neural networks (ANNs),
with FEA results. This approach aims to acceler-
ate tissue deformation approximations through predic-
tion. PhysGNN, a data-driven model has been devel-
oped to estimate the solution obtained by FEM using
GNNs, which can incorporate mesh structural infor-
mation and perform inductive learning on unstructured
grids and complex topological structures (Salehi and
Giannacopoulos, 2022). PhysGNN utilizes edge infor-
mation by learning biomechanical deformation based
on graphs created from FE meshes. In this work, we
adapted PhysGNN for the breast compression applica-
tion, as it demonstrated highly promising results.

3.3.1. Architecture
The depicted network architecture processes breast

mesh data through a series of graph convolutional lay-
ers, specifically GraphConv and GraphSAGE layers,
which use different aggregation methods (add and max).
The architecture includes PReLU activation functions
and Jumping Knowledge (JK) connections for feature
combination and preservation. The spatial features
are extracted in each GNN layer and aggregated using
jumping-knowledge connections. After graph convolu-
tions, the output is passed through linear layers with
PReLU activations to transform the features, ultimately
predicting displacements in the x, y, and z directions
(δx, δy, δz). This design enables efficient and accurate
modeling of mesh-based data for compression analy-
sis. Figure 7 illustrates the architecture of the PhysGNN
model used for predicting breast compression.

3.3.2. Data generation and features construction
The mesh model of Phantom 3 generated for the

biomechanical model was used for generating the
dataset. The PhysGNN method was designed to predict
the gradual deformation of a 3D FE mesh in response
to a series of planned incremental displacements. The

ground truth was the nodal displacements obtained from
NiftySim incremental simulations.

A basic approach to incremental simulations using
deep learning entails breaking down a large simulation
into a series of smaller, self-contained steps. These steps
are then executed sequentially, essentially treating them
as individual simulations. FEM simulations were di-
vided into a series of incremental steps, to address the
non-linear behavior of soft tissue. This approach sim-
ulates the material’s response through multiple transi-
tional states, providing a more accurate representation
of the deformation process. To assess the effectiveness
of PhysGNN in predicting breast compression imposed
by force during mammography (modeled by compress-
ing the breast between two plates in our work), we uti-
lized several data points within the PhysGNN model.
The material assignment to the mesh elements based
on the preclassified image was used as material ID, al-
lowing the model to distinguish between different tissue
types. Additionally, the fixed nodes that belong to the
chest wall, which are constrained, were used as bound-
ary condition IDs. Finally, Young’s modulus of the tis-
sues was incorporated as a physical property within the
PhysGNN model, providing information about the ma-
terial’s stiffness and influencing the predicted deforma-
tions. The surface nodes in the dataset are the nodes
located on the outer surface of the breast mesh (1129).
The dataset was created by applying a force of 90 New-
tons to the breast surface at a time in 30-time steps and
40 directions to capture the non-linear behavior of soft
tissue under large forces. Therefore, the amount of force
applied to one of the surface nodes at time i is:

Fi =
Ftotal

30 × 1129
× i, i ∈ {1, . . . , 30} (1)

The forces applied to each surface node are directed
along its surface normal (x, y, and z) and three addi-
tional directions, with each direction, represented as a
tuple (x, y, and z) randomly sampled from a unit-radius
hemisphere. The implementation of (Salehi and Gian-
nacopoulos, 2022) included 10 distinct batches of ran-
dom directions, along with the surface normal direction.

The features inputted into PhysGNN include the
force values applied to surface nodes in both Carte-
sian coordinates (Fx, Fy, Fz) and spherical coordinates
(Fρ, Fθ, Fϕ). Additionally, each node is assigned a con-
stant value called Physical Property, which varies based
on the node’s boundary condition and tissue type. For
nodes with a free boundary condition, the value is set
to 0.1 for skin tissue, 0.6 for glandular tissue, and 1 for
fat tissue. For nodes with a fixed boundary condition,
the value is 0. This value determines the extent of dis-
placement a node can undergo, influenced by its bound-
ary condition and Young’s modulus. Fat tissue, with its
lower Young’s modulus, can undergo larger displace-
ments compared to glandular or skin tissues. Specif-
ically, the value 0.1 is derived from the ratio of fat
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Figure 7: Architectural diagram of PhysGNN (Salehi and Giannacopoulos, 2022).

tissue’s Young’s modulus (4.46 KPa) to the combined
Young’s modulus of gland and skin tissues (15.1 KPa +
20.0 KPa). Similarly, the value 0.6 is calculated from
the ratio of gland tissue’s Young’s modulus (15.1 KPa)
to the combined Young’s modulus of fat and skin tissues
(4.46 KPa + 20.0 KPa). PhysGNN outputs the displace-
ment values of the mesh nodes in the x, y, and z di-
rections (δx, δy, δz). For the GNN models, edge weights
(eu,v) are computed as the inverse of the Euclidean dis-
tance between adjacent nodes u and v, with u, v ∈ V as:

eu,v =
1√

(xu − xv)2 + (yu − yv)2 + (zu − zv)2
(2)

3.3.3. Hyperparameters of PhysGNN
Similar to prior research (Martı́nez-Martı́nez et al.,

2017; Said et al., 2023), the predictions generated by
PhysGNN data-driven model, are evaluated against the
results obtained from FEM, which serves as the ground
truth.

The loss function used for learning the trainable pa-
rameters is the mean Euclidean error computed as:

MEE =
1
N

∑

n∈N

√√√ 3∑

i=1

(
yi

n − ŷi
n

)2
(3)

where N is the number of mesh nodes, y ∈ RN×3 ep-
resents the FEM-approximated displacement in the x, y,
and z directions, and z ∈ RN×3 represents the displace-
ment predicted by PhysGNN. The AdamW optimizer,
with an initial learning rate of 0.005, was used to mini-
mize the loss value, reducing the rate by a factor of 0.1
to a minimum of 1 × 10−8 if validation loss did not im-
prove after 5 epochs. Early stopping, halting training af-
ter 15 epochs without validation loss improvement, was
employed to prevent overfitting. Additionally, a dropout
rate of 0.1 was applied to the penultimate layer of Phys-
GNN to enhance generalization. The model was trained
in 8 batches for faster convergence.

Table 2 summarizes the input features (X) and corre-
sponding output values (Z) processed by the PhysGNN
model, an additional information on data generation is
in Appendix A.

Table 2: PhysGNN features and outputs.

Features (X) Output (Z)
Fx, Fy, Fz, Fρ, Fθ, Fϕ, PhysicalProperty δx, δy, δz

3.3.4. PhysGNN training experiments
To train and evaluate the performance of our models,

we divided the dataset into three subsets: training, vali-
dation, and testing. The training set provided the model
with examples to learn the underlying relationships be-
tween the input data (representing breast geometry) and
the desired output (deformation patterns). The valida-
tion set played a crucial role, as it was used to fine-tune
the models’ hyperparameters without directly influenc-
ing their performance on unseen data.

To evaluate the models’ performance, we employed
two contrasting data partitioning strategies: leave-one-
deformation-out and hold-out. Leave-one-deformation-
out, a geometry-based approach, prioritizes keeping en-
tire breast configurations (representing different defor-
mation states) together. During partitioning, for each
deformation state, all data points are used for training
and validation purposes except for one. This single data
point, representing a specific deformation state of a par-
ticular breast, is isolated and reserved for the test set.
In our case, we choose the final compression state for
the test set. This ensures the models are exposed to a
wide range of completely deformed breast shapes dur-
ing training while offering unseen deformations for test-
ing their generalizability. In contrast, hold-out focuses
on individual data points, disregarding the geometric
context (i.e., the relationship between different defor-
mation states of the same breast). This instance-based
approach can scatter data points from a single defor-
mation sequence across different sets (training, valida-
tion, or testing). By employing these contrasting strate-
gies, we aimed to gain a comprehensive understanding
of how the partitioning strategy affects the performance
of the model.

1. Hold-out experiment involved randomly splitting
the generated dataset into training (70%), valida-
tion (20%), and testing (10%) sets. As mentioned
earlier, this approach disregards the breast defor-
mation state during data partitioning. Despite hav-
ing a single breast phantom with 30 deformation
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states, we conducted a hold-out experiment to as-
sess how well the model generalized to unseen de-
formations within the same breast. While acknowl-
edging the limitations of using a single breast for
training and validation, this experiment offers valu-
able groundwork for future studies with additional
breast models.

2. Leave-one-deformation-out experiment assessed
the models’ ability to generalize to unseen defor-
mations, we adopted a unique testing strategy. For
the 30 deformations simulated in NiftySim, a sin-
gle deformation was isolated for testing, while the
remaining 29 deformations were split into training
(80%) and validation (20%) sets. This approach
mimics real-world clinical scenarios where models
are trained on a collection of known deformations
and then tasked with predicting the behavior of a
new, unseen deformation for a complete breast ge-
ometry.

3.4. Qualitative and Quantitative Results of Finite Ele-
ment Analysis

A total of 60 phantoms were included in this investi-
gation for FEA. However, convergence difficulties lim-
ited the number of successfully analyzed phantoms to
35. The remaining 25 phantoms exhibited convergence
issues during the FE simulations. It is hypothesized
that the presence of additional axillary tissue in the seg-
mentation, which is not anatomically part of the breast,
might have hindered the convergence process in these
cases. This issue needs further investigation in future
work.

Figure 8 illustrates a sample of voxelized phantoms
generated from the previously compressed volumes re-
ported in (Sarno et al., 2021b), as well as those simu-
lated using NiftySim and FEBio.

BCT phantoms revealed a pre-compression breast
thickness ranging from 85 mm to 169 mm (mean: 132
mm ± 21 mm). After compression, the expected thick-
ness falls within a range of 42 mm to 89 mm (mean: 63
mm ± 12 mm). This translates to an average compres-
sion ratio of 0.48 ± 0.12.

It is evident that the FEM-based results (NiftySim
and FEBio) are more realistic and reliable, closely
mimicking real-world applications. Both NiftySim and
FEBio produce very similar outcomes, indicating their
consistency in modeling. Closer inspection reveals that
NiftySim potentially delivers a more precise compres-
sion thickness compared to the compressed phantoms
from the dataset. The primary distinctions in compres-
sion for FEBio are observed in the mediolateral and an-
terior directions when compared to the other methods.

The total breast phantom volume (mm3), glandular
tissue volume (mm3), and volumetric breast density
(VBD in %) were calculated for both the uncompressed
and compressed phantoms.

NiftySim delivered accurate approximations of the
compressed phantom thickness, highlighting its effec-
tiveness in simulating tissue deformation. Moreover, by
leveraging GPU acceleration, NiftySim achieved effi-
cient execution times, averaging 300 seconds per sim-
ulation with a standard deviation of 60 seconds. The
VBD was calculated as the total glandular tissue divided
by the total breast volume. VBD ranged between 0.86
% and 24.97 % (mean: 9.63 %) before compression
and between 0.87 % to 25.30 % (mean: 9.75 %) after
compression. The mean difference between the uncom-
pressed and the compressed VBD was 0.12%, showing
a correlation coefficient (R) of 0.99. Figure 9(a) shows
the correlation of breast volume, glandular tissue vol-
ume, and VBD, before and after the compression pro-
cess.

FEBio approximations were close to the expected
thicknesses. FEBio simulations on CPU hardware re-
quired an average of 6634 seconds to complete, with
a standard deviation of 4919 seconds. VBD ranged
between 0.86 % and 24.97 % (mean: 9.74 %) before
compression and between 0.87 % to 25.37 % (mean:
9.88 %) after compression. The mean difference be-
tween the uncompressed and the compressed VBD was
0.14%, showing a correlation coefficient (R) of 0.98.
Figure 9(b) shows the correlation of breast volume,
glandular tissue volume, and VBD, before and after the
compression process.

Approximating tissue deformation using FEBio was
carried out on an Intel(R) Xeon(R) Silver 4208 CPU
with 128 GB.

Table 3 summarises the mean values for Total breast
volume loss (%), fat tissue volume loss (%), glandu-
lar tissue volume loss (%), and skin tissue volume loss
(%). FEBio simulations seem to show a greater loss of
overall breast tissue, including fat and glandular tissue,
during compression compared to NiftySim. Conversely,
NiftySim simulations appear to predict a higher loss of
skin tissue during compression.

The DICE score is a common metric used to quantify
the spatial overlap between two images. Higher DICE
scores indicate greater similarity. Table 4 shows the
mean and standard deviation of the DICE score, which
compares the similarity between the reconstructed com-
pressed phantoms obtained from NiftySim and FEBio,
for all 35 phantoms included in the study. Several fac-
tors could contribute to the observed variations in Dice
scores across tissue types; such as the mesh generation
process can influence how tissues are represented. Also,
the specific algorithms used by NiftySim and FEBio
to simulate the compression process might differ. This
could lead to variations in how each tissue type responds
to compression. This warrants further investigation in
future work.

Figure 10 presents a comparison of displacement
magnitudes obtained from two FEA solvers: NiftySim
and FEBio. (a) displays the output displacements pre-
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Figure 8: Cross-sectional of compressed digital phantoms from the compression software in (Zyganitidis et al., 2007),
NiftySim and FEBio. (a), (b), and (c) are for sagittal cross sections. (d), (e), and (f) are for axial cross sections. (g),
(h), and (i) are for coronal cross sections.

Table 3: Breast tissue loss during compression

FEM Total breast
volume loss(%)

Fat tissue
volume loss(%)

Glandular tissue
volume loss(%)

Skin tissue
volume loss(%)

NiftySim 1.18 ± 0.34 0.34 ± 0.16 0.09 ± 0.11 12.41 ± 2.97

FEBio 1.70 ± 0.70 0.99 ± 0.76 0.42 ± 0.45 11.97 ± 2.32

Table 4: Mean Dice score between all the 35 recon-
structed compressed phantoms obtained from NiftySim
and FEBio

Fat Tissue
Mean Dice

Glandular Tissue
Mean Dice

Skin Tissue
Mean Dice

0.78 ± 0.16 0.38 ± 0.221 0.16 ± 0.15

dicted by NiftySim for the FE model. (b) shows the
corresponding output displacements from FEBio. Fi-
nally, (c) depicts the difference between the displace-

ment magnitudes calculated by NiftySim and FEBio,
highlighting the discrepancies in their FEA approxima-
tions. While the overall displacement patterns appear
similar, there are noticeable differences in the top and
outer regions. These variations could be due to com-
pression plates or the specific boundary conditions ap-
plied to the biomechanical model.

3.5. Performance of PhysGNN model

To train the deep learning model, a dataset was gen-
erated from the results of incremental FE simulations
performed on only one successfully analyzed phantom
(phantom 3).
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(a) The compression was obtained by NifySim.

(b) The compression was obtained using FEBio.

Figure 9: Correlation of breast volume, glandular tissue volume, and VBD before and after the compression. 35
BCT phantoms were analyzed from NiftySim and FEBio. Correlation coefficients of 0.99, and 0.98 were observed,
respectively.

According to the results in Table 5, PhysGNN is ca-
pable of effectively predicting tissue deformation un-
der prescribed force loads, especially highlighted by
99.96% and 81.22% of absolute position errors being
under 1 mm in hold-out and leave-one-deformation-out
experiments, respectively.

The prediction of tissue deformation per each FE sim-
ulation on an Intel(R) Xeon(R) E5-2630 v4 @ 2.20GHz
CPU took 0.4161 ± 0.0426 seconds on average, while
on an NVIDIA GeForce RTX 2080 Ti GPU with 46 GB
took 0.01 ± 0.06 seconds on average.

The hold-out yielded better and more stable predic-
tive performance estimates than leave-one-deformation-
out due to lower variance, and computational efficiency.
While, the latter is computationally expensive, limiting
model complexity and practical hyperparameter tuning,
and single-point testing may not reflect realistic perfor-
mance on diverse datasets.

Table 6 reflects the test set statistics of the PhysGNN
experiments.

In the hold-out experiment, predicting tissue defor-
mation took 0.42 ± 0.04 seconds on CPU and 0.01 ±
0.06 seconds on GPU. In the leave-one-deformation-out
experiment, it took 0.82 seconds on CPU and 0.47 sec-
onds on GPU. Incremental NiftySim simulations, with

GPU acceleration, totaled 4640.5 seconds (154.7 sec-
onds per simulation). This indicates a speedup of 329
times with GPU and 188 times with CPU in the leave-
one-deformation-out experiment compared to a single
NiftySim simulation.

3.6. Qualitative and Quantitative Results of PhysGNN
in Leave-one-deformation-out experiment

We present here additional quantitative and qualita-
tive results only for the leave-one-deformation-out ex-
periment. For the hold-out experiment, since nodes
from different deformations are mixed in the test set,
a specific evaluation cannot be provided.

The reconstructed phantom of predicted deformation
by PhysGNN in the leave-one-deformation-out exper-
iment compared to the reconstructed phantom of the
NiftySim displacement (Ground Truth) is shown in Fig-
ure 11, indicating that the PhysGNN approximation of
the breast compression is very similar to the approxima-
tion achieved by FEM NiftySim. This close similarity
highlights the effectiveness of PhysGNN in accurately
modeling and predicting breast tissue deformation, vali-
dating its potential as a reliable alternative to traditional
FEM methods. The similarity is further quantified by
the Dice scores in Table 7, showing high values for pri-
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Figure 10: Output displacements in mm of the FEM for phantom 3.

Table 5: The performance of PhysGNN model on Hold-out and Leave-one-deformation-out of the test set.

Experiment
MAE
(δx)

(mm)

MAE
(δy)

(mm)

MAE
(δz)

(mm)

Mean
Euclidean

Error
(mm)

Euclidean
Error ≤
1 mm
(%)

Mean
Absolute
Position

Error
(mm)

Absolute
Position
Error ≤
1 mm
(%)

Hold-out 0.17 ±
0.18

0.20 ±
0.20

0.13 ±
0.14

0.34 ±
0.15

97.50 0.17 ±
0.03

99.96

Leave-one-deformation-out 0.56 ±
0.44

0.52 ±
0.39

0.67 ±
0.52

1.21 ±
0.44

33.51 0.58 ±
0.06

81.22

Table 6: The test set statistics of Hold-out and Leave-one-deformation-out, where y is the displacement, and
Max. Euclidean Errormean is computed as the average of the maximum Euclidean error observed for each data ele-
ment—i.e., each simulation.

Experiment δymax (mm) δymean (mm)
Max. Euclidean Errormean

(mm)

Hold-out 46.55 24.02 ± 13.26 2.60 ± 1.40

Leave-one-deformation-out 46.55 46.55 ± 0.00 5.16 ± 0.00

mary tissues (excluding skin, which is very thin and thus
results in a compromised Dice score).

Finally, Table 8 summarizes the volume loss percent-
ages for total breast, fat, glandular, and skin tissues.
PhysGNN predictions show a slightly increased overall
breast tissue loss.

Table 7: Dice score of reconstructed compressed phan-
toms obtained from NiftySim and PhysGNN

Fat Tissue Glandular Tissue Skin Tissue

0.94 0.83 0.53

We can also visually assess the displacement magni-
tudes on the BCT model with each method as shown
in Figure 12. Figure 12 (a) shows NiftySim’s displace-
ments, Figure 12 (b) shows PhysGNN’s predicted dis-
placements, and Figure 12 (c) highlights the differences.
While overall patterns are similar, noticeable dissimi-
larity exists on the breast surface, with a maximum dis-
placement difference of 5.2 mm.

4. Discussion

The FEM provides a more realistic compression of
the breast phantoms compared to the compression soft-
ware (Zyganitidis et al., 2007) used in generating the
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Figure 11: Cross-sectional of compressed digital phantoms from NiftySim and PhysGNN. (a), (b) are for sagittal
cross sections. (c), (d) are for axial cross sections. (e), (f) are for coronal cross-sections.

Table 8: Breast tissue loss during compression

FEA/DL Total breast
volume loss(%)

Fatty tissue
volume loss(%)

Glandular tissue
volume loss(%)

Skin tissue
volume loss(%)

NiftySim 1.03 0.38 0.03 10.33

PhysGNN 1.26 0.55 0.34 10.94

compressed phantoms (Sarno et al., 2021b). The FEM
methods produce nearly identical simulation outputs,
displacements, and material behavior under compres-
sion. Various factors can influence the accuracy of FEM
approximations such as; mesh density and element qual-
ity, with finer meshes typically yielding more accurate
results. The observed differences may arise from varia-
tions in the model formulation, boundary condition def-
inition, and the specific analysis techniques employed
by each FEM.

PhysGNN manifests itself as a promising deep learn-
ing module for predicting tissue deformation due to its
accurate approximations, computation speed, and ease
of implementation. A limitation of the model is that it

is trained on several states of one mesh geometry. In-
corporating more geometries means the meshes have to
have the same number of elements and nodes. Fur-
ther investigation on applying PhysGNN to different
meshes is planned for future work. Another limitation
of PhysGNN is that it requires incremental FEM simu-
lations to be trained. While incremental FEM simula-
tions are very accurate, they require significant compu-
tational time, sometimes approaching 5 minutes (in the
case of NiftySim) to perform a single simulation. This
greatly increases training requirements. On the other
hand, once PhysGNN is trained, the inference simula-
tion time is considerably faster than FEM, which can
take several minutes to hours to perform an incremental
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Figure 12: Output displacements (mm) of NiftySim and PhysGNN on the FE model

simulation. In our experimentation to optimize predic-
tion accuracy, we explored various modifications to the
model’s parameters and architecture. Specifically, we
tested increasing the number of random directions input
and the number of GNN layers. However, these modi-
fications did not yield the expected improvements. We
attempted to increase the number of random directions
to seven; however, the prediction results were not as ac-
curate as those obtained with four directions, leading
us to discontinue further investigation in this area. Ad-
ditionally, we explored increasing the number of GNN
layers to nine, but similar to the previous case, this did
not enhance the predictions and proved to be computa-
tionally expensive, resulting in longer processing times.

5. Conclusions

This thesis has presented a comparison and evalu-
ation of Finite Element Methods (FEM) for building
breast models for breast compression simulation. Build-
ing on the earlier work of Garcı́a, in this thesis we have
performed a larger evaluation using BCT data, incor-
porated and compared additional FE solvers such as
FEBio, and investigated the effects of mesh parame-
ters and boundary conditions. Moreover, this thesis
has presented the first results on the applicability of a
deep learning-based approach (PhysGNN) for simulat-
ing breast deformation with quantitative and qualitative
comparison to the standard FEM models, showing its
accuracy and potential applicability in these scenarios.
Notably, The PhysGNN model, trained on FEM dis-
placement data, achieved a Mean Euclidean Error of
0.34 ± 0.15 mm in the hold-out experiment.
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Appendix A. Data generation

The data were prepared for training the PhysGNN
model through the following steps:

• Feature Extraction: Features were derived from
the mesh structure, including:

– Elements IDs and their vertices indices

– Initial nodal x, y, z coordinates

– Boundary condition IDs

– Number of mesh nodes

– Surface node indices

– Normal directions (x, y, z) of the surface
nodes

Additionally, three other directions were randomly
sampled from a hemisphere with a radius of 1.

• Feature Matrix Construction:

– Adjacency Matrix Creation: An adjacency
matrix was built to represent the connectivity
of nodes in the FE mesh. Each element, de-
fined by a set of nodes, connected all pairs of
nodes within the same element. This matrix
was processed to handle multiple directions
and time steps by considering each combina-
tion of direction and time steps. For each ele-
ment, if a pair of nodes were connected, their
connection was adjusted for the current direc-
tion and time step by adding an offset to the
node indices.

– Material and Boundary Conditions Ex-
traction: The material ID for nodes of each
element was derived from the element ID,
and the fixed nodal ID was derived from the
boundary condition.

• Time Steps and Directional Batches: Features
were constructed for 30-time steps, each corre-
sponding to a deformation. Ten batches of direc-
tions were constructed:

– Each surface node had four directions per
batch.

– Initial nodal coordinates, material IDs, and
fixed nodal IDs were concatenated into a data
frame, and repeated for the product of the
number of directions and time steps.

– An incremental force magnitude was applied
at each time step for each surface node. This
magnitude was calculated by dividing the to-
tal force magnitude by the product of the
number of time steps and surface nodes. For
each time step, the incremental force magni-
tude was multiplied by (time step + 1) and
appended to a list of force magnitudes.

– Directions (x, y, z) for each surface node were
appended to a list, repeated for all nodal di-
rections, ensuring correct distribution across
nodes, time steps, and repetitions.

• Force Matrix Construction: Matrix M was con-
structed with rows representing the force-length
(number of time steps × number of directions ×
number of nodes) and four columns, filling in the
force and its directions (x, y, z) for each surface
node index. This data was then concatenated into
the initial data frame.

• Graph Initialization: This construction was re-
peated for the ten batches of directions, resulting
in:

– Four graphs were initialized per time step,
leading to 120 graphs generated from 30 time
steps.
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– A graph indicator to determine node belong-
ing across 120 graphs.

– A graph label for labeling the 120 graphs.

– A total of 1200 graphs (10 batches × 120
graphs per batch).

• Feature Processing: Based on the material ID and
boundary condition, physical properties were as-
signed:

– Nodes with free boundary conditions in fat
tissue were assigned a value of 1, glandular
tissue was assigned a value of 0.6, in skin tis-
sue was assigned a value of 0.1.

– Nodes with fixed boundary conditions were
assigned a value of 0.

The force magnitude was multiplied by the direc-
tion vectors (x, y, z) to obtain the force direc-
tions. These physical properties and force direc-
tions from each batch were saved (pickled).

• Additional Feature Calculation: Upon loading
the dataset for training, additional features were
calculated from the force directions in Cartesian
coordinates, converting them into spherical coor-
dinates.
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Abstract

Arterial Spin Labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) technique widely used for mea-
suring cerebral blood flow (CBF). Compared to more conventional approaches, ASL offers several advantages, such
as the absence of exogenous tracers and ionizing radiation, lower cost, flexibility of being acquired in routine MRI
settings, and is the method of choice to measure CBF in large-scale multisite studies, particularly with repeated ac-
quisitions. However, ASL data can be noisy, and hence quality control (QC) of ASL CBF maps is of particular
importance for this modality. Manual QC is time-consuming, laborious, and subjective, highlighting the need for
automated solutions. In this study, we proposed three novel deep learning (DL) models designed to provide automatic
quality evaluation indices (QEIs) for ASL-derived CBF maps: 7FCN-QEI-Net, Reg-QEI-Net and MSC-QEI-Net. The
resulting QEIs are designed to be continuous numbers in the range of 0 and 1. We also trained a deep learning algo-
rithm (BC-Net) to provide a binarized decision about the quality of the CBF map, which indicates if the map should be
kept or discarded from group analysis. Additionally, we also considered ensembles of the different networks. These
approaches leverage advanced DL techniques to enhance feature representation and achieve superior performance
compared to previous state-of-the-art methods.The models were trained on a diverse dataset that included 250 sam-
ples from multiple multisite studies. These samples were acquired using different protocols and were rated for quality
by three raters, ensuring robustness and generalizability. Additionally, in a separate test set comprising 50 samples,
all the deep learning strategies performed better than the current state-of-the-art method. The correlations between
the automated QEIs and the average manual ratings were higher than the inter-rater correlations. We also derived
and reported QEI thresholds for each method to binarize CBF maps into acceptable and unacceptable categories for
each of the non-binarized methods. While the ensemble approaches perform slightly better, the Reg-QEI-Net pro-
vided comparable performance and is currently our recommended strategy. The results highlight the potential of DL
models in automating and improving the QC process for ASL CBF maps, reducing reliance on manual assessments,
minimizing subjectivity, and enhancing reproducibility and consistency across studies.

The code developed for this work is publicly available at: https://github.com/xavibeltranurbano/QEI-Net

Keywords: Arterial Spin Labeled, Deep Learning, CNN, Quality Assessment, FCN, Regression, Reg-QEI-Net, CBF

1. Introduction

The brain is one of the most highly perfused organs
in the body, utilizing approximately 15% of the cardiac
output and 20% of the total body oxygen (Jain et al.
(2010)). Cerebral blood flow (CBF) is classically de-
fined as the volume of blood flowing through a spe-

∗Corresponding author
Email address: xavibeltranurbano00@gmail.com

cific region of the brain tissue per unit time and is ex-
pressed in units of milliliters of blood per 100 gram
of brain tissue per unit time (unit: ml/100g/min). It
is an important physiological quantity of cerebrovascu-
lar health and provides an important biomarker for the
latter. Changes in CBF correlate with various indica-
tors of cerebrovascular disease, including white matter
hyperintensities (Bernbaum et al. (2015)) and cerebral
microbleeds (Gregg et al. (2015)). Additionally, it also

5.1



QEI-Net: A Deep learning-based automatic quality evaluation index for ASL CBF Maps 2

Figure 1: Sequential workflow for ASL CBF map acquisition. This diagram delineates the procedural stages, beginning with the acquisition of
control images, followed by the application of labeling and post-labeling delay (PLD). Subsequent subtraction generates the perfusion-weighted
images, which are then utilized to create the detailed CBF maps.

serves as a biomarker of functional neurodegeneration
due to the strong association of changes in CBF with
neural activity (Dolui et al. (2017a)), and therefore can
potentially replace glucose metabolism measurements
obtained using 18F-Fluorodeoxyglucose Positron Emis-
sion Tomography (18F-FDG-PET)(Dolui et al. (2020)).
CBF changes have been associated with the incidence
and severity of dementia (Dolui et al. (2020);Dolui
et al. (2017a);Binnewijzend et al. (2013);Wolk and De-
tre (2012)) and has been shown to be one of the ear-
liest biomarkers to change in the Alzheimer’s Disease
continuum (Iturria-Medina et al. (2016);Dolui et al.
(2024);Fazlollahi et al. (2020)). Moreover, CBF is
potentially modifiable therapeutically and hence can
be used to monitor treatment response (De La Torre
(2013);Dolui et al. (2022)). Consequently, CBF mea-
surement is considered very important in studies on
healthy aging, cerebrovascular and neurodegenerative
disease (Wolk and Detre (2012)).

1.1. Classical methods of measuring CBF
Classical CBF is measured using a “diffusible” tracer

that exchanges from the blood compartment to the tis-
sue compartment, allowing CBF in ml/100g/min to be
measured directly. The first CBF measurements in
humans were made by Kety and Schmidt (Kety and
Schmidt (1945)) by monitoring arteriovenous differ-
ences in nitrous oxide. The current “gold-standard” for
CBF imaging in humans is 15O-PET scanning (Zhang
et al. (2014);Herscovitch et al. (1983)), which utilizes
radioactively labeled water as a perfusion tracer. Other
diffusible tracer approaches used to measure CBF in hu-
mans include radioactive 133xenon (Lassen et al. (1981))
and stable xenon computed tomography (CT) (Yonas
et al. (1991)). Related methods include accumulative ra-
dioactive tracers with single-photon emission computed

tomography (SPECT) scanning, though agreement of
these methods with 15O-PET is suboptimal (Ito et al.
(2006)), and methods that use intravascular tracers such
as perfusion CT (Koenig et al. (1998)) and dynamic sus-
ceptibility contrast (DSC) MRI (Rempp et al. (1994)).
Intravascular tracer methods do not measure CBF di-
rectly but allow CBF to be inferred. All these methods
require the administration of an exogenous tracer and
exposure to ionizing radiation. Hence, they are at least
somewhat invasive and can be difficult to administer to
clinically vulnerable population groups, including the
elderly, infants, and individuals with renal impairments.
Moreover, using such methods to track CBF changes in
healthy aging and in drug studies can be problematic, as
these studies require serial measurements with repeated
exposure to tracers or ionizing radiation and associated
costs.

1.2. Arterial Spin Labeled (ASL) perfusion MRI

ASL is a non-invasive magnetic resonance imag-
ing (MRI) technique for measuring tissue perfusion by
magnetically labeling arterial blood water as an endoge-
nous tracer (Detre et al. (1992)). Since its inception
in 1992 (Detre et al. (1992);Williams et al. (1992)),
ASL has been increasingly included in multisite re-
search studies of brain health. Compared to other tech-
niques for measuring cerebral perfusion, ASL offers ad-
vantages due to its non-invasive nature and the absence
of exogenous radioactive and potentially harmful con-
trast agents. Furthermore, because MRI does not in-
volve ionizing radiation, this method can be used re-
peatedly, for example, to assess the effects of drugs or
to assess longitudinal changes in cerebral perfusion. Fi-
nally, ASL can be acquired as a part of routine MRI,
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Figure 2: Examples of different sources of artifacts in ASL CBF maps. A) Motion Artifact B) Clipping Artifact C) Transit Artifact D) Low SNR
E) High CBF Values F) Low CBF Values G) Probable Label Asymmetry H) Fat Shift Artifact.

which is almost universally acquired in research stud-
ies of brain disorders. ASL has been validated against
other established modalities for measuring CBF (Ewing
et al. (2005);Heijtel et al. (2014);Ye et al. (2000a)). Its
use also extends beyond the brain studies and is being
applied to other organs, including the kidneys, lungs,
heart, placenta, eye, liver, pancreas, and muscle (Taso
et al. (2023)). ASL MRI has also been translated to clin-
ical use.

1.3. ASL MRI Data Acquisition

The acquisition of ASL MRI data involves magnet-
ically labeling inflowing protons of proximal arterial
blood water. For brain perfusion, labeling typically oc-
curs in the neck, where blood flows through the internal
carotid and the vertebral arteries that supply blood to
the brain (see Figure 1). After waiting for a brief period
(post-labeling delay) to allow the flow of the labeled
blood to reach brain microvasculature and tissue, a brain
MRI (labeled image) is acquired. A “control” brain im-
age is also obtained with a sham labeling procedure that
does not magnetically label blood water. The difference
between the control and label image is proportional to
CBF and is converted to absolute CBF quantification us-
ing a proton density image with appropriate models and
assumptions (Alsop et al. (2015);Buxton et al. (1998)).
The control-label difference is a small percentage of
the background signal, which results in a low signal-
to-noise-ratio (SNR) in the CBF images. Additionally,
subject motion, suboptimal choice of imaging param-
eters, and other non-idealities inherent to MRI scan-
ners can lead to severe artifacts (Dolui et al. (2017b);Li
et al. (2018)) (see Figure 2). This can be partially mit-
igated by averaging multiple control-label pairs, using
advanced signal processing strategies, and using back-
ground suppression (BS) of static brain water. BS in-
creases the difference image by 3-10 times (Dolui et al.

(2019);Maleki et al. (2012);Ye et al. (2000b)). Never-
theless, a noticeable amount of artifact might remain in
the resulting CBF image.

1.4. ASL Labeling Methods

Ever since its establishment in 1992, several ASL
protocols have been devised and used, which primarily
differ in labeling and signal readout strategies (see Fig-
ure 3). The classical method invented in 1992, which
was referred to as Continuous ASL (CASL) (Detre et al.
(1992)), continuously saturates or inverts arterial blood
water at the neck for several seconds. However, mod-
ern human MRI scanners utilizing whole-body radiofre-
quency (RF) amplifiers are not capable of continuous
RF excitation. Pulsed ASL (PASL) instantly labels a
thick slab in the neck, and is compatible with body RF
excitation, though the method suffers from lower SNR
compared to CASL. The current recommended labeling
strategy is pseudo-continuous labeling (PCASL), which
employs a series of short RF pulses to mimic continu-
ous labeling. ASL type can also vary based on the du-
ration of the post labeling delay (PLD) – a longer post
labeling delay can ensure delivery of the labeled blood
to the brain tissue, though at the expense of reduced
SNR since the magnetic label decays rapidly. A series
of ASL images acquired with different labeling and/or
PLDs can also be combined to obtain a CBF map, al-
lowing more accurate modeling of regional CBF values
(Woods et al. (2024)). Finally, ASL image quality can
vary based on the type of image readout. Echo-planar
imaging (EPI) was initially the preferred choice because
of speed and sensitivity, though it is being slowly re-
placed by 3D imaging (GRASE or SPIRAL) optimally
combined with BS of static brain tissue. Notably, sev-
eral other variants of ASL exist; for example, velocity
selective ASL (VASL) is an emerging method that la-
bels the arterial blood water close to the imaging site
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instead of the neck (Qin et al. (2022)).

Figure 3: Schematic diagram of imaging and labeling regions for
CASL/PCASL and PASL. In CASL/PCASL, labeling occurs as blood
flows through a single labeling plane, while in PASL, a slab of tissue,
including arterial blood, is labeled (Alsop et al., 2015).

1.5. Artifacts in ASL MRI and the need for an auto-
mated quality evaluation index (QEI)

In recent years, ASL has gained popularity among
perfusion imaging modalities for its use in research set-
tings, largely due to its potential as a biomarker of
cerebrovascular health and brain function and its abil-
ity to be acquired in routine MRI settings. Despite
recent advancements in improving the quality of ASL
images, the resulting CBF maps can still be contami-
nated by artifacts. The most significant source of arti-
fact is physiological noise due to motion, particularly
in non-compliant subjects or in patients who have dif-
ficulty staying still during the scan. Because the con-
trol/label difference represents only a small percentage
of the background signal, any variability in the back-
ground signal due to motion can dominate the differ-
ence signal, leading to large errors that are often not re-
moved during averaging. Retrospective motion correc-
tion techniques are generally used to account for bulk
motion, but such techniques cannot correct for variation
in intensities occurring during the image readout (Fris-
ton et al. (1996);Power et al. (2012)). Motion effects are
less visible, though still present, in acquisitions using
BS of static signal (Ye et al. (2000a);Fernandez-Seara
et al. (2005);Maleki et al. (2012)). Artifacts can also
result from an incorrect or suboptimal choice of acqui-
sition parameters. For example, an insufficiently long
PLD results in labeled blood remaining in large arteries
rather than in the microvasculature or parenchyma, an
effect known as transit time artifact that affects both BS
and non-BS acquisitions. Other problems inherent to
MR imaging, such as thermal noise, chemical shift arti-
facts, and clipping of signals, can produce errors and
artifacts in the resulting CBF maps. For clinical re-
search, another concern is that the number of corrupted
ASL CBF images may increase with disease severity, as
previously found in the AD continuum (Moonen et al.
(2020)), making QC a more prominent need in these
clinical applications.

Because of potential artifacts in the ASL derived CBF
maps, QC is critical for clinical research of ASL MRI to
exclude CBF maps of poor quality that can reduce sensi-
tivity to biological effects of interest. Current QC heav-
ily depends on manual assessment, which is time con-
suming, laborious, and subjective, and therefore not re-
producible and generalizable, especially for large-scale
multisite studies. Therefore, there is a critical need for
a robust and reliable automated quality evaluation in-
dex (QEI) that can objectively assess the quality of ASL
CBF scans. This QEI could also potentially facilitate
real-time feedback during scanning, allowing for im-
mediate adjustments and thereby improving the overall
quality of the acquired images.

1.6. Deep Learning

Deep Learning (DL), a subtype of machine learn-
ing, provides astonishing performance compared to
other state-of-the-art computational methods across var-
ious approaches (Bengio et al. (2013);Deng and Dong
(2014);Lecun et al. (2015);Litjens et al. (2017)), in-
cluding medical imaging. Initially introduced for im-
age classification in computer vision (Krizhevsky et al.
(2012)), DL is now extensively employed to tackle com-
plex problems that analytical methods or traditional ma-
chine learning cannot solve. DL networks are moti-
vated by the neuronal visual processing pathway, where
a visual observation is hierarchically processed along
multiple layers of neurons and eventually abstracted to
different top-level features. Multi-layer artificial neu-
ral networks were proposed decades ago to mimic this
complex learning process, but their use only became
practical with the advent of powerful graphical process-
ing units (GPUs) capable of massively parallel comput-
ing (Bengio et al. (2013);Deng and Dong (2014);Le-
cun et al. (2015);Litjens et al. (2017)). Deep networks
are commonly trained with references; this supervised
learning is equivalent to nonlinear data fitting. While
traditional data fitting is based on a weighted sum of
well characterized base functions, DL is based on the
weighted sum of the output of a hierarchical network
consisting of multiple layers of computing units (artifi-
cial neurons).

1.7. Contribution of this work

In this work, we aimed to tackle the challenge of pro-
viding an automatic and robust QC method for ASL-
derived CBF maps by leveraging DL. We explored mul-
tiple strategies to derive this metric, including both the
use of predetermined features and the entire CBF map
for automatic feature extraction. We then compared
their performances, demonstrating their superiority over
previous approaches.

The specific contributions of this work include the de-
velopment of the following DL-based methods to obtain
a QEI of raw CBF maps:
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• A feature-based regression model, for which we
extracted 7 predetermined features to train a fully
connected network (named 7-FCN-QEI-Net).

• A 3D DL-based regression model (named Reg-
QEI-Net).

• A 3D multi-stage classification model (named
MSC-QEI-Net).

• A 3D binary classification model (named BC-Net).

• Three ensemble methods of the best performing al-
gorithms.

An extensive comparison of these new approaches
with the current state-of-the-art method was performed,
providing insights into their relative performances and
improvements.

2. State of the art

2.1. DL-based regression approaches for neuroimaging

Since deep learning models first made their mark on
neuroimaging in 2014 (Plis et al. (2014)), there has been
an exponential increase in research within the field. This
remarkable growth can be attributed to two main fac-
tors: the increasing availability of data and the improve-
ment of computational resources such as GPUs. Thanks
to these advancements, deep learning has emerged as a
leading approach in medical imaging research, with seg-
mentation and classification tasks ranking at the fore-
front of the most explored areas. However, regression
tasks, which aim to predict a continuous outcome, have
received comparatively less attention due to their per-
ceived complexity. Consequently, several studies, such
as that by (Peng et al. (2021)), have opted to recast the
initial regression challenge into a classification prob-
lem by discretizing the continuum of values into dis-
tinct bins, treated as independent classes during train-
ing. (Leonardsen et al. (2022)) delve into a comparative
analysis of both methodologies, focusing on predicting
brain age from structural MRI scans. Employing a 3D
Convolutional Neural Network (CNN) architecture with
six convolutional blocks, the study experimented with
both approaches by merely altering the last dense layer
and meticulously fine-tuning the hyperparameters for
each approach. Although the outcomes on the test set
were comparably effective for both approaches, the re-
gression method demonstrated markedly superior gen-
eralization capabilities on an unseen dataset, thereby un-
derscoring its enhanced potential for broader applicabil-
ity. In line with these findings, recent studies highlight
the increasing sophistication of deep regression mod-
els tailored for neuroimaging data. For instance, (He
et al. (2022)) introduced deep relation learning, which
utilizes a novel approach by considering multiple rela-
tional aspects between neuroimaging inputs to enhance

regression performance in age estimation tasks. By
leveraging deep neural networks to capture complex and
non-linear interactions, this method provides a more nu-
anced understanding and robust predictions than tradi-
tional methods.

2.2. Deep Learning-based approaches for ASL MRI
In recent years, there have also been notable advance-

ments in the utilization of DL for ASL MRI, result-
ing in considerable improvements when dealing with
certain intrinsic difficulties associated with this image
modality, including its lengthy acquisition periods, in-
adequate SNR, and low spatial and temporal resolu-
tion. In their study, (Kim et al. (2018)) reported sig-
nificant advancements in the quality of ASL MRI im-
ages using CNNs that surpassed those created by tra-
ditional averaging techniques. Building on these im-
provements in imaging techniques, the application of
transfer learning has demonstrated potential for aug-
menting sensitivity, especially in clinical contexts in-
volving AD. For instance, (Zhang et al. (2022)) high-
lighted the efficacy of applying transfer learning from
healthy subjects to ASL perfusion MRI models. This
approach significantly increased the sensitivity of de-
tection methods for AD, illustrating how advances in
deep learning could be specifically tailored to improve
diagnostic processes. The investigation conducted by
(Xie et al. (2020)) presented an innovative DL-based
ASL MRI denoising algorithm that improved the SNR
of CBF images and enabled a 75% reduction in acqui-
sition time while maintaining the integrity of the mea-
surements. Similarly, (Gong et al. (2020)) introduced
a DL algorithm for denoising ASL MRI that combines
CNNs and mutual information from multiple tissue con-
trasts in ASL acquisition. This approach demonstrated
superior performance over traditional and standard deep
learning-based denoising methods by significantly en-
hancing image quality.

2.3. Quality index of ASL CBF maps
As previously stated, QC of ASL CBF maps through

visual inspection is a labor-intensive process that re-
quires significant expertise. This method is also prone to
user bias and subjectivity, particularly when applied to
large sample sizes. The work in (Fallatah et al. (2018))
introduced a well-characterized dual-component scor-
ing system that evaluates the image quality based on
visual contrast and artifact detection and thus reduces
the subjectivity of the rating system. This system, vali-
dated across multiple raters, has demonstrated high re-
producibility and the ability to effectively discriminate
between high- and low-quality clinical scans, offering a
reliable threshold for clinical acceptability; however, it
still suffers from most of the drawbacks of manual rat-
ing.

Parallel to these manual evaluation strategies, there
have been efforts to automate quality assessments. For
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instance, (Li et al. (2019)) developed ASLMRICloud,
an online platform that facilitates the processing of ASL
MRI data. Among other features, ASLMRICloud en-
ables the calculation of a quality index by analyzing
and averaging the voxelwise temporal standard error
(SNR) across the CBF time series obtained from the re-
peated acquisitions of the multiple control/label pairs.
However, this approach cannot assess systematic arti-
facts that are consistent in the time series, such as those
caused by short PLD. Moreover, it cannot be applied
to datasets that include only one output volume of the
average control-labeled difference image rather than the
control-labeled image time series (e.g., product ASL on
a GE MRI scanner). Finally, temporal standard error
considers the quality of the raw data instead of the final
CBF map, which can be of improved quality through the
application of signal processing strategies.

The most recently published contribution to the de-
velopment of an automated QEI for ASL CBF maps
was made by (Dolui et al. (2024)). This novel QEI as-
signs a continuous value between 0 and 1 to each CBF
map, with higher values indicating a superior quality of
the CBF map. The algorithm used predefined features
to train a model against human rating, where the fea-
tures were chosen to replicate the meticulous visual in-
spections usually performed by experts during manual
QC. The computational features integrated into the QEI
methodology involve:

• Structural Similarity: The QEI considers the
similarity between the brain structure and CBF
maps, acknowledging the natural correlation be-
tween structure and function. This feature is cal-
culated by constructing a structural pseudo-CBF
(spCBF) map, utilizing a weighted sum of tissue
probability maps to reflect the higher CBF in gray
matter (GM) compared to white matter (WM). The
Pearson correlation between the spCBF map and
the original CBF map was used as a feature in the
QEI derivation.

• Spatial Variability: Although CBF differs among
tissue types, unusual spatial variability might sug-
gest the presence of artifacts, such as those from
motion or inadequate PLD (see examples in Fig-
ure 4). Therefore, to accurately reflect these vari-
ations, QEI integrates a dispersion index (DI) for
CBF values across GM, WM, and cerebrospinal
fluid (CSF) masks, normalized by the mean GM
CBF.

• Negative GM CBF: Given that physiological CBF
should be positive, the QEI incorporates the pro-
portion of GM voxels showing negative CBF val-
ues, since those voxels represent non-physiological
artifact-affected measures.

The final QEI was performed by fitting these fea-
tures separately to human ratings of 101 CBF maps, and

Figure 4: Examples of large spatial variability in ASL derived CBF
(A) due to motion or (B) the post-labeling delay (150ms) being signif-
icantly shorter than the arterial transit time resulting in labeled signal
retained in the arteries instead of the tissue parenchyma while imag-
ing (Dolui et al. (2024)).

subsequently performing a geometric average of the fits
corresponding to each feature as follows:

QEI = 3
√(

1 − e−3p2.4
ss

)
e−(0.1DI0.9+2.8p0.5

nGMCBF) (1)

where

• pss is the structural similarity.

• DI is the spatial variability.

• pnGMCBF is the proportion of negative voxels in
GM CBF maps.

This method showed similar agreement to inter-rater
reliability, improved statistical analyses, and performed
better than the method developed by (Li et al. (2019)).
Consequently, it is recognized as the state-of-the-art in
automatic QEI for ASL CBF Maps. Therefore, we have
used this study as a benchmark to compare the various
approaches presented in this work.

3. Material and methods

3.1. Datasets
In this study, a dataset comprising 250 samples was

utilized to train the different models. The samples were
collected from several large, multisite studies that uti-
lized diverse ASL acquisition protocols, as detailed in
Table 1. The ratings of the ASL CBF data were metic-
ulously assessed by three expert raters: John A. Detre,
Sudipto Dolui, and Ze Wang. Dr. Detre, the inventor of
ASL, has over 30 years of experience, while Dr. Dolui
and Dr. Wang each have more than 10 years of expe-
rience with this technique. Their extensive experience
in ASL CBF quality assurance ensures the dataset’s re-
liability and validity. Additionally, a separate set of 50
CBF maps rated by Dr. Detre and Dr. Dolui was used as
the test set to assess the performance of the algorithms
on unseen data. All the data used in this project have
been acquired using Siemens MRI scanners.
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Table 1: Information of the different datasets used in this work.
Dataset Protocol Sample Size
Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Wang et al. (2013)) 2D PASL 79

Multi-Ethnic Study of Atherosclerosis (MESA) (Austin et al. (2024)) 3D BS PCASL 57

Systolic Blood Pressure Intervention Trial (SPRINT) (Dolui et al. (2022)) 2D PCASL 49

Coronary Artery Risk Development in Young Adults (CARDIA) (Dolui et al.
(2016))

2D PCASL 25

National Alzheimer’s Coordinating Center (NACC) (Dolui et al. (2019)) 3D BS PCASL 34

Vascular Contributions to Cognitive Impairment and Dementia (VCID)
(Sadaghiani et al. (2023))

3D BS PCASL 6

To ensure consistency in the evaluation process
across different raters, specific guidelines were estab-
lished and followed (see Figure 5). These guidelines
are defined below:

• Unacceptable (rating 1): CBF map is severely de-
graded by artifacts and is uninterpretable.

• Poor (rating 2): CBF map has one or more major
artifacts, but can still potentially yield useful infor-
mation.

• Average (rating 3): Acceptable quality CBF map
with minor artifacts that do not significantly reduce
information value.

• Excellent (rating 4): High quality CBF map with-
out artifacts.

Figure 5: Examples of a distinct case for each rating value.

In the regression-based approaches (mentioned in the
introduction and in more detail below), we averaged the
ratings to obtain a composite rating score and also to in-
crease the reliability of the measures. Furthermore, we
wanted the final QEI to be in the [0,1] range and hence

normalized the ratings between 0 and 1. To facilitate
the rating process, a specialized tool was developed, as
outlined in Appendix A.

3.2. Dataset Partitioning
To validate the proposed approaches, we employed

a 5-fold cross-validation (CV) strategy. Thus, in each
fold, 80 percent of the data was used to train the model,
and the remaining 20 percent was kept as a validation
set. Finally, as previously mentioned, we tested our
models using a test set consisting of 50 samples.

3.3. Preprocessing
The CBF maps were derived from ASL data using

standard processing strategies (Alsop et al. (2015)). For
the purpose of developing the QEI, additional prepro-
cessing was required (see Figure 6). We have followed
two different DL strategies, a FCN based on predeter-
mined features and CNNs using the CBF images. For
the former approach, two preprocessing steps were ap-
plied:

• Generation of binary masks corresponding to GM,
WM and CSF to extract CBF signal in the regions.

• Smoothing of the CBF images using a 5 mm
isotropic kernel. A similar approach was used by
(Dolui et al. (2024)) to extract features from the
CBF maps.

For the CNN approaches (Reg-QEI-Net, MSC-QEI-
Net, and BC-Net), we used the SimpleITK library to
perform an affine transformation, resampling the dimen-
sions and spacing of the images to a uniform size of
64x64x32. This step accounted for variations in im-
age sizes acquired across different studies and protocols.
After resampling, the images were intensity-clipped to
the range [-10, 80] and subsequently normalized to a
range of [0, 1] before being fed into the network.
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Figure 6: Workflow of the preprocessing pipeline.

3.4. Data Augmentation

Data augmentation techniques are methods used to
artificially increase the variability of a dataset by apply-
ing various transformations to the original data. These
transformations enhance the generalization capabilities
of CNN models by exposing them to a wider range of
variations. In this work, we used random vertical and
horizontal flips, as well as rotations between -5 to 5 de-
grees.

3.5. Deep Learning models

3.5.1. 7- Feature-based FCN model (7-FCN-QEI-Net)
As previously stated, (Dolui et al. (2024)) introduced

a novel algorithm that utilizes three key features com-
monly employed in manual QC of ASL CBF maps to
provide a QEI. While this method achieved high perfor-
mance and set a new benchmark in the field, its capa-
bility is likely constrained by the limited number of fea-
tures. In our research, we build upon that foundational
work by proposing the integration of four additional fea-
tures. These features are as follows:

• SNR: For this feature, we have computed the spa-
tial SNR as the ratio of the GM CBF to the standard
deviation of the signal in CSF CBF.

• Summary Statistics: Several statistics are calcu-
lated from the GM and WM of CBF Maps. They
consist of the mean, the inverse of the standard de-
viation, and 5th and 95th percentiles of kurtosis.

• Shannon Entropy: To measure the ghosting and
blurring induced by head motion, we have com-
puted the Shannon entropy. The inverse of this
measure is used as a feature for our model.

• Spatial Gradients: In ASL CBF maps, there can
be differences in intensities along the three axes

due to possible intensity variation or incorrect ap-
plication of model equations. The variance of the
inverse of CBF map gradients along each spatial
dimension is then used as a feature for our model.

After computing these features, they are combined
with the features from (Dolui et al. (2024)) and used
as input for an FCN architecture (named 7-FCN-QEI-
Net) comprising of seven fully connected layers (FCL)
with [64,256,512,256,64,16,1] neurons in each layer, re-
spectively. In the last layer of this network, a sigmoid
activation function is used to predict a continuous value
constrained between [0,1]. Finally, squared error (SE,
defined in section 3.7 below) was designated as the prin-
cipal metric for this project, and thus, Mean Squared Er-
ror (MSE) was used as the loss function for the training
of this model. An example of this network is presented
in Figure 7.

3.5.2. Deep learning-based regression model (Reg-
QEI-Net)

Next, instead of the manual feature extraction used
in the 7FCN-QEI-Net, we opted for data-driven ap-
proaches using CNNs where the CBF maps were used
as input. These methods do not require a segmented
image of different brain tissues, making them effective
even when a structural image necessary for accurate
segmentation is unavailable. This technique involves
a sophisticated deep-learning based regression model,
which we have named Reg-QEI-Net.

Drawing inspiration from the 3D VGG architecture
delineated by (Simonyan and Zisserman (2014)), we
have incorporated several tailored modifications. The
presented network, illustrated in Figure 7, is structured
into four convolutional blocks, each augmented with
residual connections to mitigate the vanishing gradient
problem (see Figure 8). After the first three blocks, max
pooling layers with a pooling size of 2 are employed for
downsampling each channel. The network concludes
with a series of three FCL, culminating in a final neu-
ron activated by a sigmoid function. For better weight
initialization, we utilized Glorot’s initialization method
(Glorot and Bengio (2010)), which ensures the variance
of activations remains consistent across every layer, pre-
venting the gradient from exploding or vanishing. The
Adam optimization algorithm was used with an initial
learning rate of 0.0001. Moreover, a batch size of 32
samples and a learning rate decay strategy were applied,
with a decay factor of 0.1 and a patience threshold of
15 epochs. Although the training was initially set to
run for 400 epochs, an early stopping mechanism with
a patience parameter of 60 epochs was implemented to
prevent overfitting. Additionally, a dropout rate of 20%
was applied after the fully connected layers to further
prevent overfitting. Finally, similar to the 7FCN-QEI-
Net approach, MSE was used as the loss function for
training this model.
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Figure 7: Schematic of the different deep learning pipelines implemented in this work. A) Feature-Based approach (FCN-QEI-Net) B) Regression
approach (Reg-QEI-Net) C) Multi-Stage Classification approach (MSC-QEI-Net).

3.5.3. A 3D Multi-Stage Classification Model (MSC-
QEI-Net)

As delineated in Section 2.1, current advancements in
deep learning-based regression models typically refor-
mulate the regression problem as a classification task.
This is achieved by discretizing the prediction range
into distinct intervals, each representing a unique label.
While this technique has been shown to enhance the ef-
ficacy of regression methods, it does have a substantial

drawback: the precision is dependent on the number of
intervals (bins) that are defined. An increased number of
bins can yield higher precision, but it also intensifies the
data imbalance among the bins. To address these chal-
lenges, we propose a multi-stage classification method-
ology named MSC-QEI-Net. This novel framework di-
verges from the aforementioned methods, which are fo-
cused on converting a regression task into a classifica-
tion one by dividing the output into bins. Instead, MSC-
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Figure 8: Schematic of the Residual Block used in this study. In the
diagram, rn indicates the sequence number of the block, reflecting
their multiple uses throughout the model.

QEI-Net comprises a series of multi-label classification
networks, each corresponding to an individual rater’s
assessments within the dataset. The network used to
perform this classification is based on the one presented
in Section 3.5.2 with some minor changes. In this ar-
chitecture, since we want to perform multi-label classi-
fication instead of regression, the last FCL contains 4
neurons, corresponding to each of the labels of the clas-
sification. In line with this modification, the softmax
activation function, which is widely used for multi-label
classification tasks, was utilized as the activation func-
tion of this layer. For both optimization and training,
we applied similar hyperparameters to those previously
used in the Reg-QEI-Net model. For the loss function,
however, we opted for Focal Categorical Crossentropy
loss, a prevalent choice in multiclass classification tasks
with imbalanced data.

After training the network, we compute the weighted
average of the prediction by following the formula de-
lineated in Equation 2.

Weighted Average Prediction =
n∑

i=1

(pi · i) (2)

Where:

• n is the number of classes.

• pi is the prediction score for the i-th class.

• i is the class label, ranging from 1 to n.

Then, by aggregating the outputs of these networks
and subsequently normalizing them, the system synthe-
sizes a continuous value within the [0,1] range, repre-
senting the QEI of the image.

3.5.4. A 3D Binary Classification Network (BC-Net)
One of the main objectives of this project is to de-

velop a robust method for discarding unacceptable CBF
maps, which can be framed as a binary classifica-
tion problem instead of assigning a continuous number
defining the quality. Therefore, we also implemented a
3D binary classification approach named BC-Net. To
do so, we have first binarized the expert ratings by fol-
lowing these criteria:

• Unacceptable Quality (0): if any of the raters
gave a rating of 1 to the image.

• Acceptable Quality (1): otherwise.

Furthermore, we used the same parameters and archi-
tecture as the Reg-QEI-Net methodology described in
Section 3.5.2. However, some minor adjustments were
made to optimize the network. The main difference lies
in the ground truth used to train the network. For Reg-
QEI-Net, we used continuous values within the range
[0,1], whereas for BC-QEI-Net, we used binary deci-
sion values explained above. For this reason, we uti-
lized a binay cross-entropy loss function and a sigmoid
activation function in its final FCL. The output of the
BC-Net falls within the range of 0 to 1, representing the
probability that a given sample is of acceptable quality.

3.5.5. Additional Experiments
Various combinations of the previous methods (Reg-

QEI-Net, 7FCN-QEI-Net, and MSC-QEI-Net), that
could potentially result in a better model, were also
studied. BC-Net was not used in the combination since
it represents a binary decision while other outputs a QEI
value. The different combination methods are as fol-
lows:

• Ensemble 1: This is the simplest ensemble
method, which consists of averaging the predic-
tions from each of the networks.

• Ensemble 2: In this method, we calculate the
weighted average of the predictions. To calcu-
late the weights of each method, we have trained
a function that optimizes the weights assigned to
the different models to minimize the MSE between
the ratings and the predictions.

• Ensemble 3: This method utilizes stacking, an en-
semble technique that combines the predictions of
multiple base models to enhance predictive per-
formance. In this approach, the predictions from
the QEI models serve as input features for a meta-
model, which was trained using a 5-Fold CV with
a linear regression algorithm that learns to make
the final prediction by leveraging the strengths and
mitigating the weaknesses of the individual mod-
els.
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To limit the number of ensembles, only the best-
performing models (Reg-QEI-Net and 7FCN-QEI-Net,
see Section 4) were used. After training Ensemble 2
on the validation data, the resulting weights assigned
to Reg-QEI-Net and 7FCN-QEI-Net were 0.663 and
0.337, respectively. These weights were then used to
compute the weighted average of the predictions on the
test data. Similarly, after training the linear regression
models on the validation set, these models were subse-
quently applied to the test set.

3.6. Gradient-weighted Class Activation Mapping
(Grad-CAM) and Heatmap Generation

The QEI developed from the above approaches pro-
vides a summary metric for assessing the overall qual-
ity of the entire image. However, when the quality
is not perfect, the QEI only indicates the presence of
the artifacts in the image, without providing informa-
tion about the location of the artifact. This is important
information in region of interest (ROI) analysis as the
mean CBF in the corresponding ROI can be contami-
nated by artifacts, although the overall CBF map might
pass the QEI threshold, and that can subsequently bias
the analysis. To visualize where the networks are fo-
cusing their attention, or in other words, which region
of the image is contributing most to the QEI, we have
implemented Gradient-weighted Class Activation Map-
ping (Grad-CAM) Selvaraju et al. (2017). Grad-CAM
leverages the gradients flowing into a chosen convolu-
tional layer to generate a localization map, or heatmap,
which highlights the important regions in the input im-
age. This technique provides a visual explanation for
the model’s predictions by identifying the areas in the
brain images that contribute the most to the network’s
decision-making process. For our implementation, we
have utilized the Reg-QEI-Net model to generate the
heatmap. Among all the convolutional layers of the net-
work, we utilized the 5th 3D convolutional layer, which
is located in the third residual block. This decision was
made because this intermediate layer provides a balance
between low-level feature extraction and high-level se-
mantic information, making it ideal for generating de-
tailed and informative heatmaps.

3.7. Algorithm Evaluation Metrics

To assess the performance of the algorithms, we com-
puted the SE between the average manual ratings and
the automated QEI for each CBF map, as defined be-
low.

SEi = (r̂i − rnorm,i)2 (3)

with:

• rnorm: Normalized average rating of the experts.

• r̂i: Predicted rating.

In addition to that, we also reported the Pearson’s
correlation (PC) coefficient between the automated QEI
and the average human rating and compared that to the
correlation between the raters. Finally, dividing the data
as unacceptable and acceptable as described in Section
3.5.4, we computed the receiver operating characteristic
(ROC) curve and the area under the curve (AUC). To es-
tablish a QEI threshold, we have calculated the Youden
Index (YI), as introduced by (Ruopp et al. (2008)). The
YI is a statistical measure that aims to maximize both
sensitivity and specificity. By computing the euclidean
distance between all points of the ROC curve and the
ideal point located at the coordinates [0,1], the YI iden-
tifies the best operating point in the curve. Thereafter,
we computed sensitivity and specificity based on that
threshold.

3.8. Computational resources

The models were implemented using Python ver-
sion 3.10.12 and TensorFlow version 2.16.1. The ex-
periments were conducted on Google Cloud Platform
(GCP) using a 64-bit GNU/Linux operating system
(Ubuntu 22.04.04). The server was equipped with two
Intel Xeon CPUs (2.30GHz), 8 GB of RAM, and a Tesla
T4 GPU with 16 GB of memory, utilizing CUDA 12.4
for the experiments.

4. Results

4.1. Algorithm Evaluation Metrics

Table 2 shows the mean, standard deviation, median,
and IQR of the SE of the validation set (obtained from
the 5-fold CV strategy), while Table 3 shows the same
for the test set. Figure 10(a) and Figure 10(b) present
the violin plots for the same. Table 2 and Table 3 also
list the PC coefficients with the average expert ratings.
Notably, the PC coefficient for the 250 samples used
for training is 0.85 between Dolui and Detre, 0.84 be-
tween Dolui and Wang, and 0.80 between Detre and
Wang. Furthermore, the correlation coefficient between
Dolui and Detre was 0.77 for the test data set. In each
case, the agreement between the raters was lower than
the agreement between the average rating and the auto-
mated methods.

Additionally, Table 2 and Table 3 show the AUC, sen-
sitivity, and specificity as detailed in Section 3.7. Note
that the YI was based on the validation set and hence
has not been presented in the table related to the test
set. Figure 11(a) and Figure 11(b) show the ROC for
the validation and the test sets. As expected, the per-
formance of the test set was slightly worse than the val-
idation set based on all the metrics. Although all the
algorithms provided comparable performance, with the
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Table 2: Comparison of the current state-of-the-art in the field of QEI of ASL CBF Maps (Dolui et al. (2024)) with the different QEI methods
presented in this study using the validation data set.

Method MSE ± std SE Median of SE (IQR) PC Coefficient AUC Sensitivity Specificity YI
Dolui et al. 2024 QEI 0.02160 ± 0.03184 0.00416 (0.01416) 0.943 0.948 0.904 0.922 0.457
7FCN-QEI-Net 0.01646 ± 0.02986 0.01044 (0.02562) 0.903 0.950 0.911 0.922 0.325
Reg-QEI-Net 0.01251 ± 0.02213 0.00611 (0.01556) 0.923 0.958 0.815 0.965 0.461
MSC-QEI-Net 0.02123 ± 0.02579 0.01348 (0.02287) 0.921 0.941 0.822 0.930 0.419
BC-Net - - - 0.940 0.889 0.852 0.614
Ensemble 1 0.01144 ± 0.02008 0.00505 (0.01124) 0.947 0.963 0.889 0.930 0.348
Ensemble 2 0.01112 ± 0.01917 0.00432 (0.01078) 0.949 0.964 0.896 0.913 0.327
Ensemble 3 0.01184 ± 0.02109 0.00439 (0.01134) 0.945 0.961 0.896 0.904 0.335

Table 3: Comparison of the current state-of-the-art in the field of QEI of ASL CBF Maps (Dolui et al. (2024)) with the different QEI methods
presented in this study using the test data set.

Method MSE ± std SE Median of SE (IQR) PC Coefficient AUC Sensitivity Specificity
Dolui et al. 2024 QEI 0.04730 ± 0.05045 0.02945 (0.05103) 0.808 0.896 0.865 0.583
7FCN-QEI-Net 0.02552 ± 0.03811 0.01256 (0.02680) 0.844 0.915 0.757 0.571
Reg-QEI-Net 0.02308 ± 0.02758 0.01464 (0.02414) 0.905 0.950 0.892 0.765
MSC-QEI-Net 0.02776 ± 0.03141 0.02179 (0.03967) 0.877 0.909 0.838 0.625
BC-Net - - - 0.946 0.880 0.705
Ensemble 1 0.01795 ± 0.02002 0.00904 (0.02551) 0.897 0.946 0.892 0.750
Ensemble 2 0.01822 ± 0.01854 0.01126 (0.02616) 0.905 0.946 0.919 0.786
Ensemble 3 0.01814 ± 0.01864 0.01153 (0.02659) 0.905 0.946 0.919 0.800

ensembles performing slightly better than the individ-
ual algorithms, Reg-QEI-Net delivered the best perfor-
mance among the individual approaches in most met-
rics, and its results were also comparable to those of the
ensembles.

Figure 9 shows examples of the prediction using each
method in 4 samples from the test set, one per rating cat-
egory, in which all raters agreed with the same ratings.
Each image also shows the QEI obtained using different
methods, with the first entry showing the manual rat-
ing scaled in the [0,1] range. The best methods in each
case, as determined by a QEI value closest to the man-
ual rating, are shown in green. Finally, in Figure 13,
we show the heatmap of the Reg-QEI-Net model, the
best performer amongst the individual approaches, cor-
responding to various samples, each demonstrating dif-
ferent sources of artifacts.

4.2. QEI across studies
Given that the dataset used in this study includes

data from six different multisite studies, we have an-
alyzed the performance of the presented approaches
across these sources. Figure 12 shows the distribution
of the QEI for each method across the different studies
for both the validation and the test set. Note that the test
set does not encompass all the studies. The figure also
shows the color-coded manual ratings for each method.
As expected, the VCID with its advanced protocol had
the best QEI, while the ADNI ASL, with a relatively
poor protocol and also acquired in older healthy partic-
ipants and patients who are more susceptible to move,
performed worst.

(a)

(b)

Figure 10: Violin plot illustrating the distribution of SE across all the
methods compared in this study for (a) validation and (b) test set.
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Figure 9: Example of ASL CBF Maps with (1) Unacceptable quality (Rating 1) (2) Poor quality (Rating 2) (3) Average Quality (Rating 3) and (4)
Excellent Quality (Rating 4) from the test set. Each example includes the QEI prediction for each of the presented approaches. A,B,C,D,E,F,G,H
correspond to the average ratings of the raters, Dolui et al. (2024), 7FCN-QEI-Net, Reg-QEI-Net, MSC-QEI-Net, Ensemble 1, Ensemble 2, and
Ensemble 3, respectively.

5. Discussion

In this work, we developed several automated QEIs of
ASL CBF maps by leveraging DL techniques. We im-
proved the current state-of-the-art method (Dolui et al.
(2024)) by introducing four new features and using
them to train an FCN. While this method already sur-
passed the performance of (Dolui et al. (2024)), its lim-
itations in the number of features and lack of automation
prompted the exploration of other possibilities. To auto-
mate the feature extraction process, we developed mul-
tiple CNN approaches. These models outperformed the
previous results, demonstrating the superiority of CNNs
in finding better feature representations. Note that these
methods only used the CBF map as input and did not re-

quire a structural image, unlike the 7-FCN-Net method,
which extracts features from different tissue types. We
also considered ensembles of some of the individual ap-
proaches, however, Reg-QEI-Net provided results com-
parable to the ensembled approaches, and is therefore
our recommendation to be used clinically or in research.

5.1. Quality assessment methods
Table 2 and Table 3 present detailed comparisons of

all the proposed approaches against the current state-
of-the-art method (Dolui et al. (2024)) for the valida-
tion and the test sets, respectively. These results show
that all the DL methods agree with the manual ratings.
Specifically, the automated measures correlated better
with the average ratings than the inter-rater correlation.
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While all the raters are highly experienced researchers
at the forefront of ASL MRI, their agreement is not per-
fect, highlighting the inherent difficulty and subjectiv-
ity of this task. Although not tested explicitly as a part
of this study, the intra-rater agreement is also not ex-
pected to be perfect, and the agreement can be lower
with raters new to the field who have limited experience
with ASL CBF maps. The automated rating, being an
objective measure, has the advantage of perfect repro-
ducibility, thus increasing scientific rigor and reliability.
All the DL approaches outperformed the current state-
of-the-art approach (Dolui et al. (2024)). The 7FCN-
QEI-Net model incorporates more features and uses a
better machine learning approach to fit to the training
data than (Dolui et al. (2024)), which uses a relatively
naı̈ve approach to fit each feature separately and com-
bine them subsequently. As mentioned before, the im-
provements are even more pronounced with the CNN-
based approaches, as showcased in Table 2 and Table 3.
The MSC-QEI-Net approach performed slightly worse
than Reg-QEI-Net. While that can be simply due to the
nature of the problem, which inputs and outputs con-
tinuous variables, other aspects could have affected the
performance of the algorithm. For example, we are cur-
rently using a categorical focal cross-entropy loss func-
tion for model training, which helps in dealing with
imbalanced datasets. It might be beneficial to imple-
ment a customized weighted categorical cross-entropy
loss function, where predictions are weighted according
to each rater’s class distribution. This approach might
better address the underrepresented classes and improve
overall performance.

Following the implementation of CNN-based mod-
els, we developed ensemble approaches. The goal of
combining these models is based on their fundamen-
tally different natures. For example, one model con-
sists of a FCN, while the others are CNNs designed
for completely different tasks. As a result, their perfor-
mance and feature vectors vary due to their individual
strengths and weaknesses. This is illustrated in Fig-
ure 12, where the networks exhibit varying levels of
difficulty in predicting different rating values. For in-
stance, in the ADNI dataset, the 7FCN-QEI-Net and
Reg-QEI-Net were less successful at predicting sam-
ples rated as 2 than samples with other ratings. In con-
trast, MSC-QEI-Net did not encounter significant issues
with samples from this rating group. Instead, this net-
work performed less effectively when predicting sam-
ples rated as 1 and 3. The ensemble methods aim to
address this by combining predictions from all mod-
els, creating a single, more robust, and more accurate
final prediction. Although theoretically sound, we only
found a minor improvement in performance with this
approach. However, we expect further improvement
when we train our models with a wider variety of ASL
data from different scanners in our future work (more
details in the Future Work section below).

(a)

(b)

Figure 11: ROC Curve of the different approaches compared in this
study corresponding to the (a) validation and the (b) test set.

5.2. Identifying unacceptable quality CBF Maps

Once the QEI has been obtained from the presented
methods, to exclude unacceptable CBF maps, we have
presented recommendations for cut off values based on
the YI, which optimizes both sensitivity and specificity.
However, in research studies, the preference for higher
sensitivity or higher specificity may vary depending on
the specific task and the type of ASL data that is used.
For example, a research study dealing with poor ASL
data can drastically reduce its sample size using the op-
timal cutoff value. Therefore, it may be beneficial for
such a study to lower the cutoff value to preserve enough
data for analysis. On the other hand, a study dealing
with state-of-the-art ASL data, or having a very large
sample size, can use a higher QEI threshold to preserve
only the ASL data with the best quality. Since the QEI
produces a continuous number between 0 and 1, this
provides the researcher flexibility to choose a threshold
depending on the ASL data.
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(a) (b)

Figure 12: The QEI values across studies for both the (a) validation and the (b) test set.

5.3. Interpreting the heatmaps: artifact detection

The QEI presented in this study represents an esti-
mate of the overall CBF map quality. A mediocre QEI
value indicates that there are artifacts in the image, but
it does not specify their location. The CNN-based QEI
models do not provide a direct explanation for provid-
ing a low or high QEI, as the features are automatically
extracted. A heatmap generated by one of their convo-
lutional layers, however, can provide such information.
This heatmap could be used for region of interest anal-
ysis. For example, for CBF maps with mediocre QEI
values, the heatmaps can be used to create regions of
unreliable CBF maps that can be discarded from statis-
tical analysis. As shown in Figure 13, the higher inten-
sities in the heatmap in artifactual CBF maps coincide
with the region of artifacts. In samples free of artifacts,
the network typically focuses on the GM and WM ar-
eas, where CBF is most relevant and significant. In the
presented artifact-free case, the network has focused on
the mentioned regions but has also shown a special in-
terest in the right occipital lobe, identifying a potential
source of artifact. This sample was originally rated as a
4 (free of artifacts) by two raters and as a 3 by the third
rater. After discussing this case with the two raters who
rated it as a 4, they agreed that the image might include a
small amount of transit artifacts in the highlighted area.
Due to their extensive expertise in ASL, the two raters
knew that the protocol used for this sample was a sin-
gle PLD. This protocol minimizes the transit artifact but
does not eliminate it. Therefore, they concluded that
this image was of very high quality (rating 4) consid-
ering the protocol used in the acquisition. The network
QEI for this sample was 0.9057. This demonstrates the
high correlation between the network’s assessments and
those of the raters, while also showcasing the network’s
potential ability to detect even the smallest artifacts.

5.4. Limitations

This study has several limitations. First, the ASL
data that was used for this study was all acquired with
Siemens scanners. Hence, although the study utilizes
different ASL methods, there can potentially be further
variability due to differences across MRI vendor plat-
forms that were not captured by the models and need
to be studied in the future. Second, the models were
trained with a very limited sample size. This study is the
beginning of a 5-years project funded by the National
Institutes of Health (NIH) and eventually the models
will be trained with a much larger sample size, includ-
ing data obtained with other scanning platforms. Third,
this study did not cover all possible artifacts or disease
types because of limited availability; the dataset will be
expanded in the future phase of the project. Fourth, we
had 3 raters who rated the images on 4 scales, which
led to a limited range of unique numbers when aver-
aged. Some raters expressed that, for certain images,
they were unsure between two rating levels and would
have preferred more options rather than being forced to
choose one that they did not fully agree with. There-
fore, it would be beneficial for this task to extend the
current rating levels to a wider range, which would pro-
vide more options to the raters and a richer representa-
tion of the network’s ground truth, thereby improving
the model’s ability to learn and perform accurately. Fi-
nally, we had only 3 raters who rated the images. In-
corporating additional raters to rate the images can gen-
eralize the QEIs, as different raters might have different
sensitivities to different types of artifacts.

5.5. Future Work

Despite achieving state-of-the-art results, there is po-
tential for further improvement by addressing the limi-
tations mentioned above. First, we will aim to train the
models by using a much larger dataset encompassing
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Figure 13: Example of Reg-QEI-Net heatmap visualizations applied to various samples with different sources of artifacts.

a wider variety of ASL protocols, more scanning plat-
forms (e.g., GE and Philips), a wider type of artifact,
data from patients with different diseases, and images
rated by a greater number of raters. By doing so, the
diversity and relevance of the training data can be in-
creased, leading to improved network performance and
robustness. Second, we will apply the QEI to actual re-
search studies to assess improvements in statistical tests
of group differences. Third, we will use heatmaps to
identify regions of unreliable CBF maps and apply that
to ROI analysis to assess if that improves statistical re-
sults. Lastly, although the current QEI-Net approach
demonstrates high performance in assessing the qual-
ity of the CBF map, it does not give information about
the source of artifacts. To address this, a CNN model
aimed at classifying different sources of artifacts could
be implemented, that can be used in studies to modify or
correct errors in data acquisition protocols. For this ap-
proach, the heatmaps obtained from the QEI-Net archi-
tecture could serve as ROI extractors, enhancing the net-
work’s ability to focus on more meaningful areas of the
brain. This improvement would not only increase the
interpretability of the results but also provide valuable
insights into the types of artifacts affecting the quality
of the maps, ultimately contributing to better diagnostic
outcomes and model transparency.

6. Conclusions

In this study, we designed, optimized, and validated
multiple automated QEIs for ASL-derived CBF maps
using DL techniques. The methods perform comparably

to manual quality assessments and can rapidly provide
an objective quality evaluation that can be used in re-
search studies. These methods can also be incorporated
into clinical and research scanners and provide real-time
feedback to the scanner technicians that can be used to
repeat the scans while the patient or study participant is
still in the scanner. The automated QEI is expected to
facilitate scientific rigor and reproducibility in research
studies.
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Figure 14: Example of the ASL CBF rating tool.

Appendix A: ASL CBF Rating Tool

Here, we detail the functionality and features of the
web-based ASL CBF rating tool developed to simplify
the rating task. This tool is a Python notebook designed
to be used with Google Collaboratory, thereby eliminat-
ing the need to install software or sensitive data on the
user’s computer. When the script is initiated, it automat-
ically downloads the dataset from Dropbox to the user’s
Google Drive. It also generates an Excel file where the
ratings are stored.

Some of the tool’s characteristics are:

• Pause and Resume Capability: The tool allows
for pausing and resuming at any point. It automat-
ically checks the Excel file to determine the last
image rating, ensuring a seamless continuation of
the task.

• Artifact Documentation: As part of an upcoming
study on classifying imaging artifacts, raters are re-
quired to identify and document the sources of any
artifacts observed.

• Intensity Clipping: To modify image contrast, in-
tensity clipping is employed with default parame-
ters set to [-20, 80].

• Comprehensive Visualization: The tool provides
multiple views (axial, sagittal, and coronal) of each
image. To enable the user to rate the image, all
image views must be observed.

• 3D Navigation: A sliding bar is included to navi-
gate through all slices of the 3D images.

Once all images have been rated, the Excel file is au-
tomatically downloaded to the user’s computer. This
tool is licensed freely and is accessible via the following
link: https://github.com/xavibeltranurbano/ASL-CBF-
Rating-Tool
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Abstract

Large vessel occlusions (LVOs) are a major subtype of acute ischemic stroke. They result from total or partial
blockages in the brain’s main arteries, which significantly hinder blood flow and cause rapid tissue death. The timely
detection of LVOs is critical for improving patient outcomes. Endovascular thrombectomy (EVT), the most effec-
tive treatment, works best within 6 hours after symptom start. This study investigates the potential of deep learning
for rapid and accurate LVO detection using Computed Tomography Angiography (CTA) images. We evaluated two
deep learning approaches, nnDetection and 3D CNN, on a dataset of 124 CTA scans from stroke patients with LVOs
acquired at Hospital Dr. Josep Trueta (Girona, Spain). The nnDetection framework achieved promising results in
accurately localizing occlusions, particularly in the Anterior Circulation system, with a high sensitivity of around
90% and a low false positive per image (FPpI) rate at an optimal threshold. Encouragingly, feedback from collabo-
rating neurologists suggests the model’s detection capabilities surpass those of currently used commercial software,
highlighting its potential clinical value. The 3D CNN model, designed for a different LVO detection approach, en-
countered challenges with high FPpI and computational demands. The study proposes several strategies to improve
its performance, including utilizing dual classifiers, adjusting loss functions, and data augmentation. These findings
highlight the promise of the nnDetection framework for accurate LVO detection in CTAs. Future efforts will focus on
optimizing both models for improved performance and reduced computational requirements. This includes exploring
advanced training techniques, expanding the data to encompass a wider range of occlusion types and anatomical vari-
ations, and conducting generalizability studies using data from different hospitals and scanner types. Ultimately, these
advancements aim to develop more efficient and accurate deep learning tools for early stroke detection and treatment,
potentially leading to improved patient outcomes.

Keywords: 3D object detection, medical detection, LVO, Ischemic Stroke, CTA, Deep learning, nnDetection

1. Introduction

Acute Ischemic Stroke (AIS) is a critical medical
condition characterized by the blockage of a cerebral
artery, resulting in the sudden interruption of the blood
supply and subsequent damage to distinct cerebral re-
gions. This blockage can be caused by a blood clot or
plaque buildup in the arteries that supply nutrients to
the brain tissue. There are two main types of stroke:
ischemic, which accounts for over 85% of cases, and
hemorrhagic. Annually, approximately 15 million peo-
ple worldwide experience a stroke, with prevalence in-
creasing with age, according to the World Health Or-
ganization and Tsao et al. (2023). Of these, around 5

million die, and another 5 million are left permanently
disabled.

A specific type of AIS, known as large vessel occlu-
sions (LVO), refers to the complete or partial blockage
of one of the brain’s major arteries. LVOs, which af-
fect both anterior and posterior circulation, are respon-
sible for approximately 46% of acute ischemic strokes.
About two-thirds of these cases occur in the anterior cir-
culation, primarily affecting the Internal Carotid Artery
(ICA) and the Middle Cerebral Artery (M1). The re-
maining cases occurs in the posterior circulation, in-
cluding the Posterior Cerebral Artery (PCA), Basilar
Artery, and Vertebral Artery (see Fig. 1).
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Figure 1: Brain arterial circulation. Taken from JoeNiekroFoundation
(2017)

Another type of occlusion that can occur is called
tandem, which occurs in less than 10% of cases and
refers to an occlusion in more than one artery: a large
blood vessel, such as the ICA, or an intracranial artery
(Sweid, 2019). The damage provoked by LVOs depends
mainly on the location of the occlusion and on the time
of blocking.

Patients suffering from AIS related to an LVO ex-
perience the highest levels of morbidity and death,
and they have the lowest probability of obtaining ar-
terial recanalization through a clot-disolving medica-
tion called intravenous thrombolysis, as reported in the
work of Martins-Filho et al. (2019). However, recent
trials have presented strong evidence supporting the ef-
fectiveness of endovascular mechanical thrombectomy
in treating such cases. Consequently, it is crucial to
identify and transfer LVO patients to specialized stroke
centers as soon as possible in order to enable rapid de-
tection and offer suitable endovascular treatment. Ef-
fective vascular imaging techniques that can quickly de-
tect LVO are essential, as mechanical thrombectomy is
a time-sensitive procedure (Mayer, 2020).

Several imaging modalities are utilized in stroke di-
agnosis, with the primary ones being Non-Contrast
Computed Tomography (NCCT), Computed Tomogra-
phy Angiography (CTA) and Computed Tomography
Perfusion (CTP). NCCT, which involves taking X-ray
images of the brain without contrast agents, provides
information about the presence of bleeding, tumors, or
other abnormalities. This modality is commonly used as
the initial imaging technique for stroke patients since it
helps rule out conditions that can mimic a stroke. How-
ever, NCCT is not very sensitive to detect early signs
of stroke or small infarctions. CTA, which visualizes
the blood vessels in the brain using a contrast dye, is a
reliable method for detecting LVOs and assessing if a
patient is a good candidate for a mechanical thrombec-
tomy (Shafaat, 2023). Fig. 2 illustrates how LVOs are
visible in Computed Tomography Angiography (CTA)
images, with the red bounding box indicating the local-
ized area of occlusion.

Figure 2: Example of how LVO manifests in CTA images. The red
bounding box indicates the localized area of occlusion.

Moreover, CTP is primarily used to evaluate the pas-
sage of blood through the tissues using a series of rapid
CT scans, helping clinicians evaluate the tissue viability
and identify areas of reduced blood flow.

As previously stated, endovascular thrombectomy is
the established treatment for patients exhibiting stroke
symptoms within a 24-hour window, as its effective-
ness diminishes beyond this timeframe. Time is cru-
cial in such cases. The treatment’s goal is to reestablish
blood flow as soon as possible, reducing the risk of per-
manent damage, improving outcomes after the episode,
and minimizing the impact on the patient’s neurological
function. The optimal time window for this treatment is
considered to be within 6 hours after the onset of symp-
toms. Every 30-minute delay reduces the likelihood of
a good outcome by 11% (Sweid, 2019). This highlights
the importance of reducing stroke care timing, including
the implementation of automated tools for LVO detec-
tion.

Despite the efforts, there is still a need to stan-
dardize stroke detection and triage, which are time-
sensitive processes (Murray, 2020). The implemen-
tation of automated imaging-based tools for detecting
LVO has shown improvements in the timing of endovas-
cular thrombectomy decision-making, ultimately result-
ing in enhanced clinical outcomes. Several commercial
solutions have addressed this application. iSchevaView
RapidAI1, MethinksLVO2, Brainomix AI, and Stroke-
Viewer are among the noteworthy examples mentioned
by Murray (2020) and Chavva (2022), demonstrating
their utilization in the identification of LVOs, diagno-
sis of ischemic or hemorrhagic strokes, and the assess-
ment of potentially salvageable tissue. But there are still
issues with standardizing these software solutions’ vali-
dation procedures and integrating them into various data
streams, which makes it difficult to compare them effec-
tively with new algorithms (Chavva, 2022).

1https://www.ischeva.ai/ischevaview-rapidaid/
2https://www.methinksapp.com/
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Recent advancements in deep learning (DL) mod-
els have demonstrated significant promise in LVO de-
tection. For instance, (Brugnara, 2023) developed an
artificial neural network (ANN) capable of automated
detection of abnormal vessel findings without any a-
priori restrictions and in <2 minutes, and demonstrated
high sensitivity (≥87%) and negative predictive value
(≥93%). This study demonstrates the potential of deep
learning models to improve LVO detection accuracy,
potentially leading to better outcomes for patients with
acute ischemic stroke. Future research directions in-
clude exploring the use of DL models for LVO detec-
tion in other imaging modalities and developing mod-
els that can not only detect LVOs but also predict their
severity and assess collateral circulation, thereby sig-
nificantly improving patient management in acute is-
chemic stroke.

1.1. Goals of The Master’s Thesis

The primary objective of this master’s thesis is to de-
velop and evaluate deep learning approaches for the au-
tomatic detection of Large Vessel Occlusions (LVOs) in
stroke patients using Computed Tomography Angiog-
raphy (CTA) images. Precise localization of LVOs is
crucial for improving patient outcomes and ensuring
prompt and effective treatment. To achieve this goal,
we will explore two different 3D deep learning detec-
tion methods. Firstly, we will investigate the use of the
nnDetection framework, which employs the Retina U-
Net model. The framework is well-regarded for its ro-
bustness and high performance in medical image identi-
fication tasks. Secondly, we will utilize a 3D Convo-
lutional Neural Network (3D CNN) approach, as de-
scribed by Liao and Song. (2019). We aim to compare
and assess the effectiveness of these two methods in the
3D detection of LVOs. Our evaluation will be based
on a dataset consisting of 124 CTA scans annotated for
LVOs. We will adopt a cross-validation strategy to en-
sure the reliability and robustness of our performance
evaluation. TThe evaluation metrics will include sensi-
tivity, false positive rate, and computational efficiency.

2. State of the art

While there are several ways that AI can be used in
clinical practice to manage stroke, in this section, we
will focus mainly on stroke management research that
deals with the classification and detection of thrombi
causing LVOs, as well as general object detection ap-
proaches.

2.1. LVO Classification and Detection

Research in stroke management has significantly fo-
cused on the classification and detection of thrombi

causing large vessel occlusions (LVOs). Recent initia-
tives, such as the IACTA-EST 2023 challenge3, have
amplified research efforts in this field, particularly in the
application of CTA for stroke treatment via endovascu-
lar therapy. Deep learning techniques have become in-
creasingly prominent in this domain, with studies show-
ing encouraging results in thrombus detection and clas-
sification using CTA images. For instance, Stib (2020)
proposed a 2D approach to classify the presence or ab-
sence of an LVO, taking only the slices from the skull
vertex through the circle of Willis and achieving high
sensitivity and specificity by leveraging three phases of
CT angiographies. Meijs (2020) introduced a 4D-CTA
method for detecting intracranial anterior circulation oc-
clusions with high sensitivity and specificity, though it
lacks direct occlusion localization.

Barman et al. (2019) developed DeepSymNet, a CNN
architecture leveraging brain symmetry for image clas-
sification. Their approach involves working with 3D
representations of the brain’s hemispheres and incor-
porating inception modules to facilitate the network’s
ability to discern differences between them. Building
on this work, Czap (2022) introduced an enhanced ver-
sion of the same algorithm by adding symmetrical and
unsymmetrical pathways. The latest version, Deep-
SymNet v3 (Giancardo et al., 2023), inputs both hemi-
spheres separately into a network of 3D VGG blocks
with shared weights between data paths. This re-
search aims to create a complete segmentation of the
stroke core using deep learning architecture. Lal-Trehan
Estrada et al. (2024) used DeepSymNet v3 to detect
LVOs in acute ischemic stroke patients using brain com-
puted tomography angiography (CTA). The researchers
compared strategies to enhance the network’s focus on
the vasculature. The results demonstrated that the pro-
posed strategies improved LVO detection, achieving an
AUC of 0.931 when combining brain CTA and 3D vas-
culature.

Most studies in LVO detection use existing soft-
ware. Mojtahedi et al. (2022) employed StrokeViewer
LVO software for bounding box localization and dual-
modality U-Net for segmentation. Bruggeman et al.
(2022) assessed Nico.lab’s LVO algorithm, noting oc-
clusion detection challenges and false positive rates.
Other researchers use a region of interest (ROI) or
bounding box provided by experts, using non-contrast
CT (NCCT) images or CT angiograms (CTAs). This is
likely because detection tasks are often associated with
segmentation of the thrombus, causing the LVO. Con-
sequently, the primary objective of most research in this
area is to segment the potential blood clot or thrombus.
For example, Lucas and Heinrich (2019) employed a
U-Net architecture with ROIs defined as the union of
MCA and ICA clot segmentations with a 5-voxel mar-
gin. Tolhuisen et al. (2020) proposed patch-based CNNs

3https://lgiancauth.github.io/iacta-est-2023/
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to detect LVOs based on brain asymmetry and hyper-
dense artery sign (HAS), followed by voxel-wise seg-
mentation on patches identified as containing thrombi.
However, their results exhibited limited volumetric and
spatial agreement.

Despite comprehensive literature, detailed descrip-
tions of three-dimensional automatic occlusion detec-
tion models using solely CTA images for both anterior
and posterior circulation remain limited. Notable excep-
tions include Brugnara (2023) and Bagcilar (2023), who
utilized the adaptable Detection Framework (Baum-
gartner, 2021). This framework is an adaptive self-
supervising method applicable to diverse medical detec-
tion problems, and provides a standardized interface for
different datasets. Its efficacy has been demonstrated in
other medical imaging tasks, highlighting its potential
for LVO detection. For example, Bagcilar (2023) uti-
lized it and achieved an AUC of 0.97 for automated LVO
detection and collateral scoring on CTA scans using a
multi-task 3D object detection approach. the nnDetec-
tion model was trained on a large-scale, multi-center,
heterogeneous dataset (e.g., various centers, scanner
vendors, CTA acquisition protocols, contrast phases,
etc.), achieved an accuracy exceeding 98% in identify-
ing LVO on independent external test data. Moreover,
the nnDetection model demonstrated strong agreement
in assigning collateral scores, exhibiting performance
comparable to or surpassing individual radiologists’ re-
liability when considering the radiologists’ consensus
as ground truth.

In summary, ongoing research in LVO classification
and detection underscores the critical role of AI in
stroke management, with notable progress in leveraging
deep learning techniques and self-supervised methods.
However, challenges persist in standardization, integra-
tion, and algorithm validation, highlighting the need for
continued research and collaboration in this domain.

2.2. General Object Detection

General object detection aims to localize and clas-
sify objects of various categories in an image. This
task is typically accomplished using one-stage or two-
stage detectors. One-stage detectors consider object de-
tection as a regression problem, using a unified frame-
work to estimate class probabilities and bounding box
coordinates, enabling faster inference. YOLO (Redmon
et al., 2016) and SSD (Liu and Berg, 2016) are exam-
ples of one-stage detectors. Two-stage detectors utilize
a region proposal network (RPN) to generate regions of
interest (ROI). A deep neural network is then applied
to each proposal for classification. Examples include
Faster R-CNN (Ren et al., 2015) and Mask R-CNN,
which achieve higher accuracy but slower inference.

3D object detection involves estimating an object’s
location, class, orientation, and depth. 2D to 3D ob-

ject detection methods rely on 2D image data and es-
timate depth and orientation for 3D bounding boxes.
3D object detection models with volumetric input di-
rectly process 3D representations, providing more de-
tailed scene information. While both approaches have
advantages, the latter generally achieves higher accu-
racy but requires more computationally intensive pro-
cessing. For instance, Mono3D (He and Soatto, 2019),
which converts 2D detection results to 3D bounding
boxes, achieves a mean average precision (mAP) of
70.1% on the KITTI dataset. In comparison, VoxelNet
(Zhou and Tuzel, 2017), a 3D object detection model
with volumetric input, achieves an mAP of 73.4% on
the same dataset.

3D detection has been applied in medical image pro-
cessing for automatic early diagnosis and screening. For
example, (Zhu et al., 2018) and (Xie et al., 2019) uti-
lize 3D CT and MRI imagery. Numerous studies have
explored 3D detection in medical imagery. Hu et al.
(2018) reviewed recent works on medical image based
cancer detection and diagnosis, most of which have em-
ployed 3D CNN schemes for detection. Monkam et al.
(2019) reviewed the advancement of detection and clas-
sification of pulmonary nodules using 3D CNN in CT
imagery. 3D CNN frameworks such as 3D U-Net (Tang
et al., 2018) and 3D DenseNet, 3D Faster R-CNN have
been employed for 3D nodule detection. These frame-
works have improved accuracy by employing ensem-
bles of multiple CNN models and fine-tuning hyperpa-
rameters. An example of such a network is DeepLung
by Zhu et al. (2018), which achieved an impressive
90.4% accuracy in pulmonary nodule detection, sig-
nificantly outperforming 2D object detection methods.
Also, there is the 3D detection network 3D CNN, mo-
tivated by the work of Feature Pyramid Networks. it
is 3D nodule detection and has won the 1st place team
of Kaggle Data Science Bowl competition (Liao and
Song., 2019) with a 86% sensitivity and false positive
rate of 8 false positives per scan. Despite these advance-
ments, training data limitations remain a challenge for
3D CNN-based detection. Collecting, storing, and an-
notating 3D data is more complex compared to 2D im-
ages. Therefore, existing datasets are relatively small,
hindering the development of more robust models.

Our analysis of existing literature underscores the
advantages of employing 3D object detection mod-
els, indicating significant enhancements in outcomes.
Specifically, pioneering models like nnDetection and
3D CNN frameworks have exhibited promising effi-
cacy in streamlining the automated detection process
for LVOs. Consequently, our research endeavors will
be focused on delving into the practical implementation
of these advanced models to proficiently identify and
characterize LVOs within CTA images.
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(a) Change in contrast highlights the region of a large vessel occlusion (LVO) in
a CTA image, illustrating the challenges in accurately identifying the occlusion
boundaries

(b) 3D bounding box applied to a CTA brain image, representing the area of the
large vessel occlusion (LVO) with a 2-pixel margin, providing a practical solution
to segmentation difficulties

Figure 3: The challenges associated with obtaining precise 3D segmentation annotations of large vessel occlusions in a CTA dataset

2.3. Previous work

In prior research conducted within the VICOROB
Research Group, Paola Martinez Arias (2023) explored
the detection and classification of Large Vessel Occlu-
sions (LVOs) using the same dataset employed in our
study. Martinez’s investigation, completed in 2023, fo-
cused on two primary tasks: binary classification of
CTA images to determine the presence or absence of
LVOs, and precise localization of occlusions through
3D bounding boxes.

For the classification task, Martinez conducted a
comparative analysis of utilizing brain symmetry in-
formation against models trained without such data.
Her findings revealed that incorporating symmetry in-
formation significantly enhanced model performance,
with top-performing experiments achieving a remark-
able 77% accuracy in inferring LVO presence on unseen
hospital datasets. In parallel, for the occlusion detection
task, Martinez leveraged the nnDetection framework,
training the model on three folds of hospital data. The
outcomes were promising, demonstrating robust detec-
tion capabilities in both anterior and posterior circula-
tion occlusions. Notably, the detector achieved a sen-
sitivity of 97% on test cases, coupled with an impres-
sively low false positive per image (FPpI) rate of ap-
proximately 0.15. These findings underscore the effi-
cacy of advanced DL models in accurately detecting and
characterizing LVOs, providing a solid foundation for
our ongoing research endeavors.

3. Material and methods

3.1. Data

This study utilized a dataset of Computed Tomogra-
phy Angiography (CTA) scans acquired from Hospital
Dr. Josep Trueta in Girona, Spain. The dataset initially
comprised 321 cases involving patients diagnosed with
an LVO. The distribution of occlusions across various
locations within the brain vasculature provided valuable
insights into the prevalence of LVOs in different seg-
ments. Here’s a breakdown of the distribution:

• M1 segment: 46%

• M2 segment: 18%

• ICA (Internal Carotid Artery): 13%

• Tandem (combined M1 and M2 segment occlu-
sion): 7%

• Basilar artery: 6%

• PCA (Posterior Cerebral Artery): 5%

• Other locations (M3, A2, VA, and extracranial):
5%

After excluding cases with extracranial occlusions
and cases where there was uncertainty about the ex-
act localization of the LVO, we were left with a total
of 310 valid cases. The resolution of the CTA scans
was 512x512x378, with variable voxel spacing and a
slice thickness of 0.9. All of the examinations were per-
formed with a Philips Healthcare Ingenuity CT scanner.
Out of the 310 valid cases, only 124 were ultimately
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Figure 4: Preprocessing Pipeline. 1. Image in nifti format. 2. Results after using robustfov. 3. Results after using bet. In the final step, we perform
clipping of intensities.

used for the LVO detection task due to the availabil-
ity of ground truth thrombus segmentation obtained by
manual annotations using ITK-snap. These annotations
were carried out by expert technicians, with the guid-
ance and validation of all cases from an expert neurolo-
gist at the collaborating Hospital. The annotations were
focused on the main slices where the thrombus size and
shape were most discernible, rather than on all slices of
the CTA scans.

Due to the significant challenges associated with ob-
taining precise 3D segmentation annotations across all
three views of our CTA dataset (as illustrated in Fig. 3),
we opted for 3D bounding boxes to represent the LVO
regions. These challenges include the complex and vari-
able anatomy of blood vessels, the presence of noise and
artifacts in the imaging data, and the time-consuming
nature of manual segmentation, which often leads to in-
consistencies across different views and slices. These
bounding boxes encompass the clot in the CTA image,
providing a simplified yet informative approximation of
the area where the occlusion is most likely to occur. we
created the bounding boxes around the manually anno-
tated thrombus segmentation, with a margin of 2 pixels
for all cube coordinates. Each case in our dataset fea-
tures exactly one occlusion.

This detailed explanation of the data section provides
a clearer understanding of the dataset’s characteristics,
the selection process, and the rationale behind ground
truth annotation choices.

3.2. Data pre-processing

To preprocess the hospital dataset, we followed sev-
eral steps, as shown in Fig. 4.

Initially, we converted the data from DICOM to
NIFTI format. Subsequently, we used FSL (Jenkinson
et al., 2012) for further preprocessing. The first step in-
volved applying robustfov to focus on the skull in the
images, given that the original images included not only
the head but also the patient’s upper body. Following
this, we employed BET for skull stripping. Obtaining,
in the end, just the brain in the CTA images. In the
final step, we clipped the intensity values of the brain
between 0-200 HU, based on the suggestions from hos-
pital doctors. The images were neither registered nor
resized, maintaining their original dimensions for input
into our models.

3.3. Methodology

In our study, we analyze two distinct approaches for
detecting LVOs: nnDetection and a 3D CNN.

nnDetection is a cutting-edge 3D self-configuring
medical object detection model developed by Baum-
gartner (2021). It adapts itself without any manual inter-
vention to arbitrary medical detection problems while
achieving results en par with or superior to the state-
of-the-art. The model’s effectiveness has been demon-
strated on two public benchmarks, such as ADAM and
LUNA16, and it has been evaluated on ten additional
public datasets to assess its comprehensive performance
in medical object detection.

3D CNN for detection is a network originally de-
signed for detecting lung nodules. This 3D nodule net-
work is inspired by Feature Pyramid Networks and was
part of the winning entry in the Kaggle Data Science
Bowl competition (Liao and Song., 2019).

The following sections provide a detailed description
of these two approaches, including their architecture
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and training plans, followed by an outline of the eval-
uation metrics used.

3.3.1. nnDetection for 3D object detection

The first approach we employed was the nnDetection
framework, a state-of-the-art 3D self-configuring med-
ical object detection model. The framework facilitates
adaptation to new datasets and utilizes a 5-fold cross-
validation system for data splitting and training plan
creation.

The input to nnDetection consists of a stack of 3D im-
ages from a CTA scan and the corresponding 3D bound-
ing boxes. The model output consists of a dictionary
for each test case with the following information: pre-
dicted bounding boxes, prediction scores, predicted la-
bels, original size of the raw data, origin of the image as
read by the Insight Toolkit (ITK), ITK spacing and ITK
direction.

Architecture.

nnDetection selects the best architecture depending
on the dataset by adhering to a set of interdependent
principles: (1) data fingerprint, which covers the rele-
vant properties of the training data; (2) rule-based pa-
rameter, which employs a set of heuristics based on
the fingerprint; (3) fixed parameters, which do not rely
on the data; and (4) empirical parameter optimization,
which is the set of parameters optimized during the
training.

The detection algorithm is based on Retina-UNet
(Jaeger et al., 2020), which combines the RetinaNet
one-stage detector with the U-Net architecture com-
monly used for semantic segmentation. This combina-
tion enhances object detection with semantic segmen-
tation capabilities without introducing additional com-
plexity. Fig. 5 demonstrates the schematic representa-
tion of the baseline topology used in the present study.

Training plan.

The nnDetection framework automatically generates
a training plan tailored to the dataset. The plan consists
of several steps, including cropping, preprocessing of
the input images, and details about the architecture and
the input sizes of the images. The model training in-
volves a sum of cross-entropy (classification) and gener-
alized intersection-over union (regression) loss, carried
out in a five-fold cross-validation setup to differentiate
between background and labeled LVOs.

Training was performed for 60 epochs using stochas-
tic gradient descent with Nesterov momentum of 0.9.
Initially, the learning rate was linearly increased from
1e−6 to 1e−2 over the first 4000 iterations. A poly-
nomial (poly) learning rate schedule was applied un-
til epoch 50, gradually decreasing the learning rate to
ensure stable convergence. In the final 10 epochs, a
cyclic learning rate fluctuating between 1e−3 and 1e−6
was used, which helps the model escape local minima
and potentially find a more optimal set of parameters.

Figure 5: The backbone of nnDetection is a pyramid-like network with bottom-up (left) and top-down (right) pathways with interconnected layers.
The upper layers have a lower spatial resolution yet have representative features for the task at hand. Classification and regression tasks (e.g.,
bounding box determination) are performed on averaged feature maps. On the bottom-up path, the spatial resolution of the feature maps decreases
while getting richer and denser information, while the top-down path recovers the spatial dimension. The skip connections facilitate information
exchange between pathways. The blue-colored features maps (P5–P2) are utilized for LVO object detection.
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This phase also incorporates Stochastic Weight Aver-
aging (SWA), which averages the weights from differ-
ent points in the learning rate cycle, thus enhancing the
model’s generalization ability and improving its over-
all performance. Training was performed on patches
to overcome the memory limitations caused by the 3D
model configuration; the patch size used is [160, 160,
128], with a target spacing of [0.45001221 0.5859375
0.5859375 ] and a batch size of 4, sampled from the
CTA scans while ensuring an equal number of fore-
ground and background patches per batch.

Data Augmentation.

The same data augmentation strategy of nnU-Net
(Isensee et al., 2020), which includes Gaussian noise,
Gaussian blur, brightness, contrast, simulation of low
resolution, gamma augmentation, elastic deformation,
scaling, flipping, mirroring, and rotation, was imple-
mented during the training process.

3.3.2. 3D CNN for 3D object detection

The second approach we tested for detecting LVOs in
CTA scans is a 3D CNN, adapted from a model orig-
inally designed for detecting lung nodules (Liao and

Song., 2019). This network leverages a 3D U-Net back-
bone and a Region Proposal Network (RPN) output
layer to effectively identify and localize LVOs.

The input to the network consists of a stack of 3D im-
ages from a CTA scan and the corresponding informa-
tion of 3D bounding boxes (Gx,Gy,Gz,Gr), where the
first three elements denote the coordinates of the center
point of the box and the last element denotes the depth.

Architecture.

The network architecture consists of a 3D U-Net
backbone (Çiçek et al., 2016) and an RPN output layer,
and its structure is shown in Fig. 6. The U-Net back-
bone enables the network to capture multiscale infor-
mation, which is essential for detecting LVOs of var-
ious sizes. The architecture employs several residual
blocks to enhance feature extraction, thereby improving
the overall performance. The RPN output layer is used
to directly generate object proposals, streamlining the
detection process.

Training.

To compare with nnDetection, we conducted 5-
fold cross-validation experiments with the same split

Figure 6: Detection net. (a) Overall network structure. Each cube in the figure stands for a 4-D tensor. Only two dimensions are indicated in the
figure. The number inside the cube stands for the spatial size (Height =Width = Length). The number outside the cube stands for the number of
channels. (b) Structure of a residual block. (c) Structure of the left combining unit in (a). The structure of the right combining unit is similar but
without the location crop. Best viewed in color.
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as nnDetection. The training process involves ex-
tracting small 3D patches from the CTA scans
and feeding them individually into the network.
These patches have dimensions of 128×128×128×1
(Height×Length×Width×Channel). The selection pro-
cess involves randomly sampling two types of patches.
Approximately 70% of the input contain at least one
LVO, while the remaining 30% are cropped randomly
from the scans and may not include any LVOs. This
strategy ensures that the training data includes enough
negative samples, which is crucial for robust learning.

Patches are padded with a constant value and aug-
mented through random flipping and resizing. This aug-
mentation helps the model generalize better by exposing
it to a variety of transformations.

Location Information and Loss Function.

To aid in the identification and localization of LVOs,
location information is introduced into the network. A
smoothed L1-norm function is used as the loss met-
ric for bounding box regression, which provides robust
optimization and improves accuracy. To address class
imbalance during training, positive sample balancing is
employed, along with hard negative mining techniques.

Inference.

After training, the test cases in each fold are split into
several parts (208×208×208×1 per part) to overcome
GPU memory constraints during testing. The results
from these parts are then combined to obtain the final
detection outputs. A non-maximum suppression oper-
ation is performed to eliminate overlapping proposals
and generate a more refined set of potential LVO loca-
tions.

3.3.3. Evaluation metrics.

For the detection problem in our study, we considered
Intersection over Union (IoU), sensitivity, and false pos-
itive per image rate (FPpI), all based on True Positives
(TP), False Positives (FP), and False Negatives (FN).
Intersection over Union (IoU) measures the overlap be-
tween the predicted and ground truth regions of an ob-
ject or region of interest (ROI). It ranges between 0 and
1, where a higher value indicates a better overlap. Given
that we are working with medical data in 3D, we will
consider a prediction correct if it achieves an IoU of at
least 0.1. This threshold respects the clinical need for
coarse localization and leverages the non-overlapping
nature of objects in 3D, as noted by Jaeger et al. (2020).

To calculate the number of TP, FP, and FN, we con-
sidered different confidence thresholds and a minimum
IoU of 0.1 with the ground truth for a prediction to be
classified as TP. Since all cases in our dataset contain
exactly one occlusion, we simplified the TP identifica-

tion by selecting the bounding box with the highest con-
fidence score in cases where multiple TPs are found.
For FP, we counted them as 1 if the bounding boxes
showed a large intersection between them. Addition-
ally, we considered discarding FP if they did not over-
lap with the 3D vasculature representing the Circle of
Willis (Lal-Trehan Estrada et al., 2024). An FN is any
case where the predicted bounding box had an IoU less
than the minimum IoU and a confidence score below the
threshold used for TPs.

In summary, our evaluation metrics are designed to
balance the need for precise localization of LVOs with
the practical considerations of working with 3D medi-
cal imaging data. By setting appropriate thresholds and
refining our FP criteria, we aim to ensure that our detec-
tion model meets the clinical requirements for identify-
ing LVOs in CTA scans.

4. Results

In this section, we present the performance evaluation
of the two approaches: nnDetection and 3D CNN.

4.1. nnDetection

In this subsection, we present the results of nnDetec-
tion over 5 folds. As mentioned in Section 3, we per-
formed the experiments using a 5-fold cross-validation
on 124 valid cases, with 25 cases allocated for testing in
each fold. The overall results of the nnDetection model
on the testing cases are illustrated in Fig. 7, providing
insights into the model’s performance across different
thresholds and after false positive reduction.

Fig. 7a displays two curves representing the True
Positive Rate (TPR) and False Positives per Image
(FPpI) rate at various confidence thresholds. The blue
curve illustrates the global TPR/FPpI before reducing
false positives, while the red counterpart demonstrates
the TPR/FPpI post-reduction. Impressively, both curves
exhibit a commendable sensitivity of approximately
90% sensitivity. However, while the global curve in-
dicates over 2 FP per image, the red curve reduces this
to below 2 FP per image.

The second figure provides a more granular view of
TPR and FPpI rates across different confidence score
thresholds. Here, the blue plot represents the TPR
before and after FP reduction, shedding light on the
model’s sensitivity across varied thresholds. Mean-
while, the green plot signifies the FPpI rate in the global
context, and the red plot depicts the FPpI rate post-false
positive reduction. A subtle variance is discernible be-
tween the two, notably prominent at lower confidence
scores (e.g., 0.1, 0.2).
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Performance Metrics

Further dissecting the model’s performance, we
meticulously analyzed the True Positive Rate (TPR) and
the rate of False Positives per Image (FPpI) metrics at
distinct confidence thresholds, as shown in Fig. 7b.
Lower thresholds (e.g., 0.1, 0.2) resulted in higher true
positive rates but also increased false positives. Con-
versely, higher thresholds (e.g., 0.8, 0.9) reduced false
positives but also decreased true positives. The optimal
threshold, striking a balance between these metrics, was
identified at 0.6, yielding approximately 0.14 FPpI and
71% sensitivity.

Cross-Validation Results

Table 1 summarizes the results for each fold employ-
ing the optimal Confidence Threshold of 0.6. Sensitiv-
ity spanned from 0.56 to 0.84, while FPpI rate exhibited
variance from 0.04 to 0.28. The mean sensitivity across
folds stood at 0.71, with a standard deviation of 0.10,
while the mean FPpI registered at 0.18, with a standard
deviation of 0.11.

Fold TP, FP, FN counts Sensitivity FPpI

Fold 0 TP: 14, FP: 7, FN: 11 0.56 0.28
Fold 1 TP: 18, FP: 6, FN: 7 0.72 0.24
Fold 2 TP: 19, FP: 1, FN: 6 0.76 0.04
Fold 3 TP: 21, FP: 7, FN: 4 0.84 0.28
Fold 4 TP: 16, FP: 1, FN: 8 0.67 0.04

Mean 0.71 0.18
Std 0.10 0.11

Table 1: Evaluation Results with Confidence Threshold of 0.6

False Positive Reduction

In our endeavor to refine the results and by knowing
that LVOs exist in the Circle of Willis, we further ana-
lyzed the false positives by assessing their intersections
with the 3D vasculature of the Circle of Willis. False
positives devoid of such intersections were discarded,
resulting in a reduction in false positives, particularly
noticeable at lower thresholds (e.g., from 274 to 241
at a confidence threshold of 0.1), as shown in the red
plot in Fig. 7b. This in-depth analysis underscores the
model’s proficiency in making predictions within the re-
gion of interest, thereby enhancing its clinical relevance
and accuracy.

Through this comprehensive examination, we glean
valuable insights into the nnDetection model’s perfor-
mance, thereby facilitating the optimization of its effec-
tiveness in detecting LVOs.

(a) TPR/FPpI curve across different confidence thresholds

(b) TPR and FPpI rate at different confidence thresholds

Figure 7: Results of nnDetection, including before and after FP re-
duction

Illustrative Examples of Detection Performance

The nnDetection model’s performance is visually as-
sessed through qualitative examples depicted in Fig. 8.
Here, we provide a nuanced examination of the model’s
ability to accurately identify occlusions in various sce-
narios.

In Fig. 8a, we observe an example of true positive de-
tection, where the red bounding box overlaps with the
occlusion denoted by the white bow, representing the
ground truth. Conversely, Fig. 8b illustrates a false pos-
itive detection, where the green bounding box deviates
from the ground truth. Upon visual inspection, it be-
comes apparent that subtle differences in contrast along
the arteries can be misconstrued as occlusions, leading
to false positive detections. This underscores the impor-
tance of careful scrutiny and validation of model outputs
to mitigate potential mislocalization and ensure the reli-
ability of the detection process.
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(a) True Positive detection.

(b) False Positive detection

(c) True Positive detection on an M2 case.

(d) Inference over a posterior circulation image

Figure 8: Bounding boxes results of detection with a prediction score
of 0.6. The white box located in the right represents the ground truth
of the occlusion

Moving forward, Fig. 8c showcases true positive de-
tection in an M2 case, where the model adeptly identi-
fies the occlusion with precision, demonstrating its ef-
ficacy in discerning subtle nuances within the images.
Lastly, Fig. 8d highlights true positive detection in a
posterior circulation image, wherein the model accu-
rately detects the occlusion despite potential challenges
posed by limited training data. This underscores the ro-
bustness of the nnDetection model in identifying occlu-
sions across diverse anatomical configurations.

From the images, we can conclude that the occlusion
is precisely detected by the generated bounding box.
However, as illustrated in Fig. 8b, the model encoun-
ters an occlusion that is not actually there. After visu-
ally inspecting the image, we can confirm that there is a
difference in contrast following the arteries, which can
be confused with an LVO.

This qualitative assessment provides useful insights
into the nnDetection model’s performance, revealing its
strengths and areas for improvement in effectively de-
tecting occlusions in CTA scans.

4.2. 3D CNN

The initial evaluation of the 3D CNN approach
yielded unsatisfactory results. The model identified a
large number of potential LVOs, leading to a high false-
positive (FP) to true-positive (TP) ratio. This limited the
model’s practical utility. Figure 9 illustrates an example
where numerous positive detections overwhelm the im-
age, making it difficult to distinguish true positives from
false positives.

Figure 9: Example of excessive false positive detections by the 3D
CNN model in a single case.
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Improvement Strategies

To address the high false-positive rate, we propose
several strategies:

• Dual 3D CNN Classifiers: Utilizing two classi-
fiers to distinguish false positives more accurately.

• Loss Function: Replacing the cross-entropy loss
function with a focal loss function to handle class
imbalance effectively.

• Data Augmentation: Increasing the number of
positive samples through oversampling techniques
such as sliding window cropping, flipping (x-axis,
y-axis, z-axis), rotation (90°, 180°, 270°), and
multi-scale transformation.

These improvements are expected to enhance the util-
ity of the 3D CNN model, making it a more competitive
approach for LVO detection.

4.3. Inference on IACTA-EST Challenge dataset

To assess the generalizability of the nnDetection
model, we conducted inference on 20 cases from the
first task of the IACTA-EST Challenge dataset. This
dataset is entirely independent of the Hospital Dr. Josep
Trueta dataset used for model training.

The Image Analysis for CTA Endovascular Stroke
Therapy (IACTA-EST) Challenge provides a valuable
resource by offering a curated image dataset from mul-
tiple clinical sites. This approach aims to bridge the
gap between current research and commercially avail-
able solutions by incorporating diverse data sources.

The 20 cases used for inference comprised 10 LVO-
positive and 10 LVO-negative examples. Notably, this
data originated from different domains and utilized
scanners distinct from those employed in the training
dataset. Furthermore, no preprocessing steps were ap-
plied to these cases; inference was performed directly.

Overall Performance and Generalizability Insights
The inference results revealed slightly more positive

class predictions across various confidence thresholds.
This suggests that the model might have a tendency to
favor identifying occlusions even when they may not be
present. Notably, at a threshold of 0.3, no negative pre-
dictions were observed, while two positive cases yielded
higher positive scores. These findings highlight the po-
tential for improvement in model generalizability.

Qualitative Examples
Fig. 10a showcases a successful prediction of an LVO

from a positive case, where the model adeptly identifies
the area of occlusion. The predicted confidence score
exceeded 0.9, indicating a strong likelihood of occlu-
sion. This demonstrates the model’s ability to accu-
rately identify LVOs in unseen data under certain cir-
cumstances.

Conversely, Fig. 10b depicts a false positive predic-
tion for a negative case, where there are multiple false
positives, with the green bounding boxes highlighting
certain areas where there are occlusions but no LVO in
this example. The model incorrectly predicted the pres-
ence of an LVO by assigning a confidence score of 0.2.
This example demonstrates the need for additional re-
finement to improve the model’s ability to distinguish
between true and false positives, particularly when en-
countering data from diverse sources.

(a) Positive case detection.

(b) Negative case detection

Figure 10: Inference results of two cases from the IACTA-EST
dataset. The white box located in the right represents the ground truth
of the occlusion

The inference results on the IACTA-EST dataset
highlight the need for improved generalizability for
real-world use. To address this, we plan to explore fine-
tuning the nnDetection model on a combined dataset
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incorporating both the Hospital Trueta data and a sub-
set of IACTA-EST data. This can improve the model’s
ability to adapt to data variations. Alternatively, we
can leverage transfer learning, using knowledge from
the pre-trained nnDetection model to train a new model
specifically for the IACTA-EST Challenge data. These
refinements aim to equip the nnDetection model with a
more robust ability to generalize to diverse data sources,
ultimately enhancing its clinical applicability.

5. Discussion

5.1. nnDetection

This study investigated the effectiveness of the nnDe-
tection framework for precise 3D localization of occlu-
sions in CT angiograms (CTAs). The results demon-
strated that the trained nnDetection model could accu-
rately detect true positives (TPs) with a very low false
positive per image (FPpI) rate. As illustrated in Fig.
7b, the model performs best at a confidence threshold
of around 0.6, balancing TP detection while minimiz-
ing false positives (FPs).

Analysis of Occlusion Localization

The analysis of occlusion localization in the test cases
yielded several key insights. The training dataset was
primarily composed of M1 cases, with fewer instances
of M2, ICA, Tandem, Basilar, and PCA occlusions. The
5-fold cross-validated models successfully detected oc-
clusions in M2, ICA, and Tandem cases. There were
some false positives noted in M1 cases, but their overall
occurrence was relatively low. Importantly, all occlu-
sions in the test cases belonged to the Anterior Circula-
tion system.

Despite a limited number of Posterior Circulation
cases in the training set, the model demonstrated its ca-
pability to detect Basilar occlusions during inference,
as shown in Fig. 8d. This finding is particularly
encouraging, suggesting that the model can general-
ize beyond the predominantly anterior circulation train-
ing data. These promising results advocate for further
validation studies involving a larger and more diverse
dataset and with different types of occlusions.

Computational Considerations

A significant drawback of the nnDetection model is
the substantial computational time required for train-
ing and inference. For the dataset comprising approx-
imately 100 CTAs, each fold necessitated around 6 days
of training. Additionally, the prediction and inference
processes for each image required about 5 minutes, ex-
cluding preprocessing and cropping performed auto-
matically by the framework. This extensive compu-
tational demand necessitates the development of opti-
mized strategies to enhance efficiency and reduce train-
ing time.

5.2. 3D CNN Model Challenges

The 3D CNN detection model encountered signif-
icant challenges, particularly regarding computational
resources. Training and testing necessitated all three
available GPUs, each with 12 GB of memory, and a
batch size of 8. The initial results were unsatisfactory,
with a high false positive (FP) to true positive (TP) ratio
of 1766166:582357 before discarding overlapping pre-
dictions.

To address these issues, several strategies are
planned:

• Dual 3D CNN Classifiers: Employing two classi-
fiers to more accurately distinguish false positives.

• Loss Function Adjustment: Replacing the cross-
entropy loss function with a focal loss function to
better handle class imbalance.

• Data Augmentation: Increasing the number of
positive samples through oversampling techniques
such as sliding window cropping, flipping (along
the x-axis, y-axis, and z-axis), rotation (90°, 180°,
270°), and multi-scale transformation.

These improvements are anticipated to enhance the
detection performance of the 3D CNN model signifi-
cantly.

5.3. Future Directions

While this study demonstrates the promise of the
nnDetection framework for accurate occlusion detec-
tion in CT angiography (CTA) images, significant ad-
vancements are necessary to address its computational
demands and the initial challenges encountered with the
3D convolutional neural network (3D CNN) model.

Future efforts will focus on optimizing both models
to achieve superior performance while minimizing re-
source consumption. This will involve exploring ad-
vanced training techniques, efficiently utilizing com-
putational resources, and significantly expanding the
dataset to encompass a broader spectrum of occlusion
types and anatomical variations. This expansion in-
cludes investigating the model’s ability to predict the
location of Large Vessel Occlusions (LVOs) beyond the
currently identified common cases like M1, M2, ICA,
and even including occlusions in the posterior circu-
lation. Additionally, we will investigate incorporating
prior knowledge, such as segmentation masks of the
Circle of Willis (CoW), to guide the detection process
and potentially improve accuracy. Finally, the model’s
generalizability will be rigorously evaluated using data
from different hospitals and scanner types, and poten-
tially further enhanced by incorporating data annotated
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by multiple neurologists with expertise in CTA image
interpretation.

This multi-expert approach can help account for
inter-rater variability in occlusion detection and poten-
tially lead to a more robust and reliable model. By ad-
dressing these future directions, the nnDetection frame-
work has the potential to evolve into a robust, versatile,
and clinically valuable tool for accurate LVO detection
in CTA images.

6. Conclusions

This study investigated the efficacy of two deep learn-
ing approaches, nnDetection and 3D CNN, for detecting
Large Vessel Occlusions (LVOs) in stroke patients using
Computed Tomography Angiography (CTA) images.
The study provides a comprehensive analysis of each
approach’s performance, highlighting their strengths,
limitations, and potential areas for future development.

The nnDetection framework demonstrates promising
results in accurately localizing occlusions, particularly
within the Anterior Circulation system. This suggests
its potential for clinical applications. However, a major
drawback is the significant computational cost associ-
ated with both training and using the model (inference
time). Despite these challenges, the model shows po-
tential for generalizing to different types of occlusions
beyond those included in the training dataset.

While the 3D CNN model offers a different approach
to LVO detection, it encountered significant challenges,
primarily related to high computational demands and a
large number of false positive results. The study pro-
poses several strategies to address these issues, includ-
ing utilizing dual classifiers, adjusting loss functions,
and enriching the training data with data augmentation
techniques.

Encouragingly, the nnDetection framework achieved
very positive results. We are particularly enthusias-
tic about the feedback from a collaborating neurologist
who assessed the visual analysis of the nnDetection re-
sults. They reported that the model’s detection capa-
bilities surpassed those of currently used commercial
software. This suggests that the nnDetection framework
has the potential to become a valuable clinical tool for
stroke diagnosis and treatment planning.

Future research directions include exploring ad-
vanced training techniques, optimizing computational
strategies to improve efficiency, and significantly ex-
panding the dataset to encompass a broader spectrum
of occlusion types and anatomical variations. This ex-
pansion could involve incorporating data from various
sources, such as different hospitals and scanner types, to
enhance the model’s generalizability. Ultimately, these

efforts aim to develop more efficient and accurate deep
learning tools for early stroke detection and treatment.
By facilitating timely intervention, these tools have the
potential to significantly improve patient outcomes and
reduce the overall healthcare burden associated with
stroke.
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Abstract

As people age, their brains undergo various structural transformations, primarily involving tissue loss. Accelerated
changes can lead to serious conditions such as dementia or Parkinson’s disease. Early detection of such abnormal
changes in healthy individuals is crucial, as it may allow for early interventions to mitigate these consequences. How-
ever, continuous Magnetic Resonance Imaging (MRI) studies, necessary for such detection, are both time-intensive
and costly. Currently, several alternatives have been proposed to predict brain structural changes using advances in
machine learning and deep learning. However, most focus on patients with neurodegenerative diseases and none spe-
cialize in healthy adult populations. In this study, we aimed to predict structural brain changes over a span of nine
years in a healthy adult population. We used 3D T1-weighted MR images and explored two primary family of meth-
ods. The first family was based on Deformation Fields (DFs), while the second employed deep learning techniques
using Generative Adversarial Networks (GANs). DF-based methods were built on the hypothesis, that brain changes
observed in one subset of individuals could predict changes in others within the same population. The GAN-based
methods were inspired by advancements in predicting brain changes in infants and Alzheimer’s disease patients. We
evaluated the results of these methods using various assessment criteria, including image similarity, similarity of brain
regions, and total brain atrophy. Our results indicated that DF-based techniques were more effective and stable than
GANs, demonstrating a greater ability to capture subtle changes, particularly in the thalamus and cortex, as well as
significant changes in the ventricles in line with our hypothesis. In contrast, GAN-based methods primarily predicted
volumetric changes in the ventricles. This study provided a foundation for future research in brain change prediction,
highlighting the effectiveness of DF-based methods and suggesting improvements for GAN approaches.

Keywords: Brain Aging, Deformation Fields, GANs

1. Introduction

1.1. Longitudinal Prediction

Longitudinal prediction involves anticipating how cer-
tain characteristics of an individual will change over
time based on data collected at earlier moments or theo-
retical models that describe possible patterns of change
(Caruana et al., 2015). In neurology, this approach is
crucial for forecasting the progression of neurodegen-
erative diseases such as Alzheimer’s, Parkinson’s, or
Multiple Sclerosis, enabling treatments before clinical
symptoms become evident and slowing disease progres-
sion (Arya et al., 2023; Coll et al., 2023; Li et al., 2019).
However, despite its benefits, longitudinal prediction
faces several challenges, as the accuracy of predictions

heavily depends on the quality and quantity of available
data, which is not always easy to obtain, especially in
the medical domain. (Bandettini, 2012; Bernal et al.,
2021; Modat et al., 2014).

1.2. Brain Changes with Aging

As the brain ages, significant structural and functional
changes occur that primarily affect cognition (Schulz
et al., 2022). On a large scale, grey matter (GM) and
white matter (WM), which contain neuronal cell bodies
and long-distance synapses, respectively, undergo atro-
phy, being replaced by cerebrospinal fluid (CSF) (Ge
et al., 2002). Some studies indicate that certain brain
structures are more susceptible to aging-related changes
(Choi et al., 2022; Fujita et al., 2023; Raz et al., 2005).
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Structures such as the hippocampus, thalamus, and cor-
tex, crucial for memory, sensory information transmis-
sion, and complex cognitive functions, show significant
atrophy. These changes are reflected in the expansion
of the ventricles, which dilate to compensate for brain
volume loss, and the increase of CSF around the brain
due to the reduction in the height between sulci and gyri
(Kaye et al., 1992).

Brain aging varies between healthy individuals and
those with neurodegenerative diseases (Habes et al.,
2016). In healthy individuals, structural changes are
generally slower and more subtle, influenced by genet-
ics and lifestyle (Mulugeta et al., 2022). In contrast,
in patients with diseases like Alzheimer’s, atrophy is
more accelerated and follows specific, well-documented
patterns (Pini et al., 2016). Consequently, numerous
predictive models for neurodegenerative diseases have
been developed (Arya et al., 2023).

To study these age-related brain changes, Magnetic
Resonance Imaging (MRI) has been used as a funda-
mental tool due to its ability to provide detailed visu-
alization of brain structures (Vemuri et al., 2015). Par-
ticularly, T1-weighted (T1w) MR images are especially
useful for anatomical visualization, offering good reso-
lution and contrast between GM, WM and CSF (Chen
et al., 2018). These images also allow the observation of
the subcortical structures sensitive to aging (Duan et al.,
2020), thereby facilitating the monitoring of structural
changes associated with aging and neurodegenerative
diseases.

1.3. Methods for Longitudinal Brain Prediction

Over the last decades, advances in machine learning
have offered a powerful tool in longitudinal neurolog-
ical studies, allowing the quantification of brain ag-
ing in patients with neurodegenerative diseases (Za-
paishchykova et al., 2024). Currently, two families of
methods are most commonly used to infer longitudinal
brain changes:

• The first and most used is based on Deformation
Fields (DFs). A DF is a fundamental element in the
area of non-rigid registrations (Crum et al., 2004)
and is based on a vector field that indicates how
each pixel (or voxel in 3D images) of a moving
image M should be displaced to align it with a fixed
image F.

• The second, more recent and based on advances
in deep learning, uses generative adversarial net-
works (GANs) (Goodfellow et al., 2014). A GAN
consists of two neural networks: a Generator that
creates images from an input and a Discriminator
that evaluates their realism, competing with each
other to continuously improve.

In the context of longitudinal brain prediction, meth-
ods of the first family seek to infer a DF that explains

structural changes over time, which can then be applied
to the initial brain images to obtain their evolution us-
ing image registration. Meanwhile, methods in the sec-
ond family train a GAN for image-to-image translation
(Isola et al., 2018a) using historical data (e.g., initial and
future images), and then predict the brain’s evolution
given the initial image.

1.4. Predicting Brain Changes in Healthy Popula-
tions

While the majority of research focuses on structural
brain changes caused by neurodegenerative diseases
(Camara et al., 2006; Rachmadi et al., 2019; Ravi et al.,
2019; Xia et al., 2021), there is significant value in
extending these predictive models to healthy popula-
tions. Predictive models tailored for healthy individu-
als could offer insights into normal aging trajectories,
identify atypical changes indicative of early disease on-
set, and highlight the impact of lifestyle and genetic
factors on brain health (Hedman et al., 2012). More-
over, such models could facilitate early interventions,
potentially mitigating the risk of developing neurode-
generative conditions (Rachmadi et al., 2019). How-
ever, predicting brain changes in healthy populations
presents challenges, such as the variability of aging pro-
cesses due to the influence of individual’s sociodemo-
graphic, health, genetics and lifestyle factors (Mulugeta
et al., 2022) and the need for extensive longitudinal
data (Bethlehem et al., 2021). This naturally leads to
the question: Is it possible to predict brain changes in
healthy populations?

1.5. Objective of the Master’s Thesis

The objective of this project is to address the previous
question and, specifically, to attempt to predict struc-
tural brain changes over a nine-year period in healthy
adults using 3D T1w MR images. with participants hav-
ing an average age of 60 years at the time of the initial
scan (baseline) and 69 years at the time of the second
scan (follow-up).

To achieve our objective, we implemented various
methods based on the two main families of longitudi-
nal prediction mentioned earlier:

• DF-Based Methods: These methods are based on
inferring a DF that captures the necessary volu-
metric changes to register the baseline and, conse-
quently, predict the follow-up scan. First, we cre-
ate a dataset of deformation atlases by registering
baseline to follow-up and obtaining the resulting
DFs from a subset of our population. Then, we im-
plement four different methods based on variants
of multi-atlas techniques (Iglesias and Sabuncu,
2014) to combine the obtained deformation atlases
and create the desired DF.
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• GAN-Based Methods: In this family, the meth-
ods are based on training a GAN with baseline and
follow-up scans from a subset of our population,
allowing it to learn the longitudinal changes. Then,
from the baseline of a new individual, the GAN can
predict the follow-up. To achieve this, we imple-
mented four different GANs based on the architec-
tures proposed by Peng et al. (2021), Huang et al.
(2022) and Choi et al. (2020) and adapted them to
our objective.

Finally, we conducted a statistical analysis to deter-
mine the best method of each family and overall. We
used various comparison metrics between the predicted
and expected images, based on image similarity, simi-
larity of brain structures relevant to aging (Choi et al.,
2022; Fujita et al., 2023), and total brain atrophy using
the Brain Parenchymal Fraction (BPF) (Rudick et al.,
1999).

2. State of the art

During our review of the state of the art, our primary
focus was on longitudinal brain changes, where most of
the works we found employed DF-based techniques or
GAN-based techniques, primarily for predicting brain
atrophy. Additionally, we expanded our search to fa-
cial aging studies as they also presented innovative tech-
niques in longitudinal prediction.

2.1. DF-Based Approaches

The prediction of brain atrophy in patients with
Alzheimer’s or other neurodegenerative diseases has
been extensively researched in recent years, primarily
using models that aim to infer a DF with specific volu-
metric changes. Smith et al. (2003) presented a biome-
chanical model using finite element method and applied
thermal loads to induce expansion or contraction in the
desired tissues by a DF. Camara et al. (2006) expanded
this approach with a thermoelastic model and added ac-
quisition artifacts to the generated image for greater re-
alism. Karacali and Davatzikos (2006) and Sharma et al.
(2010) presented models that minimize an energy func-
tion, penalizing the deviation between the desired vol-
umetric loss and that inferred from the Jacobian of the
DF, preserving brain topology and allowing free move-
ment of CSF. Modat et al. (2014) employed multimodal
registrations to obtain a set of velocity fields describing
actual brain changes, subsequently combining them to
generate DFs specific to each type of disease. Khanal
et al. (2017, 2016) developed a biophysical model to
generate a DF based on Stokes equations from fluid
mechanics, but with a non-zero mass source term to
allow the deformation of each tissue based on its pre-
scribed atrophy. Da Silva et al. (2020) used deep neural
networks to predict the DF from an atrophy map. In

a subsequent work, Da Silva et al. (2021) presented a
more comprehensive model that infers the atrophy map
from the patient’s medical data. More recently, Bernal
et al. (2021) proposed a cascade U-Net (Ronneberger
et al., 2015) approach to generate controlled synthetic
volumes based on probability maps of altered tissues.

Many of these methods propose quite accurate pre-
diction results. However, except for Modat et al. (2014)
and Da Silva et al. (2021), these results depend on pre-
specified atrophy maps. This reliance can be limit-
ing because intermediary scans between baseline and
follow-up are needed to construct these maps and ob-
serve specific changes for each patient. Given that
our dataset does not contain intermediary scans, we
propose DF-based models that infer changes based on
inter-individual similarity rather than relying on atrophy
maps.

2.2. GAN-Based Approaches

Recent research using GANs has demonstrated their
utility in predicting the progression of neurodegener-
ative diseases and aging in MRIs. Rachmadi et al.
(2019) proposed DEP-GAN to predict the evolution of
white matter hyperintensities in patients with small ves-
sel disease. This model combines GAN with Irregular-
ity Maps to generate Disease Evolution Maps. Simi-
larly, Ravi et al. (2019) and Xia et al. (2021) presented
models to predict the evolution of atrophy in brain MRI
as a function of age and Alzheimer’s disease status. The
former proposed DaniNet, a model that combines a con-
ditional deep autoencoder with a GAN, integrating bio-
logical constraints to predict realistic synthetic images.
The latter developed a network that does not require
longitudinal data for training, using identity-preserving
losses to maintain subject-specific features in the pre-
dicted images. More recently, Gadewar et al. (2023)
employed a style-transfer-based architecture to predict
brain changes in subjects aged 60 to 79, using multiple
age and sex-specific domains. In the field of infant brain
development, Peng et al. (2021) and Huang et al. (2022)
focused on longitudinal prediction of structural and con-
trast changes in infants over the first year of life. The
first work introduced MPGAN, which combines a fea-
ture extractor with a GAN to generate high-quality im-
ages using perceptual loss. The second work addressed
the problem differently with MGAN, a GAN-based net-
work that uses spatial and frequency information from
the baseline to predict metamorphic changes.

All these approaches underscore the capability of
GANs for predicting brain changes, but they present
several limitations. First, training with 2D slices (Gade-
war et al., 2023; Rachmadi et al., 2019; Ravi et al.,
2019; Xia et al., 2021), which in most cases is not a
choice but rather unavoidable due to lack of computa-
tional resources, may result in the loss of inherent 3D in-
formation in structural MRI. Second, although training
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without longitudinal data is innovative (Gadewar et al.,
2023; Xia et al., 2021), it lacks mechanisms to verify the
results and guide the network toward individual-specific
predictions. Finally, most of the presented works vali-
date their results using global image metrics, which do
not detect subtle structural brain changes, mainly in sub-
cortical regions, which are important in brain aging.

In three of our proposed GAN-based models, we ad-
dress the challenge of loss of 3D information by em-
ploying 3D models and reducing image bit-depth to
conserve memory. We overcame the second challenge
by leveraging our dataset’s longitudinal images. We
meticulously evaluate model performance and guide
training through tailored loss functions designed for
individualized longitudinal changes. Furthermore, we
present results specific to different brain regions and
evaluate them using different metrics.

2.3. Facial Aging

Studies on facial aging propose a different and innova-
tive approach that can be adapted for longitudinal brain
prediction, as demonstrated by Ravi et al. (2019) and
Gadewar et al. (2023). Among the most notable meth-
ods found are those by Antipov et al. (2017) and Choi
et al. (2020), which propose GAN-based models. The
former proposed Age-cGAN, which generates aged im-
ages while preserving the individual’s identity. The pro-
cess uses an encoder to find an optimal latent vector al-
lowing the generator to reconstruct the image; then, the
age category in the generator’s input is changed to pro-
duce the image with the desired age. To ensure identity
preservation, a pretrained facial recognition network is
used. In the second method, they proposed StarGAN-
v2, a network that can transform images from one do-
main to another with diversity and variability. It im-
plements a style encoder that extracts features (e.g.,
hairstyle and facial characteristics) from an image A
and a generator that adds those features to an image B.
Some more recent works implemented diffusion models
(Sohl-Dickstein et al., 2015). In Chen and Lathuilière
(2023), they used a model that inverts the input im-
age to a latent noise and performs local age-guided text
and attention control editing to achieve precise and re-
alistic transformations. In another method proposed by
Banerjee et al. (2023), a latent diffusion model with con-
trastive and biometric losses is used, preserving identity
and achieving realistic and high-fidelity age modifica-
tions.

These approaches offer different sources of inspira-
tion for longitudinal prediction. However, all these
methods rely on 2D images and must be adapted to
work with 3D MRI scans, which could be challenging
due to misaligned slices. To overcome this limitation
in our fourth GAN-based model, we ensure accurate
alignment between baseline and follow-up during pre-
processing. Additionally, we implemented a dataloader

capable of handling inter-individual slice alignment.

3. Material and methods

3.1. Data

In our study, we used a total of 703 individuals from the
Nord-Trøndelag Health Study (HUNT) (Åsvold et al.,
2022), a longitudinal study involving a healthy popu-
lation from Nord-Trøndelag, Norway, since 1984. Our
study focuses solely on using the 3D T1w MR images
obtained during the third wave (HUNT3) (Håberg et al.,
2016) in 2009 to predict images from the fourth wave
(HUNT4) collected in 2018. The HUNT3 images were
obtained using a 1.5T General Electric scanner with a
resolution of 1.25×1.25×1.20 mm3, while the HUNT4
images were acquired using a 3T General Electric scan-
ner with an isotropic resolution of 1 mm. Appendix A
provides more information about HUNT3 and HUNT4
T1w MR scans. In this study, we randomly divided the
dataset into two main sets for training and testing, with
620 and 83 individuals respectively. Depending on the
method employed, validation subsets were also taken
from the training set.

3.2. Preprocessing

Given that the baseline and follow-up were obtained
nine years apart and with different magnetic field
strengths, we harmonized the whole dataset applying
a preprocessing. This was performed using FreeSurfer
tools (Fischl, 2012) and its deep learning implementa-
tion FastSurfer (Henschel et al., 2020).
We began the preprocessing by converting the images
to 1mm isotropic MP-RAGE format using the SyntSR
tool. This was done for both HUNT3 and HUNT4 im-
ages, as employing this network also facilitated bias
field correction and contrast standardization, as indi-
cated in the original work (Iglesias et al., 2023, 2021).
Then, we aligned the individuals to the MNI-ICBM
152 2009c space (Fonov et al., 2011, 2009) using
affine registration with mri robust register (Reuter et al.,
2010). To ensure that each individual’s baseline was
adequately aligned with their follow-up, we first regis-
tered the baseline to the MNI space and then registered
the follow-up to its corresponding registered baseline
scan. Finally, we performed skull stripping using Synth-
Strip (Hoopes et al., 2022), followed by normalization
to extract only the brain region within an intensity range
of [0, 1]. During preprocessing, we obtained two brain
masks, with and without the cerebellum, and three types
of tissue segmentation. The first segmentation included
the 3 primary tissues: CSF, GM, and WM. The second
segmentation delineated 35 tissues, incorporating sub-
cortical structures, while the third segmentation encom-
passed 95 tissues, including both subcortical structures
and various cortical regions. The final size in voxels of
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the resulting baseline and follow-up images, along with
their segmentations and masks, was 193 × 229 × 193.
Figure 1 shows the complete preprocessing pipeline and
the results of the obtained images.

Figure 1: Preprocessing Pipeline: Steps performed during prepro-
cessing and the obtained brain masks and segmentations.

Notation and Main Objective

Hereafter, we will refer to the training set for the base-
line scans as T X0 and for the follow-up scans as T X1,
while the test set is referred to as X0 for the baseline
and X1 for the follow-up scans. Our primary objec-
tive is to find x̂1, the best possible approximation of
x1 ∈ X1, based on the corresponding baseline x0 ∈ X0.
To achieve this, we employed several methods derived
from the two main families of longitudinal brain predic-
tion, which are detailed in the subsequent sections.

3.3. DF-Based Methods

Hypothesis — Our primary hypothesis for this fam-
ily of methods is that the brain changes of an individual
from a specific population could be predicted using the
brain changes of other individuals from the same popu-
lation.

The first step to verify our hypothesis was an inter-
individual statistical analysis. We evaluated the simi-
larity in both baseline and follow-up scans to determine
if individuals with similar brain structures at baseline
maintained this similarity at follow-up in our dataset.
For each individual I0, we identified the individual I1
with the highest baseline similarity to I0, and checked if
I1 remained the most similar to I0 at follow-up or was
among the top N most similar individuals. Table 1 and
Fig. 2 shows the results of this analysis. To compute
the similarity between individuals, we tested two met-
rics: the Structural Similarity Index (SSIM) introduced
by Wang et al. (2004), which ranges from -1 to 1, where
1 indicates perfect similarity, 0 indicates no similarity,
and -1 indicates perfect anti-correlation; and the mean
Dice coefficient across the three main tissues, which
ranges from 0 to 1, where 1 indicates perfect overlap.
For two tissues A and B, the Dice coefficient is defined
as follows:

dice =
2|A ∩ B|
|A| + |B|

We tested these two metrics to capture different as-
pects of brain structure similarity. SSIM provides a
global assessment of structural information and visual
quality, while the Dice coefficient focuses on tissue cor-
respondence.

Table 1: Inter individual similarity consistency (%)

Metric MS Top3 Top5 Top10 Top15

SSIM 67 93 97 99 100
Mean dice3 58 82 91 96 99

Probability that I1 is the most similar (MS) to I0 at follow-up or is
among the topN most similar individuals using different similarity
metrics.

Figure 2: Inter-Individual Similarities. Similarity between I0 and I1
at baseline and follow-up for all individuals using different metrics.

Results in Table 1 demonstrated that I1 was consis-
tently identified as the most similar individual to I0 at
follow-up with a probability of 67% using SSIM and
58% using the mean Dice coefficient. Additionally, I1
was among the top5 with over 90% probability using
both metrics. Furthermore, as shown in Figure 2 the
similarity between I0 and I1 remained stable from base-
line to follow-up. These results confirmed that individ-
uals with similar brain structures at baseline maintained
this similarity at follow-up in our dataset and motivated
us to proceed with the second part of the hypothesis
evaluation.

For this second part, we obtained a dataset of DFs
from the training data, which we called T D f with td f as
one of its elements. This was achieved by applying non-
rigid registrations to the images of T X0 towards their
corresponding images in T X1 using Elastix (Klein et al.,
2009). For these registrations, we used B-Spline trans-
formations with advanced normalized cross-correlation
as the similarity metric and a pyramidal approach. Ad-
ditional information about the registration can be found
in Appendix B.

Next, we calculated an average DF from n td fi, i ∈
[1, n], and used it to register the images of X0. The ob-
tained registered scans indicated an improvement in all
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individuals compared to the initial differences between
the baseline and follow-up scans. The results showed
a mean improvement of 4.1% for the Dice coefficient
of the CSF, as well as 0.7% and 0.5% for the GM and
WM, respectively. The image similarity based on the
SSIM also improved by 0.8%. More details about these
results can be found in the Results Section 4.2. These
findings confirmed that the use of an average DF, based
on a subset of a population, can effectively infer some
brain changes in the remaining population, corroborat-
ing our initial hypothesis. This prompted us to develop
our DF-based methods explained in the following sec-
tions.

Objective — Our objective with the following four
methods is to infer d̂ f , a DF that explains the longitu-
dinal volumetric changes, allowing us to register x0 to
obtain x̂1. We base these methods on multi-atlas tech-
niques and an adaptation of the K-Nearest Neighbors
algorithm to combine the elements of T D f and obtain
d̂ f .

3.3.1. Similar Images

Here, we attempted to use image similarity to infer d̂ f .
Initially, we calculated the similarity s between x0 and
each tx0 ∈ T X0, selecting the n most similar tx0i with
their corresponding td fi, i ∈ [1, n]. Subsequently, we
weighted the td fi with their respective normalized si and
computed their average, resulting in d̂ f (see Equation
(1)). In the implementation of the method, we used L1
normalization. Additionally, we tested different similar-
ity metrics and values for n to evaluate their impact on
the final predictions.

d̂ f =
∑n

i=1 si · td fi∑n
i=1 si

(1)

3.3.2. Similar Images with Registration

In this method, we followed a similar approach to the
previous one, but with one key difference: after iden-
tifying the n td fi, we registered them to the x0 space
before computing the weighted average (see Equation
(2)). We adopted this approach because we considered
that obtaining a more precise alignment of the starting
point of each vector from a given td fi with respect to the
image x0 might result in a more accurate deformation of
certain tissues. To register a td fi to the x0 space and ob-
tain td fix0 , we first applied a registration of txi to x0 to
obtain the necessary deformation, and subsequently ap-
plied it to the corresponding td fi. All registrations were
made using Elastix, and we tested two different types of
registration, affine and B-spline.

d̂ f =
∑n

i=1 si · td fix0∑n
i=1 si

(2)

3.3.3. Similar Patches

In this approach, we aimed to infer d̂ f by patches to
capture more anatomical variability. First, we obtained
m overlapping uniform patches p of size w that cov-
ered the entire x0. Similarly, we proceeded with all
tx0 and their corresponding td f , generating tp and td f p
respectively. Then, given a patch p j, j ∈ [1,m], we
calculated the similarity s between p j and each tp j.
Next, we selected the n most similar tp j and finally we
computed the weighted average of their corresponding
td f p j to obtain d̂ f p j ∈ d̂ f . This process was repeated
for each p j to reconstruct the complete d̂ f (see Equa-
tion (3)). During reconstruction, we used a spline-based
method to address overlapping, which helped minimize
artifacts in the overlapping areas. In this approach, we
set w = 32 and an overlap of 50%, both values were
experimentally favorable. During the evaluation of the
method, we used different values of k and n to assess
their effects on the final prediction.

d̂ f =
⊕m

j=1
d̂ f p j (3)

Where
⊕

denotes the operation of patch concatena-
tion with overlap, and each d̂ f p j is constructed as fol-
lows:

d̂ f p j =

∑n
i=1 s ji · td f p ji∑n

i=1 s ji

The similarity metric used between patches is based
on a weighted Dice coefficient with k tissues, as ex-
plained in the following equation:

s j =

∑k
q=1(wq + a1q + a2q) · diceq(p j, tp j)

2 +
∑k

q=1 wq
(4)

Where diceq(x, y) is the Dice coefficient for tissue q
between the segmentation with k tissues of x and y; a1q

and a2q are the areas of tissue q with respect to the patch
size; and wq is a weigh given to each tissue.

3.3.4. Similar Tissues

Here, we aimed to reconstruct d̂ f by tissues to allow
variability and ensure that each individual tissue de-
forms consistently. To do this, we used the segmentation
with k tissues segk0 of x0 as well as the segmentations
tsegk0 of tx0 and reconstructed a unique DF for each tis-
sue, subsequently combining them to form d̂ f . This was
done very similarly to the patch approach 3.3.3 but with
tissue regions instead of patches (see Equation (5)). In
this case, there was no overlapping since segk0 contains
mutually exclusive tissues. The used similarity metric
between the tissues was the Dice coefficient, and during
the evaluation, we used different values of k and n.

d̂ f =
⋃k

j=1
d̂ f seg j (5)
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Where
⋃

denotes the operation of tissue concatena-
tion and each d̂ f seg j is constructed as follows:

d̂ f seg j =

∑n
i=1 si · td f seg ji∑n

i=1 si

3.4. GANs-Based Methods

Objective — Our primary objective with the follow-
ing four methods is to train a GAN to predict T X1 from
T X0, enabling it to learn to infer longitudinal structural
changes. This way, given an x0, the network’s generator
can predict x̂1. To this end, we implemented the archi-
tectures proposed by Peng et al. (2021), Huang et al.
(2022), and Choi et al. (2020) and adapted them to our
objective. In the following methods, we refer to t̂x1 as
a predicted image during training and tx1 ∈ T X1 as the
expected image.

3.4.1. MPGAN

In this approach, we used the multi-contrast perceptual
adversarial network MPGAN proposed by Peng et al.
(2021). Originally, this network was built to predict lon-
gitudinal changes in infant brains during the first year of
life, which undergo quite different changes compared to
adult aging brains (Huang et al., 2022). In the original
paper, they proposed a simple architecture and a multi-
modal one; in our case, we only implemented the first
one given our dataset.

Network Architecture — The MPGAN architecture
consists of three main components: A Generator (G) us-
ing a U-Net architecture with residual blocks in both the
encoder and decoder; a Discriminator (D) that is a clas-
sifier composed of convolutional layers followed by an
output layer with sigmoid activation; and a pre-trained
feature extractor (ϕ) to extract perceptual features. To
build ϕ they used the encoder part of the architectured
proposed by (Zhou et al., 2019) which is a U-Net model
trained with 3D medical images.

Loss Functions — The original paper proposed three
loss functions: An adversarial loss (Ladv), original to
GANs (Goodfellow et al., 2014), which helps t̂x1 ap-
proach the distribution of T X1. A voxel-wise recon-
struction loss (Lvr), as introduced in Isola et al. (2018b),
which ensures consistency between t̂x1 and tx1 by pe-
nalizing voxel-to-voxel differences with an L1 loss.
Finally, a perceptual loss (Lp), which helps produce
sharper and more detailed images by penalizing the dif-
ference between the features extracted from t̂x1 and tx1
using ϕ. The total loss function used is the following:

Ltotal = Ladv + αLvr + βLp (6)

Implementation Details — We used TensorFlow
and built the proposed architecture from scratch follow-
ing the instructions of the original paper, as a functional
source code was not available. The Adam optimizer
(Kingma and Ba, 2017) with an initial learning rate of
2e-4 was employed, and we applied a decay of 0.5 and
a patience of 10 epochs based on the validation loss.
The trade-off coefficients α and β were both set to 25, as
proposed in the original paper.

To train the network, we used 80% of the images
from T X0 for training and 20% for validation in each
epoch. The training process was conducted for a to-
tal of 100 epochs with a batch size of 1, applying early
stopping with a patience of 10 to avoid overfitting. In or-
der to save GPU memory and train the model using the
complete 3D volumes, we used TensorFlow Mixed Pre-
cision, which employs both 16-bit and 32-bit floating-
point types during training.

3.4.2. MPGAN + Segmentation Loss

Here, we used the same MPGAN network explained
in the previous section 3.4.1, with the addition of a
segmentation similarity constraint. This was done to
increase the similarity of the three main brain tissues
(CSF, GM, WM) between t̂x1 and tx1. In this way, we
ensured that global structures and specific tissue details
remained consistent, improving the accuracy of seg-
mentation and the structural quality of the generated im-
ages.

Loss Functions — To calculate the segmentation loss
(Lseg), we used a dice-based loss between the segmenta-
tion with three tissues of t̂x1 and tx1 as shown below:

Lseg = 1 − 1
3

(
diceCSF(t̂x1, tx1)

+ diceGM(t̂x1, tx1)
+diceWM(t̂x1, tx1)

)
(7)

Where diceq(x, y) is the same as used in Equation (4).
For tx1, the segmentation with three tissues obtained
during preprocessing was used. However, for t̂x1, we
had to calculate the segmentation during training. To
achieve this, we used a Gaussian Mixture Model with
priors based on the mean and variance of the tissues
from tx1. This allowed to calculate a segmentation for
CSF, GM, and WM quickly and easily, with the possi-
bility of gradient propagation in the loss function. Fi-
nally, we modified the total loss function as follows:

Ltotal = Ladv + αLvr + βLp + γLseg (8)

Implementation Details — The implementation was
similar to the one described in the previous section
3.4.1, with the only difference being that we adjusted
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α, β, and γ to 25, 20, and 15 respectively. These values
were found to provide the best results for the validation
set.

3.4.3. MGAN

For this method, we used the metamorphic generative
adversarial network (MGAN) proposed by Huang et al.
(2022). Similar to Peng et al. (2021), the original objec-
tive was to predict longitudinal changes in infant brains
during the first year of life. However, in this work a 3D
patch-based approach using spatial and frequency do-
mains to capture metamorphic changes is proposed.

Network Architecture — The MGAN architecture
is based on a CycleGAN (Zhu et al., 2020) and consists
of two generators and two discriminators. Each gen-
erator includes an encoder, a spatial-frequency transfer
block (SFT), and a decoder. The SFT is a dual-branch
structure that captures and transforms information in
both spatial and frequency domains. For the spatial do-
main, residual modules in series are used, and for the
frequency domain, a discrete wavelet transform (DWT)
is applied, followed by residual modules in series and
finally an inverse DWT. This allows the preservation of
structural and contrast details of the tissues throughout
the reconstruction. On the other hand, the discrimina-
tors have a U-shaped architecture and generate voxel-
level quality probability maps, guiding the generators to
focus on the most challenging regions. Both the dis-
criminators and generators use deep supervision in the
decoder to strengthen the gradient flow and promote
the learning of useful representations at multiple scales
(Karnewar and Wang, 2020). It is worth noting that due
to the cyclical nature of the network, it would also be
possible to predict the baseline from the follow-up, but
we did not use this functionality.

Loss Functions — The loss functions used in the pa-
per include an adversarial loss (Ladv), a paired loss (Lp),
and a cyclic loss (Lcyc) at different resolutions. The Ladv,
has the same objective as explained earlier. The Lp con-
sists of several components: a quality loss (LQ), which
penalizes voxel-to-voxel differences with an L1 loss, us-
ing the discriminator results to focus on the more chal-
lenging regions to predict; a texture loss (LT ), which en-
sures that the texture of t̂x1 is similar to that of tx1; and
a frequency loss (LF), which compares the wavelet rep-
resentations between t̂x1 and tx1 to preserve structural
details. Finally, the cyclic loss (Lcyc), original to Cycle-
GANs (Zhu et al., 2020), ensures cyclical consistency
between the generated and real images, warranting that
a transformed image, when reverted, is similar to the
original. The total loss function implemented at each
scale is the following:

Ltotal = Ladv + αLp + βLcyc (9)

Where:

Lp = LQ + aLT + bLF (10)

Implementation Details — We used TensorFlow
and built the proposed architecture from scratch follow-
ing the instructions of the original paper, as the source
code was not available. The Adam optimizer (Kingma
and Ba, 2017) with an initial learning rate of 1e-4 was
employed, and we applied a decay of 0.5 and a patience
of 10 epochs based on the validation loss. The trade-off
coefficients for α, β, a, and b were set to 1, assuming
these values were used in the original paper since they
were not explicitly mentioned.

To train the network, we extracted patches of size
64 × 64 × 64 with 50% overlap from the images of
T X0. These patches were selected to contain at least
15% brain tissue to avoid creating background-biased
generators. The training process was conducted for a
total of 10,000 epochs with a batch size of 1, ensuring
that all patches from 80% of T X0 were used for training,
while the remaining 20% were reserved for validation.

3.4.4. StyleGAN

In this method, we used the StarGAN-V2 network pro-
posed by Choi et al. (2020). This network was origi-
nally designed for style transfer between multiple do-
mains with diversity in the generated images using a
single Generator. In our case, we adapted the network
similar to the work of Gadewar et al. (2023), to predict
x̂1 from x0 and a desired style s, taken from an element
of T X1.

Network Architecture — The StarGAN v2 architec-
ture is based on four main elements: a generator (G), a
mapping network (F), a style encoder (E), and a dis-
criminator (D). G uses a U-Net-like architecture with
an encoder, bottleneck, and decoder constructed with
residual blocks. The style s is injected into the decoder
during the image reconstruction using adaptive instance
normalization (Huang and Belongie, 2017). F is a mul-
titask multilayer perceptron that generates a style code
s from a latent vector z and a domain y. In our imple-
mentation, z is a vector randomly sampled from a Nor-
mal Gaussian Distribution, and y is an integer indicating
whether the style belongs to the baseline or the follow-
up. E is a multitask encoder that, given an image and
its corresponding domain, extracts the style code s. Fi-
nally, D is a multitask discriminator that differentiates
between real and generated images of a domain y. In
this context multitask refers to the fact that the network
has different output branches, one for each domain y. It
is worth noting that all the networks were trained simul-
taneously. Due to the network’s design, it is also possi-
ble to predict the baseline from the follow-up. However,
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similar to the previous method, we will not focus on that
functionality.

Loss Functions — The proposed loss functions con-
sist of an adversarial loss(Ladv) and a cyclic loss (Lcyc)
with the same purpose as in the previous methods; a
style reconstruction loss (Lsty) that forces the generator
to use the style code s when generating the image, ex-
tracting and comparing the style of t̂x1 with the desired
style; and a style diversification loss (Lds) that encour-
ages the production of diverse images by regularizing
the generator to explore different styles. The total loss
function used is the following:

Ltotal = Ladv + λcycLcyc + λstyLsty + λdsLds (11)

Implementation Details — We used the code pro-
posed by the original paper implemented in PyTorch
and adapted it to our dataset. The training parameters
we used were exactly the same as those proposed in the
original paper.

To train the network, we used 2D slices extracted
from the sagittal plane of T X0 and T X1. The 2D
slices were extracted to contain at least 15% brain tissue
to avoid creating a background-biased generator. The
training process was conducted for a total of 100,000
epochs with a batch size of 4. It is worth mentioning
that the dataloader we designed ensured that the net-
work was trained with slices aligned among individuals.

3.5. Post-Processing

After obtaining the results, we applied post-processing
to remove artifacts introduced during prediction, en-
hance overall image quality, and obtain brain masks and
segmentations to evaluate the results. This was per-
formed differently for both families:

• DF-Based Methods: We applied the brain mask
and normalized the brain area to eliminate edge ar-
tifacts caused by interpolation during the registra-
tion. To obtain the brain masks and segmentations
the initial segmentations and brain masks were reg-
istered with Elastix using the inferred DF.

• GAN-Based Methods: Here, we first processed
the images with SynthSR to eliminate common
GAN artifacts (Lee et al., 2023) and correct errors
in image reconstruction from 3D patches (MGAN
3.4.3) or 2D slices (StyleGAN 3.4.4). Then, we
performed skull stripping, followed by normaliza-
tion in the brain area to remove the skull and back-
ground added by SynthSR. Finally, to obtain the
brain masks and segmentations we used FastSurfer.

Computational Resources

For preprocessing and postprocessing, we used
FreeSurfer installed on a Linux Ubuntu 18 PC with an
Intel(R) Core(TM) i7-7700 CPU and 32GB of RAM,
and FastSurfer Docker-version on a Windows 11 PC
with a Intel(R) Core(TM) i9-12900H CPU, 32GB of
RAM, and an NVIDIA GeForce RTX 3060 GPU with
6GB. For training deep learning methods, we utilized
the High Performance Computing cluster at NTNU
(IDUN). Specifically, we used clusters with NVIDIA
V100 16GB GPUs for models trained using 2D slices
and patches, and clusters with NVIDIA A100 40GB
GPUs for models trained with full 3D volumes.

4. Results

In this section, we present the predicted scans obtained
for each method using the test set. These predictions are
evaluated with respect to the actual follow-up scans to
verify their exactitude. To help the reader have a com-
prehensive overview of the evaluation we performed to
choose the best method for each family and overall, we
have structured this section in three main parts: First,
we present the initial similarity between the baseline
and follow-up scans of each individual and use it as the
lower bound (LB), as it is expected that the results from
the implemented methods will surpass this. Second, we
present the results for each family separately and choose
the best among them. Finally, we compare the best re-
sults from each family, conducting a more exhaustive
analysis to decide the overall best method.

Evaluation Metrics

During the evaluation of the results, we used various
comparison metrics based on global image similarity,
cerebral tissue segmentation, and brain atrophy.

To choose the best method for each family, we used
SSIM and the mean Dice coefficient of the three main
tissues. This allowed us to quickly and accurately se-
lect the best results based on global structure and tissue
correspondence.

For the more detailed analysis, we used the Dice
coefficient, the Absolute Symmetrized Percent Volume
Change (ASPVC), the Volume Fraction (VF), and the
Brain Parenchymal Fraction (BPF). ASPVC has been
used in other analyses of structural changes as it pro-
vides a dimensionless measure of variability between
tissues (Khanal et al., 2016). For two tissues A and B,
ASPVC is defined as:

ASPVC =
|A − B|

0.5(A + B)
· 100%

On the other hand, VF helped us evaluate whether
there was an increase or decrease in tissue volume. For
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a tissue A, VP is defined as:

VF =
A

Inter cranial volume
· 100%

Finally, we used BPF to compute the atrophy inferred
from the predicted scans, which is typically defined as
the ratio of brain parenchymal volume to the intracranial
volume. In our case, we computed the BPF using the
GM and WM volumes (VGM , VWM), excluding cerebel-
lum regions from the segmentation with three tissues,
and the brain mask without cerebellum (Bmaskncrb), as
follows:

BPF =
VGM + VWM

Bmaskncrb

It is important to note that, for calculating both the
BPF and the VF, we used the intracranial volume from
the baseline scan to avoid potential segmentation er-
rors. This approach is supported by extensive research
demonstrating that total intracranial volume remains
constant with aging (Brezova et al., 2014; Hansen et al.,
2015; Pintzka et al., 2015).

Significance Evaluation

To determine if the results of our methods were signif-
icantly different from the LB, we performed a paired
t-test and we considered p-values below 0.01 to be sta-
tistically significant.

4.1. Initial Similarity

We started by evaluating the initial similarity between
baseline and follow-up scans, setting this as LB for our
methods. Table 2 and Figure 3 illustrate these initial
similarities, providing a foundation for subsequent anal-
yses.

Table 2: Initial Similarities Between Baseline and Follow-up Scans

Initial SSIM % ↑ Mean dice %
CSF ↑ GM ↑ WM ↑

LB 94.6 ± 1.0 84.3 ± 4.8 80.5 ± 2.6 90.0 ± 1.8

Initial similarity metrics between baseline and follow-up scans, in-
cluding SSIM and mean Dice coefficient for CSF, GM, and WM. The
shown values are the mean of the test set, and the ± values represent
the standard deviation. ↑ indicates that higher values are better.

4.2. Family-Wise Results

4.2.1. DF-Based Results

Hypothesis results — Before implementing the DF-
based family of methods we evaluated our primarily hy-
pothesis with different values for n to verify its influence
and modify this parameter in the actual methods. Table
3 shows the similarity of these results with the actual
follow-up.

Figure 3: Baseline and Follow-up Scans. (A) shows the T1w scans in
the first row and the segmentation of the three main tissues (CSF, GM,
and WM) in the second row. (B) shows the difference image between
the baseline and the follow-up; the lighter the color in a region, the
more differences are present.

Table 3: Hypothesis Results - Similarities with Follow-up

n SSIM % ↑ Mean dice%
CSF ↑ GM ↑ WM ↑

10 95.1 ± 0.8 87.8 ± 3.1 *80.8 ± 2.1 90.4 ± 1.3
100 95.3 ± 0.8 88.4 ± 3.0 81.2 ± 2.3 90.5 ± 1.4
200 95.3 ± 0.8 88.3 ± 3.0 81.3 ± 2.3 90.5 ± 1.5
300 95.3 ± 0.8 88.3 ± 3.0 81.3 ± 2.3 90.5 ± 1.5
620 95.4 ± 0.8 88.3 ± 3.1 81.3 ± 2.3 90.5 ± 1.5

Similarity metrics between hypothesis predictions and actual follow-
up scans using different values for n. * indicates p-values > 0.01.

The results obtained indicate a slight improvement
between n = 10 and n = 100 but for n > 100, the
changes are extremely small or negligible.

DF-Based Methods Results — For each method in
this family, we evaluated different settings. For the Sim-
ilar Images method 3.3.1, we tested two similarity met-
rics (SSIM and the mean Dice coefficient) and three val-
ues for n = [5, 10, 100]. In the Similar Images with Reg-
istration method 3.3.2, we evaluated two types of regis-
trations (affine and non-rigid using B-Splines) and set
n = 5. It is worth mentioning that the B-spline registra-
tion parameters were chosen to prioritize faster registra-
tion times over exhaustive optimization. For the Similar
Patches method 3.3.3, we used different numbers of tis-
sues k = [3, 95] to evaluate similarity between patches
and two values for n = [10, 100]. The hyperparameter
w in Equation 4 was set to 1 for all the tissues. Finally,
for the Similar Tissues method 3.3.4, we tested different
numbers of tissues to create the DF k = [3, 95] and two
values for n = [10, 100]. Table 4 shows the similarity
with the follow-up for each method with their respec-
tive settings, and Figure 4 shows the predictions using
the best setting for each method.

In this family of methods, all segmentation results
were calculated using the registered segmentations.
However, for the best method, the segmentation was re-
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calculated from the predicted image using FastSurfer to
avoid interpolation errors in discrete values caused by
the registration. This result is also shown in Table 4
along with results obtained using ground truth deforma-
tions from the baseline to the follow-up scans through
non-rigid registration with Elastix. This latter result
could be interpreted as an upper bound (UB) for this
family of methods.

Table 4: DF-Based Methods Results - Similarities with Follow-up

Method SSIM % ↑ Mean dice %
CSF ↑ GM ↑ WM ↑

Images
ssim 5 95.3 ± 0.7 89.7 ± 2.3 81.1 ± 2.1 90.7 ± 1.4
ssim 10 95.4 ± 0.7 89.8 ± 2.4 81.5 ± 2.2 90.9 ± 1.4
ssim 100 95.4 ± 0.8 89.6 ± 2.7 81.5 ± 2.3 90.9 ± 1.5
dice 5 95.3 ± 0.7 89.6 ± 2.8 81.1 ± 2.1 90.7 ± 1.3
dice 10 95.4 ± 0.7 89.8 ± 2.8 81.4 ± 2.1 90.9 ± 1.3
-dice 100 95.4 ± 0.7 89.7 ± 2.8 81.6 ± 2.2 90.9 ± 1.3

Images Reg
aff dice 5 95.3 ± 0.7 89.8 ± 2.9 81.2 ± 2.1 90.7 ± 1.3
-bsp dice 5 95.4 ± 0.7 90.1 ± 3.0 81.8 ± 2.1 90.9 ± 1.3

Patches
seg3 10 95.5 ± 0.7 90.4 ± 2.8 82.1 ± 2.2 91.2 ± 1.4
seg3 100 95.5 ± 0.8 90.1 ± 2.9 82.1 ± 2.2 91.1 ± 1.4
-seg96 10 95.5 ± 0.7 90.5 ± 2.8 82.2 ± 2.2 91.2 ± 1.4
seg96 100 95.5 ± 0.8 90.2 ± 2.9 82.1 ± 2.2 91.1 ± 1.4

Tissues
seg3 10 95.5 ± 0.7 90.3 ± 2.5 81.6 ± 2.2 91.1 ± 1.4
seg3 100 95.5 ± 0.8 90.0 ± 2.7 81.7 ± 2.3 91.1 ± 1.4
-seg96 10 95.5 ± 0.7 90.4 ± 2.6 81.7 ± 2.3 91.1 ± 1.4
seg96 100 95.5 ± 0.8 90.1 ± 2.7 81.7 ± 2.3 91.1 ± 1.5

Best post 95.5 ± 0.7 92.2 ± 2.8 84.1 ± 2.4 92.2 ± 1.5

UB 97.1 ± 0.3 94.8 ± 1.4 86.9 ± 0.7 93.7 ± 0.3
Similarity metrics between DF-based methods predictions and follow-
up scans using different settings for each method. In the table, the
methods are referred to as Images, Images Reg, Patches, and Tis-
sues for Similar Images, Similar Images with Registration, Similar
Patches, and Similar Tissues methods, respectively. ’-’ indicates the
best method of each family, and the overall best method is indicated in
bold. Best post and UB refer to the best method with the recalculated
segmentation and the Upper Bound, respectively. ↑ higher is better.

As shown in Table 4 and Figure 4, all the results
improved with respect to the LB and exhibit p-values
< 0.01. The results of the methods are very similar
when varying their hyperparameters. Despite this sim-
ilarity, the patch-based and tissue-based methods show
slight improvements over the others, particularly in CSF
and GM for the patch-based method with 96 tissues and
n = 10, which led us to select it as the best DF-based
method.

4.2.2. GAN-Based Results

The next experiments we performed were using the
GAN-based family. For the MPGAN 3.4.1 and MP-
GAN + Segmentation Loss 3.4.2 methods, we per-
formed inference on the whole volume by feeding the
network with the baseline scans. For the MGAN

Figure 4: DF-based Methods Predictions. (A) Predictions of the
DF-based methods using their best settings, including the segmenta-
tions of the three main tissues and the difference images with respect
to the follow-up scans. (B) Prediction of the best method with the
segmentation recalculated and prediction using ground truth deforma-
tion.

method 3.4.3, we extracted patches of size 64x64x64
with 50% overlap from the entire baseline scans, gener-
ating predictions for each patch. These patches were
then assembled back together to create the complete
volume. Similar to the method described in section
3.3.3, a spline-based method was used to handle the
overlapping between patches and reduce the artifacts at
the borders. Finally, for the StyleGAN method 3.4.4,
since it required a style image to make the prediction,
we selected the most similar baseline scan from our
training set for each baseline scan in the test set and used
its corresponding follow-up as the style. For each pair of
images, we extracted slices from the sagittal plane and
generated predictions for each slice. These slices were
then stacked back together to reconstruct the complete
volume.

After obtaining the predictions, we applied postpro-
cessing to all the methods and then calculated the sim-
ilarity results with the follow-up scans. These results
are shown in Table 5, and the predicted images are dis-
played in Figure 5.

As shown in Table 5 and Figure 5, the predictions
of most methods show results worse than the LB, with
the MPGAN + Segmentation Loss method 3.4.2 being
the only one that improved all metrics with a p-value <
0.01. Therefore, we selected it as the best GAN-based
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Table 5: GAN-Based Methods Results - Similarities with Follow-up

Method SSIM % ↑ Mean dice%
CSF ↑ GM ↑ WM ↑

MPGAN 92.1 ± 0.9 88.1 ± 3.1 72.2 ± 2.0 86.2 ± 1.6
MPGAN+seg 94.9 ± 0.7 90.7 ± 3.2 81.4 ± 2.2 91.0 ± 1.3
MGAN 92.6 ± 0.9 89.2 ± 2.9 72.7 ± 2.0 87.1 ± 1.5
StyleGAN 92.8 ± 0.8 *82.4 ± 7.9 75.2 ± 1.8 87.1 ± 1.1

Similarity metrics between GAN-based methods predictions and
follow-up scans. The best method is indicated in bold, and values
lower than the LB are underlined. * indicates p-values > 0.01. ↑
higher is better.

Figure 5: GAN-based Methods Predictions. Predicted T1w images,
segmentations of the three main tissues, and difference images with
respect to the follow-up scans.

method.

4.3. Best Methods Evaluation

Tissue Based Analysis — After selecting the best
methods from each family, we conducted analyses
based on cortical and subcortical structures to assess the
ability of the predictions to capture subtle details. The
structures selected for this analysis are presented in Fig-
ure 6. First, we assessed the volumetric changes of each
structure using the VF to verify if the volumetric expan-
sions or contractions were as expected. These results
are shown in Table 6. Subsequently, we assessed the
overlap and the volume differences between the struc-
tures from the predicted image and the actual follow-up
using the Dice coefficient and ASPVC. These results are
shown in Table 7 and 8.

Atrophy Analysis — We also performed an analy-
sis based on the BPF to verify if the brain atrophy in
the predicted images was similar to that in the actual
follow-ups. During this analysis, we divided the test set
into three groups with high, medium, and low BPF. This
division allowed us to evaluate the predicted results for
each group and verify the methods’ performance. The
results of this evaluation are presented in Figure 7.

Visual Results — Finally, we performed a visual in-
spection to determine if the computed metrics were con-
sistent with the predicted scans. Figure 8 shows the
predicted images of three individuals from each atro-
phy group. In this inspection, we also took into account
the obtained segmentation highlighting the cortical and
subcortical structures studied, as well as the difference
image between the predictions and the actual follow-up.

Figure 6: Brain Structures Relevant to Brain Aging. Eleven struc-
tures known to undergo marked changes with aging, used in this work
to evaluate the accuracy of the predictions.

5. Discussion

Our research focused on determining the feasibility of
predicting structural brain changes in healthy adults of
around 60 years old over a nine-year period using 3D
T1w MR images. We aimed to compare the accu-
racy of DF-based methods and GAN-based methods in
predicting brain changes, evaluate their predictions in
terms of image similarity, regional brain changes ac-
curacy, and overall atrophy measured by the BPF, and
assess their reliability in capturing the subtle and vari-
able changes associated with healthy aging. As the re-
sults indicate, predicting brain changes during aging in
a healthy population is indeed feasible, thereby answer-
ing our first research question. For almost all metrics,
the best DF-based method outperformed the best GAN-
based method. This suggests that DF-based methods
remain superior for predicting longitudinal changes, as
supported by our literature review.

5.1. Best Methods Comparison

Both visual and metrics results revealed that the DL
and GAN methods effectively captured the volumetric
changes of the ventricles. Similarly, the DF method
accurately predicted changes (p-value < 0.01) in brain
structures known to undergo marked changes in aging,
particularly the thalamus and cortex (Choi et al., 2022;
Fujita et al., 2023; Raz et al., 2005), as can be seen in
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Table 6: Volume Fraction - Best methods Results

Metric lat. vent. ↑ hippo. thala. cortex ent. cortex inf. temp. sup. par. mid. fron. sup. fron. precuneus cuneus

Baseline 1.83±0.8 0.69±0.1 1.07±0.1 37.5±0.8 0.26±0.0 2.25±0.1 1.57±0.2 1.77±0.1 3.85±0.2 1.41±0.1 0.68±0.1
Follow-up 2.50±1.2 0.68±0.1 1.04±0.1 36.7±0.9 0.26±0.0 2.14±0.1 1.54±0.2 1.68±0.1 3.70±0.2 1.44±0.1 0.70±0.1
Best-DF 2.47±1.0 0.70±0.1 1.03±0.1 37.3±0.8 0.29±0.0 2.24±0.1 1.54±0.1 1.74±0.1 3.75±0.2 1.40±0.1 0.68±0.1
Best-GAN 2.69±1.1 0.66±0.1 0.98±0.1 38.6±0.8 0.28±0.0 2.41±0.1 1.59±0.2 1.77±0.1 3.98±0.2 1.48±0.1 0.68±0.1

Volume Fraction (VF) of the selected tissues for the baseline and follow-up scans and the predictions of the best methods. ↑ indicates that the
volume should increase with respect to the baseline; if no arrow is present, the volumes are expected to decrease. Underlined values indicate that
the volume change is not possible with respect to the baseline.

Table 7: Dice Coefficient % - Best Methods Results

Metric lat. vent. hippo. thala. cortex ent. cortex inf. temp. sup. par. mid. fron. sup. fron. precuneus cuneus

LB 82.6±5.4 90.9±2.7 89.5±3.5 79.3±2.6 79.9±4.6 79.2±2.3 73.2±5.4 70.2±6.6 75.4±4.9 80.5±2.9 77.3±3.5
Best-DF 91.3±3.2 *91.1±2.3 93.4±1.9 83.0±2.5 *81.3±3.9 82.6±2.3 75.9±5.4 78.4±4.3 82.4±7.0 81.6±2.8 *78.0±3.5
Best-GAN 89.7±3.8 89.5±2.6 91.8±1.6 80.1±2.2 78.3±3.8 79.9±2.5 71.4±5.2 76.5±4.5 80.3±6.7 *78.5±2.9 *72.4±3.8

Dice coefficients of the selected tissues between the best methods and the follow-up scans. The initial Dice coefficient of the selected tissues
between the baseline and follow-up scans is also shown as the Lower Bound (LB). The highest Dice coefficients between the best methods are
indicated in bold (these values should also be higher than the LB). Values lower than the LB are underlined. * indicates p-values greater than 0.01.
Note that higher Dice coefficients indicate better performance.

Table 8: Absolute Symmetrized Percent Volume Change - Best Methods Results

Metric lat. vent. hippo. thala. cortex ent. cortex inf. temp. sup. par. mid. fron. sup. fron. precuneus cuneus

UB 29.5±12 2.68±2.4 3.60±2.8 2.41±1.12 4.60±4.7 5.15±2.2 3.61±2.7 5.29±2.7 4.12±2.0 2.45±1.8 3.38±2.5
Best-DF 10.2±7.9 3.28±2.8 3.12±2.5 1.99±1.06 10.4±6.1 5.10±2.4 *2.99±2.1 3.87±2.4 1.79±1.7 2.81±2.0 3.23±2.5
Best-GAN 13.6±9.9 3.29±2.2 *5.94±3.5 5.21±1.45 7.70±6.1 *12.0±3.1 *4.59±3.5 5.44±2.7 7.37±3.0 *3.54±2.6 *3.83±2.9

Absolute Symmetrized Percent Volume Change (ASPVC) of the selected tissues between the best methods and the follow-up scans. The initial
ASPVC of the selected tissues between the baseline and follow-up scans is also shown as the Upper Bound (UB). The lowest ASPVC values are
indicated in bold (these values should also be lower than the UB). Values lower than the UB are underlined. * indicates p-values greater than 0.01.
Note that Lower ASPVC values indicate better performance.

Tables 6, 7 and 8, demonstrating its capability to pre-
dict subtle changes in brain structures undergoing vol-
ume loss during aging. However, for other critical brain
structures in aging, such as the hippocampus, entorhi-
nal cortex, and precuneus, the DF method was unable
to predict volume changes. This discrepancy may be
due to the small size of these structures compared to the
previous two, making them more challenging to predict.
Additionally, there may be some segmentation errors as
we observed unrealistic increases in volume in the ac-
tual follow-up scan in the precuneus and cuneus (see
Table 6). In contrast, the GAN method did not show
consistent predictions for any of these regions across
the three metrics used, indicating a lack of sensitivity
for brain structures other than the ventricles.

In the BPF analysis, the average results indicated
a decrease in BPF in predictions made with the DF
method, suggesting that brain atrophy was captured.
However, in the GAN method, BPF tended to remain
the same or even increase, which is unlikely in the ag-
ing brain of healthy individuals over a nine-year period
(Fujita et al., 2023). The analysis showed that in the
group with low BPF, the GANs results deviate much
more from real predictions than the prediction by DL.
This indicated that the method is less sensitive in indi-
viduals with accelerated brain aging. In contrast, pre-
dictions using the DF method showed that it was robust
for all three BDF groups. These results were expected in
the case of DF-based methods because, if an individual
has low BPF (i.e., marked brain atrophy), the DF meth-

ods apply changes based on individuals with similarly
low BPF, as these would be the most similar, thereby
maintaining this trend in the prediction. The same prin-
ciple applies to individuals with other BPF levels. The
limitations of GANs may stem from the network’s bias
towards subjects with medium BPF fractions. Figure 7
shows that the means of the different groups in the GAN
method are close to each other compared to the DF
method or baseline/follow-up scans. A solution for this
problem could be adding a hyperparameter to the net-
work indicating that the individual has a high, medium,
or low BPF at baseline, forcing the network to main-
tain appropriate BPF levels in predictions. This strategy
has already been implemented in some studies predict-
ing brain changes in patients with Alzheimer’s disease
(Ravi et al., 2019; Xia et al., 2021).

5.2. DF-Based Methods Analysis

A main finding in this family of methods was the val-
idation of our hypothesis, that it is possible to use
brain changes from known individuals to predict brain
changes in others. The proof of our hypothesis is pri-
marily shown in Table 3, but it can also be seen in Table
4 and Figure 4. Comparing the results of the best post-
processed method with the upper bound indicates that
registering with a DF obtained from individuals with
similar structures yields results close to registering with
the ground truth deformations.

As observed in Table 4, variations in results by chang-
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Figure 7: Brain Parenchyma Fraction (BPF) - Best Methods Results. (A) BPF of all individuals for the Baseline (Red), Follow-Up (Purple),
Best DF-based Result (Blue), and Best GAN-based Result (Green). (B) BPF divided into groups by percentiles based on the BPF of the baseline:
High BPF includes the 0-33 percentile (28 individuals), Medium BPF includes the 33-66 percentile (28 individuals), and Low BPF includes the
66-100 percentile (27 individuals).

ing hyperparameters were minimal, mainly affecting
CSF and GM results slightly. However, the differ-
ences between local and non-local methods were much
more pronounced, highlighting the potential of non-
local methods to capture individual deformations and
better adapt to the variability between individuals (Igle-
sias and Sabuncu, 2014), rather than calculating a global
deformation average for the entire brain.

Despite the tissue-based method potentially being a
more targeted approach for brain images, it did not
yield better results than the patch-based method. This
could be because the deformation field was obtained
by non-overlapping tissues, leading to implausible de-
formations at the edges of each tissue due to abrupt
changes that affects the inferred DF (Karacali and Da-
vatzikos, 2006). A possible future solution could be to
individually enlarge each tissue so they overlap and then
calculate an average at their edges, which would avoid
these abrupt deformations.

Another important point is that the B-spline method
produced good visual results with low values for n. This
suggests that performing a more exhaustive B-spline
registration and slightly increasing n could yield even
better metrics. However, this would come with a sig-
nificantly higher computational cost compared to other
methods due to the extra registrations.

5.3. GAN-Based Methods Analysis

For this family of methods, one of the most signifi-
cant finding was that the segmentation layer in the MP-
GAN+seg method outperformed the results of the MP-
GAN and all other GAN methods (see Table 5). More-
over, this was the only GAN method that did not worsen
the lower bound. This demonstrated that guiding GANs
with tissue losses is an effective approach for improv-
ing the accuracy of predictions in brain changes (Zhang
et al., 2018).

An unexpected result was that training with 3D
patches using MGAN yielded slightly better results than

training with the full volume using MPGAN. More no-
tably, the use of 2D slices with StyleGAN achieved su-
perior results in both GM and the global image metric
compared to the previous two methods. These results
could be due to several reasons, but it is likely that one
of the main factors was that training with smaller inputs
allowed the creation of deeper networks that captured
more image features and made more detailed predic-
tions (Brown et al., 2020)

As seen in the results provided by the StyleGAN net-
work, this network tried to preserve the individuals’
identity, but there were still some notable changes in
the overall brain shape that do not usually happen in
brain aging of healthy individuals (see Figure 5). These
problems were not found in the other GAN methos that
used baseline-to-follow-up training with longitudinal
images, allowing better maintenance of the global struc-
ture and the individual’s identity (Peng et al. (2021),
Huang et al. (2022))

5.4. Limitations of the Best Method

Despite the promising results by the best DF method, it
still had some limitations.

First, the volume changes are restricted to possi-
ble variations within the population, making it impos-
sible to capture individuals with changes outside this
range. This limits the ability to observe abrupt changes,
as most individuals in our population exhibit smaller
changes.

Another limitation is that the dataset deformations
have a specific resolution of 193x229x193, making it
impossible to apply this method to new images with dif-
ferent dimensions without rescaling, which can lead to
loss of detail. This issue can potentially be addressed
by creating multi-resolution deformation datasets or by
using deep learning techniques to resize the images,
thereby reducing the loss of information (Umirzakova
et al., 2023).

Finally, as mentioned initially, there was an inability
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Figure 8: Best Methods Predictions. Baseline, Follow-Up, Best DF-based Prediction, and Best GAN-Based Prediction for three individuals.
The axial plane is shown on the left, the sagittal plane in the center, and the coronal plane on the right. Each plane contains the prediction, the
segmentation of the selected tissues (see Figure 6), and the difference with respect to the Follow-Up. (A) Individual with low BPF, (B) Individual
with mean BPF, (C) Individual with high BPF.

to accurately predict changes in small brain regions such
as the hippocampus, entorhinal cortex. This is a signif-
icant drawback, as these regions are crucial for the in-
depth study of structural brain changes in aging (Fujita
et al., 2023).

These three are the main limitations, although we
know there may be others since this method has not
been tested with images from other datasets.

5.5. Challenges of the Project

One of the main challenges of this project was attempt-
ing to predict the evolution of structural brain change
with only two scans, assuming that the baseline scan had
enough information in it to predict the follow-up. How-
ever, despite demonstrating that similar participants ex-

perienced similar brain aging, there were still specific
changes in the brain of each participant that could only
be calculated by having more time points between the
baseline and the follow-up scans to measure the magni-
tude of changes for individuals in each brain region.

Another challenge was that the time between scans
was quite long (around nine years). This causes much
more variability between participants, as brain defor-
mation is heavily affected by each individual’s sociode-
mographic, health, genetics and lifestyle, and over nine
years, many changes can occur (Mulugeta et al., 2022).

Another major challenge, was that most brain
changes were quite subtle for most individuals. This led
to very similar baseline and follow-up scans, making the
visual evaluation of brain volume changes difficult.
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5.6. Future Work

Future research could explore the integration of both
strategies by introducing DF priors into GANs to guide
volumetric changes. Additionally, incorporating diverse
medical data from electronic health records or blood
tests could further enhance the accuracy of these meth-
ods.

Enhancing GANs with segmentations that include a
broader range of tissues, particularly those exhibiting
significant changes during aging, could yield improved
results. This could be accomplished by integrating an
additional tissue segmentation network (Yu et al., 2022)
and incorporating a loss function based on these tis-
sues. However, this approach would necessitate sub-
stantially higher computational resources and result in
slower training times.

Moreover, during this master’s thesis, in collabora-
tion with the computer science department, we experi-
mented with a 2D diffusion model using autoencoders.
The results were comparable to those obtained with the
MGAN method but demonstrated greater stability dur-
ing training. This suggests that future work focused on
diffusion models holds significant promise.

6. Conclusions

This study investigated the prediction of structural brain
changes in healthy adults over a nine-year period using
3D T1-weighted MRI images, comparing DF-based and
GAN-based methods.

DF-based methods, based on the hypothesis that brain
changes in some individuals can be used to predict
changes in others individual from the same population,
utilized multi-atlas techniques to combine volumetric
changes from a subset of the population. Regional
patch-based methods were the most effective.

We implemented four GAN methods based on recent
work predicting brain structure changes in infants and
patients with Alzheimer’s disease, adapting them to our
research questions. These methods aimed to train GANs
to learn aging-related brain changes. However, most
GAN methods were inaccurate in their predictions, with
the exception of one model to which we added segmen-
tation constraints.

Comparing the best methods from each family, DF-
based methods outperformed GAN-based methods in
nearly all metrics, capturing subtle changes in the tha-
lamus and cortex. GAN methods predicted ventricular
changes but lacked sensitivity for other structures. DF-
based methods struggled with small regions like the hip-
pocampus. DF-based methods were robust in predicting
brain atrophy across varying BPF, while GAN methods
were less accurate, especially for low BPF individuals.

This study provides a foundation for future research
in brain change prediction, highlighting the effective-
ness of DF-based methods and suggesting improve-

ments for GAN methods. Future work could explore
combining DF and GAN approaches, incorporating ad-
ditional medical data, guiding GANs with more com-
prehensive segmentations, and exploring diffusion mod-
els.
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A. T1w MR Images Details

Table 9: MRI Sequence Parameters

Dataset Matrix size NSA TR (ms) TE (ms) Flip-angle Slice thickness (mm) Gap (mm) Overlap (mm) FOV (mm)

HUNT3 192x192 1 10.2 4.1 10° 1.2 0 0 240
HUNT4 256x192 - 7.7 3.092 8° 1.0 0 0 256

Parameters of the MRI sequence for HUNT3 and HUNT4 dataset, including matrix size, number of signal averages (NSA), repetition time (TR),
echo time (TE), flip-angle, slice thickness, gap, overlap, and field of view (FOV).

B. Used Parameter for Non-Rigid Registration

Table 10: Parameters Used in the B-Spline Transformation

Parámetro Valor

UseDirectionCosines true
Registration MultiMetricMultiResolutionRegistration
Interpolator BSplineInterpolator
ResampleInterpolator FinalBSplineInterpolator
Resampler DefaultResampler
FixedImagePyramid FixedRecursiveImagePyramid
MovingImagePyramid MovingRecursiveImagePyramid
Optimizer AdaptiveStochasticGradientDescent
Transform BSplineTransform
Metric AdvancedNormalizedCorrelation, TransformBendingEnergyPenalty
FinalGridSpacingInVoxels 4 4 4
NumberOfHistogramBins 32
Metric0Weight 1.0
Metric1Weight 0.1
NumberOfResolutions 2
ImagePyramidSchedule 1 1 1 1 1 1
MaximumNumberOfIterations 1000
MaximumStepLength 0.117188
NumberOfSpatialSamples 2048
ImageSampler Random
BSplineInterpolationOrder 1
FinalBSplineInterpolationOrder 3

Most important parameters used in the B-Spline registration to create the DF dataset used in the DF-based family.
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Abstract

Introduction: Transcatheter Aortic Valve Implantation (TAVI) has become the preferred method for treating severe
aortic stenosis, especially in patients who are unsuitable for traditional surgery. Typically, preoperative imaging for
TAVI involves contrast-enhanced Computed Tomography Angiography (CTA). However, for patients with contraindi-
cations to contrast agents, cardiac magnetic resonance imaging (CMR) is a viable alternative, albeit with its limitations
in visualizing calcifications.
Methods: This study explores the application of diffusion models to enhance CMR-to-CTA image conversion, fa-
cilitating comprehensive TAVI planning without needing contrast agents. We developed a pipeline incorporating
Denoising Diffusion Probabilistic Models (DDPMs) and Score-Matching to synthesize CTA-equivalent images from
CMR scans. This approach was evaluated using an in-house dataset of 39 paired CTA and CMR scans from the Tirol
Kliniken (Innsbruck, Austria) database.
Results: Our results show that the synthesized CTA images maintain high fidelity to their real counterparts, as val-
idated by metrics such as the Structural Similarity Index Measure (SSIM) and Peak Signal-to-Noise Ratio (PSNR),
with values above 0.80 and 22 respectively.
Conclusion: This study highlights the potential of diffusion models in medical imaging, offering a promising solution
for patients unable to receive contrast agents, thereby improving the safety and efficacy of TAVI procedures.

Keywords: Diffusion Models, Segmentation, Registration, CMR-CTA Conversion, Transcatheter Aortic Valve
Intervention

1. Introduction

Aortic Stenosis (AS) refers to the narrowing of the
aortic valve opening and can sometimes be referred to
as a failing heart valve. This condition restricts blood
flow from the left ventricle to the aorta, which may also
impact pressure in the left atrium. While some indi-
viduals may have aortic stenosis due to a congenital
heart defect known as a bicuspid aortic valve, this condi-
tion more commonly develops during aging as calcium
or scarring accumulates, causing damage to the valve
and restricting blood flow. This pathology represents
the most prevalent valvular abnormality in the Western
world, with severe AS affecting 3% of individuals aged
75 or older (Lindroos et al., 1993). Despite its preva-
lence, a substantial proportion of these patients are in-
eligible for aortic valve replacement (AVR) due to high

surgical risk (Fanning et al., 2013).

Transcatheter aortic valve implantation (TAVI), a
minimally invasive technique, has emerged as the gold
standard for treating severe aortic stenosis in patients
unsuitable for surgery or at high surgical risk (Lukas
et al., 2022). It involves the insertion of a new valve
through a catheter, which is typically entered through
the femoral artery and guided to the heart. Once the
catheter reaches the aortic valve, the new valve is po-
sitioned inside the diseased valve and expanded. This
effectively displaces the old, narrowed valve and allows
the new valve to take over the function of regulating
blood flow from the heart to the aorta and the rest of
the body.

The standard pre-imaging workup for TAVI planning
includes Transthoracic and Transesophageal Echocar-
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diography, alongside contrast-enhanced Computed To-
mography Angiography (CTA), to precisely determine
valve size and implantation route (Al-Najafi et al.,
2016). Notably, up to 80% of patients undergoing TAVI
suffer from chronic renal insufficiency

However, contrast agents are contraindicated in pa-
tients with acute or chronic kidney disease (CKD), with
prevalence rates up to 41% for acute kidney injuries and
up to 70% for CKD in TAVI patients (Jhaveri et al.,
2017; Ram et al., 2017). Consequently, there is a critical
need for contrast-free methods for TAVI planning.

TAVI applications of cardiovascular magnetic reso-
nance (CMR) are emerging. CMR can provide the
structural and functional imaging details required for
TAVI procedure (Mahon and Mohiaddin, 2021). CMR
is a viable alternative to CTA, offering comprehen-
sive TAVI planning without the need for iodinated
contrast media and radiation exposure. Despite chal-
lenges in delineating vascular calcifications with CMR,
studies have shown that CMR-guided TAVI is com-
parable to CTA-guided TAVI in terms of implanta-
tion success (Mayr et al., 2018). For instance, Pam-
minger et al. (2020) demonstrated that unenhanced
quiescent-interval single-shot MR angiography (QISS-
MRA) combined with 3D ”whole heart” CMR protocols
can facilitate fully unenhanced TAVI guidance. How-
ever, QISS-MRA does not visualize calcified plaque
burden, depicting only the vessel lumen and not the ves-
sel wall.

An essential consideration is the degree of calcifi-
cation. While CT may overestimate calcium in heav-
ily calcified valves and arteries, CMR may underesti-
mate it (Barbanti et al., 2013). Vascular calcifications
produce very low signal intensity with standard CMR
pulse sequences because of their low free water con-
centration and short T2*. This makes them challenging
to visualize on CMR. The discrepancy could be due to
the blooming artifact that artificially enlarges dense cal-
cifications on CT images. Another possibility is that
the surface regions of a calcification contain mobile wa-
ter spins, which could generate detectable signal inten-
sity and therefore decrease their apparent volume with
PDIP-SOS CMR (Serhal et al., 2018).

Figure 1 shows an example of how the aortic valve
appears in both modalities, with calcifications appear-
ing white in the CT image and black in the CMR image.
Thus, integrating CMR and CT is desirable for compre-
hensive TAVI planning, though using both modalities
simultaneously remains an active research area.

Image synthesis across and within medical imaging
modalities is an evolving field with broad applications
in radiology. Its primary purpose is to streamline clin-
ical workflows by bypassing or replacing an imaging
procedure when the acquisition is infeasible due to con-
straints like contraindications to ionizing radiation. Re-
cent advancements in deep learning have enabled the
development of methods that can be generalized across

Figure 1: Comparison of Aortic Valve Visualization in CT and CMR
Registered Images. In both modalities, calcifications are present (yel-
low arrows); they appear white in the CT image and black in the CMR
image. White arrows show the border of the valve

different pairs of imaging modalities with minimal ad-
justments (Wang et al., 2021). Particularly, several deep
learning-based cross-modality medical image synthe-
sis studies have utilized convolutional neural networks
(CNNs) and generative adversarial networks (GANs)
(Lyu and Wang, 2022).

While GANs have been the state-of-the-art for syn-
thetic image generation due to their high image qual-
ity, they suffer from instability during training and low
diversity generation due to mode collapse (Kazerouni
et al., 2023). Recently, denoising diffusion models have
emerged in computer vision, demonstrating remark-
able results in generative modeling, including applica-
tions in medical imaging. These models generate high-
fidelity, realistic images and outperform GANs and vari-
ational autoencoders in multiple image generation tasks
(Croitoru et al., 2023).

2. State of the Art

2.1. Diffusion Models

Diffusion models represent a cutting-edge class of
generative models that have proven highly effective
in learning complex data distributions (Croitoru et al.,
2023). Unlike other generative models such as GANs
and variational autoencoders, which are challenging to
train and interpret and often do not produce satisfactory
image quality, diffusion models are analytically prin-
cipled and straightforward to train. They exhibit im-
pressive generative capabilities, producing high-detail
and diverse examples. Studies increasingly show that
diffusion models outperform GANs and variational au-
toencoders in various image generation tasks (Croitoru
et al., 2023). Denoising Diffusion Probabilistic Mod-
els (DDPMs) are a class of generative models designed
to produce high-quality synthetic images. Introduced
by Ho et al. (2020), these models operate by iteratively
adding and then removing noise from an image. Dur-
ing training, DDPMs learn to predict the noise added
to images through a gradual, step-by-step process. At
inference, the model starts with a noisy image and sys-
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tematically denoises it to generate a clear, realistic im-
age.

2.2. Diffusion Models in Medical Imaging

Several significant works have explored the use of
diffusion models for generating synthetic medical im-
ages. For instance, Dorjsembe et al. (2022) applied
the original pipeline of DDPMs for generating high-
quality CMR images of brain tumors. Similarly, Tx-
urio et al. (2023) applied diffusion models for real-
istic CT image generation, while Pan et al. (2023b)
demonstrated the generation of high-quality 2D medi-
cal images across different imaging modalities using a
transformer-based DDPM. Their framework leverages a
Swin-transformer-based network for the denoising pro-
cess, allowing the creation of realistic and diverse syn-
thetic images from datasets, including chest X-rays,
heart CMR, pelvic CT, and abdomen CT. Luo and Hu
(2024) proposed measurement-guided diffusion models
for high-quality medical image synthesis, ensuring gen-
eration stability and improving learning ability. Brad-
bury et al. (2024) introduced a novel technique for gen-
erating related, synthetic PET-CT-Segmentation scans.
The method employs linked DDPMs, enabling paired
diffusion to enhance imaging consistency and segmen-
tation accuracy. Ricardo et al. (2023) introduced MAM-
E, a pipeline of generative models for high-quality
mammographic image synthesis, capable of generating
images based on a text prompt description and also ca-
pable of generating lesions using stable diffusion.

2.3. Image Synthesis in Multimodality

In the realm of multimodality image synthesis, Pan
et al. (2023a) proposed synthetic CT generation from
CMR using a 3D transformer-based denoising diffu-
sion model. This method addresses the challenge of
aligning the anatomical structures captured by different
imaging modalities, ensuring that the synthetic images
are accurate and clinically useful. Additionally, Graf
et al. (2023) demonstrated that DDPMs can be used for
CMR to CT image translation, significantly enhancing
automated spinal segmentation. This approach involves
aligning spinal CMR and CT images through rigid land-
mark registration, training image-to-image translation
models, and subsequently generating synthetic CT im-
ages from CMR.

Furthermore, Lyu and Wang (2022) proposed a novel
approach for CT-CMR conversion specifically for pelvis
images. This study utilized a DDPM conditioned and
score-matching framework to generate realistic CT im-
ages from CMR, addressing the challenges of anatomi-
cal structure preservation and realistic texture synthesis.

2.4. Diffusion Models in Cardiac Imaging

Stojanovski et al. (2023) proposed using DDPM for
the generation of synthetic ultrasound images guided

by cardiac diffusion models, aimed at improving real
image segmentation. Their work demonstrates the po-
tential of diffusion models in creating synthetic cardiac
ultrasound images that can aid in various clinical ap-
plications. Hantao et al. (2024) introduced a technique
for synthesizing myocardial pathology on cardiac CMR
scans using lesion-focus diffusion models. This method
accurately models cardiac lesions, enhancing diagnostic
capabilities and providing realistic pathological scenar-
ios for medical training and evaluation.

While extensive research has been conducted on dif-
fusion models for various medical imaging applications,
further exploration in cardiac imaging is needed. Stud-
ies focusing on this area could provide valuable insights
and potentially enhance the current methodologies for
cardiac image synthesis and analysis, paving the way
for improved TAVI planning and other cardiac proce-
dures.

2.5. Project Description
The objective of this project is to explore the use

of diffusion models, specifically, Denoising Diffusion
Probabilistic Models (DDPM) and score matching, con-
ditioned on medical imaging data. We aim to develop an
innovative approach for converting CMR images into
CT-equivalent images. This conversion process will
enable TAVI surgeons to leverage the benefits of both
imaging modalities without the need for risky contrast
agents. The primary goal is to use CMR as the input
and generate the corresponding CT image. To the best
of our knowledge, this is the first MR-CT Image conver-
sion method for cardiac images, an application specially
difficult due to the breathing and heart-beating move-
ments. The contributions of this work are:

- Providing a Solution for Patients Unable to Re-
ceive Contrast Agents: We explored a potential so-
lution for TAVI patients who cannot receive con-
trast agents and only have CMR available for their
procedure.

- Dataset Construction: We construct a dataset com-
prising co-registered CMR and CT image pairs
with aorta segmentations.

- Application of Diffusion Models: We apply diffu-
sion models to generate CT scans from CMR im-
ages and compare the generated images with the
real CT images to evaluate the effectiveness of our
approach.

3. Material and methods

This section describes the complete methodology em-
ployed in this work, covering dataset acquisition, pre-
processing, aorta segmentation, registration methods,
image generation, and quantitative criteria for evalua-
tion. Figure 2 provides a comprehensive overview of
the pipeline developed.
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Figure 2: Pipeline description

3.1. Dataset

3.1.1. Dataset Acquisition
For this study, we acquired a total of 147 CT scans

and their corresponding CMR scans directly in DICOM
format from the in-house database of the Tirol Kliniken
(Innsbruck, Austria). The scans were taken between
2015 and 2022, and both modalities were captured in
the diastole phase. CT protocols included scans of the
body trunk and heart.

3.1.2. Dataset Selection
To build the dataset, stringent criteria were created to

ensure the acquisition of good-quality and comparable
multimodal images, which is essential for robust analy-
sis.

Inclusion Criteria:

- CT and CMR volumes cover all the heart and the
aortic valve region.

- To minimize anatomical variations, the time gap
between the CT and CMR scans should be inferior
than one year.

- Keep only CT taken with an iodinated contrast me-
dia to ensure clear visualization of the aortic valve
leaflets, as without contrast, only calcifications are
visible. Our goal is to replicate them computation-
ally.

- Exclusion of CT scans with significant artifacts or
those obtained post-TAVI procedure.

Figure 3 illustrates the patient selection process,
where 39 patients with both CT and CMR scans met
the inclusion criteria.

3.1.3. Data preprocessing
We used linear interpolation to resample all the scans

to a 1mm x 1mm pixel size.
In Figure 4, the image orientation and volume cover-

age for both CMR and CT are illustrated. The yellow

Figure 3: Data flow of the patient selection

lines in the CMR (left) shows the range and orienta-
tion focusing specifically on the aortic valve, where it
can be seen the orientation is perpendicular to the aortic
valve, and the range includes the complete aortic valve,
but not the whole aorta. The CT image on the right en-
compasses the whole body trunk, in this case the yellow
lines are including the whole aorta, descendent and as-
cendant, and the orientation is perpendicular to the large
axis of the body.

In the CMR acquisition a parameter to choose from is
the flip angle, which is chosen according to the patient
anatomy and it is computed perpendicularly to the as-
cendant aorta. In our images, flip angles were from 22
to 70. The CTA protocol is without a flip angle.

Subsequently, we preprocessed the images to ensure
that they were equally oriented in the RAS (Right-
Anterior-Superior) configuration. The next step was
to train the aorta segmentation models for each image
modality.

3.2. Aorta Segmentation

Using aorta segmentation masks to register CTA-
CMR is effective because the aorta is a relatively rigid
and stable structure, maintaining consistent shape and
position, especially if both modalities are taken in the
same cardiac phase. As the aorta presents an ascendant
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Figure 4: Typical image orientation and volume coverage of whole
heart 3D MRA (left) and whole aorta CT (right). The orange lines
indicate the range and orientation of acquired CMR images. The range
is focused specifically on the aortic valve.

and descendant part, their relative position simplifies the
alignment process, reducing errors. The ease of seg-
menting the aorta in both modalities makes it an ideal
reference for accurate and reliable image registration.

Prior to training the model, two expert radiologists
were tasked to manually annotate 40% of the scans for
training and 20% for validation, 16 and 8 volumes re-
spectively. The remaining volumes were kept for infer-
ence once the model was properly trained.

3.2.1. CMR Aorta Segmentation
The nnU-Net framework, was employed for auto-

matic aorta segmentation due to its ability to self-
configure preprocessing, network architecture, and
post-processing pipelines for medical image segmenta-
tion (Isensee et al., 2021). This framework adapts its pa-
rameters based on the dataset provided, optimizing seg-
mentation tasks without extensive manual adjustments.
This study utilized two nnU-Net models: 2D Unet and
3D Unet.

No modifications were made in setting the nnU-Net
hyperparameters and data augmentation strategy. A 5-
fold cross-validation strategy was applied throughout
the training to fully utilize the patient data.

3.2.2. CTA Aorta Segmentation
For the CTA-based Aorta Segmentation we are us-

ing the same nnUNet architecture, but we are comparing
two training configurations:

- Self-trained nnUNet network: We use the same
training strategy as in Sec. 3.2.1, but with CTA
images.

- Pre-trained nnUNet network: We used the pre-
trained TotalSegmentator framework, Wasserthal
et al. (2022). It is a nnU-Net model pretrained on
1204 CT scans and segments 104 structures.

3.2.3. Cropping
The dimensions of the CMR slices ranged from (512,

384, 72) to (512, 384, 112), whereas the CT slices varied
from (512, 512, 201) to (512, 512, 952). Due to these
distinct differences in slice ranges, with CMR predom-
inantly capturing the aortic valve, a standardized crop-
ping method was necessary. We employed the aorta seg-
mentation obtained from the previous step for cropping
the long-acquired volumes.

To achieve this, the aorta segmentation was projected
from 3D to 2D to identify the region with the highest
density of information. An example of this projection
is illustrated in Figure 5, showing the highest density
points marked by a red ’X’. Using the coordinates de-
rived from this projection, we cropped the CT images,
retaining 30 slices above and below the identified point.
This approach ensured that the aorta region in the CT
images was comparable to the aortic information cap-
tured in the CMR.

Figure 5: Example of the 2D projection of the aorta segmentation,
before (above) and after cropping (below), where the highest density
points is marked by the red ’X’

3.3. Registration

The registration methods can further be classified as
rigid, affine, or deformable, depending on the nature of
the transformations allowed.

In our work, we focus on multimodal intra-patient
registration based on 3D volume images between CT
and CMR. The goal of this step is to register the CT
slices with respect to their corresponding CMR images,
ensuring that the anatomical structures align correctly
across the two modalities.

3.3.1. Deep Learning-based registration
For precise image registration, we employed two

state-of-the-art deep learning frameworks: Voxel-
Morph, (Balakrishnan et al., 2019), and TransMorph,
(Chen et al., 2022). These models are specifically de-
signed to handle complex deformable image registration
tasks.
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VoxelMorph performs the registration process by
learning a mapping from an input image pair to a de-
formation field that aligns the images. This mapping
is parameterized using a convolutional neural network
(CNN). TransMorph, in contrast, utilizes a transformer-
based architecture to enhance registration performance
by capturing both global and local contexts. This model
learns complex spatial relationships within the images,
allowing for a more detailed and accurate mapping of
the deformation field. For our experiments, we used
the Tiny version of TransMorph. We experimented
with various loss functions and included the aorta seg-
mentation masks during training. In our study, both
VoxelMorph and TransMorph were applied to register
CT (fixed) and CMR (moving) images along with their
corresponding segmentation masks. This configuration
was performed because in our images the CTA covers a
larger area than the CMR, in the axial view, so it is bet-
ter for the CMR to be the moving image to reduce the
number of empty pixels after registration.

The loss function for TransMorph and VoxelMorph
consists of three components: similarity, regularization,
and Dice loss. The similarity term measures the similar-
ity between the deformed moving image and the fixed
image, the regularization term ensures the smoothness
of the deformation field, and the Dice loss term assesses
the overlap between the predicted and true segmentation
masks. In each component, there is a coefficient from 0
to 1 to choose the weight of each component at the final
loss.

The loss function is defined as follows:

L = Lsimilarity +Lregularizer +LDice

We experimented with two similarity metrics specifi-
cally for multimodal registration: Mutual Information
(MI) and Modality Independent Neighborhood Descrip-
tor (MIND), to capture image similarity. The mutual in-
formation I(A; B) between two images A and B is given
by:

I(A; B) =
∑

a∈A

∑

b∈B

p(a, b) log
(

p(a, b)
p(a)p(b)

)

Where:

- p(a, b) is the joint probability distribution of the
pixel intensities in images A and B.

- p(a) and p(b) are the marginal probability distri-
butions of the pixel intensities in images A and B,
respectively.

The Modality Independent Neighbourhood Descrip-
tor (MIND) for a voxel p in image I is defined as:

MINDp(q) = exp
(
−Dp(q)

Vp

)

Where:

- q is a neighboring voxel of p.

- Dp(q) is the squared Euclidean distance between
the patches centered at p and q

- Vp is the variance of the distances Dp(q) within the
local neighborhood N .

The CMR registered images needed to maintain the
anatomical structures, since they will serve for planning
the TAVI procedure, and to choose the correct device by
measuring those anatomical structures. For this reason,
other types of registration were explored.

3.3.2. Traditional Methods for registration
Elastix is an open-source software package widely

used for medical image registration, including modal-
ities such as CT, CMR, and PET (Klein* et al., 2010).
We chose Elastix for its flexibility in handling various
registration tasks and the possibility of choosing differ-
ent frameworks easily by modifying the configuration
parameters file.

In our experiments, we employed a multi-resolution
strategy to improve the registration process’s accuracy
and robustness. We utilized the MI metric. For the
transformation model, we focused on rigid transforma-
tions, ensuring that the registrations accounted for rota-
tions and translations without altering the shape of the
structures.

The optimization was performed using the Adaptive
Stochastic Gradient Descent (ASGD) optimizer, which
provides efficient convergence with a maximum of 2000
iterations per resolution level. Additionally, we experi-
mented with various parameter settings from the Elastix
Model Zoo, (Klein* et al., 2010) to fine-tune the regis-
tration process for our specific use case. We tested dif-
ferent configurations by alternating which image (CTA
or CMR) was designated as the fixed or moving image,
to evaluate the impact on registration performance.

As a second experiment, we also attempted to register
the segmentation masks directly, treating them as binary
images. In this case, we use MSE as the similarity met-
ric, calculated as:

MSE =
1

mn

m∑

i=1

n∑

j=1

[
I(i, j) − K(i, j)

]2 (1)

where: I is the original image and K is the recon-
structed image.

3.4. Generation

Diffusion Models usually consist of two stages:

1. A forward stage to gradually adding noise
2. A reverse stage to denoise and recover an original

sample step-by-step
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Figure 6: The forward diffusion process q (left to right) gradually adds Gaussian noise to the target image. The reverse inference process p (right
to left) iteratively denoises the target image conditioned on a source image y. Source image x is the CMR image

Representative frameworks include denoising diffu-
sion probabilistic models (DDPM) (Ho et al., 2020),
noise-conditioned score networks (NCSN) (Yang et al.,
2021), and stochastic differential equations (Song and
Ermon, 2019).

3.4.1. Denoising Diffusion Probabilistic Models
DDPM has its diffusion stage including multiple

small steps. In each step, a data sample is slightly cor-
rupted by Gaussian noise. In DDPM the forward pro-
cess is defined as a Markovian process. Gaussian noise
is added in successive steps to obtain a set of noisy sam-
ples. In its reverse stage, DDPM performs a denoising
task to recover an original image. where each step is
also a Gaussian distribution. Then a neural network is
trained to approximate each reverse diffusion step and
estimate the mean and the covariance.

In this model, x0 represents an original image and
q(x0) denotes the original distribution of x0, where
x0 ∼ q(x0). A sequence of gradually corrupted images
x1, x2, . . . , xT are obtained according to the following
Markovian process:

The forward process gradually adds Gaussian noise
to an image over multiple steps:

q(xt |xt−1) = N(xt;
√

1 − βt · xt−1, βt · I) (2)

q(x1:T | x0) =
T∏

t=1

q(xt | xt−1), (3)

where T is the number of diffusion steps. The vari-
ances βt are selected such that the chain converges
to a normal Gaussian distribution at step T , q(xT ) ≃
N(xT ; 0, I).

To avoid calculating all the intermediate steps, a
closed-form expression is:

q(xt | x0) = N(xt;
√
ᾱt · x0, (1 − ᾱt) · I). (4)

Where αt = 1 − βt and ᾱt =
∏t

i=1 αi

The reverse process aims to recover the original im-
age by denoising the noisy images step-by-step. We can
train a neural network pθ(xt−1|xt) that receives as input
the noisy image xt and the embedding at time step t, and
learns to predict the mean µθ(xt, t) and the covariance
Σθ(xt, t):

pθ(xt−1|xt) = N(xt−1; µθ(xt, t),Σθ(xt, t)) (5)

The reverse step is conditioned on x0 and xt:

q(xt−1 | xt, x0) = N(xt−1; µ̃(xt, x0), β̃t · I), (6)

To simplify the objective function, the mean and vari-
ances in are reformulated as:

µθ(xt, t) =
1√
ᾱt

(
xt − 1 − αt√

1 − ᾱt
ϵθ(xt, t)

)
, (7)

β̃t =
1 − ᾱt−1

1 − ᾱt
βt. (8)

The model is trained to minimize the following ob-
jective:

Lsimple
t = Et,x0,ϵt

[∥∥∥∥ϵt − ϵθ
(√
ᾱt x0 +

√
1 − ᾱtϵt, t

)∥∥∥∥
2]

(9)

3.5. Stochastic Differential Equations (SDE)

The stochastic differential equation (SDE) approach
also gradually transforms the original data distribution
into a Gaussian distribution in the forward stage. Unlike
the SDE method handles a continuous process.

The reverse process of this diffusion can be modeled
with a reverse-time SDE which requires the score func-
tion of the density at each time step. Therefore, employs
a neural network to estimate the score functions, and
generates samples from p(x0) by employing numerical
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SDE solvers. The forward SDE that describes the pro-
cess of transforming data into a Gaussian distribution:

∂x = f (x, t) · ∂t + σ(t) · ∂ω, (10)

where ωt is Gaussian noise, f is a function of x and
t that computes the drift coefficient, and σ is a time-
dependent function that computes the diffusion coeffi-
cient. The reverse SDE is used to recover the original
data distribution:

∂x =
[
f (x, t) + σ(t)2 · ∇x log pt(x)

]
·∂t+σ(t) ·∂ω̂, (11)

where ω̂ represents the Brownian motion when the
time is reversed, from T to 0. We can train the neural
network sθ(x, t) ≈ ∇x log pt(x) by optimizing:

L∗dsm = Et

[
λ(t)Ep(x0)Ept(xt |x0)∥sθ(xt, t) − ∇x log pt(xt |x0)∥22

]
,

(12)

3.5.1. Conditional DDPM
Saharia et al. (2021) proposed the conditional

DDPM. Given the co-registered CTA and CMR pairs
(xi, yi)K

i=1, where K is the number of image pairs, our
objective function of eq. 9 is as follows:

Lsimple
t = Et∼[1,T ],x0,ϵt

[∥∥∥∥ϵt − ϵθ
(√
ᾱt xi

0 +
√

1 − ᾱtϵt, y, t
)∥∥∥∥

2]
.

(13)
The sampling process is a reverse Markovian process

starting from a Gaussian noise xT ∼ N(0, I), in this case
the reverse process is modified as:

q(xt−1|xt, x0, y) = N(xt−1; µ̃(xt, x0, y), β̃t · I), (14)

where

µ̃θ(xt, y, t) =
1√
αt

(
xt − 1 − αt√

1 − ᾱt
ϵθ(xt, y, t)

)
. (15)

As illustrated in Figure 6, the CMR image is our con-
dition y, and x0 is our CTA image. UNet, (Ronneberger
et al., 2015), was adopted for the reverse diffusion pro-
cess to denoise.

3.5.2. Conditional SDE
The reverse-time SDE should be solved under the

guidance of a condition of interest, in our case the CMR
image as the condition. To supervise the forward and
backward diffusion processes. Eq. 10 can be changed
to:

dx = σt · dω, (16)

p0t(x(t)|x(0)) = N(x(t); x(0), σ(t) · I), (17)

where t ∼ U([0,T ]). As p0t(x(t)|x(0)) is a Gaussian per-
turbation kernel, the gradient of the perturbation kernel
is

∇x(t) p0t(x(t)|x(0)) = − x(t) − x(0)
σ(t)

The objective function becomes

L∗dsm = Et

[
λ(t)Ex(0)Ex(t)|x(0)

∥∥∥∥∥sθ(x(t), y, t) +
x(t) − x(0)
σ(t)

∥∥∥∥∥
2

2

]
.

(18)
The reverse-time SDE can be expressed as

dx = −σ2t sθ(x(t), y, t)dt + σtdω̄. (19)

To sample from the time-dependent score-based
model sθ(x(t), y, t), we first draw a sample xT from the
prior distribution pT ∼ N(x(0), σ(T ) · I), and then solve
the reverse-time SDE numerically.

Three sampling techniques were used, Euler-
Maruyama (EM), Prediction-Corrector (PC), and prob-
ability flow ordinary differential equation (ODE).

Euler-Maruyama method
To solve the reverse-time SDE, a simple discretiza-

tion strategy is adopted, replacing dt with a small incre-
ment ∆t and dω̄ with a Gaussian noise z ∼ N(0,∆t · I).
Then, we have

xt−∆t = xt + σ
2t sθ(x(t), y, t)∆t + σt

√
∆tzt, (20)

where zt ∼ N(0, I).

Prediction-Correction method
The PC sampling alternates between prediction and

correction steps. The predictor can be any numerical
solver for the reverse-time SDE with a fixed discretiza-
tion strategy, such as the EM method. The corrector can
be any score-based Markov Chain Monte Carlo method,
such as Langevin dynamics. To implement it, it is nec-
essary to calculate a Langevin step size γ:

γ =

(
r∥z∥2

∥sθ(xi, y, σi)∥2

)2

, (21)

where r is a signal-to-noise ratio, and z ∼ N(0, I). Once
the Langevin step size γ is determined, we can sample
according to Langevin dynamics.

Probability flow ODE method (ODE)
For any SDE in the form of eq. 10, there exists an

associated ODE

dx =
[

f (x, t) − 1
2

g(t)2∇x log pt(x)
]

dt, (22)

which has the same marginal probability density pt(x)
trajectory as that of the SDE. Sampling by solving the
reverse-time SDE is equivalent to solving eq. 22 in the
reverse time direction. ODE sampling process starts
from obtaining xT from pT . Then, we integrate ODE in
the reverse time direction and finally get a sample from
p0. In this case, the ODE equation is written as follows:

dx = −1
2
σ2t sθ(x(t), y, t)dt. (23)
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3.6. Dataset Configurations for Enhanced Training

In this study we explore different data modifications
to reduce the data variability and focus the training in
the anatomical differences between modalities. These
modifications are outlined below:

- Cropping: We cropped all images to a fixed size of
256x256 pixels. Focusing on the aortic valve.

- Image Intensities Inverted: It helps the training
by aligning the intensity distributions of the two
modalities, as MRI and CT typically have oppo-
site intensity representations. This process reduces
the modality gap, making it easier for the model to
learn the accurate mapping between

- Removing Slices: post-registration CMR and CTA
datasets often contain slices with little to no use-
ful information, especially in the last ones. We re-
moved slices when more than 60% of the image
was black.

- Hounsfield Units Small Range: For CTA images,
Hounsfield Units (HU) are used to represent the
density of tissues. We can emphasize specific tis-
sue types or structures of interest by limiting the
range of Hounsfield Units. This is important in the
used model as it learns from the voxel intensities.

3.7. Training

In the training phase, we utilized the U-Net model
proposed by Saharia et al. (2021). The parameters
to configure included: batch size of 4, employing the
Adam optimizer and learning rate of 1e-4. The im-
age input size was standardized to 512x512 pixels, and
the number of diffusion steps to 1000. For conditioned
score-matching diffusion models: batch size of 4, em-
ploying the Adam optimizer, learning rate of 1e-4. Ad-
ditionally, both diffusion and sampling steps were set
to 1000. We utilized ODE, Euler, and PC samplers for
generating samples from each trained model. To mon-
itor performance during training, four sample images
were generated every 50 epochs.

3.7.1. Repeatability Assessment
We repeated sample generation five times to ensure

result robustness and assess consistency. Following this,
we calculated the mean values and standard deviation of
pixel data, resulting in two new volumes for each model.

3.8. Quantitative Assessment

Generative models are expected to have two main
characteristics: generation diversity and fidelity to the
original dataset. There exist metrics to quantitatively
assess these characteristics. Two commonly used met-
rics for this purpose are the Structural Similarity Index
Metric (SSIM) and Peak Signal-to-Noise Ratio (PSNR).

3.8.1. Structural Similarity Index Metric
SSIM is a perceptual metric that quantifies image

quality degradation caused by processing such as data
compression or transmission losses. It measures the
similarity between two images. The SSIM value ranges
from -1 to 1, where 1 indicates perfect structural simi-
larity.It is calculated by Eq. 24.

SSIM(x, y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x + µ

2
y +C1)(σ2

x + σ
2
y +C2)

(24)

where: µx and µy are the average values of images x
and y. σ2

x and σ2
y are the variances of x and y. σxy is

the covariance of x and y. C1 and C2 are constants to
stabilize the division with weak denominator.

If a pair of synthetic images are sampled, a low SSIM
value would mean that the compared images are not
structurally similar and, therefore, implies diversity.

3.8.2. Peak Signal-to-Noise Ratio (PSNR)
Fidelity to the original dataset can be assessed us-

ing the Peak Signal-to-Noise Ratio (PSNR). PSNR mea-
sures the quality of reconstruction of lossy compression
codecs. The signal in this case is the original data, and
the noise is the error introduced by compression. The
PSNR value is expressed in decibels (dB).

PSNR = 10 · log10


MAX2

I

MSE

 (25)

where:

- MAXI is the maximum possible pixel value of the
image.

- MSE is the mean squared error between the origi-
nal and the reconstructed image.

A high PSNR value indicates that the reconstructed
image is high quality and closely resembles the original
image.

4. Results

4.1. Aorta Segmentation

In Tables 1 and 2 the quantitative segmentation re-
sults obtained on the aorta CTA and CMR validation set
are presented. The 3D-UNet model achieved the highest
DSC and NSD values, indicating superior segmentation
accuracy and surface agreement compared to 2D-UNet.
In the second Table, TotalSeg model achieved the high-
est DSC and AUC values, while the 3D-UNet model
showed the best performance in terms of NSD, indicat-
ing a closer surface match.

To have a qualitative result, Figure 7 shows an ex-
ample of the CTA aorta segmentation result using To-
talSegmentator.
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Table 1: Dice Score (DSC), Normalized Surface Distance (NSD), and
Area Under the Curve (AUC) for CMR-based segmentation.

DSC NSD AUC

3D-UNet 0.987±0.005 0.999±0.001 0.992±0.004

2D-UNet 0.976±0.009 0.994±0.003 0.985±0.010

Table 2: Dice Score (DSC), Normalized Surface Distance (NSD), and
Area Under the Curve (AUC) for CTA-based segmentation.

DSC NSD AUC

TotalSeg 0.980±0.005 0.988±0.001 0.982±0.005

3D-UNet 0.971±0.002 0.996±0.002 0.984±0.003

2D-UNet 0.970±0.003 0.996±0.002 0.984±0.002

Figure 7: Example CTA Aorta Segmentation

Additionally, for qualitative results of the CMR,, Fig-
ure 8 shows an example of the CMR aorta segmentation.
Figure 8a presents the frontal view of the segmented
aorta, while 8b provides an inferior view of the aortic
valve. However, it is important to note that while the
aorta itself is well-segmented, the three cusps of the aor-
tic valve are not precisely defined.

(a) (b)

Figure 8: Example CMR Aorta Segmentation

4.2. Registration

4.2.1. Deep Learning based
The quantitative results of the registration in the val-

idation set for the different loss functions experimented
are presented in Table 3 and Table 4. The first Table
presents the results using MI as the similarity loss, and
Table 4 shows the results when using MIND as the sim-
ilarity loss. It is shown that both metrics provide good
performance in the registration with the TransMorph
model, with Dice Scores values above 0.95 in almost all
the cases. In the case of VoxelMorph the performance
was very low.

Table 3: Registration Results using MI loss

Model MI loss DSC loss DSC

TransMorph

0.5 0.5 0.9524
1 0 0.5836
1 0.5 0.9506
1 1 0.9557

VoxelMorph 1 1 0.5965

Table 4: Registration Results using MIND

Model MIND loss DSC loss DSC

TransMorph

0.5 0.5 0.9491
1 0 0.5554
1 0.2 0.9374
1 1 0.9537

VoxelMorph 1 1 0.5820

A qualitative example of the deep-learning results is
shown in Figure 9. Pre and post-registration, respec-
tively, where the orange arrows show the aortic valve.
In this registration approach, dice scores were very high;
unfortunately, during a quick qualitative assessment, we
saw that the deformable registration results were not
useful for our purpose because the aortic valve needed
to maintain its shape, and in some cases, it disappeared.

4.2.2. Traditional Registration Methods
The registration quality was evaluated using Dice

Score, comparing the alignment between the segmenta-
tion masks. We compared results by switching the fixed
and moving images: CTA as fixed with CMR moving,
and vice versa. Figure 10 illustrates the Dice Score re-
sults for the registration using the MI similarity met-
ric. Three different settings were evaluated: CMR Fixed
(No Mask), CMR as Fixed, and CTA as Fixed image.
Figure 11 presents the Dice Score results for registration
using the MSE similarity metric. Two different settings
were evaluated: CTA Fixed and CTA Fixed >87.This
last, represents the registered cases with a Dice score
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Figure 9: Example of the deep learning-based registration using the
segmentation masks ans TransMorph model. Image before (left) and
after (right) registration, were yellow arrows are pointing at the aortic
valve.

value above 0.87. Figures 12a and 12b show examples
of CMR aorta registration using MI with CTA fixed and
CMR fixed settings, respectively. Figure 13 shows an
example of CMR aorta registration using MSE as the
similarity metric. Additionally, Figure 14 demonstrates
the results of multimodal registration using traditional
methods. The Figure shows pairs of CMR (top row)
and CTA (bottom row) images, in this case when using
the MSE as the similarity metric and CTA as the fixed
image.

MRI Fixed (No Mask) MRI Fixed CT Fixed

0.
2

0.
4

0.
6

0.
8

Registration with MI

D
ic

e 
S

co
re

Figure 10: Dice Score results for registration using MI

4.3. Diffusion Models

4.3.1. Dataset Configurations
The final variations in the dataset included: stan-

dardizing the Hounsfield Units in the CTA, and remov-
ing black slices from the volumes. Although cropping
and inverting image intensities were experimented with,
they were not included in the final configuration. Exam-
ples of these results are shown in the Appendix A.

4.3.2. Qualitative results
Figure 15 and Figure 16 show examples of the im-

age conversion using DDPM and score-matching mod-
els. Figure 15 shows the comparison between the dif-
ferent models’ sampling generation, it shows the source

CT: Fixed CT: Fixed >87

0.
75

0.
80

0.
85

0.
90

0.
95

Registration with MSE

D
ic

e 
S

co
re

Figure 11: Dice Score results for registration using MSE

(a) (b)

Figure 12: Example of Aorta Registration using MI where: a) CTA is
used as moving and CMR as fixed, b) CTA is used as fixed and CMR
as moving. Volume in color red represents the fixed volume and white
the moving volume.

Figure 13: Example CMR Aorta Registration using MSE. The beige
color represents the CMR segmentation volume, while the red color
represents the CTA segmentation volume.

CMR image, and the target CTA image, all the methods
when sampling one time. Figure 16 represents the im-
age generation across the four methods when sampling
five times and obtaining the mean of the results. Here,
it is also shown the source image: CMR, and the target:
CTA.

Additionally, for having a global representation of the
robustness performance, Figure 17 demonstrates the re-
peatability of an image sample by generating five sam-
ples using the same target CMR image. Here, it is also
shown the standard deviation across all the samples,
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Figure 14: Example of multimodal registration. The figure displays pairs of CMR (top row) and CTA (bottom row) images. Each pair represents
the alignment of anatomical structures between the two modalities.

MR

MRI EM PC DDPM CTODE

Figure 15: Comparison of different diffusion models’ outputs. The Figure showcases the generated samples from each model, comparing the output
with the original CMR (source) and CTA (target) images. Two example images are provided to illustrate the performance of the models.

to have a better understanding of where the model is
adding more changes when generating. In this example,

it was using the Score-matching model and PC as the
sampling method.
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MRI EM PC DDPM CTODE

Figure 16: Comparison of different diffusion models’ outputs in two example samples. The Figure displays the mean average of 5 generated
samples for each model, comparing the output with the original CMR (source) and CTA (target) images.

Figure 17: Example of repeatability. This Figure showcases five generated samples of a CTA scan using the Conditioned Score-Matching diffusion
model and the PC sampling strategy. The Mean column displays the average of the five generated samples. The last column shows the standard
deviation.
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4.3.3. Quantitatively assessment
In this study, we utilized the SSIM and PSNR metrics

to evaluate image quality. The mean and standard devia-
tion of the SSIM and PSNR values among the validation
images are shown in Figure 18a and 18b

Figure 18a shows the SSIM and PSNR values for
the validation images. The results indicate that DDPM
and PC methods consistently achieve higher SSIM and
PSNR values. EM and ODE methods, demonstrate
lower performance metrics in comparison.

To have a better idea of the performance of the gen-
eration we also compared the SSIM and PSNR values,
when sampling the images five times. Figure 18b dis-
plays the average SSIM and PSNR results across five
samples, providing a more comprehensive comparison
of the methods’ performance.

4.3.4. Computational Time Analysis
The training process for both models lasted 72 hours.

An estimation of the average inference time for each
model on a set of one axial slice shows that the ODE
model was the fastest, taking 50 seconds. The DDPM-
conditioned method required 120 seconds, while the
EM method took 180 seconds. The score-matching
model with the Predictor-Corrector (PC) sampler was
the slowest, consuming 420 seconds due to the algo-
rithm’s prediction and correction steps.

5. Discussion

In this study, we investigated the application of dif-
fusion model techniques to convert CMR to equivalent
CTA images. Our pipeline involves data construction,
segmentation, registration, and generation.

5.1. Segmentation

The masks were generated using well-known ap-
proaches, TotalSegmentator and nnUnet. Both mod-
els showed good performance with the DICE score, all
values above 0.97 compared with our ground truth, as
shown in Tables 1 and 2. When comparing the visu-
alization results in each modality, we observed that for
CMR segmentation, the details in the segmentation are
of high quality and the smoothness was well done. This
observation can be attributed to the nnUnet architec-
ture which applies preprocessing and postprocessing to
the masks. On the other hand, CTA segmentation also
yielded good results. For CTA the difference of using a
pre-trained or a self-trained model was not statistically
significatant. However, it is important to emphasize that
there are still some irregularities between pixels; fur-
thermore, unlike CMR images, the aortic valve is not
precisely defined. We attribute this phenomenon to both
interpolations by Total-Segmentator as well as the voxel
space in CTA images but it can also be due to the differ-
ence in modality information..

5.2. Registration
We proposed exploring deep-learning and non-

deformable methods for multimodal registration be-
tween CTA and MRI. Two deep learning approaches
were explored: VoxelMorph and TransMorph, which
are state-of-the-art for registration. TransMorph demon-
strates superior performance in DICE scores, while
VoxelMorph produces low results. Although Trans-
Morph tends to produce a high score, when visualizing
the registration we concluded that it did not preserve
the organ’s anatomy, as observed in Figure 9, where the
aortic valve changed its anatomy after registration. This
phenomenon is attributed to the deformable regularizer
parameter requiring further hyperparameter exploration
among others. In the case of VoxelMorph, we can also
attribute the low DICE to the absence of attention blocks
present in Transmorph models adding more attention to
segmentation.

To address this issue and explore alternatives for pre-
serving anatomical features, traditional methods were
considered. We experimented with fixed and moving
images alongside similarity losses resulting in good reg-
istration results as shown in Figure 7. Notably using
CTA as a fixed configuration yielded better results in-
dicating its well-defined structures made it easier as a
base image for registering.

5.3. Generation
We experimented with various training data set vari-

ations to compare the impact of different modifications.
Adjusting the window in the Hounsfield field units and
removing slices, refocused the model on structures with
contrast agent, while also eliminating unimportant ar-
eas such as lungs for our application. These variations
revealed that some improvements were made to the re-
sults, while others did not. This reflects how increasing
variability in the training set influences what the model
learns and directly impacts the final CTA image.

We explored two different diffusion models: DDPM
and score matching. In the case of score matching, three
different samplers were used. Comparing the two meth-
ods, we observed that DDPM achieved good results for
SSMI and PSNR. However, the score-matching meth-
ods yielded low results when using ODE and EM sam-
plers. This suggests a need for further exploration in
the diffusion and sampling steps because although the
forward process was similar, the final sampling differed
greatly compared to PC. It is important to note that
ODE gave the worst results with very noisy images in
SSMI and PSNR values. Among all methods tested, PC
and conditioned DDPM showed the best performance
overall, especially regarding anatomical structures for
CMR-CTA. As we observed the results were different
between the samplers, we explored the repeatability be-
tween all the methods, in this case generating the same
image five times, this experiment gave us some interest-
ing findings, the smoothness of the image when there
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Figure 18: Comparison of a) Structural Similarity Index Measure (SSIM) and b) Peak Signal-to-Noise Ratio (PSNR) across different methods:
Denoising Diffusion Probabilistic Models (DDPM), Euler-Maruyama (EM), Ordinary Differential Equation (ODE), and Predictor-Corrector (PC)
and the corresponding average method

is texture. Additionally, there was slight improvement
in noise reduction. Furthermore, while usually having
more variation in image details, it was particularly inter-
esting to find this specially in the calcifications. These
finding suggests that we need to enforce our model to
learn details in the image, capturing the small charac-
teristics, including global and local information when
converting the image. Overall image performance is
satisfactory but could be improve via hyper-parameter
tuning. The selection of training data plays a crucial
role along with registration since method learning can
be influenced by even minor differences among training
images resulting from exploring diverse data variables

5.4. Limitations

Despite demonstrating promising results, our
pipeline has certain limitations and areas for im-
provement. Firstly, the model encounters difficulties
in replicating small details in the CTA, including
calcifications.

Secondly, the diffusion models applied are very sen-
sitive to image training; the data needs to be very similar
in the training step, leading to the generation of images
that are only similar to the CMR source. In some cases,
the models produce inaccurate shapes, especially when
there is motion, multiple organs, or many details in the
image. This could also be related to the different images
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used in the training that can vary significantly for each
patient. Moreover, the registration and segmentation ac-
curacy directly impact the image generation, as errors in
both previous steps propagate through the pipeline. In
addition, the variability in both modalities was a lim-
iting factor, as some did not have consistent triggering
and others exhibited a significant amount of cardiac mo-
tion. Furthermore, the year of acquisition significantly
influenced the image quality.

6. Future work

To enhance the performance of the pipeline, future
work could include:

- Incorporating local attention mechanisms to focus
on calcifications.

- Optimizing hyper-parameters to improve the ro-
bustness of the models to handle variations in pa-
tient data more effectively.

- Extending the pipeline to generate the contrast
agent using the CT as the source image, provid-
ing a valuable tool for cases where contrast agents
are contraindicated.

- More segmentation and registration techniques
could further improve the accuracy of image gen-
eration; for example Atlas-based registration.

- Cropping the aorta volume and train the different
models. Removing other anatomical structures.

- Investigating the integration of additional clinical
data could improve the model and extend its appli-
cability across different patient demographics.

7. Conclusions

In this study, we have presented an end-to-end
pipeline for generating CTA images using CMR as
the source. The method is based on denoising diffu-
sion probabilistic models (DDPMs) and score-matching
models. We used CMR images as the condition for
training and CTA images as the target.

Through a comprehensive evaluation, the results
have shown promising outcomes both quantitatively and
qualitatively for the CMR-to-CTA conversion. While
the method sometimes overestimated calcifications in
the CTA images, the overall structural similarity demon-
strated promising results using the PC sampler and
DDPM. We achieved promising results for PSNR (23.4)
and SSMI (0.84). This indicates that the pipeline is ca-
pable of maintaining major anatomical structures accu-
rately.

However, there are certain limitations and areas for
further improvement. The model encountered difficul-
ties in replicating small details in the CTA, such as calci-
fications. Additionally, the diffusion models are highly
sensitive to the training data, requiring very similar im-
ages for effective training. In some cases, the models
produced inaccurate shapes, especially when there was
motion, multiple organs, or many details in the image.
These issues could be related to the variability in the
training images, which can differ significantly among
patients.
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Appendix A. Additional Results

Figure A.19: Example of Multimodal Registration. The dark blue color represents the CMR segmentation volume, while the light blue represents
the CTA segmentation volume.

MRI

a)

b)

c)

EM PC CTODE

Figure A.20: Example of CMR-CTA conversion results when modifying the training dataset: a) by cropping the image, b) without altering the
windowing of the HU, and c) by inverting the intensities of the MRI image.
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Abstract

This study presents a novel approach to enhancing surgical phase recognition by adapting generalist vision-language
models, specifically the Surgical Vision Language Pre-training (SurgVLP) model. Our research leverages the
SurgVLP model’s contrastive pre-training on surgical lecture video-text pairs to integrate visual and textual data for
improved phase recognition in laparoscopic cholecystectomy. We aim to merge visual and textual representations to
boost model performance effectively by employing feature fusion techniques such as weighted sum and gated mech-
anisms. Our experiments reveal that the weighted sum method outperforms the gated mechanism, highlighting the
effectiveness of directly combining image and text features. Additionally, we investigate the impact of text prompt
generation methods, including hand-crafted prompts and those generated by large language models like GPT-4, on
the accuracy and robustness of phase recognition. The results demonstrate that simple, well-constructed prompts can
be as effective as those generated by advanced models.

Keywords: Vision-language models, Downstream tasks, Surgical phase recognition

1. Introduction

Cholecystectomy is the surgical removal of the gall
bladder and the standard treatment of cholecystitis (Sha-
banzadeh et al., 2022), gallbladder inflammation. The
procedure can be done with open surgery or laparo-
scopic techniques. However, laparoscopic cholecystec-
tomy is the current standard technique as opposed to
open surgery (Coccolini et al., 2015) due to being less
invasive, causing less postoperative pain and a speed-
ier recovery (Ziogas and Tsoulfas, 2017). During open
cholecystectomy, the surgeon makes a 15 cm incision in
the abdomen below the ribs on the right side to access
the abdominal region (Coccolini et al., 2015). During
laparoscopic cholecystectomy, instead of making an in-
cision to access the cavity directly, a small 2 - 3 cm inci-
sion near the belly button is made for the placement of a
laparoscope, and three additional small incisions in the
upper right abdomen for insertion of the laparoscopic
instruments exemplified in Figure 1, such as graspers
for grasping the gallbladder, clip applier to control the
cystic duct and artery, electrocautery for cutting and co-
agulating and a retrieval bag for the removal of the gall-
bladder from the cavity (Hassler et al., 2021).

The procedure is visualized through the video feed
from the laparoscope, a small lighted camera. After the
patient is prepped, the abdominal cavity is inflated us-
ing carbon dioxide, and trocars and tools are positioned
as exemplified in Figure 1; the gallbladder is grasped
and retracted over the liver to allow visualization of
Calot’s triangle (Olsen, 1991). Dissection is performed
to achieve the critical view of safety, which requires
three criteria to be met: (1) the hepatocystic triangle is
clear of all fat and fibrous tissue; (2) the lower 1

3 of the
gallbladder is separated from the liver bed; and (3) only
the cystic duct and cystic artery are connected to the
gallbladder (Majumder et al., 2020). After this view is
achieved, both structures are carefully clipped and tran-
sected, and then the gallbladder dissection off the liver
bed is performed (Olsen, 1991). Once the dissection is
complete, the area is checked for any bleeding that may
have occurred, and the tissues and aspirate dry all fluids
(Olsen, 1991). After aspirating all fluid and checking
for hemostasis by slightly deflating the abdominal cav-
ity, the gallbladder is placed inside a specimen pouch
and removed from the abdomen. Once the gallbladder
is removed, all trocars are removed, and port sites are
closed (Hassler et al., 2021).
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Figure 1: Port positions during laparoscopic cholecystectomy (Ma-
jumder et al., 2020).

Some downsides of laparoscopic surgery are the
lack of hand tactile feedback, restricted view, and lim-
ited movement of laparoscopic instruments as well
as a steeper learning curve and longer operative time
(Buskens et al., 2014) (Han et al., 2015). As a way
to improve surgical safety and efficacy during surgery,
computer-aided surgery systems are developed. These
procedures generate numerous surgical videos, creating
new opportunities for applications in Computer Vision
and Artificial Intelligence (AI). Analyzing these surgi-
cal videos can positively impact real-time performance
(Hashimoto et al., 2018) with decision support tools that
allow pre- and intra-operation information and insight
into the surgical workflow (Kitaguchi et al., 2020). One
such application is surgical phase recognition.

AI systems that can identify the surgical phases can
benefit many tasks, such as education, evaluation of
surgical performances, quality control, and analysis of
complications (Golany et al., 2022). Standard practice
involves building fully supervised deep-learning meth-
ods to recognize surgical phases, such as in Czem-
piel et al. (2020), which trains a Multi-stage Tem-
poral Convolutional Neural Network for this specific
task. These fully-supervised methods require extensive
collaboration with clinical experts to annotate ground
truth and validate it. They are typically trained on
procedure-specific surgical video datasets from a single
center, limiting their generalization and ability to repre-
sent the complexities of surgical workflows (Eisenmann
et al., 2022). Additionally, multi-modal approaches in-
tegrate visual and textual data and can enhance phase
recognition by leveraging complementary information
from different data sources. These dependencies and
limitations motivate us to utilize the emerging vision-
language foundation models to address these issues.

Vision-language foundation models are massively
scaled models trained on large amounts of data to be
adapted to various downstream tasks, allowing them
to develop unparalleled generalistic intelligence (Lam

and Qiu, 2024). Examples of these models are the
Contrastive Learning Image Pretraining (CLIP) model
(Radford et al., 2021) developed by OpenAI; the CLIP
model consists of a vision-language model pre-trained
on 400 million image-text pairs obtained from the in-
ternet. Similarly, the Google ALIGN (Jia et al., 2021)
model is trained on over one billion noisy image alt-
text pairs without expensive filtering or post-processing
steps. However, a domain gap exists between the natu-
ral image-text pairs used to train CLIP and ALIGN and
those in the surgical domain. Thus, a vision-language
foundation model pre-trained specifically on surgical
data is necessary. The Surgvlp (Yuan et al., 2023) is
a CLIP-like model, pre-trained on 1326 surgical video
lectures sourced from WebSurg, EAES, and Youtube.
These models have above-average zero-shot transfer ca-
pabilities; however, some downstream tasks, such as
surgical phase recognition, require more adaptation to
be functional in a clinical setting (Zhou et al., 2022b).

This research aims to enhance the safety, efficiency,
and outcomes of surgical procedures by developing and
adapting generalist vision-language models for surgical
phase recognition. The ultimate goal is to create AI sys-
tems that are accurate, reliable, and capable of being
easily adapted to various surgical tasks, thereby con-
tributing to the broader field of computer-aided surgery
and improving patient care. The primary objective of
this thesis is to develop and adapt generalist vision-
language models, specifically the SurgVLP model, for
surgical phase recognition in laparoscopic cholecystec-
tomy by partially fine-tuning the model while integrat-
ing visual and textual data through a feature fusion tech-
nique. The experiments demonstrated that the SurgVLP
model, which incorporates both visual and textual infor-
mation, consistently outperformed the ResNet50 vision-
only model. In this work, we make the following con-
tributions:

1. We explore and implement feature fusion tech-
niques, such as weighted sum and gated mecha-
nisms, to effectively combine visual and textual
data for enhanced model performance;

2. We evaluate the impact of text prompt genera-
tion methods, including hand-crafted prompts and
those generated by large language models, on the
accuracy and robustness of phase recognition;

3. We assess the model’s performance with different
amounts of training data, thereby demonstrating its
capability for few-shot learning and generalization;

4. We further investigate integrating additional tex-
tual information from medical literature to improve
the model’s contextual understanding and classifi-
cation accuracy.

2. State of the art

This section reviews the literature on surgical com-
puter vision, vision-language models, and prompt tun-
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ing techniques.

2.1. Surgical Computer Vision

Surgical Computer Vision is a domain-specific sub-
area of Computer Vision that focuses on developing
tools for analyzing surgical visual data. Surgical phase
recognition is a domain-specific task that differs from
general computer vision by requiring an understanding
of the sequential flow and fine-grained details of surgi-
cal procedures to recognize surgical activities and ob-
jects accurately. Early work in this field concentrated
on automatically recognizing surgical workflow through
two primary tasks: phase recognition and tool presence
detection. These tasks have been extensively studied us-
ing fully supervised models across various surgeries, in-
cluding cataract, neurological, and laparoscopic proce-
dures. Early approaches, such as in Padoy et al. (2012),
relied on hand-crafted visual features and manually an-
notated tool usage signals. Recently, the rise of deep
learning has introduced models that automatically learn
features from surgical videos, enhancing accuracy and
efficiency.

One notable development by Twinanda et al. (2016)
is the EndoNet architecture, a fully supervised convolu-
tional neural network (CNN) designed to perform phase
recognition and tool presence detection simultaneously.
EndoNet utilizes visual information exclusively, elimi-
nating the need for additional equipment or manual an-
notations, and has achieved state-of-the-art results in
these tasks.

Another significant advancement is the Multi-Stage
Temporal Convolutional Network (MS-TCN) proposed
by Czempiel et al. (2020), which performs hierarchi-
cal prediction refinement using causal, dilated convo-
lutions. This fully supervised spatial-temporal model
ensures smooth and accurate predictions during am-
biguous transitions and has outperformed various Long
Short-Term Memory (LSTM) based methods on laparo-
scopic cholecystectomy video datasets, both with and
without additional tool information.

2.2. Vision-language Foundation models

The CLIP model proposed by Radford et al. (2021)
uses natural language supervision to learn image repre-
sentation. The model architecture, exemplified in Fig-
ure 2, explores two architectures: the ResNet50 and Vi-
sion Transformer (ViT) as the image backbone. They
employ a Transformer with a base size of 63M parame-
ters, 12 layers, and 512 wide with 8 attention heads for
the text backbone. The model is trained from scratch
with no pre-trained weights. The CLIP model requires
enormous amounts of data to train on. However, man-
ual annotation is cumbersome, expensive, and unprac-
tical at this scale. To supply the required amount of
data to train a foundation model, they sourced 400 mil-
lion image-text pairs from the internet. Its pre-training

Figure 2: CLIP model architecture (Radford et al., 2021)

strategy focuses on predicting which text as a whole is
paired with which image instead of trying to predict
which exact words of the text accompany each image.
During the pre-training, it maximizes the cosine simi-
larity between the image and text embeddings of real
pairs while minimizing the cosine similarity of incor-
rect pairings. Jointly training both backbones aligns the
image and text representations to the multi-modal rep-
resentation space. It uses a linear projection to map the
embeddings from the encoder’s representation space to
the multi-modal representation space.

Shifting from images to video, Miech et al. (2019)
explores using instructional videos and captions to pre-
train a joint multi-modal embedding space. The dataset
developed, Howto100M, comprises 136.6M video clips
extracted from 1.22M videos sourced from YouTube
with their corresponding captions automatically gen-
erated by the YouTube Automatic Speech Recogni-
tion(ASR) system. Their training strategy consists of
extracting the video features at a frame-level and video
level; they extract 2D frame-level features using the Im-
ageNet pre-trained ResNet-152 at one frame per sec-
ond and 3D video-level features using the Kinetics pre-
trained ResNeXt-101 16-frames model at 1.5 features
per second. These features are aggregated through tem-
poral max-pooling and concatenation, forming a 4096-
dimensional vector for each video clip. For text, they
preprocess transcribed video narrations by discarding
common stop-words and utilizing the GoogleNews pre-
trained word2vec embedding model for word represen-
tations. The joint embedding model maps these video
and text features into a common dimensional space us-
ing non-linear embedding functions, including a lin-
ear fully connected layer and a context gating func-
tion. Training is guided by a max-margin ranking loss,
ensuring higher similarity for matching video-caption
pairs, with an intra-video negative sampling strategy to
emphasize relevant video aspects over background fea-
tures.

In the realm of surgery, Yuan et al. (2023) developed
the Surgical Vision Language Pre-training (SurgVLP), a
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surgical vision-language foundation model pre-trained
on surgical video lectures. With a CLIP-like archi-
tecture, the Surgvlp model uses a ResNet50 as an im-
age encoder and a transformer-based text encoder. For
the pre-training, they utilize the Surgical Video Lecture
(SVL) dataset, which consists of surgical video lectures
sourced from e-learning platforms with captions auto-
matically generated with ASR systems. Specifically,
the AWS medical transcribe ASR system is used for
medical terminology and surgery-specific terms, and the
Whisper ASR system is used for general sentence struc-
ture and common words since the AWS ASR gener-
ates incomplete sentence fragments. Like the CLIP pre-
training, the objective focuses on the cosine similarity
between the video-text pairs by employing the InfoNCE
loss (Oord et al., 2018) combined with the MIL-NCE
loss (Miech et al., 2020).

In Yuan et al. (2024), a novel approach called HecVL
(Yuan et al., 2024) was introduced, which leverages hi-
erarchical video-language pretraining to build a gener-
alist surgical model. This model uses a hierarchical
video-text paired dataset, pairing surgical lecture videos
with three hierarchical levels of texts: clip-level tran-
scribed audio texts for atomic actions, phase-level con-
ceptual text summaries, and video-level abstract text of
the surgical procedure. The HecVL employs a fine-to-
coarse contrastive learning framework to learn separate
embedding spaces for these hierarchies within a single
model. This disentangling of embedding spaces allows
the model to encode short-term and long-term surgical
concepts. Injecting textual semantics enables HecVL
to perform zero-shot surgical phase recognition without
any human annotation, and it demonstrates the ability
to transfer the same model across different surgical pro-
cedures and medical centers, showcasing its robustness
and versatility.

2.3. Prompt Tuning

Large pre-trained vision-language models like CLIP
can transfer learned representations across diverse
downstream tasks. These models align images and
texts within a shared feature space, facilitating zero-
shot transfer via prompting. However, prompt engineer-
ing is a major challenge in zero-shot transfer, which is
time-consuming and requires substantial domain exper-
tise due to performance sensitivity to wording changes.

Context Optimization (CoOp) proposed by Zhou
et al. (2022c) is a significant advancement address-
ing the prompt engineering challenge by introducing
learnable vectors for the prompt’s context words while
keeping the pre-trained parameters fixed. CoOp’s two
implementations—unified context and class-specific
context—have demonstrated substantial improvements
over hand-crafted prompts with minimal labeled data,
achieving notable performance gains and excellent do-
main generalization across 11 datasets. However,

CoOp’s static prompts can overfit base classes, reduc-
ing generalizability to unseen classes within the same
dataset. Conditional Context Optimization (CoCoOp)
by Zhou et al. (2022a) extends CoOp by incorporating
a lightweight neural network that generates an input-
conditional token for each image, enabling dynamic
prompts that adapt to each instance. This approach mit-
igates the overfitting issue seen in CoOp, significantly
improving generalization to unseen classes and demon-
strating strong transferability beyond single datasets.

Knowledge-aware Prompt-tuning (KnowPrompt)
proposed by Chen et al. (2022) and Knowledge-Aware
Prompt Tuning (KAPT) by Kan et al. (2023) further
advance prompt learning by integrating external knowl-
edge. KnowPrompt injects latent knowledge from
relation labels into prompt construction, using learnable
virtual type words and answer words optimized with
structured constraints. This approach has shown effec-
tiveness in relation to extraction tasks across multiple
datasets, particularly in low-resource settings. KAPT,
inspired by human intelligence, uses both discrete and
continuous prompts to leverage external knowledge,
enhancing few-shot image classification and improving
generalization to unseen categories. KAPT outperforms
state-of-the-art methods like CoCoOp, achieving
significant gains in new class recognition.

K-LITE (Knowledge-augmented Language-Image
Training and Evaluation) Shen et al. (2022) proposes
a strategy to incorporate external structured knowledge,
such as WordNet and Wiktionary, into the training and
evaluation of vision-language models. This method en-
hances entity descriptions with additional knowledge,
improving image representation learning and facilitat-
ing zero-shot and few-shot transfers. K-LITE has con-
siderably improved image classification and object de-
tection across numerous datasets.

In the medical domain, leveraging external knowl-
edge through well-designed prompts has proven cru-
cial for transferring knowledge from pre-trained vision-
language models. Studies show that medical prompts,
enriched with expert-level knowledge and image-
specific information, significantly improve zero-shot
performance. Methods for the automatic genera-
tion of medical prompts can further enhance fine-
grained grounding, demonstrating the broad applicabil-
ity of these approaches across various medical imaging
modalities. Qin et al. (2022) proposes a combination of
a VQA model with the PubMedBert transformer to gen-
erate prompts based on the physical attributes of polyps,
mimicking the description of medical professionals.

These advancements in prompt tuning, prompt learn-
ing, and integrating external knowledge highlight the
evolution of vision-language models. By addressing
the limitations of manual prompt engineering, enhanc-
ing model adaptability and generalization, and improv-
ing efficiency and effectiveness across diverse domains,
these techniques offer promising alternatives to tradi-
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tional fine-tuning when adapting vision-language foun-
dation models to downstream tasks.

3. Material and methods

This section presents the proposed approach for
adapting a vision-language model for surgical phase
recognition.

3.1. Data

3.1.1. Image Dataset
The dataset used in this project is the Cholec80

dataset, which contains 80 videos of laparoscopic chole-
cystectomy surgery divided into seven surgical phases.
The videos were captured at 25 frames per second, with
a resolution of 1920 × 1080. The videos last an aver-
age of 38 minutes with a 16-minute standard deviation.
Table 1 lists each of the seven surgical phases and their
average duration across all videos. The frames were ex-
tracted for processing, totaling 1000 frames per video.
From the 80 videos, 40 were used for training, 8 for val-
idation, and 32 for testing.

Phase Duration (s)

Preparation 125±95
Calot triangle dissection 954±538

Clipping and cutting 168±152
Gallbladder dissection 857±551
Gallbladder packaging 98±53

Cleaning and coagulation 178±166
Gallbladder retraction 83±56

Table 1: List of each surgical phase in the Cholec80 dataset with the
mean and standard deviation of duration

3.1.2. Text Prompts
A hand-crafted textual prompt describing each class

label in a single sentence was created for image pair-
ings. These prompts were manually generated to
expand the class label by including the associated
surgical tools and critical attributes, ensuring each
class is unique and distinguishable. Additionally,
knowledge-infused prompts were generated using large
language models (LLMs), specifically GPT-4 and GPT-
4o (Achiam et al., 2023). The hand-crafted prompts,
along with a medical textbook detailing the procedure,
were fed into the LLMs to produce new prompts. This
approach simulates how a professional would utilize
their innate knowledge to craft and refine prompts,
leveraging the comprehensive information from the
textbook and the extensive pre-trained data in the LLMs.
While the hand-crafted prompt is composed of one sen-
tence with an average of 16 words, the LLM-generated
prompts are considerably bigger, with the GPT-4 and

GPT-4o prompts composed of a minimum of two sen-
tences with 43 words and 65 words average, respec-
tively.

3.2. Vision-Language Model Architecture

The pre-trained model selected is the SurgVLP pro-
posed in Yuan et al. (2023). Inspired by the CLIP ar-
chitecture (Radford et al., 2021), it comprises visual
and text encoders. The selected visual encoder is the
ResNet-50 model that employs a stack of 50 layers with
residual learning, utilizing skip connections (He et al.,
2016), pre-trained on the ImageNet dataset as a base for
the pre-training. The text encoder is the BioClinicalBert
(Huang et al., 2019), a base-size Bert model containing
12 encoders with 12 bidirectional self-attention heads
totaling 110 million parameters. It is pre-trained on the
MIMIC-III dataset (Johnson et al., 2016), which con-
sists of 2083180 clinical notes.

The Surgical Video Lecture (SVL) dataset (Yuan
et al., 2023) is utilized during pre-training and com-
prises video-text pairs of surgical video lectures their
corresponding transcriptions. During training, the em-
bedding spaces between the visual encoder and text
encoder are aligned by jointly training them to max-
imize the cosine similarity of the video and text em-
beddings between the real video-text pairs while min-
imizing the cosine similarity between the incorrect pair-
ings. It employs the InfoNCE (Oord et al., 2018) loss
function, a type of contrastive loss commonly used in
self-supervised learning and multi-modal representation
to align the video-text pairs combined with MIL-NCE
(Miech et al., 2020) learning objectives to address the
misalignment issue that the lecturers might talk about
previously or after the visual demonstration.

3.3. Vision-Language Model Adaptation to Down-
stream task

A specialized adaptation head is necessary to adapt
a foundation model for a downstream task. This head,
as depicted in Figure 3, uses a feature fusion technique
to combine the image and text outputs from the back-
bones, tailoring them to the specific task, such as phase
recognition. This project investigates two feature fusion
techniques: the weighted sum of features and a gated
mechanism. Subsequently, the visual encoder is fine-
tuned alongside the adaptation head.

One strategy is the weighted sum method, illustrated
in Figure 4, which computes the similarity between im-
age and text features, applies weighted text features to
the image features and combines them for classification
outputs. First, the image I2048 and text T7×2048 feature
vectors are normalized. The normalized text features
are then transposed along the last two dimensions to ob-
tain T2048×7. To facilitate matrix multiplication, an ex-
tra dimension is added to the image feature vector, re-
sulting in I1×2048. Next, the cosine similarity between

9.5



Adapting generalist vision language models for surgical phase recognition 6

T1

I1

Text
Encoder

Text Prompt

Visual
Encoder

T2 T3 T4 T5 T6 T7

Phase Class

Adaptation Head

Figure 3: SurgVLP model architecture with adaptation module
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the image features and each text feature is calculated,
yielding sim7. A softmax function is applied to these
similarities, and the resulting values are expanded along
the last dimension to generate weights W7×1. These
weights are then multiplied by the text features to pro-
duce the weighted text features Tw7×2048, which are
summed along axis 1 to derive the final weighted text
features Tw2048. Finally, the weighted text features are
summed with the image features I2048 to obtain the com-
bined image features Iw2048. A linear layer is then ap-
plied to these combined features for phase classification,
resulting in the predictions preds7.

The other strategy is the gated mechanism, illustrated
in Figure 5, which employs gates to dynamically con-

trol the contribution of image and text features to the
final representation. Initially, to obtain the gate weights,
the image feature vector I1×2048 and the text feature vec-
tor T7×2048 are concatenated on their last axis, forming
the combined feature vector C7×4096. A linear layer is
then applied to reduce the dimensionality to C7×2048C,
followed by a sigmoid function to generate the gate
weights W7×2048. These weights are then multiplied by
the image feature vectors W × I, resulting in the gated
output 1 G17×2048. Simultaneously, the complementary
weights 1 −W are multiplied by the text feature vector
(1−W)×T , producing the gated output 2 G27×2048. The
final gated representation G7×2048 is obtained by sum-
ming both outputs: G = G1 +G2. Subsequently, mean
pooling is performed along axis 1 to average across each
textual feature representation, resulting in the final out-
put for classification G2048. A linear layer is then ap-
plied to these combined features for phase classification,
culminating in the predictions preds7.

3.4. Proposed Experiments
This section outlines the experiments conducted to

investigate the impact of the text prompts on the adapta-
tion of the SurgVLP model for the surgical phase recog-
nition task.

3.4.1. Textual and visual feature’s dimensionality
Phase recognition is a task that relies heavily on video

input; it is necessary to preserve as much of the visual
input as possible. Due to the dimensionality output of
the encoders in each branch, image encoder I2048 and
text encoder T7×768, one of the output shapes must be
manipulated to match the other. One of the experiments
performed is to analyze the advantages of up-scaling the
text feature vector to match the image feature vector di-
mensions instead of down-scaling the image features to
the text vector. A linear layer was applied to downscale
the image vector I2048 to I768 or upscale the text vector
T7×768 to T7×2048.
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Text Features

T7x2048
Image Features

I1x2048
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Combined Features

C7x4096
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W7x2048

Gated output G1

G17x2048
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1-W7x2048
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G27x2048

Gated output 
G = G1 + G2

G7x2048

mean pooling

Final output

linear layer

Preds1x7

G1x2048

Figure 5: Gated mechanism feature aggregation method

3.4.2. Adding More Textual Information

In addition to generating prompts with an LLM, we
explore methods to enhance hand-crafted prompts with
additional information. Specifically, detailed descrip-
tions of each class label were extracted from a medical
textbook (Majumder et al., 2020) and processed through
a text encoder. These textual features from the textbook
were then combined with the hand-crafted text features
using an attention mechanism, as illustrated in Figure
6. First, the hand-crafted prompt passes through the
SurgVLP text encoder to obtain text features Ta7×768;
in parallel, the textbook text passes through another text
encoder to obtain text features Tb7×768. Similarly to
the previously described gate mechanism, both text fea-
tures are concatenated at their last dimension, obtaining
the combined feature vector C7×1536. A linear layer is
applied to reduce the dimensionality to C7×1 followed
by a sigmoid function to generate the attention weights
W7×1. These weights are then expanded to match the
text feature dimensionality W7x768 and multiplied by
the Ta7x768 obtaining the attended output A17x768 =

W7x768 × Ta7x768. Simultaneously, the complementary
weights 1 − W are multiplied by Tb7x768 obtaining the
attended output A27x768 = (1 −W7x768) × Tb7x768. Both
outputs are then summed to obtain the final attended text
features A7x768 = A17x768 +A27x768, which are then used
as the text features to combine with the image features.

4. Results

Experiments were conducted on 100%, 25%, and
12.5% of the training data to analyze trends across the
evaluated techniques. For the 25% and 12.5% splits,
three folds of randomly selected videos from the train-
ing set were chosen, ensuring no overlap among them.
The evaluation metrics observed are accuracy, f1-score,
precision, and recall described in Equations 1 - 4, where
tp, tn, f p, f n represent true positive, true negative, false
positive and false negative respectively. These metrics
were calculated per video in the test set, and the results
were then averaged to provide a comprehensive assess-
ment.
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Figure 6: Attention mechanism feature combination technique

All experiments were done using Pytorch as the main
deep learning framework and run on Nvidia V100 and
RTX6000 GPUs provided by the University of Stras-
bourg.

Acuracy =
tp + tn

tn + tp + f n + f p
(1)

F1 − score = 2 ·
(

Precision · Recall
Precision + Recall

)
(2)

Recall =
tp

tp + f n
(3)

Precision =
tp

tp + f p
(4)

Parameters values

Input dim. 224 x 224
Batch size 64
Optimizer SGD

Learning rate 0.001
LR scheduler Cosine Annealing
Loss function Cross Entropy

Table 2: Final hyperparameters selected

4.1. Vision vs Vision Language

To evaluate the efficacy of the SurgVLP model pre-
trained on the SVL dataset, we fine-tuned the SurgVLP
model’s visual encoder and a ResNet50 pre-trained on
the IMAGENET dataset for phase recognition. Var-
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ious hyperparameters were explored, including batch
sizes of 32 and 64, optimizers Adam and SGD, using
a cosine annealing learning rate scheduler, and learning
rates ranging from 0.0001 to 0.01. Table 2 details the
final selected hyperparameters. The SurgVLP’s model
was also fine-tuned, integrating the text features from
the frozen text encoder as depicted in Figure 3 using the
two previously described fusion techniques. The final
results can be observed in Table 3.

The domain-specific pre-training of SurgVLP (vision
only) results in a slight improvement over Resnet-50,
with higher accuracy (78.24% vs. 77.99%) and recall
(78.60% vs. 77.45%), when trained on 100% of the
data indicating that pre-training on surgical data en-
hances the model’s ability to adapt to surgical contexts.
When integrating textual data, the full SurgVLP model
using a weighted sum aggregation of image-text fea-
tures outperforms the vision-only and Resnet-50 mod-
els, achieving the highest accuracy (78.68%) and F1-
score (72.23%). Although slightly less effective than
the weighted sum, the gated mechanism for image-text
feature aggregation in SurgVLP still shows competitive
performance.

In few-shot training scenarios, the performance gaps
become more pronounced. With only 25% of the train-
ing data, SurgVLP (vision only) maintains a signifi-
cant edge over Resnet-50, showing a higher accuracy
(66.52% vs. 61.61%) and recall (69.26% vs. 63.45%).
The full SurgVLP model with weighted sum aggre-
gation further extends this lead (67.84% accuracy),
demonstrating the added value of incorporating tex-
tual features. However, the gated mechanism’s perfor-
mance drops notably in the 12.5% training split, indi-
cating potential instability with minimal data. Here,
the weighted sum aggregation maintains robust perfor-
mance (58.43% accuracy), whereas Resnet-50’s accu-
racy falls to 56.62%. These observations underscore
the importance of domain-specific pre-training and ef-
fective image-text feature aggregation, particularly in
data-constrained environments.

4.2. Textual and visual feature’s dimensionality
To explore the impact on the feature dimensionality

when combining image and text features, the model’s
visual encoder and adaptation head with the weighted
sum fusion technique were fine-tuned following the
same parametrization as depicted in 4.1. The final re-
sults are exemplified in Table 4.

With the entire training dataset, the model using up-
scaled text features marginally outperforms the down-
scaled image feature model, achieving higher accu-
racy (78.68% vs. 78.34%) and F1-score (72.23% vs.
71.74%). However, as the training data decreases, the
performance gap widens significantly. With only 25%
of the training data, the upscaled text feature model
retains a higher accuracy (67.84% vs. 66.39%) and
F1-score (64.45% vs. 63.10%). This trend is even

more pronounced in the 12.5% training scenario, where
the upscaled text feature model maintains a reasonable
accuracy (58.43%) and F1-score (58.60%). In con-
trast, the downscaled image feature model’s accuracy
drops to 46.94% with a notable decrease in the F1-score
(52.67%). These results suggest that maintaining higher
dimensionality in textual features enhances the model’s
robustness, particularly in low-data settings, likely due
to better preservation of relevant visual features critical
for accurate surgical phase recognition.

4.3. Text Prompt Generation

This experiment investigates the capabilities of a
large language model to generate static prompts by sim-
ulating the expert prompt-making process. We fine-
tuned the image backbone and the adaptation head us-
ing the weighted sum fusion technique for the three dis-
cussed prompts. Figure 7 highlights the cosine simi-
larity between classes in each text prompt to evaluate
class differentiability and identify potential misrepre-
sentation. The results are displayed in Table 5.

When trained on the entire dataset, the differences
between hand-crafted and GPT-generated prompts are
minimal, with the GPT-generated prompts slightly edg-
ing out in accuracy and F1-score. Specifically, the
GPT4o prompt achieved an accuracy of 78.70% and an
F1-score of 72.25%, compared to 78.68% and 72.23%
for the hand-crafted prompt. However, as the train-
ing data decreases, the impact of the prompt choice
becomes more apparent. With 25% of the data, the
GPT4o prompt maintains a slight advantage, showing
a higher accuracy (67.93% vs. 67.84%) and F1-score
(64.49% vs. 64.45%). In the most data-constrained sce-
nario (12.5% of the data), all prompts perform similarly.
However, the GPT4o prompt continues to show better
results in terms of consistency and robustness, with an
F1-score of 58.61%. These results suggest that while
hand-crafted and GPT-generated prompts have a neg-
ligible impact with abundant data, the GPT4o prompt
provides a slight performance edge in few-shot learning
scenarios.

4.4. Adding more text

This experiment evaluated two text encoders: the
SurgVLP pre-trained text encoder, which has its em-
bedding space aligned with the image encoder, and the
ClinicalBert transformer pre-trained on the MIMIC-III
dataset. The textual features were extracted from the
textbook prompt and combined with the text features
from the hand-crafted prompts through the attention
mechanism previously described. The attended features
were combined with the image features utilizing the
weighted sum fusion technique and fine-tuned with the
image encoder and it’s results are depicted in Table 6.

As shown in Table 6, when trained on the full
dataset (100%), the addition of textbook knowledge
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Model Training
Split

Dataset Accuracy(%) F1-score(%) Precision(%) Recall(%)

Resnet50 100% IMAGENET 77.99 ± 9 71.41 ± 7 66.59 ± 9 77.45 ± 6
SurgVLP
(vision only)

100% SVL 78.24 ± 9 71.66 ± 7 66.27 ± 9 78.60 ± 6

SurgVLP
(weighted
sum)

100% SVL 78.68 ± 9 72.23 ± 7 67.00 ± 9 78.93 ± 6

SurgVLP
(gated
mechanism)

100% SVL 78.02 ± 9 71.61 ± 7 66.15 ± 9 78.63 ± 6

Resnet50 25% IMAGENET 61.61 ± 5 58.30 ± 3 54.40 ± 3 63.45 ± 4
SurgVLP
(vision only)

25% SVL 66.52 ± 1 63.82 ± 1 59.55 ± 1 69.26 ± 3

SurgVLP
(weighted
sum)

25% SVL 67.84 ± 0.2 64.45 ± 1 59.79 ± 1 70.37 ± 2

SurgVLP
(gated
mechanism)

25% SVL 62.07 ± 3 61.36 ± 2 56.10 ± 1 68.23 ± 3

Resnet50 12.5% IMAGENET 56.62 ± 0.4 53.91 ± 2 51.00 ± 1 57.73 ± 2
SurgVLP
(vision only)

12.5% SVL 57.77 ± 2 58.17 ± 1 54.03 ± 0.2 63.53 ± 1

SurgVLP
(weighted
sum)

12.5% SVL 58.43 ± 2 58.60 ± 1 54.44 ± 1 64.01 ± 2

SurgVLP
(gated
mechanism)

12.5% SVL 28.54 ± 14 38.56 ± 14 36.60 ± 13 42.42 ± 15

Table 3: Fine-tuning results for different training splits and feature dimensions

Model Training
Split

Feature
Dimension

Accuracy(%) F1-score(%) Precision(%) Recall(%)

SurgVLP
(Upscale
text)

100% T7x2048 78.68 ± 9 72.23 ± 7 67.00 ± 9 78.93 ± 6

SurgVLP
(Downscale
image)

100% I1x768 78.34 ± 9 71.74 ± 7 66.70 ± 9 78.17 ± 7

SurgVLP
(Upscale
text)

25% T7x2048 67.84 ± 0.2 64.45 ± 1 59.79 ± 1 70.37 ± 2

SurgVLP
(Downscale
image)

25% I1x768 66.39 ± 1 63.10 ± 1 58.32 ± 1 69.23 ± 2

SurgVLP
(Upscale
text)

12.5% T7x2048 58.43 ± 2 58.60 ± 1 54.44 ± 1 64.01 ± 2

SurgVLP
(Downscale
image)

12.5% I1x768 46.94 ± 4 52.67 ± 3 49.45 ± 3 56.87 ± 3

Table 4: Results exploring different feature dimensions and training splits
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(a) Hand-crafted prompt (b) GPT 4 generated prompt

(c) GPT 4o generated prompt

Figure 7: Cosine similarity between surgical phase classes for each text prompts

Text Prompt Training
Split

Dataset Accuracy(%) F1-score(%) Precision(%) Recall(%)

hand-crafted 100% SVL 78.68 ± 9 72.23 ± 7 67.00 ± 9 78.93 ± 6
gpt4 100% SVL 78.70 ± 9 72.22 ± 7 67.00 ± 9 78.89 ± 6
gpt4o 100% SVL 78.70 ± 9 72.25 ± 7 67.00 ± 9 78.95 ± 6

hand-crafted 25% SVL 67.84 ± 0.2 64.45 ± 1 59.79 ± 1 70.37 ± 2
gpt4 25% SVL 67.83 ± 0.2 64.47 ± 1 59.80 ± 1 70.39 ± 2
gpt4o 25% SVL 67.93 ± 0.2 64.49 ± 1 59.73 ± 1 70.54 ± 2

hand-crafted 12.5% SVL 58.43 ± 2 58.60 ± 1 54.44 ± 1 64.01 ± 2
gpt4 12.5% SVL 58.45 ± 2 58.60 ± 1 54.44 ± 1 64.01 ± 2
gpt4o 12.5% SVL 58.44 ± 2 58.61 ± 1 54.44 ± 1 64.01 ± 2

Table 5: Results with different text prompts for various training splits

slightly decreased performance across both encoders,
with SurgVLP maintaining a marginally higher accu-
racy (78.59%) and F1-score (72.24%) compared to
ClinicalBERT (78.53% accuracy and 72.16% F1-score).
However, these differences become more significant in
few-shot learning scenarios.

With 25% of the training data, the SurgVLP text
encoder’s performance remained stable (67.82% accu-

racy and 64.45% F1-score), closely matching the base-
line handcrafted prompt performance (67.84% accu-
racy). In contrast, the ClinicalBERT’s performance
dropped sharply to 58.44% accuracy and 58.61% F1-
score, demonstrating its less effective adaptation to sur-
gical phase recognition when compared to SurgVLP.

The performance gap is even more pronounced,
with only 12.5% of the training data. The SurgVLP
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text encoder showed a notable increase in accu-
racy (61.61%) and maintained a competitive F1-score
(58.30%), whereas the ClinicalBERT model’s accuracy
and F1-score (both 58.44% and 58.61%) mirrored the
results of using no additional text. These results indi-
cate that the SurgVLP text encoder, explicitly trained
on surgical lecture transcriptions, better preserves rele-
vant surgical context and adapts more effectively in low-
data environments than ClinicalBERT, underscoring the
importance of domain-specific pre-training for surgical
phase recognition.

5. Discussion

The experiments conducted in this study demon-
strated the effectiveness of adapting generalist vision-
language models for surgical phase recognition tasks.
The SurgVLP model, pre-trained on a comprehensive
dataset of surgical video lectures, showed promising
results in identifying different phases of laparoscopic
cholecystectomy. The model achieved high accuracy
and robust performance across various training data per-
centages by integrating text prompts and employing fea-
ture fusion techniques.

5.1. Vision-Language Models vs. Vision-Only Models

One of the significant findings from our experiments
is the comparative performance of vision-language and
vision-only models. The SurgVLP model, which incor-
porates both visual and textual information, consistently
outperformed the ResNet50 vision-only model. The re-
sults indicate that including text prompts provides addi-
tional context that enhances the model’s ability to dis-
tinguish between different surgical phases. Specifically,
the SurgVLP model with the weighted sum feature fu-
sion technique achieved the highest accuracy and F1-
score across all training splits.

5.2. Impact of Feature Fusion Techniques

The study explored two feature fusion techniques:
weighted sum and gated mechanisms. The weighted
sum method demonstrated superior performance com-
pared to the gated mechanism. This finding suggests
that the direct combination of text and image features,
weighted by their similarity, is more effective in captur-
ing the relevant information needed for phase recogni-
tion. The gated mechanism, while useful, may introduce
unnecessary complexity that does not translate into im-
proved performance for this specific task.

5.3. Upscaling vs. Downscaling Features

The study also compared the effects of upscaling text
features to match the image feature dimensions versus
downscaling image features to match text dimensions.

The results favored upscaling text features, which main-
tained higher accuracy and F1-scores. This outcome un-
derscores the importance of preserving as much visual
information as possible, given that surgical phase recog-
nition relies heavily on video inputs.

5.4. Text Prompt Generationg
Another critical aspect investigated was the gen-

eration of text prompts using large language mod-
els (LLMs). Hand-crafted prompts, GPT-4 generated
prompts, and GPT-4o generated prompts were com-
pared. Analyzing the cosine similarity between the
classes for each prompt, depicted in Figure 7, shows the
differentiability between each class. Although GPT-4
prompts show a more considerable differentiation be-
tween each class, it does not correlate to a better prompt
as shown in Tables 5 where no significant discrepancy
can be observed. Interestingly, the performance differ-
ences among these prompts were minimal, indicating
that even simple, well-constructed prompts can be as
effective as those generated by advanced LLMs. This
finding is significant as it suggests that substantial do-
main expertise may not be necessary to generate ef-
fective text prompts, potentially lowering the barrier to
implementing such systems in clinical settings. Also,
there is no significant impact on the number of tokens
as input for the text encoder since the LLM-generated
prompts are considerably more verbose than the hand-
crafted prompt.

5.5. Adding More Textual Information
Incorporating additional textual information from

medical textbooks into the text prompts did not sig-
nificantly enhance the model’s performance. This re-
sult suggests that the initial prompts were already suf-
ficiently informative and that adding more text did not
provide additional benefits. It also highlights the robust-
ness of the initial prompt design and the efficiency of
using concise, targeted information.

6. Conclusions

This research focuses on adapting generalist vision-
language models, specifically the SurgVLP model, for
surgical phase recognition in laparoscopic cholecystec-
tomy. The study aims to enhance surgical safety, ef-
ficiency, and outcomes by developing AI systems that
can be easily adapted to various surgical tasks. Key
objectives include exploring feature fusion techniques,
evaluating text prompt generation methods, assessing
the model’s performance with different training data
amounts, and integrating additional textual information
from medical literature.

The experiments demonstrated that the SurgVLP
model, which incorporates both visual and textual infor-
mation, consistently outperformed the ResNet50 vision-
only model. The weighted sum feature fusion technique
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Additional
Prompt

Training
Split

Dataset Accuracy(%) F1-score(%) Recall(%)

- 100% - 78.68 ± 9 72.23 ± 7 67.00 ± 9 78.93 ± 6
textbook 100% SurgVLP 78.59 ± 9 72.24 ± 7 67.00 ± 9 78.95 ± 6
textbook 100% ClinicalBert 78.53 ± 9 72.16 ± 7 66.92 ± 9 78.85 ± 6

- 25% - 67.84 ± 0.2 64.45 ± 1 59.79 ± 1 70.37 ± 2
textbook 25% SurgVLP 67.82 ± 0.2 64.45 ± 1 59.78 ± 1 70.37 ± 2
textbook 25% ClinicalBert 58.44 ± 2 58.61 ± 1 54.44 ± 1 64.01 ± 2

- 12.5% - 58.43 ± 2 58.60 ± 1 54.44 ± 1 64.01 ± 2
textbook 12.5% SurgVLP 61.61 ± 5 58.30 ± 3 54.40 ± 3 63.45 ± 4
textbook 12.5% ClinicalBert 58.44 ± 2 58.61 ± 1 54.44 ± 1 64.01 ± 2

Precision(%)

Table 6: Results when adding more information for 100% of the training videos

showed superior performance to the gated mechanism,
suggesting that the direct combination of text and image
features is more effective for phase recognition. Text
prompts generated by large language models (LLMs)
like GPT-4 and GPT-4o did not significantly outper-
form hand-crafted prompts, indicating that simple, well-
constructed prompts can be just as effective. Addition-
ally, upscaling text features to match image feature di-
mensions maintained higher accuracy and F1-score, un-
derscoring the importance of preserving visual informa-
tion.

While the results are promising, this study has limita-
tions. The experiments were conducted using a specific
surgical procedure (laparoscopic cholecystectomy), and
the generalizability to other types of surgeries needs fur-
ther investigation. Additionally, this study adapts the
vision-language model by extracting features from sur-
gical videos on a frame level, losing any temporal infor-
mation from the procedure.

For future research, this study could be enhanced by
including a broader range of surgical procedures to in-
crease the comprehensiveness of the analysis. Explor-
ing methods to integrate temporal information into the
pipeline could also provide further improvements.
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Abstract

Effective prediction of failed recanalization in patients suffering from acute ischemic stroke (AIS) secondary to a large
vessel occlusion could help improve outcomes in cases where conventional thrombectomy fails.

This study explores the potential of a multi-modal approach integrating various pre-intervention neuroimaging
acquisitions (NCCT, CTA, CTP), clinical data and ground-truth segmentations as prior information to predict failed
recanalization in non-cardioembolic stroke after first pass recanalization is not achieved, with an emphasis on cases in-
volving intracranial atherosclerotic disease (ICAD). Using a dataset of 212 patients treated with endovascular therapy
(EVT) at Vall d’Hebron Hospital, we implemented various machine learning models, including traditional algorithms
and deep learning architectures. The models were trained on a combination of clinical variables, radiomic features,
and imaging data, with additional experiments utilizing vessel and thrombus segmentation masks as prior information.

Our findings demonstrate that combining clinical and radiomic data significantly enhances predictive performance
of tabular-based models compared to using either data source alone. On the other hand, the best multimodal model, a
modified EfficientNet with a Dynamic Affine Feature Map Transform (DAFT) block to integrate imaging and clinical
data, achieved an AUC of 0.74 ± 0.12, indicating robust predictive capabilities. Integrating vessel segmentation further
improved model accuracy, underscoring the importance of multi-modal data fusion in predicting EVT outcomes.

Future research should focus on expanding the dataset and exploring additional data sources to further refine predic-
tive models. The integration of advanced machine learning techniques and comprehensive data sources holds promise
for enhancing stroke treatment protocols and patient outcomes.

Keywords: Acute Ischemic Stroke, Intracranial Atherosclerosis Disease, Failed Recanalization, Deep Learning,
Multi-modal Classification

1. Introduction

A stroke is a severe neurovascular disease caused
by various etiologies, broadly divided into two types:
hemorrhagic and ischemic. Hemorrhagic stroke occurs
when a blood vessel in the brain ruptures, leading to
blood leakage, altered internal brain pressure, and se-
vere neurological damage (Meschia, 2023). In contrast,
ischemic stroke occurs when a blood vessel is occluded,
disrupting the normal flow of blood to the brain cells.
The blockage can be caused by a blood clot or throm-
bus, composed of various cell types such as cholesterol
crystals, red blood cells or fibrin Jolugbo and Ariëns
(2021). Ischemic strokes can be transient ischemic at-
tacks (TIA) or acute ischemic strokes (AIS). While they

may present similar symptoms, the former is a tempo-
rary event, and the latter can cause irreversible neu-
rological damage caused by the death of brain cells
in blood-deprived regions (Coutts, 2017). According
to the most recent data from the Global Burden Dis-
ease Study (GBD), approximately 65% of strokes are
ischemic, 28% are hemorrhagic, and the remaining are
subarachnoid hemorrhages (IHME).

Among the main thrombus etiologies, we find car-
dioembolic (CE) occlusions, which occur when a
thrombus originating in the heart due to a cardiac disor-
der embolizes, occluding a cerebral artery, or occlusions
caused by intracranial atherosclerotic disease (ICAD).
In patients suffering from ICAD, vessels are blocked by
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plaque accumulated within the vessel walls, narrowing
the vessel and eventually leading to flow disruption. To-
gether, CE and ICAD occlusions account for approxi-
mately 45% of ischemic strokes. CE alone is responsi-
ble for 14-30% of ischemic strokes (Maida et al., 2020),
while ICAD is highly prevalent in Asia and represents
a significant portion of treatable strokes with EVT. In
contrast, lacunar strokes, which occur in deep brain re-
gions and account for 15-25% of ischemic strokes, are
not typically treatable with EVT. In any case, a prompt
response and treatment are essential, as time is critical
in stroke cases (Saver, 2006).

1.1. Stroke Diagnosis
When stroke symptoms are suspected in a patient,

a rapid diagnosis-treatment protocol needs activation
in the medical facilities where the patient is admitted.
Treatment approaches depend heavily on the time from
symptom onset to receiving medical attention.

Stroke diagnosis is first addressed in a pre-hospital
phase undertaken by the emergency medical services.
The in-hospital diagnosis pipeline primarily relies on
brain imaging in accordance to the guidelines issued by
the American Stroke Association and European Stroke
Organization (Shulman and Abdalkader, 2023). Spe-
cific acquisitions may vary between medical centers ac-
cording to policy and available resources.

Clinical assessment is made by the stroke neurolo-
gist and involves administering a set of motor, visual
and verbal tasks tasks that, depending on the level of
damage, can indicate the patient’s stroke status. This is
evaluated using the National Institutes of Health Stroke
Scale (NIHSS), ranging from 0 to 42, with a higher
value indicating a severe stroke (Meschia, 2023).

After clinical assessment, the imaging steps of the
diagnosis pipeline follow. The decision between con-
ducting a Computed Tomography (CT) or a Magnetic
Resonance Imaging (MRI) depends on medical facil-
ities and device availability. Non-Contrast Computed
Tomography (NCCT) is mainly used to rule out or con-
firm hemorrhagic lesions, which appear hyper-intense
in NCCT (Shulman and Abdalkader, 2023), and to as-
sess the infarcted brain areas. The Alberta Stroke Pro-
gram Early CT Score (ASPECTS) scale is employed to
that end (Pexman et al., 2001).

Typically, Computed Tomography Angiography
(CTA) is also acquired if a hemorrhagic stroke is ruled
out in NCCT. In CTA, intra-venous contrast is admin-
istered to the patient allowing observation of the pa-
tient’s blood vessels. CTA is commonly used for its high
sensitivity in detecting large vessel occlusion (LVO)
(Sanchez et al., 2024; Shulman and Abdalkader, 2023)
and intracranial stenosis as stated in the Stroke Out-
comes and Neuroimaging of Intracranial Atheroscle-
rosis (SONIA) study, when compared to digital sub-
traction angiography DSA, making it a reliable non-
invasive alternative, highlighting its role in both acute

and chronic settings of stroke management(Sanchez
et al., 2024).

In some centers, patients may undergo Computed To-
mography Perfusion (CTP) to study brain blood hemo-
dynamics (Wing and Markus, 2019). Depending on
symptoms’ severity and medical facility availability, pa-
tients may be imaged with an MRI, which is more pre-
cise but time-consuming, has more contraindications
and is prone to motion artifacts.

1.2. Treatment for Ischemic Stroke

Common AIS treatment methods include intravenous
thrombolysis (IVT) and endovascular therapy (EVT).
IVT involves injecting a thrombolytic agent, recombi-
nant tissue plasminogen activator (rtPA), to the patient
to dissolve the clot and restore blood flow. Its effective-
ness is proven, but it is time-sensitive, depending on the
time elapsed between symptom onset and rtPA admin-
istration (Grotta, 2023).

EVT or mechanical thrombectomy is an invasive pro-
cedure for AIS caused by a LVO. It involves inserting
a catheter through a major artery to reach and extract
the clot, recanalizing the affected blood vessel and es-
tablishing reperfusion. The success of this technique is
significantly higher compared to using rtPA alone, as
demonstrated by the HERMES trials in 2015 (Goyal
et al., 2016), and both treatments can be used in com-
bination if there are no contraindications (Phan et al.,
2017). There is ongoing discussion on the treatment’s
effectiveness and whether there is a benefit to admin-
istering rtPA before EVT compared to practicing EVT
alone (Phan et al., 2017).

EVT outcome depends on factors such as the throm-
bus’s location within the brain’s circulatory system,
with more distal vessels being smaller and more fragile,
making them prone to injury and rupture (Sheth, 2023).
The success of EVT is also associated with thrombus
composition, vessel geometry, and clot etiology, among
other factors (Sheth, 2023).

After EVT, results can be assessed using the modi-
fied Thrombolysis in Cerebral Infarction (mTICI) scale
evaluated on DSA series, indicating different levels of
reperfusion. Values can range from 0 to 3, with inter-
mediate levels 1, 2A, 2B, and 2C, with 3 representing
complete reperfusion after the procedure and 0 indicat-
ing no reperfusion at all (Sheth, 2023). Patients with
successful reperfusion are usually considered those with
a reperfusion level greater than 2B. Reperfusion rates as
high as 80-90% are reached in the latest trials (Fischer
et al., 2022). Successful reperfusion is associated with
better clinical outcomes and reduced mortality, mak-
ing EVT the gold standard treatment for LVO (Beaman
et al., 2022).

Other treatment options include contact aspiration,
stent retriever thrombectomy, rescue angioplasty, and
rescue stenting (Beaman et al., 2022):
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• Contact Aspiration: This method involves using
a suction device to aspirate and remove the throm-
bus directly.

• Stent Retriever Thrombectomy: A stent retriever
is deployed at the site of the thrombus, trapping the
clot and allowing it to be removed when the stent
is retracted.

• Rescue Angioplasty: This technique uses a bal-
loon to widen the blood vessel at the site of occlu-
sion, which can help restore blood flow.

• Rescue Stenting: In cases where other methods
fail, a stent can be permanently placed to keep the
vessel open and maintain blood flow.

1.2.1. Failed Recanalization
Failed recanalization refers to the failure to recanal-

ize the occluded vessel through IVT and/or EVT in pa-
tients suffering from LVO. EVT in patients with ICAD-
LVO presents higher failed recanalization rates (Baner-
jee and Chimowitz, 2017; Rodrigo-Gisbert et al., 2024).
This failure is associated with worse clinical outcomes,
including higher rates of disability and death (Beaman
et al., 2022).

1.2.2. First Pass Effect
In EVT, multiple attempts can be made to retrieve

the thrombus causing the LVO. These are referred to as
passes. Recanalizing after the first pass is commonly
known as the First Pass Effect (FPE), which is asso-
ciated with better clinical long-term outcomes and re-
duced progression of the ischemic lesion (Zaidat et al.,
2018).

1.3. Imaging in Stroke diagnosis

Once the assessment pipeline is defined and imaging
is acquired, it is important to correctly interpret the in-
formation coming from both clinical assessments and
imaging results.

1.3.1. NCCT
As mentioned earlier, NCCT is evaluated using the

ASPECTS score (Pexman et al., 2001). This scale as-
sesses 10 regions of interest in the brain at the gan-
glionic and supraganglionic levels. These regions in-
clude Caudate (C), lentiform nucleus (L), internal cap-
sule (IC), insular ribbon (In), anterior Middle Circula-
tory (MCA) cortex (M1), MCA cortex lateral to the in-
sula (M2), posterior MCA cortex (M3), anterior part of
the MCA territory immediately superior to M1 (M4),
lateral part of the MCA territory immediately superior
to M2 (M5), and posterior part of the MCA territory im-
mediately superior to M3 (M6) as seen in Figure 1 from
Shulman and Abdalkader (2023). One point is assigned
if no signs of early ischemic changes are detected and

zero if they are. Once all regions are evaluated, their
scores are summed, and the lower the result, the riskier
the stroke.

An unequivocal sign of stroke in NCCT is the uni-
lateral hyperdensity of a proximal large vessel, highly
detectable within the lumen (Shulman and Abdalkader,
2023). When this sign is visible, that is not an specific
sign, patients should be treated as if it were an LVO.

Figure 1: NCCT image example and ASPECTS region of interest.

1.3.2. CTA
CT angiography (CTA) is a highly accurate imag-

ing technique used to detect large vessel occlusions
(LVO) in the brain. CTA diagrams brain vessels us-
ing intra-venous contrast previously injected into the
patient. The contrast in the lumen 1 of the extracra-
nial and intracranial vasculature is captured and two-
dimensional maximal-intensity projections and three-
dimensional reconstructions can be reconstructed (Shul-
man and Abdalkader, 2023). In a normal blood flow
scenario, the contrast dye used in CTA should spread
evenly through the blood vessels, making them visible
on the scan. An occlusion, or blockage, will appear as
an area where the contrast dye does not reach, indicat-
ing a lack of contrast opacification. The importance of
CTA lies in its extremely high accuracy, with a sensitiv-
ity of 98.4% and specificity of 98.1% in detecting LVOs
(Shulman and Abdalkader, 2023).

CTA can be multiphase, acquiring images at differ-
ent time points: peak arterial, middle, and late venous
phases. This multiphase approach not only helps in as-
sessing a large vessel occlusion (LVO) but also in eval-
uating collateral blood flow. Collateral flow refers to
alternative or indirect arterial pathways that can poten-
tially provide blood flow when an artery normally sup-
plying an area of brain tissue is occluded. Understand-
ing the status of collateral circulation is important be-
cause it can influence treatment decisions and outcomes
in stroke patients. In quick diagnoses, it is common to

1The cavity or channel within a tube or tubular organ such as a
blood vessel
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use single-phase CTAs, which are faster but may not
provide as comprehensive an assessment as multiphase
CTAs (Dundamadappa et al., 2021; Yeo et al., 2001).

1.3.3. Other Techniques
CTP exposes the patient to more radiation than CTA,

but it can be beneficial when measuring cerebral blood
flow (CBF), cerebral blood volume (CBV), mean tran-
sit time, and approximations of the size and location
of the infarct core and the surrounding damaged area,
known as penumbra (Shulman and Abdalkader, 2023).
Diffusion-weighted image-MRI has higher sensitivity
and accuracy than NCCT but tends to be more com-
plicated and time-consuming, making it less reliable in
urgent cases. Another technique to check cerebrovas-
cular issues is DSA. DSA is the gold standard for LVO
location and hypoperfused region assessment, but it an
invasive imaging method.

Magnetic resonance angiography (MRA) is a non-
invasive technique that provides an accurate represen-
tation of the arterial lumen without radiation exposure.
However, it generally has lower spatial resolution com-
pared to DSA and CTA (Sanchez et al., 2024).

Transcranial ultrasound (US) is a non-invasive
method that assesses blood flow velocity to infer steno-
sis. It provides hemodynamic information but does
not directly visualize the plaque and is highly operator-
dependent (Sanchez et al., 2024).

Optical coherence tomography (OCT) uses an in-
travascular probe to provide high-resolution images of
plaque characteristics such as intimal thickening and
lipid accumulation. Despite being invasive, OCT offers
detailed assessment of plaque morphology, useful for
understanding plaque stability (Sanchez et al., 2024).

Figure 2: Different types of images: from left to right and top to bot-
tom: NCCT, CTP, CTA, DSA.

1.4. ICAD

Atherosclerotic plaque can be defined as a buildup
of fibrin and lipid tissue within the intracranial arte-
rial walls (Beaman et al., 2022) and is one of the
most common causes of stroke worldwide (Banerjee
and Chimowitz, 2017), highly prevalent in Asia, rep-
resenting around 50% of all stroke cases and 10% in the
United States of America. Since it affects Hispanics and
Afro-Americans more sensibly than Caucasians, major
drivers of population growth, it is expected that ICAD-
LVO incidence cases will rise over time (Banerjee and
Chimowitz, 2017).

Treatment of ICAD-LVO includes IVT and EVT,
along with the same diagnosis pipeline. Neverthe-
less, despite EVT being the gold standard for patients
with underlying ICAD, this disease has been associated
with lower recanalization rates (Rodrigo-Gisbert et al.,
2023), longer procedural times, cognitive decline, and
increased global economic burden (Beaman et al., 2022)
compared to CE-LVO.

The imaging modality commonly used to diagnose
ICAD is CTA, which is the most accurate non-invasive
method with high specificity and sensitivity(Banerjee
and Chimowitz, 2017). While CTA is precise in iden-
tifying occlusions and can also detect stenoses, it gener-
ally cannot determine whether an occlusion is due to
intracranial atherosclerotic disease (ICAD). The gold
standard for identifying ICAD is DSA, which pro-
vides more detailed information, though even DSA can
have variability in identifying plaque composition and
stenoses. Clinical history, such as the NIHSS score,
which tends to be lower than expected, can provide ad-
ditional context (Beaman et al., 2022).

Diagnosing ICAD-LVO is particularly challenging
mostly due to the small amount of cases and also due
to the presence of imitators such as intracranial va-
sospasm, dissection, and partially occlusive thrombus,
which can mimic the appearance of ICAD-LVO dur-
ing imaging and mechanical thrombectomy (Rodriguez-
Calienes et al., 2024). These conditions can lead to mis-
diagnosis and inappropriate interventions. For exam-
ple, intracranial vasospasm can appear similar to ICAD-
LVO on imaging but is typically reversible, whereas
ICAD is persistent. Distinguishing between these con-
ditions is critical to avoid unnecessary and potentially
harmful treatments.

When recanalization fails during EVT, the decision to
continue with additional passes or to use a rescue treat-
ment, such as stenting or angioplasty, depends largely
on the discretion and expertise of the interventionist in
situ. This highlights the complexity and difficulty of
managing ICAD-LVO, even for experienced clinicians.

1.5. Our Work

It is our interest to timely identify potential failed re-
canalization from pre-operational images, particularly

10.4



Multi-modal prediction of failed recanalization from pre-intervention neuroimaging (CT) and clinical data 5

Figure 3: A: Intracerebral Hemorrhage (ICH), Cardio Embolic LVO
and Intracranial atherosclerosis disease related LVO. B: EVT types
and devices

in ICAD-related LVO, to provide useful insights for ap-
propriate treatment. For example, early confirmation of
ICAD-LVO may reduce the number of stent retriever
passes, thereby reducing vessel damage and facilitating
proper ICAD procedures such as angioplasty and stent-
ing (Haussen et al., 2018).

As part of our work, we aim to predict ICAD using a
combination of tabular data and imaging data. The tab-
ular data consists of clinical variables, imaging-derived
variables, and radiomic features from thrombus images.
We will explore the predictive capabilities of each type
of data individually—clinical variables alone, radiomic
features alone—and in combination.

To set a baseline, we will conduct experiments us-
ing imaging data from NCCT and CTA scans, both sep-
arately and together. These experiments will be per-
formed on the whole 3D volume as well as on skull-
stripped images. Skull stripping reduces the informa-
tion in the image by keeping only the brain, whereas us-
ing the complete volume includes parts of the vascular
system that may show stenosis or ICAD, which could
be informative for our prediction.

Based on the best results between skull-stripped and
complete volumes, we will integrate tabular data and
imaging data to examine if the inclusion of more data
improves the prediction outcomes.

Developing an accurate discriminator is desired, as it
could enable clinical trials to test different stroke res-
cue treatments, such as stenting, beyond just increasing
the number of mechanical thrombectomy passes. This
approach is important because stenting can be benefi-
cial for ICAD but may be more harmful than helpful for
CE. Therefore, accurately distinguishing between these
conditions is necessary to avoid potential harm or un-
necessary costs associated with stenting everyone indis-

criminately.
To the best of our knowledge, while there has been

some work using deep learning in MRA, there is no
record of a study that combines traditional machine
learning methods, deep learning, and multimodal inte-
gration for ICAD-LVO using pre-operative CT images.
Our work aims to bridge this gap by exploring the inte-
gration of various data modalities to improve detection
and classification outcomes in ICAD-LVO.

The rest of this document is organized as follows: a
review of the state of the art in Chapter 2, explaining
the nature of the problem; Chapter 3 details the data
used and the experiments conducted on different data
modalities to set a baseline, as well as the multimodal
approach. The results section shows metrics for both
baseline and final experiments, followed by a discussion
and, finally, a conclusion.

2. State of the art

2.1. Clinical Predictors

Efforts to diagnose LVO with underlying ICAD early
are motivated by the potential to improve treatment
strategies. Early identification of recanalization likeli-
hood allows for anticipating procedural strategies, sav-
ing time, and reducing complications. Although EVT is
highly effective, it is particularly challenging in ICAD-
LVO cases due to high risks of re-occlusion and per-
manent damage (Cai et al., 2022; Haussen et al., 2018).
Thus, swift diagnosis is important for selecting the ap-
propriate EVT approach (Li et al., 2022).

2.1.1. Clinical Variables
Several clinical variables are linked to ICAD-LVO,

different studies have confirmed the different associa-
tions of different predictors with ICAD-LVO Haussen
et al. (2018); Li et al. (2022); Liao et al. (2022);
Rodrigo-Gisbert et al. (2024); Zha et al. (2021). Es-
tablished clinical predictors include:

• High HbA1c levels

• Presence of LDL cholesterol or high dyslipidemia

• Elevated Systolic Blood Pressure

• Absence of atrial fibrillation

• Hypertension

2.1.2. Hyperacute Clinical Biomarkers
Markers assessed during the acute phase provide ad-

ditional insights:

• Baseline NIHSS: Patients with ICAD-LVO often
have milder NIHSS scores compared to other LVO
types (Psychogios et al., 2022).

10.5



Multi-modal prediction of failed recanalization from pre-intervention neuroimaging (CT) and clinical data 6

• ASPECTS: Higher scores in baseline NCCTs are
typically associated with ICAD-LVO (Chen et al.,
2023).

• Onset-to-image (OTI) time: Used alongside CTP
parameters to assess collateral status.

2.1.3. CTP Image-Derived Markers
Markers derived from CTP imaging relevant to ICAD

include:

• Core infarct volume (CBF < 30%): Reflects the
blood flow through brain tissue. Values below 30%
of normal flow, compared to healthy brain areas,
indicate irreversibly infarcted volume (Amuko-
tuwa et al., 2019).

• Tmax>4/Tmax>6 ratio: Tmax represents the time
it takes for blood to arrive at a given region of the
brain. A Tmax>4 indicates areas with significant
delays, and a ratio above 2 suggests good collateral
flow (Haussen et al., 2018).

• Hypoperfusion Intensity Ratio (HIR): Defined as
Tmax>10/Tmax>6, where a high ratio indicates
poor collateral status. HIR helps in identifying the
severity of perfusion deficits (Lyndon et al., 2021).

• Tmax>4: Known as Hypoperfused volume growth
rate, it measures the volume of tissue experiencing
delayed blood flow and serves as a predictor for
ICAD (Rodrigo-Gisbert et al., 2024).

An important CTP-related predictor is the Hy-
poperfusion Intensity Ratio (HIR), defined as
Tmax>10s/Tmax>6s. HIR has gained relevance
in stroke prognosis as studies have confirmed that a low
HIR, in combination with other known predictors, sug-
gests underlying ICAD (Rodrigo-Gisbert et al., 2024).
Patients with good collateral circulation are considered
slow progressors since collateral flow sustains the brain
tissue, slowing the ischemic core’s advancement. A
high HIR indicates a large ischemic penumbra, which is
the area that can potentially be saved by recanalization.
ICAD patients tend to have good collaterals due to
the progressive nature of the disease, which causes
small intracranial stenoses and longstanding ischemic
regions, leading to enhanced collateral flow (Maguida
and Shuaib, 2023).

2.1.4. Image-Derived Markers
Additional measurable markers from imaging studies

include:

• Hyperdense sign (HS) in NCCT: Indicates CE
thrombus but is absent in about 30% of all clots.

• Truncal occlusion type: More commonly associ-
ated with ICAD-LVO, compared to branch occlu-
sions typical of CE occlusions.

• Delta HU: Small HU differences between the
thrombus region and a contralateral patch can in-
dicate ICAD-LVO (Siddiqui et al., 2023).

• HU ratio: A ratio close to 1 between thrombus
patch intensity and the contralateral patch is in-
dicative of ICAD-LVO (Siddiqui et al., 2023).

2.1.5. Other Image-Derived Markers
General imaging markers aiding in predicting ICAD-

LVO include:

• Calcifications: Presence of intracranial calcifica-
tions suggests ICAD.

• Collaterals: Good collateral circulation is a sig-
nificant indicator of ICAD-LVO (Maguida and
Shuaib, 2023).

• Atherosclerosis in other regions: Atheromatosis in
areas such as the carotid bifurcation or aortic arch
can indicate ICAD.

• Thrombus Radiomics: Thrombus radiomics in-
volves extracting detailed features from CT im-
ages of thrombi to predict outcomes and com-
plications during EVT van Voorst et al. (2023).
For example, Yusuying et al. (2023) developed a
CT-based thrombus radiomics nomogram to pre-
dict secondary embolization (SE) during EVT
for LVO. The study extracted 107 radiomics fea-
tures from pre-interventional CT images, includ-
ing first-order statistics, shape-based features, and
texture features such as gray-level co-occurrence
matrix (GLCM) and gray-level run length matrix
(GLRLM). These features were used to develop a
support vector machine (SVM) learning model that
demonstrated high predictive accuracy.

2.2. Evaluation Scales

Custom evaluation scales have been proposed to pre-
dict ICAD-LVO using pre-intervention data:

• Zha et al. (2021) proposed a scale based on patient
history of hypertension, atrial fibrillation rhythm,
and baseline serum glucose, with scores ranging
from -4 to 4. This predictive scale, referred to as
the ISAT scale, was developed to predict in situ
atherosclerotic thrombosis in acute vertebrobasilar
artery occlusion (VBAO) patients before EVT. The
scale was validated using a derivation cohort from
the Nanjing Stroke Registry Program and an exter-
nal validation cohort, showing good discrimination
with an area under the receiver operating character-
istic curve (AUC) of 0.853 in the derivation cohort
and 0.800 in the validation cohort.
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• Liao et al. (2022) developed the ABC2D score
to predict the etiology of intracranial LVO be-
fore EVT. The score incorporates atrial fibrillation,
blood pressure, clinical neurological deficit, the
CT hyperdense sign, and diabetes mellitus. The
ABC2D score was derived and validated in a large
cohort, demonstrating high predictive value with
AUC values of 0.886 and 0.880 in the derivation
and validation cohorts, respectively.

• Chen et al. (2023) introduced the ATHE scale,
which includes the absence of atrial fibrillation, the
presence of truncal-type occlusion, the absence of
a hyperdense artery sign, and a lower baseline ex-
amination NIHSS score as key predictors of ICAD-
LVO. This scale was developed to identify the most
significant predictors and then validated through
logistic regression. The ATHE scale demonstrated
excellent predictive performance with an AUC of
0.920 in the derivation cohort and 0.890 in the ex-
ternal validation cohort.

2.3. Prediction Models using tabular data

We have reviewed various predictive variables for
identifying ICAD-LVO before EVT. These variables in-
clude clinical data, hyperacute indicators, CTP-derived
metrics, and imaging-derived features. In this section,
we will present different models that use these variables,
either individually or in combination, to predict ICAD-
LVO. These models use tabular data to systematically
analyze and interpret the complex interactions between
the predictive variables, ultimately aiming to improve
decision-making processes in clinical settings.

Several models are utilized when using one predictor
or a combination of predictors to identify ICAD-LVO.
Typically, these models employ univariate logistic re-
gression (LR) or multivariate logistic regression (MLR),
as supported by studies such as Cai et al. (2022);
Haussen et al. (2018); Liao et al. (2022); Rodrigo-
Gisbert et al. (2023).

However, advanced techniques like Random Forest
are also employed, as demonstrated by the study of
van Voorst et al. (2023), which includes radiomics fea-
tures specifically for ICAD-LVO pre EVT detection.
Other studies, like Yusuying et al. (2023) have exper-
imented with various models such as LR, support vec-
tor machine (SVM), K nearest neighbor (KNN), random
forest (RF), extremely randomized trees (Extra-Trees),
eXtreme Gradient Boosting (XGBoost), light gradient
boosting machine (LightGBM), and multilayer percep-
tron (MLP), ultimately identifying the SVM model as
having the highest average area under the receiver op-
erating characteristic (ROC) curve (AUC) for predict-
ing the risk of secondary embolization. Although this
study is notable, it focuses on LVO without considering
ICAD.

Use of SVM is also seen in the work done by Bento
et al. (2019), where they use an SVM classifier over a
wide image features set extracted from magnetic reso-
nance imaging sequences, setting a multiclass classifi-
cation problem among 4 different classes: carotid artery
atherosclerostic disease, multiple sclerosis, small vessel
disease and normal controls.

2.4. Deep Learning Approaches
Besides exploring classification tasks of several dis-

eases and use of SVM, Bento et al. (2019) use a wide
set of features including image intensity gradient-based
attributes, local binary patterns, and frequency domain
features. Deep learning models, particularly convolu-
tional neural networks (CNNs), inherently extract high-
level features from raw imaging data upon training, cap-
turing complex patterns and structures that may be in-
dicative of specific conditions. These features can then
be leveraged for various tasks such as classification, seg-
mentation or anomaly detection (Bento et al., 2018).

In stroke imaging, deep learning approaches have re-
peatedly been proposed for LVO detection, regardless
of the occlusion’s nature (Cui et al., 2022). These meth-
ods often employ either a single imaging modality or
multimodal approaches, integrating NCCT, CTA, and
CTP, and sometimes including clinical data in the form
of previously described biomarkers.

Recent work has also focused on using deep learn-
ing for MRA to detect intracranial arterial stenosis and
occlusion. For example, a study utilized the YOLOv5
detection model on time-of-flight MRA (TOF-MRA)
images, achieving promising results in the automated
detection of steno-occlusive lesions. This approach
showed a sensitivity of 64.2% and a positive predictive
value of 83.7%, particularly excelling in detecting le-
sions in the internal carotid artery (Qiu et al., 2022).
Despite these advancements, there remain significant
challenges in achieving high accuracy and consistency
across different vascular territories and stenosis cate-
gories.

Additionally, there have been various challenges in
LVO classification and ischemic lesion segmentation.
Notable examples include the ISLES ischemic lesion
segmentation challenge and the Image Analysis for
CTA Endovascular Stroke Therapy (IACTA-EST) Data
Challenge 2, which focused on LVO/no LVO classifi-
cation. Interestingly, while there were good results us-
ing CTA for the IACTA-EST challenge, no significant
success was achieved with multimodal tabular-imaging
data, reflecting the challenging nature of such tasks.
MICCAI 2024 will mark a significant milestone by
hosting the first known intracranial stenosis challenge
(INSTED)3, pioneering efforts in this critical area and

2https://lgiancauth.github.io/iacta-est-2023/data-info
3https://miccai.org/index.php/special-interest-

groups/challenges/miccai-registered-challenges/
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underscoring the evolving focus on intracranial stenosis
detection and classification.

3. Material and methods

3.1. Dataset
The dataset used for this study was collected from

cases at Vall d’Hebron Hospital between January 2018
and December 2022. Initially, cases were considered
based on the inclusion criteria of the site of the LVO:
TICA, M1, and M2, and having received EVT. Patients
with bilateral and chronic occlusions were excluded.

However, not all cases met the necessary criteria for
inclusion, rendering them non-viable for the study. An
image revision process was conducted to exclude im-
ages with occlusions outside the considered brain loca-
tions, images with incorrigible artifacts, no occlusions,
or bilateral occlusions.

An in-depth review of patient history was performed
to remove patients without ICAD/recanalization infor-
mation, those with occlusions in excluded locations, or
those whose initial eTICI value indicated good reperfu-
sion. The data selection process is illustrated in Figure
4.

Figure 4: Data Selection Process

Given that the primary objective was to identify
patients with failed recanalization using conventional
treatment, all cases regardless of the failure reason were
initially included. However, several considerations were
noted:

• A large fraction of cases with failed recanaliza-
tion had an occlusion from a cardioembolic (CE)
source. AIS due to CE thrombi generally have bet-
ter recanalization rates than other etiologies like

ICAD (Bang et al., 2010), and we hypothesize that
these can contribute to heterogeneity in the group
of failed recanalizations.

• Stroke etiology was indeterminate in some cases.

• A small portion of the cases with recanalization
success were due to rescue stenting.

To improve the homogeneity and relevance of the
dataset, target group was limited to the following popu-
lation:

1. ICAD: cases with confirmed intracranial
atherosclerotic disease (ICAD) were particularly inter-
esting due to their lower recanalization rates and higher
recurrence tendency. Hence, all ICAD cases were in-
cluded, even if they achieved successful reperfusion, to
explore the potential benefits of intracranial stenting as
part of the conventional treatment for these cases4.

2. Failed Recanalization with Indeterminate Eti-
ology: cases with indeterminate etiology were included
because identifying the underlying cause of recanaliza-
tion failure in these cases could provide valuable in-
sights.

3. Rescue Treatment Cases: all cases that required
rescue treatment were considered of interest as they
indicate failure of conventional EVT and present an
opportunity to explore alternative interventions.

In summary, the final positive class in the dataset in-
cludes all cases with failed recanalization using EVT,
excluding CE cases. Additionally, it includes all ICAD
cases regardless of recanalization success due to their
high recurrence rates and the potential need for stenting
even after initial recanalization.

The goal of the current classification problem is to
identify cases that will not recanalize or are ICAD.
However, based on the current available evidence, re-
gardless of the model’s prediction, it is reasonable to
establish that all cases will undergo at least one EVT
pass in a realistic setting. A significant number achieve
First Pass Effect (FPE). Therefore, cases that achieve
FPE were excluded in order to select a representative
population in our development.

As the study’s objective is to explore multimodal
prediction, a final data reduction was performed by
including cases with complete imaging data (NCCT
and CTA), CTP information, a complete set of clini-
cal variables (demographics, risk factors, and hypera-
cute variables), and radiomics data from previous man-
ual thrombus segmentation. Additionally, vascular seg-
mentation extracted using Arterial (Canals et al., 2023)
and thrombus manual annotation segmentation were in-
cluded. The resulting dataset from the overlap of the
different data availability is illustrated in the Venn dia-
gram in Figure 5.

4After at least one thrombectomy pass
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Figure 5: Venn diagram showing the overlap of cases with complete
imaging, clinical, and radiomics data for the final dataset.

The final used dataset comprised cases that met all the
inclusion criteria, were not excluded based on the above
considerations, and had complete data availability for
the study’s multimodal prediction analysis.

3.1.1. Imaging Data Preprocessing
The initial image format was Digital Imaging and

Communications in Medicine (DICOM). The dataset
was converted to the more compact Neuroimaging In-
formatics Technology Initiative (NiFTI) format.

Images were registered to a common space for sim-
plicity. First, NCCT images were registered to CTA,
then CTA images were registered to MNI space, and
that transformation was applied to the NCCT images.
As seen in Figure 4, the registration process was re-
viewed to eliminate samples with incorrigible registra-
tion errors.

Initially, the images had a resolution of 421x505x452
with a voxel size of 0.43x0.43x0.4 mm. During the ini-
tial stages of model training, it was observed that the
original image size caused errors due to computational
resource limitations. After consulting with the medical
and engineering teams, it was suggested to change the
voxel size to a value smaller than 1mm but larger than
the original size, in order to preserve lesions that are
typically smaller than 1mm. The new voxel size was set
to 0.73x0.73x0.7 mm.

Initially, the images were resized to approximately
half the size in each dimension to a resolution of
210x250x226 and then voxel-resized, resulting in final
dimensions of 153x182x158. However, the results at
this size were not satisfactory. Considering that voxel
spacing implicitly reduces the image dimensions, resiz-
ing was applied directly to the original images, result-
ing in final dimensions of 246x295x258. This resizing
step was necessary to ensure the feasibility of the train-

ing process given the available computational resources
and was applied to NCCT, CTA vascular segmentation,
and thrombus segmentation files.

Skull stripping process was carried out using To-
talSegmentator (Wasserthal et al., 2023) and was ap-
plied only to CTA and NCCT images. After a visual
inspection of the skull stripping process, some samples
were removed due to image orientation errors, poten-
tially derived from incorrigible registration errors.

Table 1: Dataset Dimensions and Voxel Sizes
Dataset Resolution Voxel Size (mm)
Original Dataset 421x505x452 0.43x0.43x0.4
Resampled 246x295x258 0.73x0.73x0.7
Resampled-stripped 246x295x258 0.73x0.73x0.7

Further inspection of the images reveals that NCCT
ranges from -1260.84 ± 60.90 to 2093.80 ± 252.54
Hounsfield Units (HU) and CTA from -1292.32 ± 41.07
to 2477.80 ± 246.57 HU. These ranges were clipped to
(0, 100) HU for NCCT and (0, 400) HU for CTA in
order to strengthen the visibility of regions of interest.
This clipping is a common preprocessing technique (Pa-
tel, 2023). Furthermore, images were scaled from 0 to
1 as it is a good practice for subsequent deep learning
treatment (Montavon et al., 2012).

3.2. Methodology

This study is organized into three main stages. First,
different combinations of available predictors, includ-
ing clinical variables, radiomic features and CTP pa-
rameters, are tested using different classical machine
learning algorithms to set baseline scores and study the
predictability of the different considered subsets. Sec-
ond, an imaging baseline is built using the preprocessed
CT volumes through different deep convolutional neu-
ral networks. Models were trained using NCCT, CTA
or both. Third, imaging models are used alongside clin-
ical predictors in order to study a potential enhancement
of the results.

3.2.1. Baseline Experiments with Tabular Data
Data subsets in this section are as follows: one

dataset (clinical) comprises clinical variables, hypera-
cute variables, and CTP-derived biomarkers: age, sex,
hypertension (HT), dyslipidemia (DL), diabetes melli-
tus (DM), atrial fibrillation (AF), smoking (SM), NIHSS
Baseline, wake-up stroke, site of the occlusion: side,
TICA, proximal/distal M1 or proximal/distal M2, and
IVT. From CTP: CBF<30%, Tmax>10s, Tmax>6s,
Tmax>4s, HIR, and Tmax4s/Tmax6s.

The second subset (radiomics) includes a comprehen-
sive set of radiomic thrombus features derived not only
from the manual segmentation on NCCT but also from
CTA images. Additionally, features were extracted not
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Figure 6: Dataset Dimensions - CTA Sagittal View. From left to right: Original Dataset, Resampled, Resampled-stripped

only from the occlusion site but also from the contralat-
eral patch of the occlusion site (Lal-trehan and Gian-
cardo, 2021; Siddiqui et al., 2023). The total number of
predictors in this dataset is 5,168.

The final subset (clinical+radiomics) is the combina-
tion of the previous two datasets.

In the baseline experiments, various classical ma-
chine learning algorithms were employed to evaluate
the predictive performance of the different datasets. A
set of those algorithms is included in the Scikit-Learn
Python library (Pedregosa et al., 2011):

• Support Vector Machine (SVM) is a supervised
learning model that classifies data by finding the
optimal hyperplane that separates data points of
different classes.

• Random Forest (RF), an ensemble learning
method, constructs multiple decision trees during
training and outputs the mode of the classes for
classification.

• Gradient Boosting (GB) is another ensemble tech-
nique that builds models sequentially, with each
model attempting to correct the errors of the pre-
vious one.

• Logistic Regression (LR) is a statistical model that
predicts the probability of a binary outcome based
on one or more predictor variables.

• Lastly, the Multilayer Perceptron (MLP) is a class
of feedforward artificial neural networks that con-
sists of at least three layers of nodes.

The rest are included in the xgboost python library
(Chen and Guestrin, 2016):

• XGBoost (XGB) is an optimized gradient boost-
ing framework that uses tree-based learning algo-
rithms.

• XGBoost with Random Forest (XGBRF) Classifier
combines the strengths of XGBoost and Random
Forest for improved performance.

The experimental setup involved several steps. First,
an exploratory data analysis (EDA) phase was con-
ducted for the clinical subset, involving typical data
cleaning, verification, and checking for missing values
to ensure data quality. Each dataset was then subdi-
vided into three versions: the original dataset without
any transformation, the dataset scaled to the 0-1 range
for normalization, and the dataset scaled and passed
through a Recursive Feature Elimination (RFE) proce-
dure using Random Forest. RFE is a feature selection
method that recursively removes the least important fea-
tures based on model performance (Guyon et al., 2002).

The procedure for radiomics data followed the same
approach as for clinical data but included an additional
Recursive Feature Elimination (RFE) step due to the
large number of available predictors. For the combined
clinical and radiomics data, the RFE procedure was per-
formed separately on the radiomics data before concate-
nating it with the clinical data.

Models were evaluated in a default parameter fashion
and the top-performing model on default parameters un-
derwent extensive hyperparameter tuning to further im-
prove results. In both cases, the weights parameter was
set so each model (where possible) could consider the
weights of each class, which means considering the pro-
portion of each class. This parameter was found useful
considering how imbalanced the problem is.

Metrics used were AUC, F1 score, weighted accu-
racy, and confusion matrix. These metrics help assess
model performance, especially in terms of balancing
false positives and false negatives. 5CV approach was
employed to ensure robust performance evaluation in
both default parameter settings and during hyperparam-
eter tuning.

After training the models, feature importance was as-
sessed using SHAP library (SHapley Additive exPlana-
tions) (Lundberg and Lee, 2017) force plots and sum-
mary plots to understand how individual features con-
tribute to the model’s prediction for each data instance,
benefiting from the fact that SHAP is model agnostic.

3.2.2. Experiments with Image Data
Image data preprocessing was performed as ex-

plained in section 3.1.1. Training was conducted
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using three different baseline models: ResNet34,
DenseNet169, and EfficientNetB0 (EffB0). DenseNet
is an evolution of ResNet, designed to improve infor-
mation and gradient flow through dense connections be-
tween layers. EfficientNet further builds on DenseNet
by optimizing both the depth and width of the net-
work for better performance and efficiency (Tan and Le,
2020). Each model incorporates different architectural
components that may be beneficial for the task at hand;
for instance, ResNet uses residual connections to miti-
gate the vanishing gradient problem (He et al., 2015),
DenseNet uses dense connections to enhance feature
reuse (Huang et al., 2018), and EfficientNet uses a com-
pound scaling method to uniformly scale all dimensions
of depth, width, and resolution.

Each model was trained with both resampled images
and resampled and skull-stripped images. Training was
conducted using just NCCT volumes, just CTA vol-
umes, and by stacking both images as different channels
of the same image. Additionally, segmentation mask in-
formation, specifically vessels and thrombi, was used as
prior information. These masks were used as additional
channels, either the vessel, the thrombus, or both, in the
same training fashion: prior information on NCCT, on
CTA, and on both.

Figure 7: Example of prior information segmentation mask for a case
with a left distal M1 occlusion. Vessels (red) and thrombus (green)
masks.

To address the problem of small datasets, data aug-
mentation techniques were applied. Data augmentation
is a known method that helps to balance datasets by arti-
ficially increasing the size and variability of the training
data. Various augmentation methods were tested, but
the most effective ones retained were ‘RandFlip‘ and
‘RandZoom‘. The ‘RandFlip‘ method randomly flips
the images along the specified spatial axis, providing

mirrored versions of the original images, which helps
the model generalize better by learning from different
orientations. The ‘RandZoom‘ method randomly zooms
in and out on the images within a specified range (0.9 to
1.1), introducing slight variations in scale that help the
model become more robust to differences in image size.

Figure 8: General Scheme of the Imaging Experiments. Input images
(and the combinations of them) go through each of the different back-
bone architectures

All networks were trained from scratch, meaning no
pre-trained networks were used. The models were im-
plemented using the MONAI medical imaging frame-
work (Cardoso et al., 2022) and all training procedures
employed 4-fold cross-validation (4CV).

3.2.3. Multimodal Integration Experiments
In the context of this experiment, an intermediate data

fusion approach was used. The logic behind the method
involves using EffB0 as a feature extractor. Efficient-
NetBNFeatures, part of the MONAI medical imaging
framework (Cardoso et al., 2022), was chosen due to its
optimized architecture that scales depth, width, and res-
olution uniformly for better performance and efficiency.

The clinical information was integrated using a Dy-
namic Affine Feature Map Transform (DAFT) block-
Polsterl et al. (2021). DAFT dynamically rescales and
shifts the feature maps of a convolutional layer based on
the patient’s clinical information, effectively integrating
high-dimensional image data with low-dimensional tab-
ular data. This block is a general-purpose module that
enhances the interaction between image and tabular data
within the network.

To implement this, the EfficientNetB0Features model
was adapted to serve as a feature extractor. The clini-
cal information was then added using the DAFT block.
This step required modifications to ensure the proper
size and output compatibility between the Efficient-
NetB0Features and the DAFT block input, considering
that the initial DAFT method uses ResNet as the feature
extractor (Polsterl et al., 2021). Specifically, the DAFT
block includes global average pooling of the image fea-
ture map, concatenation with tabular data, and a series
of fully connected layers to generate scaling and shift-
ing parameters for the feature maps.

The final model architecture (DaftEffB0) as seen in
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figure 8 included modified additional layers that re-
ceived as input the combined output from the DAFT
block. These layers consisted of 3D convolutions and
pooling layers, ending with a linear classifier to gener-
ate the final prediction. Batch normalization was added
to the output of every convolutional layer to enhance
model performance and stabilize training.

Figure 9: DaftEffB0 (top) with description of DAFT block by Polsterl
et al. (2021) (bottom)

The training phase involved several configurations.
Each model was trained as in the previous phase: using
NCCT volumes, CTA volumes, and a combination of
both. Additionally, the available segmentation masks:
either individually or combined, for both NCCT and
CTA volumes. This part training procedures employed
again 4CV.

The metrics used for evaluating the multimodal inte-
gration experiments were consistent with those used for
the image-only experiments, including Area Under the
Curve (AUC), F1 score, weighted accuracy, and confu-
sion matrix.

Additional parameters for training the deep convolu-
tional networks could be set by the user, including the
number of epochs, the name of the class of interest, the
learning rate, and the use of the ReduceLROnPlateau
scheduler. The ReduceLROnPlateau scheduler adjusts
the learning rate dynamically based on the validation
performance, helping to prevent overfitting and ensur-
ing that the model converges more effectively by reduc-
ing the learning rate when a plateau in performance is
detected. Other parameters included the model name,
the imaging modality (NCCT, CTA, or both), the inclu-
sion of prior information (vessel, thrombus, or both),
input and output directories, and whether tabular data
was used, including the path to the tabular data and the
batch size.

For the imaging and multimodal experiments, the pa-

rameters were set as follows: batch size was 1, and the
learning rate was 0.0001, adjusted using the ReduceL-
ROnPlateau learning rate scheduler. The Adam opti-
mizer was employed, with the loss function being Cross
Entropy. The number of epochs varied between 40 and
60 per fold, contingent on the GPU capabilities, with
higher channel images requiring longer training times.

In terms of hardware, a cloud service was utilized, of-
fering a range of Nvidia GPU options as seen in table 2.
The a6000 GPU allowed for a larger batch size due to
its superior computational power. However, as a cloud
service, the experiments were subject to the availabil-
ity of the specific GPU models. The training phase was
conducted using PyTorch, a widely-used deep learning
framework. The custom software developed for this
study saved fold indices, metrics, and model weights,
facilitating the continuation of training, reproducibility
of results, and further analysis if needed.

Table 2: Hardware Specifications
Card RAM (GB) #CPU GPU (GB)
P5000 30 8 16
A4000 45 8 16
RTX5000 30 8 16
A6000 45 8 48

3.3. Model Ensemble

To enhance the robustness and accuracy of our pre-
dictive models, we employed an ensemble model ap-
proach. This involved integrating predictions from mul-
tiple models trained on different imaging inputs (NCCT,
CTA, and both) and using various prior information
methods (vessel, thrombus, and both). Each of these
models utilized the DAFT architecture and sampling
methods for class balancing.

The ensemble model was constructed using a
weighted majority voting scheme. This method com-
bines the predictions from the individual models,
weighting them according to their performance on true
positive and true negative rates. The weights were cal-
culated based on the balanced rates, adjusting for the
class imbalance inherent in our dataset. This approach
ensures that the most reliable models have a greater in-
fluence on the final prediction.

The weighted majority voting process involved ag-
gregating the predictions from each model and applying
the calculated weights to determine the final prediction.
This method improves overall predictive performance
by leveraging the strengths of each individual model
(Dietterich, 2000). The combined approach mitigates
the risk of overfitting and enhances the generalization
capabilities of the model, making it more robust against
class imbalance.
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All tested models based on ensembling are Daft-
EffB0, resampled and use sampling as the class balanc-
ing method.

Figure 10: Ensemble weighted majority voting diagram

4. Results

Out of the 813 screened patients, 605 fulfilled the
initial inclusion criteria and undergo necessary medi-
cal history revision for analysis. FPE (non-ICAD) was
achieved in 325 (53.7%), and 68 were finally disre-
garded due to complete data unavailability (62, 10.2%)
and incorregible preprocessing errors (6, 1.0%). The
study finally included a total of 212 patients. The mean
age of the patients was 77 ± 15 years, and 60.9% were
women. The baseline NIHSS score was 15 ± 6. Among
the patients, 36.32% received intravenous thrombolysis.
Regarding the affected side, 52.8% had the LVO on the
left side.

Focusing on the class of interest, there were 27 pa-
tients (12.7%). In this subgroup, the mean age was 74
± 15 years. The baseline NIHSS score was lower (14 ±
6) compared to the complete sample. Within this class,
66.7% were women and 63.0% had a left-sided stroke.
Additionally, 33.3% of the patients in this class received
IVT. Among the class of interest, 9 patients (33.3%)
were diagnosed with ICAD, and 5 patients (18.5%) re-
ceived a stent as rescue treatment. In the total cohort,
this represents 4.3% and 2.4% of the sample, respec-
tively. The remaining patients (13, 48.1%) were cases
where recanalization was not achieved and etiology of
the stroke was undetermined.

The idea of the population belonging to the class of
interest are the ones who could potentially benefit the
most from alternative treatments to conventional meth-
ods. The detailed results of the experiments will now be
presented in the following subsections.

4.1. Tabular Data

Different tabular data experiments were conducted
following the data description outlined in section 3.2.1.

The results of the experiments with clinical data and
perfusion parameters are shown in Table 3. Each dataset
was evaluated in two versions: data-as-is and scaled
data. The results are presented as mean ± standard de-
viation, considering the different iterations in 5CV.

The experiments revealed that the integration of ra-
diomics data significantly improved the model’s perfor-
mance compared to using clinical data alone. Specif-
ically, the radiomics dataset achieved better AUC, F1-
score and weighted accuracy. This improvement high-
lights the importance of structural and textural informa-
tion captured by radiomics in understanding thrombus
pathology and treatment response.

Further enhancement was observed when combin-
ing clinical and radiomics data. The combined dataset
achieved the highest performance metrics. These re-
sults demonstrate that integrating multiple data sources
can significantly enhance predictive performance. The
high sensitivity indicates the model’s effectiveness in
correctly identifying positive cases, although the speci-
ficity was somewhat lower. This trade-off suggests that
while the model is highly effective at detecting true pos-
itives, it may also produce more false positives.

Among the different models tested, RF consistently
performed the best across all datasets. This indicates
that RF’s ability to handle high-dimensional data and
its robustness to overfitting make it particularly suitable
for this application.

Explainability in this model can be observed with
SHAP as mentioned in the section 3.2.1. The figure be-
low shows the importance of variables when including
or not contrast information from the occlusion site con-
tralateral patch.

Figure 11: SHAP Summary plot showing the average predictor impact
on model output in clinical data with and without the contrast informa-
tion from the occlusion site contralateral patch (Siddiqui et al., 2023)

4.2. Imaging Data

In this section, we present the best results obtained
from the different experiments conducted on NCCT,
CTA, and combined imaging modalities. These experi-
ments utilized complete volumes with resampled voxel
sizes as described in section 1.5. The subsequent ex-
periments in this study are contingent upon the findings
presented here. The results for this section are summa-
rized in Table 4.
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Table 3: Performance Metrics for Tabular Data
Dataset AUC F1-score Weighted Acc Sensitivity Specificity
Clinical 0.59 ± 0.13 0.31 ± 0.07 0.70 ± 0.12 0.57 ± 0.26 0.72 ± 0.16
Radiomics 0.72 ± 0.06 0.43 ± 0.12 0.74 ± 0.12 0.70 ± 0.09 0.74 ± 0.14
Clinical + Radiomics 0.74 ± 0.13 0.45 ± 0.14 0.68 ± 0.18 0.88 ± 0.09 0.64 ± 0.21

An important consideration in these experiments is
the comparison between using the whole volume ver-
sus skull-stripped volumes. Additionally, the meth-
ods used to address class imbalance during training —
whether by adjusting the weights in the loss function
or by upsampling/downsampling — play an important
role in the outcomes. This section’s findings will in-
form the best practices for preprocessing and balancing
techniques in the subsequent multimodal integration ex-
periments.

4.2.1. Prior Information
Prior information is presented with one case of loss

as balancing mode and the others using sampling as the
balancing method, as seen in table 5.

4.3. DAFT

Table 6 presents the results of the best model of each
balancing method. Table 7 shows the results of the best
imaging mode model for each prior information type for
DAFT with prior information and. Finally, daft models
are tested using ensemble models, comparing prior and
no prior approaches. Imaging technique is not shown
as precisely, the different imaging techniques are part of
the weights according to their performance.

5. Discussion

5.1. Tabular Data

The performance of the clinical data alone indicates
that while clinical variables are important for prediction,
they may not provide sufficient accuracy when used in
isolation. The relatively lower performance metrics sug-
gest that additional data sources are needed to improve
predictive capabilities.

Radiomics data showed a marked improvement over
clinical data alone. This indicates that radiomic fea-
tures capture important structural and textural informa-
tion from the occlusion, which are highly relevant in this
task. The use of scaled data followed by heavy RFE
proved to be the most effective preprocessing strategy.
However, it is important to note that obtaining radiomic
features requires accurate thrombus segmentation. This
step necessitates a robust segmentation method, as poor
segmentation can lead to low-quality predictors, mak-
ing this approach more impractical compared to meth-
ods that do not require such priors.

The combination of clinical and radiomics data
yielded the best results, demonstrating that integrating

multiple data sources can significantly enhance predic-
tive performance. A key finding was that AF emerged
as one of the top predictors according to SHAP analy-
sis. AF is a risk factor linked to CE stroke and therefore
has a high negative predictive value for the classification
target at hand, which may explain this result. The scal-
ing and RFE preprocessing strategy again proved to be
the most effective, suggesting that careful preprocessing
is crucial for maximizing the predictive power of com-
bined datasets.

5.1.1. Insights from Additional Experiments
Additional experiments with the clinical data re-

vealed that including contralateral patch information
significantly improved prediction results. When this in-
formation was excluded, the top five predictors, accord-
ing to SHAP analysis, were baseline NIHSS, dyslipi-
demia, IVT, age, and sex as seen in figure 11. These pre-
dictors remained top-performing even when additional
radiologic predictors described in Siddiqui et al. (2023)
were included, suggesting their strong and consistent
relevance in predicting outcomes.

On the side of the radiomics dataset, the best results
were obtained when data were scaled, and a rigorous
RFE process was applied. This indicates that radiomics
features are highly informative but require careful selec-
tion and preprocessing to enhance model performance.

5.2. Imaging Data

The use of resampled volumes with loss-based class
balancing methods generally resulted in lower perfor-
mance metrics. For instance, EffB0 and DenseNet169
exhibited the lowest AUC scores (Table 4). Models
demonstrated improved performance when employing
sampling methods for class balancing. DenseNet169
achieved the highest AUC in these experiments, high-
lighting the effectiveness of this preprocessing and bal-
ancing strategy. This suggests that sampling methods
are more suited for managing class imbalance in this
context compared to adjusting loss weights.

Skull stripping with loss-based balancing did not
yield significant improvements. Notably, DenseNet169
and EfficientNetB0 showed a zero F1-score and ex-
tremely high specificity with no sensitivity, indicat-
ing potential model collapse and inability to generalize
from the data. On the other hand, skull stripping com-
bined with sampling methods showed promising results.
For example, ResNet34 achieved a notable AUC and a
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Table 4: Performance Metrics for Different Models and Preprocessing Methods, Selecting the Best Imaging Mode for Each Model
Model Imaging Mode AUC F1-score Weighted Acc Sensitivity Specificity
Preprocessing: Resampled, Balancing Method: Loss

ResNet34 CTA 0.61 ± 0.11 0.18 ± 0.11 0.53 ± 0.03 0.58 ± 0.31 0.52 ± 0.46
DenseNet169 BOTH 0.47 ± 0.14 0.09 ± 0.16 0.53 ± 0.05 0.07 ± 0.01 0.97 ± 0.05
EffB0 BOTH 0.61 ± 0.11 0.18 ± 0.11 0.53 ± 0.03 0.58 ± 0.31 0.52 ± 0.46

Preprocessing: Resampled, Balancing Method: Sampling
ResNet34 BOTH 0.55 ± 0.16 0.30 ± 0.09 0.64 ± 0.27 0.58 ± 0.35 0.65 ± 0.36
DenseNet169 BOTH 0.67 ± 0.04 0.34 ± 0.04 0.65 ± 0.03 0.67 ± 0.14 0.47 ± 0.24
EffB0 NCCT 0.63 ± 0.09 0.28 ± 0.05 0.60 ± 0.08 0.33 ± 0.13 0.07 ± 0.06

Preprocessing: Skull Stripped, Balancing Method: Loss
ResNet34 CTA 0.52 ± 0.09 0.00 ± 0.00 0.50 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
DenseNet169 NCCT 0.66 ± 0.05 0.00 ± 0.00 0.50 ± 0.00 0.00 ± 0.00 1.00 ± 0.00
EffB0 BOTH 0.55 ± 0.06 0.13 ± 0.14 0.53 ± 0.06 0.63 ± 0.31 0.61 ± 0.42

Preprocessing: Skull Stripped, Balancing Method: Sampling
ResNet34 NCCT 0.54 ± 0.06 0.32 ± 0.03 0.78 ± 0.05 0.55 ± 0.12 0.84 ± 0.06
DenseNet169 NCCT 0.57 ± 0.13 0.36 ± 0.14 0.62 ± 0.08 0.56 ± 0.30 0.41 ± 0.39
EffB0 BOTH 0.59 ± 0.17 0.32 ± 0.12 0.60 ± 0.11 0.42 ± 0.29 0.23 ± 0.30

Table 5: Performance Metrics for Using Prior Information
Model Imaging Mode AUC F1-score Weighted Acc Sensitivity Specificity
Balancing Method: Loss

EffB0 Vessel (BOTH) 0.58 ± 0.12 0.23 ± 0.14 0.59 ± 0.09 0.61 ± 0.23 0.45 ± 0.36
Balancing Method: Sampling

EffB0 Vessel (BOTH) 0.62 ± 0.14 0.30 ± 0.07 0.63 ± 0.07 0.48 ± 0.15 0.20 ± 0.13
EffB0 Thrombus (BOTH) 0.57 ± 0.11 0.30 ± 0.04 0.62 ± 0.04 0.59 ± 0.04 0.35 ± 0.19
EffB0 Both Prior (BOTH) 0.62 ± 0.05 0.27 ± 0.05 0.61 ± 0.06 0.60 ± 0.24 0.45 ± 0.38

higher F1-score compared to other preprocessing meth-
ods. This indicates that removing extraneous informa-
tion and using sampling methods can improve model
performance by focusing on the most relevant regions
in the imaging data.

Given the heavily imbalanced dataset, addressing
class imbalance is critical. The experiments demon-
strated that sampling methods consistently provided
better performance metrics compared to adjusting the
weights in the loss function. The sampling approach
effectively balanced the class distribution during train-
ing, leading to more stable and reliable model perfor-
mance. Therefore, sampling was chosen as the primary
class balancing technique for subsequent experiments.

In the comparison between using the whole volume
versus skull-stripped volumes, the results indicated that
complete volumes yielded better performance metrics
overall. Skull stripping did not significantly enhance
model performance and, in some cases, led to poorer
generalization. The complete volume approach ensures
that all relevant anatomical information is preserved,
which may include subtle features necessary for accu-
rate predictions. For instance, skull stripping could un-
intentionally remove potential atheromatosis in the in-
tracranial part of the internal carotid artery, a feature that
could be predictive of ICAD. Consequently, we decided

to proceed with complete volumes for all further exper-
iments, answering the question proposed in section 1.5.

Among the different models evaluated, EffB0 consis-
tently showed competitive performance. Its advanced
architecture, which uses a compound scaling method to
optimize depth, width, and resolution, proved effective
in handling the complexity of the imaging data. Addi-
tionally, EfficientNet’s efficiency in terms of computa-
tional resources makes it a practical choice for exten-
sive experimentation. Therefore, it was decided to use
EfficientNet exclusively for all subsequent analyses.

5.2.1. Imaging Data with Prior Information
The performance metrics for experiments using prior

information and different balancing methods are pre-
sented in Table 5.

Incorporating vascular segmentation as prior infor-
mation with loss-based balancing showed some im-
provement, but it was not substantial. On the other hand,
using thrombus information as prior yielded moderate
effectiveness with good AUC and F1-scores. Using both
vessel and thrombus information together showed sim-
ilar AUC to using vessel information alone but with
slightly lower F1-scores and weighted accuracy.

These findings suggest that prior information, such
as vessel and thrombus segmentations, can aid in model
regularization and performance enhancement. This
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Table 6: Performance Metrics for DAFT
Model Imaging Mode AUC F1-score Weighted Acc Sensitivity Specificity
Balancing Method: Loss

DaftEffB0 BOTH 0.53 ± 0.09 0.25 ± 0.02 0.55 ± 0.05 0.42 ± 0.29 0.27 ± 0.29
Balancing Method: Sampling

DaftEffB0 NCCT 0.67 ± 0.02 0.36 ± 0.03 0.69 ± 0.04 0.68 ± 0.05 0.43 ± 0.08

Table 7: Performance Metrics for DAFT with Prior Information using EfficientNet and Balancing: Sampling
Model Imaging Mode AUC F1-score Weighted Acc Sensitivity Specificity
Prior: Vessel

DaftEffB0 NCCT 0.62 ± 0.10 0.36 ± 0.09 0.68 ± 0.08 0.64 ± 0.12 0.38 ± 0.14
Prior: Thrombus

DaftEffB0 CTA 0.65 ± 0.12 0.34 ± 0.04 0.68 ± 0.05 0.53 ± 0.14 0.24 ± 0.19
Prior: Both Vessel and Thrombus

DaftEffB0 BOTH 0.64 ± 0.10 0.37 ± 0.11 0.68 ± 0.07 0.67 ± 0.19 0.47 ± 0.24

might be due to these segmentations providing addi-
tional relevant context, which helps the model distin-
guish between different regions of interest and patho-
logical features more effectively. By focusing on spe-
cific regions of interest, the model can learn more mean-
ingful patterns that contribute to better prediction out-
comes.

However, adding prior information in this manner to
the imaging-only experiments did not yield improve-
ments over methods based on radiomics. The complex-
ity of the data, high dimensionality, and relatively small
dataset size may explain this effect. These factors likely
contribute to the model’s ability to generalize from the
training data, impacting the overall performance.

Sampling methods were more effective in dealing
with class imbalance compared to loss-based balanc-
ing, as evidenced by the higher AUC and F1-scores
achieved with sampling methods. Sampling ensures a
balanced class distribution during training, leading to
better generalization and performance on the minority
class. While using both vessel and thrombus informa-
tion did not significantly outperform using vessel infor-
mation alone, this may indicate the particular relevance
of vessel information for this prediction task.

5.3. DAFT
The performance metrics for the DAFT model, sum-

marized in Table 6, provide insights that highlight the
benefits of integrating imaging data with clinical infor-
mation.

The DaftEffB0 model using both NCCT imaging
and tabular data demonstrated that incorporating clin-
ical data significantly enhances model performance.
While the loss-based balancing method indicated rela-
tively lower effectiveness, it is notable that our modi-
fied DAFT version achieved its best performance with
this method, reflecting the potential of integrating di-
verse data sources. However, overall, sampling methods
consistently showed superior results, suggesting their

greater suitability for managing class imbalance in this
context, as observed with image-based models.

One important aspect pointing to the improvement
made by the multimodal approach is comparing the re-
sults of the just clinical approach seen in Table 3, just
NCCT imaging with sampling in Table 4, and the re-
sult of using both data sources in DAFT. Clear improve-
ments in AUC and F1-score indicate better discrimina-
tion ability and more accurate predictions. Weighted
accuracy remained similar between tabular and multi-
modal methods, suggesting consistent overall perfor-
mance. An improvement in sensitivity at the cost of
reduced specificity means the model becomes better at
identifying true positive cases but may generate more
false positives.

5.3.1. Prior DAFT
The results here indicate that the integration of prior

information with the DAFT model leads to improve-
ments in several metrics.

Using vessel as prior, the best model using DAFT is
consistent with the best model without DAFT, but there
are improvements in F1-score, AUC and weighted ac-
curacy compared to models without clinical data, at the
cost of losing specificity. In the case of thrombus as
prior where there are also higher AUC, F1-score and
weighted accuracy, sensitivity and specificity have been
affected, making the new best model more balanced in
handling true positives and true negatives but at the cost
of more variability in detecting true positives and true
negatives.

Using both vessel and thrombus as prior information,
DAFT with combined imaging modes improves all met-
rics. This highlights the benefit of combining multiple
sources of prior information for better model perfor-
mance despite the consideration of having all data be-
forehand in a clinical context.

Overall, the DAFT model incorporating prior infor-
mation outperformed the models using prior informa-
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Table 8: Performance Metrics for Ensemble models using DAFT with Resampled Prior Information
Model AUC F1-score Weighted Acc Sensitivity Specificity
DAFT No Prior 0.64 ± 0.07 0.34 ± 0.07 0.48 ± 0.20 0.66 ± 0.15 0.61 ± 0.27
DAFT Prior Vessel 0.74 ± 0.12 0.42± 0.15 0.54± 0.06 0.76± 0.18 0.69± 0.08
DAFT Prior Thrombus 0.68 ± 0.04 0.35± 0.06 0.43 ± 0.18 0.81 ± 0.23 0.55 ± 0.25
DAFT Prior Both 0.71 ± 0.07 0.39 ± 0.08 0.52 ± 0.11 0.64 ± 0.07 0.68 ± 0.14

tion without clinical data, confirming the importance of
integrating diverse data sources. However, it is notable
that not always the best performing setup for each prior
method remains consistent with and without DAFT, as
it happens in vessel, suggesting that while DAFT adds
value, the fundamental importance of certain prior in-
formation remains unchanged.

5.3.2. Ensemble DAFT
The results from Table 8 shows that the ensemble

models incorporating prior information generally im-
proved the performance compared to the DAFT model
without prior information.

Firstly, it is evident that the ensemble models us-
ing prior information generally show improved perfor-
mance metrics compared to the best individual mod-
els. For instance, the Prior Vessel model achieves a
great AUC, which is significantly higher than the best
individual model, and it is the best model of the study.
This improvement in AUC, along with the F1-score and
weighted accuracy, highlights the effectiveness of the
ensemble approach in enhancing model performance by
using multiple prior information sources. The higher
sensitivity in the ensemble models indicates better iden-
tification of positive cases, showing that the ensemble
method helps in reducing false negatives.

Secondly, the DAFT Resampled Prior Both model,
which uses both vessel and thrombus information,
shows a substantial improvement in AUC compared to
the best individual model using both priors. The in-
crease in F1-score and weighted accuracy in the ensem-
ble models also suggests that integrating diverse data
sources through ensembling helps in achieving a bal-
anced performance across different metrics.

However, it is important to note that while the ensem-
ble models generally perform better, there are trade-offs.
The Prior Thrombus model, for instance, shows an in-
crease in sensitivity but a decrease in specificity, indi-
cating a higher rate of false positives. This could be due
to the ensemble model’s increased focus on identifying
positive cases, potentially leading to overfitting on the
training data. The confusion matrices further support
this, showing that ensemble models have a more bal-
anced distribution of true positives and true negatives,
but at the cost of some increase in false positives.

Interestingly, the No Prior model did not benefit as
much from the ensemble approach, as indicated by an
AUC, which is lower compared to the best individual

DAFT model without prior information, that was the
best model until this step. This suggests that the ensem-
ble method may not always improve performance and
can sometimes lead to reduced effectiveness, especially
when the base models do not capture sufficient comple-
mentary information. The decrease in specificity and
the relatively unchanged sensitivity and F1-score high-
light the limitations of ensembling in cases where prior
information is not used or where the models that will be
part of the ensemble are either not good performing, nor
outstanding in at least classifying true positives or true
negatives.

Overall, these findings suggest that ensemble meth-
ods can effectively improve model performance by inte-
grating diverse sources of information. However, care-
ful tuning and validation are required to manage the
trade-offs between sensitivity and specificity, ensuring
the model generalizes well to new data. The results
also emphasize that ensembling relies on the assembling
method and that the quality and nature of the base mod-
els play a crucial role in the success of ensemble ap-
proaches.

5.4. Practical Implications

The research findings emphasize the importance of
integrating prior information, such as thrombus and ves-
sel segmentations, to significantly enhance the predic-
tive performance of models for ICAD. These enhance-
ments are evident in improved AUC, F1-scores, and
weighted accuracy metrics, indicating that prior infor-
mation helps models focus on critical regions, thereby
improving class differentiation.

However, the practical implementation of such mod-
els in clinical settings demands robust and accurate seg-
mentation methods. High-quality imaging and precise
delineation of thrombus and vessel regions are essen-
tial to ensure reliable data input for the models. For in-
stance, advanced pre-operative imaging techniques like
CTA are beneficial for effective vessel segmentation.
Thus, ensuring the robustness of segmentation methods
is vital for clinical application.

Implementing these models also requires substan-
tial computational resources, particularly in hospital
settings where quick processing of large volumes of
imaging data is crucial. High-performance computing
systems must be available to minimize segmentation
and classification time, aligning with the workflow of
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clinicians and allowing timely decision-making during
emergency procedures.

Despite the promising results, several limitations
must be acknowledged. The dataset size was limited,
which may affect the robustness and generalizability of
the findings. The definition of the class of interest was
not highly specific, potentially leading to data hetero-
geneity. The study was conducted in a single center with
retrospective data, which may limit the applicability of
the results to other settings. Additionally, the time avail-
able for conducting experiments was limited, restricting
the extent of model optimization and validation.

The primary goal of these predictive models is to pro-
vide clinicians with preoperative insights about the po-
tential presence of ICAD before performing EVT. Ac-
curate predictions can guide the selection of appropriate
treatment strategies and improve patient outcomes. Fu-
ture clinical trials should focus on datasets specifically
tailored to ICAD, exploring the efficacy of different res-
cue treatments and considering the total inference time
of models to ensure real-time applicability.

Beyond identifying patients with ICAD or predicting
unsuccessful outcomes with conventional treatments, a
model with strong discriminative capability could have
broader implications. It could aid in personalizing treat-
ment plans, selecting alternative therapies such as stent-
ing or angioplasty, and improving the overall manage-
ment of stroke patients.

Figure 12: Diagram of a potential clinical trial using an AI model as a
patient selection tool. Negative Group: Gray after AI model, would go
through conventional treatment and positive group would go through,
for example, one EVT pass + stenting.

Good discriminators can also be helpful in the ran-
domization of clinical trials, ensuring that the outcome
of conventional treatment versus tested rescue treat-
ments is more reliable. Figure 12 shows an diagram of
how a validated AI model could be integrated for patient
selection in a randomized control trial. By accurately
identifying ICAD-affected individuals, such models can
reduce the hazard of multiple EVT passes or inappro-
priate stenting in CE patients, thus improving treatment
adequacy on a selected population.

Additionally, integrating medical reports to curate
tabular data and utilizing large language models (LLMs)
to generate informative embeddings can enhance multi-

modal integration, potentially improving the accuracy
and relevance of predictive models in clinical settings.

Finally is worth to mention that our best ensemble
model with multimodal data achieved better results than
the random bootstrapped classifier, which no one could
beat in the multimodal integration part of the IACTA-
EST 2023 challenge (AUC: 0.27-0.73) mentioned in
section 2.4. This promising outcome indicates the po-
tential of our approach to advance the field and improve
clinical practice in the ICAD-LVO field.

6. Conclusions

This thesis explored the integration of multimodal
data to predict failed recanalization in patients undergo-
ing EVT for large vessel occlusion (LVO) strokes. By
combining clinical data, radiomics, and imaging modal-
ities, we aimed to enhance prediction accuracy and pro-
vide valuable insights for clinical decision-making.

Our findings show that integrating clinical and ra-
diomics data significantly improves predictive perfor-
mance compared to using clinical data alone. The struc-
tural and textural information captured by radiomics
is essential in understanding thrombus pathology and
treatment response. Additionally, the Dynamic DAFT
model further improved performance metrics by com-
bining diverse data sources, leading to better discrimi-
nation and more accurate predictions.

Incorporating prior information, such as vessel and
thrombus segmentations, into the DAFT model pro-
vided additional context, improving model regulariza-
tion and performance. This approach allowed the model
to focus on specific regions of interest, leading to better
prediction outcomes.

Despite these promising results, several limitations
must be acknowledged. The small dataset size may
limit the robustness and generalizability of the findings.
Larger, multi-center datasets are needed to validate the
results. The study was conducted in a single center with
retrospective data analysis, which may limit the appli-
cability of the results to other settings. The time con-
straints also restricted the extent of model optimization
and validation.

Our study demonstrates the potential of using ad-
vanced machine learning models to provide accu-
rate preoperative predictions of failed recanalization in
stroke patients. Future work should aim to validate
these findings in larger cohorts, refine the models for
broader clinical application, and ultimately contribute
to more effective stroke management strategies.
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P.J., Demchuk, A.M., Dávalos, A., Majoie, C.B.L.M., Saver,
J.L., Levy, E.I., Campbell, B.C.V., Hacke, W., White, P.M.,
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Abstract

Recently medical image-text datasets have become increasingly important in the development of deep learning
applications, including automated radiology report generation models. Generating clinically valid radiology reports
comes along with challenges, such as bridging the gap between interpreting medical images and accurately conveying
the findings into radiology text reports. In this work, we tackle the task of automated mammography report generation
following Breast Imaging Reporting & Data System (BI-RADS) guidelines. We utilize an image-label and exam-
reports datasets, along with text prompting techniques, to generate a well-structured text report that supports training.
Our proposed framework allows the usage of up to four image views within the exam, leveraging different information
that can be captured from all exam views related to the radiology report. Our model demonstrated high performance
in supervised and zero-shot classification settings when evaluated on multiple downstream tasks, enabling report
generation as a series of zero-shot classification tasks.

Keywords: Mammography 2D X-ray, BI-RADS Report Generation, Contrastive Learning, Natural Language
Processing

1. Introduction

Medical images from different modalities such as
Mammography X-ray , Magnetic Resonance Imaging
(MRI), and Computed Tomography (CT) are widely
used to evaluate, monitor, and diagnose several medi-
cal conditions in clinical practice. Mammography X-
ray is a universally accepted method for breast can-
cer detection as it is relatively in-expensive, repeat-
able, and widely available (Fishman and Rehani, 2021).
Several applications demonstrated the effectiveness of
deep-learning based models on solving tasks related to
breast cancer detection in mammography, such in dis-
crimination of microcalcifications (Wang et al., 2016),
microcalcifications detection (Pesapane et al., 2023),
breast cancer risk discrimination (Yala et al., 2019),
and breast cancer image segmentation (Salama and Aly,
2021), and many others (Kallenberg et al., 2016; Mo-
hamed et al., 2018; Ribli et al., 2018).

Although deep-learning models, such as convolu-
tional neural networks (CNNs) by He et al. (2016);
Krizhevsky et al. (2012); Simonyan and Zisserman

(2014) have been widely applied for various artificial in-
telligence (AI) tasks in recent years (Han et al., 2021),
and has been actively used for the purpose of medical
image analysis (Anwar et al., 2018), the small size of
annotated and publicly available medical datasets re-
mains a major bottleneck in this area for developing
computer-aided detection/diagnosis (CAD) tools. Un-
like publicly available computer vision dataset that are
available in large-scale, such as ImageNet (Deng et al.,
2009) or OpenImages (Kuznetsova et al., 2020), pub-
licly available medical datasets are much smaller in
magnitude (Xie et al., 2021). This introduces challenges
in training deep-learning models for medical purposes
as the availability of high-quality clinical annotations is
time-consuming an costly (You et al., 2023), and obtain-
ing labels for medical images is very resource-intensive
as it relies on domain experts (Karimi et al., 2020).
Therefore, building effective medical imaging models
is limited by the lack of large-scale annotated medical
dataset.

Recently, Contrastive Language-Image Pre-training
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(CLIP) as in the work of Radford et al. (2021), has
achieved considerable success in computer vision and
natural language processing domains, by allowing joint-
training of image and text representation on large-scale
image-text pairs (Wang et al., 2022), enabling zero-shot
transfer of the model to downstream tasks. As shown by
Radford et al. (2021), zero-shot CLIP models are much
more robust than equivalently accuracy supervised Im-
ageNet models. In another work, ALIGN by Jia et al.
(2021) similarly to CLIP trains dual-encoder architec-
ture to learn the alignment of visual and language rep-
resentations of image and text pairs using contrastive
loss by leveraging noisy dataset of over one billion im-
age alt-text pairs. Both ALIGN and CLIP shows great
robustness on classification tasks with different image
distributions (Jia et al., 2021).

Considering CLIP, adopting such large vision-text
pre-training models to the medical domain is a non-
trivial task due to CLIP’s data-hungry nature that was
trained on 400 million (image, text) pairs collected from
the internet (Wang et al., 2022). In that context, the nat-
ural solution of limited annotated medical dataset is to
leverage the corresponding medical reports that contain
detailed description of the medical condition observed
by radiologists (Huang et al., 2021).

2. State of the art

2.1. Contrastive learning approaches

Several recent works to utilize both medical images
and text in the domain of chest X-ray (Huang et al.,
2021; Li et al., 2021; Wang et al., 2022; You et al.,
2023), using CLIP-based architecture. GLoRIA frame-
work by Huang et al. (2021) uses an attention mech-
anism by contrasting image sub-regions and words in
the paired report by learning attention weights that em-
phasize significant image sub-regions for a particular
word to create context-aware local image representa-
tion. MedCLIP by Wang et al. (2022) on the other hand
used unpaired images, text, and labels to enhance med-
ical multi-modal learning. However this makes it less
capable of retrieving the exact report for a given image
due to the effect of decoupling image-text pairs, and as
their approach relies on the performance of their rule-
based labeler, it is not scalable to other diseases that the
labeler can’t address (You et al., 2023).

DeCLIP by Li et al. (2021) introduced a novel
paradigm for data efficient CLIP that tackles the limi-
tation of training data availability similar to the amount
that CLIP was trained on through (1) self-supervision
within each modality, (2) multi-view supervision across
modalities, and (3) nearest-neighbor supervision from
other similar pairs. CXR-CLIP by You et al. (2023)
utilizes both image-text pairs not only from image-text
dataset, but also from image-label dataset, thus tackles
the lack of image-text data in the chest X-ray domain

by expanding image-label pair via general prompting.
In their work, they also used Multi-View Supervision
(MVS) as inspired by Li et al. (2021), utilizing multiple
images and texts in a chest X-ray study, such as two dis-
tinct images and texts pairs each using an augmentation
approach.

2.2. Convolutional neural network approaches
Other approaches have utilized convolutional neural

networks in generating medical image descriptions or
reports (Jing et al., 2017; Kisilev et al., 2016; Wang
et al., 2018). In the work of Kisilev et al. (2016), they
trained a CNN-based architecture to generate and rank
rectangular region of interests of breast mammography
and ultrasound modalities, where highest score candi-
dates are fed to the subsequent network layers, in which
they are trained to generate semantic description of the
remaining ROI’s. Their network is based on Faster R-
CNN architecture (Ren et al., 2015), and was trained on
mini-batches of positive and negative ROI candidates,
and requires rectangular ground truth bounding boxes.
Their main goal was to test the description stage of im-
ages using some descriptors such as mass shapes and
margins.

Other approaches as Jing et al. (2017) utilized a hi-
erarchical Long-Short Term Memory (LSTM) network
(Hochreiter and Schmidhuber, 1997), apart of a multi-
task learning framework to generate long report para-
graph in chest X-ray domain. TieNet by Wang et al.
(2018) is a multi-purpose text-image embedding net-
work that utilizes report data together with paired im-
ages to produce meaningful attention-based image and
text representations in the chest X-ray domain. Their
approach also uses the paired text-image representations
from training as a priori knowledge injected, to improve
classification and generate text reports. They introduced
an attention encoded text embedding mechanism that
provides more meaningful text embedding, tackling the
challenge that comes along with long reports of multiple
information.

2.3. Limitations of current methods
Despite such novel contributions made in the medical

imaging chest X-ray domain using medical image-text
datasets, several challenges still exist in the mammogra-
phy X-ray domain, and specifically for BI-RADS report
generation, which are summarized as follows:

• Complications of mammography text reports.
Most of the present work utilizes chest X-ray
image-text datasets, where the paired reports could
be summarized under “impressions” and “find-
ings”, making it easy to extract text information for
training. Mammography text reports on the other
hand could contain additional information to the
X-ray radiologist report that can be used as gold
standard confirmation, such as ultrasound, MRI, or
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Figure 1: Example of mammography visual exam paired to different structure of text information, such as text report, extracted labels, or a prompt
generated sentences using a text template based on the available labels for the exam.

pathology reports. Those additional information
introduces challenges in identifying the best sec-
tion for training a network. For instance, mam-
mography X-ray radiology report could indicate
suspicious morphology for a study, however, ma-
lignancy is confirmed by a biopsy and from an
MRI exam. Such information can be mentioned
in the same report of a single exam study, making
it more challenging for the network to understand
the meaning of different sections available in the
patient reports.

• Pathology variability in different views. Un-
like the work that is presented by CXR-CLIP (You
et al., 2023), which utilizes up to two views with
augmentation, mammography X-rays could con-
tain up to four views (two for each breast - medi-
olateral oblique (MLO) and cranial caudal (CC)).
With that, it could be possible to have a specific
pathology in one breast and not in the other, in-
creasing the necessity of having a network that is
capable to process all four exam views and pair
them to the text dataset.

• Limited available data. Most image-text datasets
which are publicly accessible are available for dif-
ferent domains as chest X-ray (Bustos et al., 2020;
Johnson et al., 2019), unlike mammography X-ray.
And as the nature of its radiology reports, it is
even more difficult to find paired images and full
text reports, leaving a vast majority of image-label
datasets unused to tackle the report generation task.

2.4. Contributions of this work

The main contribution of this work is summarized as
follows:

1. To our knowledge, this is the first work to utilize
CLIP approach in mammography X-ray domain
for mammography report generation. We tackle
the lack of data by utilizing image-label and exam-
reports paired datasets, as well as generating text
prompts based on available labels to support the
training. Our method, namely MMG-CLIP, does
not depend on a ruler-based labeler, and doesn’t re-
quire bounding boxes or small-patched images for
training, and can be adapted to any image-label or
exam-reports dataset.

2. We implemented a training approach that utilizes
four views per exam, pairing them to the same
text description, whether a label, a generated text
prompt, or a report used during training or evalua-
tion.

3. Performance of our model is validated on mul-
tiple downstream classification tasks, using zero-
shot and supervised classification settings, as well
as measuring the performance with respect to data-
efficiency.

4. We introduced the report generation pipeline as a
series of zero-shot classification tasks following
BI-RADS guidelines, to obtain a clinical meaning-
ful draft report for the patient exam.
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3. Material and methods

The aim of this work is to learn a multi-modal em-
bedding space from features that are extracted from an
image and text encoders, and projected to a similar em-
bedding dimension, to maximize the cosine similarity
of both image and text embedding of real pairs in each
batch, and minimize the cosine similarity of the incor-
rect embedding pairings, similarity to CLIP (Radford
et al., 2021). Our approach aims to learn the image level
or exam level characteristics of the 2D mammography
X-ray images, up to four image views per exam. Those
characteristics are also sampled from both image-label
and exam-report datasets, in addition to the prompt gen-
eration approach to support training. In the following
subsections, we further explain our work.

3.1. Data Sampling

To train the model, each batch consists of both visual
and textual information. Similarly to the work presented
by You et al. (2023), we utilize a set of images, how-
ever, each exam could contain to up to four image views.
Thus, each batch sample consists from one to four Ximg
images depending on their availability for each exam,
and Ttxt text. To simplify the following explanation, we
denote quantities related to the full exam as Xexam as in
equation 1.

Xexam = {Ximg}4img=1 (1)

In the case of image-label dataset, the sampled text
Ttxt could be the an exact single label, for instance ”be-
nign” or ”malignant” labels. Also, we use such la-
bels, with any other labels found for the image to gen-
erate prompts that supports the model training. Those
prompts we used contains more than one class label in-
formation, unlike the work of You et al. (2023) that only
consists of one class-specific information. We also con-
sidered cases where the image-label pairs are missing
labels information, making the prompts close to real
clinical reports and taking into account not only the
class information but their appearance.

For the exam-report dataset, the sampled text Ttxt
consists of the processed report information, using cer-
tain selected reports sections found in the report text.
In addition to that, as we had labels for the exams,
we also experimented the training performance with
generated sentences based on labelled data, known as
prompts, and with both reports and prompts combined.
We demonstrate a sample of image-prompt pairs from
the training set in Appendix A, where we used our
prompts as text input for training. We also took into
account that those prompts are applicable with the BI-
RADS guidelines and information that can be extracted
from it. Figure 1 demonstrates different types of mam-
mography datasets. Further details on the dataset and
prompting mechanism is elaborated in subsection 4.1.

3.2. Model Architecture

Motivated by CLIP by Radford et al. (2021), we pro-
posed slight modification to how the embedding are ex-
tracted from multiple exam views to allow processing
more than one mammography X-ray image at one time,
as well as text feature extraction, both are described in
subsections 3.2.1 and 3.2.2. In subsection 3.2.3, we de-
scribe the projection approach, that is necessary to align
the embedding to the same dimension. Finally, subsec-
tion 3.3 describes the loss term that trains the model.
All of this is summarized in Figure 2.

3.2.1. Image Encoder
The image encoder was used extract features from

each exam input image, where the encoder can be re-
ferred to as in the following equation 2.

x = Eimg(Ximg) (2)

where x ∈ R1×Dimg represent the feature vectors for
a single image view, and Eimg represents the image en-
coder. This is repeated for N number of exam views,
denoted as xexam where xexam ∈ RN×Dimg . The value Dimg
is the dimension of each vector. To obtain an overall vi-
sual representation of the exam, we average the values
of all feature vectors of all exam views along the 0-th
dimension, denoted at xf, which is computed as follow-
ing.

xf =
1
N

N∑

i=1

xexam(i) (3)

where xexam(i) represents the i-th column of matrix
xexam. The resulting xf has shape (1,Dimg) represent-
ing the final image embedding vector. In the case that
the network is trained at the image level where the in-
put consists of a single image paired with the text, the
averaging process is not performed and equation 2 is
denoted as xf.

The image encoder we used is a ConvNeXt Tiny
model (Liu et al., 2022), pre-trained on an internal
multi-vendor dataset from Fujifilm, GE HealthCare,
HOLOGIC, Lorad, Philips and Siemens Healthineers,
on large-scale dataset (>100K exams) for malignancy
classification. In addition to that, we used ResNet-50
model from He et al. (2016) with ImageNet weights
pre-trained on ImageNet tasks (Deng et al., 2009) in our
ablation study to assess the performance when using a
domain-specific pre-trained model to other pre-trained
models.

3.2.2. Text Encoder
The text encoder was used to extract features from the

input text. It can be described as the following equation
4.

tf = Etxt(Ttxt) (4)
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(a) Training Architecture (b) Report task zero-shot prediction

Figure 2: Summary of our approach motivated by CLIP (Radford et al., 2021). MMG-CLIP extracts features from both text and image view/exam
views, averages the image embedding, and projects them to predict the correct pairings of each batch. At inference, the network outputs unnor-
malized probability distribution for the input texts representing their probability to be paired to the input image. We aim to utilize this approach in
report generation where a draft report is generated as a sequence of zero-shot classification tasks based on BI-RADS guidelines.

where tf ∈ R1×Dtxt represents the text embeddings and
Etxt represents the text encoder. We used BioClinical-
BERT model by Alsentzer et al. (2019), which is a Bidi-
rectional Encoder Representations from Transformers
(BERT) based model as our text encoder, that was pre-
trained using clinical dataset MIMIC-III (Johnson et al.,
2016), similar to (Huang et al., 2021; Wang et al., 2022;
You et al., 2023).

We also used BiomedBERT previously named as
PubMedBERT (Gu et al., 2021), and BioGPT by Luo
et al. (2022) to compared the performance when using
BioClinicalBERT in our ablation study as in section 5.
BiomedBert is also a variant of BERT models (Devlin
et al., 2018), that was pre-trained from scratch on data
collection from PubMed 1 that consists of 14 million
abstracts and 3.2 billion words. This model was pre-
trained on biomedical domain-specific data compared
to BERT that is trained on Wikipidia 2 and BookCorpus
(Zhu et al., 2015) as cited in (Gu et al., 2021). BioGPT
is a variant of GPT large language models (LLMs), that
is a domain-specific generative Transformer language
model pre-trained on large-scale biomedical literature
for biomedical text generation and text mining (Luo
et al., 2022). It was pre-trained on 15M PubMed ab-
stracts from scratch on GPT-2 (Radford et al., 2019)
model configuration as a backbone, thus resulting into a
model with 0.355 billion parameters in total as cited in
Luo et al. (2022). In our experiments, we used all of the
pre-trained text encoders from from HuggingFace 3.

3.2.3. Embedding Projection
To align both the image embedding xf and text em-

bedding tf in the same multimodal feature space, we
trained linear layers as projection heads.

1https://pubmed.ncbi.nlm.nih.gov/
2https://www.wikipedia.org/
3https://huggingface.co/

v =
fx(xf)
∥ fx(xf)∥ (5)

u =
ft(tf)
∥ ft(tf)∥ (6)

where fx is the projection head for the image em-
bedding, ft is the projection head for the text embed-
ding, v and u are the normalized projected embedding,
V = {v}ni=1, U = {u}ni=1, and n is the batch size.

3.3. Loss Function

For the loss, CLIP utilizes InfoNCE loss by Oord
et al. (2018) as cited in Li et al. (2021), which is a sym-
metrical loss for image and text encoder. It iteratively
trains both image and text encoders to maximize the co-
sine similarity of the image and text embedding of the
N real pairs in the batch, while minimizing the the co-
sine similarity of the image and text embedding of the
N2 − N incorrect pairs (Radford et al., 2021). This is
done by maximizing the alignment between both image-
text pair, pulling their embedding closer, versus random
pairs, pushing their embedding farther in the embedding
space. This loss consist of maximizing the posterior
probabilities of image embedding given its correspond-
ing text embedding and the other way around , this way
it ensures that the image-text correlation is asymmetric
to either modality.

The loss for the image encoder can be denoted as in
Equation 7, where as the loss for the text encoder can be
denoted as in Equation 8.

LI(U,V) = − 1
n

∑

ui∈U
log



exp
(

vT
i ui

τ

)

∑
v j∈V exp

(
uT

i v j

τ

)


(7)
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LT(U,V) = − 1
n

∑

vi∈V
log



exp
(

uT
i vi

τ

)

∑
u j∈U exp

(
vT

i u j

τ

)


(8)

where τ is a learnable temperature to scale logits, and
it is fixed to 0.07. It controls the range of the log-
its and is directly optimized during training as a log-
parameterized multiplicative scalar to avoid turning as a
hyper-parameter (Radford et al., 2021). The similarity
between the projected image embedding vi and text em-
bedding ui is measured by the dot product between the
embeddings.

The overall loss for a batch of image or exam and
text pairs using U,V notations can be described as the
average of LI and LT as in Equation 9.

LCLIP(U,V) =
1
2

(LI + LT) (9)

3.4. Interpreting Model Predictions and Outputs
At prediction, our network outputs logits, which are

unnormalized predictions, for each input text prompt as
shown in Figure 2b. We normalized the logits to obtain
normalized probabilities using a softmax layer, and thus
we match the text prompt with the highest similarity as
the correct prediction to the input image or exam. Fig-
ure 3 shows different evaluation examples we generated
on different classification tasks using the same input im-
age and different input text.

3.5. Evaluation Procedure
We evaluated our implementation based on the exper-

iments defined in Table 1, using both supervised classi-
fication and zero-shot classifications settings. The ob-
jective of comparing our image-label model trained on
malignancy classification to the same encoder used in
the network, which is a CNN, was to ensure that the
model is able to perform an easy binary or multi-class
classification task, thus we evaluated it using supervised
approach. We reported the Binary Area Under ROC
(AUROC) curve for binary tasks, and average AUROC
with standard deviation for multi-class tasks.

We then added more complexity in terms of visual
information or textual information (generated prompts
sentences or reports or both combined) and measured
the performance using zero-shot classifications using
a class-specific generated prompts, as demonstrated in
Figure 2b. We performed bootstrapping on 1000 sam-
ples, and averaged the AUROC of all of them, with the
95% confidence interval for binary tasks, and average
AUROC with standard deviation for multi-class tasks.
We also performed data-efficiency evaluation on differ-
ent training data percentages for zero-shot evaluation.
All experiments that uses single image as input will be
referred to as ”image level”, whereas all experiments

that uses an exam with several images will be referred
to as ”exam level”.

We also demonstrated the benefit of utilizing projec-
tion layers on top of the encoders we used by plotting
t-SNE by Van der Maaten and Hinton (2008) of the im-
age embeddings.

3.6. Computational Resources

All experiments were conducted on a NVIDIA TI-
TAN V GPU with 12GB of memory. The code was
implemented using PyTorch 1.13.1+cu116 in a Linux
environment.

4. Experiments Results and Discussion

4.1. Datasets

Image-Label dataset is annotated at the image level,
consisting of one mammogram view and several annota-
tion labels. At the high level, it consisted of 3311 benign
annotated files, and 3174 annotated as soft tissue lesions
(STL) files, making a total of 6485 samples. Those files
contained other several region level annotations, such as
architectural distortion, benign or malignancy, calcifica-
tion cluster or mass, and properties such as histology,
mass shape, mass margin, mass density, and subtlety.

Among all of the samples, we re-splitted the dataset
into more image level labels, either benign or malig-
nant. Those image views that were known as malignant,
but has benign label were eliminated as they could be
wrongly labelled. Thus a total of 3311 benign samples,
and 1653 malignant samples, with their internal region
level annotations. Table 2 summarises all of the labels
we used from this annotated dataset. Any “unknown”
label within this table means that the label was missing
in the original dataset.

Another internal annotated dataset that was used con-
sisted of 9696 ground truth annotations for other image
views samples (or included). This dataset consisted of
several annotations such as malignancy, asymmetry, cal-
cification, mass, histology, biopsy and several others.

Exam-Reports is an internal dataset that contains
four image views per exam (or less views if they were
not collected or available), and a long Dutch report. It
consists of 10,801 exam-report samples. Among all of
those samples, only 1832 were applicable to be used,
excluding several pathology, biopsy, or duplicates and
only selecting mammogram reports. We also extracted
labels from the sentences and manually translated them
to their English labels found in BI-RADS guidelines to
minimize the translation error.

Multi-label Prompts are sentences generated ran-
domly that contain one or more labels information.
These sentences are formed by randomly selecting a
template sentence describing each label, and concate-
nating them to form one or more sentences describing
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(a) Model output on two malignancy evaluation prompts (b) Model output on three mass shape evaluation prompts

(c) Model output on four mass margin evaluation prompts (d) Model output on four mass density evaluation prompts

Figure 3: Demonstration model inference output on four different examples, where all of the output similarities are normalized. We run different
inference text prompts on the same input image. In the figures, TP stands for True Positive.

the image or exam. Thus, forming a structured para-
graph used to train the network. The labels used for
generating the prompts are from any of the labelled
datasets, and the additional labels extracted from the re-
ports. The prompts text can be paired to either image
or exam level datasets, as explained in Table 1. The
process of generating the prompts can be found in Ap-
pendix B.

Table 3 summarizes the split of the datasets used for
training, validation, and testing, where it was (70%,
15%, and 15%) respectively. To make the results com-
parable, the exam-reports dataset test split was the exact
same test split for the image-label datasets.

4.2. Baseline
ConvNext Tiny model (Liu et al., 2022), that is the

same model used as an image encoder in our approach.
This encoder will be used as the baseline for malig-
nancy detection, when comparing to our models trained
on image-label experiment dataset.

4.3. Implementation Details
For the visual information, both at image and exam

levels, we did not perform any augmentation or pre-
processing. As text reports were originally in Dutch
language, we translated them after pre-processing to
standardise the training in English using the command
=GOOGLETRANSLATE(text column, “nl” , “en”) in
Google Spreed Sheets 4. Pre-processing included elim-
inating unnecessary reports samples, text cleanup that

4https://www.google.com/sheets/about/

includes cleaning redundant words, structures, spaces,
special characters, or patterns. As the nature of the
mammography reports could include additional gold
standard information that assist in evaluation of abnor-
malities, such as current study, ultrasound, mammo-
gram X-ray, MRI, pathology, we selected only three
types that we found contains most of the important
information, that are current study, mammogram X-
ray, and MRI. This was also performed during the pre-
processing. The post-processing of the text was per-
formed after the translation mainly to remove any dupli-
cate sentences within the text, as the performance will
heavily rely on the translation performance.

As for the embeddings, the final image and text em-
bedding sizes are 512. Both encoders were frozen and
only linear layers were trained on top of them. For both
image-label (either binary or multi-class) and image-
prompts experiments training, we used 1 linear layers
with a ReLU activation function and dropout layer. By
experimenting, we used dropout of 0.2 and 0.5 for the
image-label and image-prompts training respectively.
For any of the exam level experiments, we used a 2
trainable linear layers. For the training, we tracked the
validation loss curves and several other area under the
ROC (AUROC) values.

For all of the experiments, the early stopping condi-
tion was set with patience of 5 monitoring the validation
loss and a tokenizer sequence length of 256. For the
hyper-parameters, we used a cosine-annealing learning-
rate scheduler (Loshchilov and Hutter, 2016), with a
warm-up epoch of 0.1 and 30 trainable epochs, AdamW
(Loshchilov and Hutter, 2017) optimizer with an ini-
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Experiment Name Description Input Example

Image-Label Training with images and labels.

Image-Prompts Training with images and prompts
generated.

Exam-Reports Training with exams and reports
text.

Exam-Reports + Prompts Training with exams and reports
text combined with prompts.

Exam-Prompts Training with exams and prompts
generated.

Table 1: Experiments description and the datasets used in each of them.

tial learning rate 5e-5, [EOS] token’s final output as the
global textual representation, and weight decay 1e-4 fol-
lowing the work of You et al. (2023). For image-label
experiments, we used a batch size of 32 samples for all
three splits, whereas for the remaining experiments, we
used batch size of 64.

4.4. Classification
We started by evaluating the learned representa-

tion on several image classification tasks based on our

image-label dataset available labels mentioned in Table
2, using both supervised image classification and zero-
shot classification settings. In both settings, as men-
tioned earlier, we only trained linear projection layers
on top of the pre-trained encoders.

4.4.1. Supervised Image Classification
For the supervised classification, as our baseline

CNN encoder was pre-trained on malignancy task, we
trained our network on the malignancy labels of the
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Label Group Labels Names Count

Malignancy Benign 3311
Malignant 1653

Mass Margins

Unknown 2467
Ill defined 1095
Obscured 697
Spiculated 484
Circumscribed 221

Mass Shapes

Unknown 2466
Irregular 1218
Round 681
Oval 599

Architectural Distortion Normal 4842
Distortion 122

Calcification No Calcification 2969
Has Calcification 1995

Mass No Mass 278
Mass 4686

Table 2: Image-Label dataset description.

Dataset Split Count
Image-Label or Train 3474
Image-Prompts Valid 1490

Test 745
Exam-Reports or Train 1282
Exam-Reports + Prompts or Valid 550
Exam-Prompts Test 745

Table 3: Datasets split summary. First row summarizes the image
level splits, either using labels or prompts depending on the experi-
ment, and second row summarizes the exam level splits.

image-label dataset, and compared the results area un-
der the ROC curve (AUROC) of the true class. We also
trained a network for the other labels of the dataset and
reported the results in Table 4. In our results, we show
that our network was able to outperform a traditional
CNN performance on malignancy detection by training
a single linear layer. Our network also performed well
on the remaining classification tasks. The main objec-
tive was to ensure that the network is capable of learning
a simple label classification task, either binary or multi-
class using the learned representation from both image
and text modalities.

4.4.2. Zero-shot classification
For the zero-shot prompt classification, the network

was trained and evaluated on different experiments, thus
different representations. The constructed evaluation
text prompts were specified to target the model perfor-
mance in understanding the clinical meaning of the text
input as a full sentence. Therefore, we constructed a
class-wise inference prompt for each label task. Those
inference prompts are different from the prompts gener-
ated for training, and can be found in Table 6. We evalu-
ate the binary classification tasks by computing the AU-

ROC of 1000 bootstrapped samples with 95% CI, and
computed the average AUROC for multi-class classifi-
cation tasks with standard deviation. We also evaluated
the performance on both datasets, at image and exam
level training, and to make the evaluation fair, all exper-
iments were evaluated on the same test samples at the
image level.

As shown in Table 5, both experiments image-
prompts and exam-prompts outperform all other exper-
iments, where those experiments were trained on dif-
ferent dataset samples, and on the same text prompt-
ing approach we proposed. Training the network with
well structured sentences as the generated prompts per-
forms better than training with real radiologist reports
as the nature of the text reports when they are written,
they are not generally standardised. This can be also
demonstrated when training the network with exam-
reports and exam-reports + prompts, where including
the prompts improved the results as demonstrated in the
table. It is also worth noting that each experiment row
in Table 5 is a single model performance, thus shows the
ability in generalizing to different downstream tasks.

4.5. Data-efficiency Evaluation

We further evaluated the model performance for zero-
shot classification taking into account different sizes of
training dataset samples (10%, 20%, 50%, and 100%),
on malignancy detection. In Figure 4, we show that
both of our models, either trained on image-label malig-
nancy task, or on exam-prompts experiments improve
the performance when more training data is used, track-
ing their malignancy AUROC metric for all of the test
samples. The image-label trained model shows only
slight improvement as the encoder only performance
(in red color) is high, so training linear layers on top
of the pre-trained encoder improves its ability in malig-
nancy zero-shot classification for this specific dataset. It
demonstrated a consistent high performance on all per-
centages of the training data. The exam-prompts model
that is trained on more visual and textual information
showed a significant improvement in the malignancy
zero-shot detection with different percentages, indicat-
ing that the model is effectively learning from the addi-
tional data.

4.6. Report Generation

To generate a radiology report, we defined a report as
a series of zero-shot classification tasks. Those can be
specific based on BI-RADS mammography guidelines,
or general to any other inference task. To generate a re-
port, we used the exam-prompts experiment model, and
constructed a series of inference tasks. The final step
of the report generation includes formatting all outputs
into a template sentences and concatenating the results
to form a single report. In Figure 5, we demonstrate a
summary of our report generation pipeline. At the top
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Binary AUROC ↑ Average Multi AUROC (± std) ↑
Experiments Malignancy Arch. Dist. Mass Calcification Mass Shapes Mass Margins

CNN (Baseline) 0.9153 - - - - -

Image-Label 0.9402 0.8293 0.8005 0.8820 0.8023 (± 0.078) 0.8344 (± 0.089)

Table 4: Comparison of area under the ROC (AUROC) of different experiments and classification tasks (binary and multi-class) using one-vs-all
classification evaluation on image level experiments. Total 745 samples of the image-label dataset test split were used. In the table headers, Arch.
Dist. stands for architectural distortion.

Average Binary Bootstrap Samples AUROC (95% CI) ↑ Average Multi AUROC (± std) ↑
Experiments Malignancy Arch. Dist. Mass Calcification Mass Shapes Mass Margins

Image-Prompts 0.931 0.682 0.663 0.680 0.727 0.715
(0.905-0.953) (0.554-0.808) (0.564-0.755) (0.639-0.719) (± 0.120) (± 0.154)

Exam-Reports 0.828 0.637 0.475 0.567 0.596 0.560
(0.791-0.861) (0.504-0.78) (0.3721-0.572) (0.524-0.610) (± 0.079) (± 0.089)

Exam-Reports 0.847 0.646 0.527 0.683 0.848 0.594
+ Prompts (0.814-0.878) (0.509-0.791) (0.425-0.619) (0.644-0.723) (± 0.088) (± 0.094)

Exam-Prompts 0.916 0.717 0.678 0.736 0.700 0.639
(0.891-0.938) (0.620-0.804) (0.603-0.743) (0.701-0.772) (± 0.106) (± 0.218)

Table 5: Comparison of the average area under the ROC (AUROC) of different experiments and classification tasks (binary and mutli-class) using
zero-shot classification evaluation on both image and exam level experiments. For binary tasks, we bootstrapped 1000 samples, and computed
the average AUROC and 95% CI. For the multi-class tasks, we computed the average AUROC ± standard deviation. Total 745 samples of the
image-label dataset test split were used. In the table headers, Arch. Dist. stands for architectural distortion.

Label Group Input Evaluation Prompt
Malignancy Findings suggesting {label}.
Mass Margins Mass margins is {label}.
Mass Shapes Mass shape is {label}.
Architectural Normal architecture is visible.
Distortion Displayed architectural distortion.

Calcification No calcifications are present.
Finding suggesting calcifications.

Mass No mass was observed.
Findings revealed a mass.

Table 6: Zero-shot evaluation prompts for all label groups. The {label}
are replaced with the labels reported in Table 2, that are based on BI-
RADS guidelines.

level, an inference task is made to validate if an image
or exam either has a mass, calcification, or no findings.
As “No Findings” ends the report, it doesn’t require any
further evaluation for mass or calcification information,
thus we report directly a conclusion sentence as shown
in Figure 6b.

Both “Mass” and “Calcification” in Figure 5 have
their own generation pipeline. In “Mass” track, we eval-
uate the malignancy, mass shape, mass margins, BI-
RADS score, and architectural distortion. As for “Cal-
cification” track, we evaluate malignancy, distribution,
BI-RADS score, and architectural distortion. An exam-
ple for a report generated for an exam with malignant

Figure 4: Image-label and exam-reports models (ours) zero-shot per-
formance for malignancy classification using different amount of data,
without bootstrapping.

mass findings is shown in Figure 6a, where as an ex-
ample for a report generated for an exam with benign
calcification is shown if Figure 6c.

One important limitation of our report generation is
the decision condition taken for all prompts output sim-
ilarities generated from the model. If the model fails on
identifying the correct type of findings at the very first
level of the generation pipeline, all following evaluation
results will be wrong. Figure 6d shows a failed example
of a report generated as “No Findings”, where it con-
tains other types of findings. As we take the maximum
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Figure 5: Report generation pipeline. Symbol [letter] represent the
inference task output, and + represent output formatting and concate-
nation.

similarity value of all text-prompts output similarities,
we are not able to distinguish between a strong predic-
tion (with high probability for a specific text prompt)
or for a confused prediction (when all probabilities are
close to each others). Another concern is whether an
exam or an image has more than one finding similar to
both “Mass” and “Calcification” together. When tak-
ing the maximum similarity, we result with having only
one output text to the inference task, thus can’t combine
multiple texts as an output.

4.7. Embedding Visualization

Data visualization using dimension reduction ap-
proaches can assist in understanding the geometric and
neighborhood structures of datasets (Wang et al., 2021).
A popular tool to perform dimensional reduction is the
t-distributed Stochastic Neighborhood Embedding (t-
SNE) algorithm (Shah and Silwal, 2019), introduced by
Van der Maaten and Hinton (2008), or principal compo-
nent analysis (PCA). We performed t-SNE analysis on
both the embeddings from the CNN encoder as in Fig-
ure 7a and 7c, as well as on the linear layers on top of the
encoder as in our model in Figures 7b and 7d. The fig-
ures demonstrates the separation of “benign” and “ma-
lignant” embeddings classes of the malignancy classifi-
cation task as an output of the networks projected into
lower dimensional using t-SNE.

As shown in Figures 7a and 7b, both networks gener-
ates a well clustered points of both labels. Using the
CNN only however shows some overlap between the
two classes, indicating that the baseline CNN encoder
does not completely distinguish between them. Adding
linear layers on top of the pre-trained encoder does
slightly produce better clusters as it focuses on the spe-
cific characteristics and patterns present in our datasets,

thus making it perform better on our test cases and pro-
vides more distinct clusters with less overlap. We also
visualized the first dimension of t-SNE with respect to
the models probabilities to belong to malignancy class
as shown in Figures 7c and 7d. Both Figures indicates
positive correlation between the t-SNE dimension 1 and
malignancy probabilities, where the model with projec-
tion layers as in Figure 7d shows more distinct and re-
liable probability estimates for malignancy, as there is a
clearer separation between both labels cases compared
to the baseline encoder alone in 7c.

4.8. Limitations and Future Work
Despite that we reached promising results in our ex-

periments, we believe that there are improvements that
can be made.

Embedding pairing is a challenging task in medi-
cal image-text datasets as the nature of the visual and
textual information can be paired to more than one sam-
ple. For example, an image can contain several regions
of interest, where it can be described correctly in two
separate reports sentences of two different exams. This
makes the loss metrics not meaningful when it comes to
training as pairing a single image-text pairs might not
be meaningful when the network learns the global rep-
resentation of all of the input data. This also was ob-
served when training with large batches (that are possi-
ble to have reports with similar information) on a small
datasets like ours, but not observed when using a very
small batch size as the possibility of having two samples
of same findings is much lower. We experimented im-
plementing different variations of CLIP InfoNCE loss
taking into account the batch samples and other sam-
pling mechanisms to tackle the problem, however none
of the approaches we tried proved better learning when
when it comes to long text reports. Thus, a meaningful
contrastive loss would be very beneficial for the network
to be able to match medical image-text datasets. For ex-
ample, region-wise matching between image and text
information, or giving more weights to certain regions
could potentially improve the network loss mechanism.

Report generation. When it comes to generating
report, as we mentioned earlier we use the maximum
similarity output as the final task result before creating
a report. Trying different decision making approaches
could be useful in generating more precise reports, but
it also requires human intelligence and clinical valida-
tion. One case that we noticed could be failing repeti-
tively is when network received 5 input prompts, and the
five similarities values are very close to each other, us-
ing the maximum value might not be ideal. Also, some
report details have more importance than others, for ex-
ample malignancy classification, or differentiating be-
tween the presence of mass, calcification, or no findings,
compared to other sub-tasks like mass region or calci-
fication distribution. The decision making here plays
an important role in the report accuracy, and taking the
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(a) Exam level generated report revealing a malignant mass (b) Image level generated report revealing no findings

(c) Exam level generated report revealing a benign calcification (d) Image level failed generated report

Figure 6: Demonstration of report generation using a full exam as in (a), and (c), or a single image view as in (b) and (d). Text highlighted in green
is a correct prediction from the network, where text highlighted in red are wrong predictions. Yellow highlighted text has no label to compare with.

maximum similarity value might not always be the best
case. Thus, other decision making approaches such as
applying a threshold value to the similarities could be
explored in future work.

Pre-training the encoders on large scale datasets
could significantly improve the performance when and
generalization of the model. As we used pre-trained
encoders, the extracted features relies on their perfor-
mance as well as on the performance of the trained lin-
ear layers. And as we had a very small amount of data
to work on, we were not able to train the models from
scratch.

Network Architecture can be improved to localize
the presence of the pathology reported in the text to
which exam view it is found in. This can significantly
improve the reporting precision if the network is capable
of identifying which view exactly has more importance.
In our implementation, while training the network, we
averaged the features extracted from each of the input
image views, thus losing the anatomical location of the
pathology it contains. For example, when a mass ap-
pears in the “right MLO image view” in an exam, we

lose such information while averaging the embedding.
Having that considered can also improve the feature ex-
traction approach to assign more weights to important
views and less to others.

5. Ablation Study

Ablation on model architecture. To understand the
effectiveness of the architectural parameters and key
components, we conducted ablation study using differ-
ent parameters and components with respect to malig-
nancy zero-shot classification performance. All results
reported in Table 7 were trained using the best exam-
prompts experiment model. We used different train-
ing configurations to evaluate their impact on zero-shot
classification performance on one task.

In the first row, we evaluate different number of pro-
jection layers. From the reported results, 2 Linear Pro-
jection layers gave the best zero-shot performance for
our model and no indication of increased performance
when more trainable layers are used.
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(a) CNN Encoder (Baseline) (b) CNN Encoder + Projection Layers

(c) t-SNE dimension 1 vs malignancy probabilities for the CNN Encoder
(d) t-SNE dimension 1 vs malignancy probabilities for the CNN Encoder +
Projection Layers

Figure 7: Image embedding visualization of malignancy Image-Label dataset for both CNN encoder (Baseline) alone ours that includes projection
layers on-top of the encoders.

In the second row of Table 7, we used the default
2 projection layers with different training batch sizes.
The default value we used was batch size n=64 with
tokenizer sequence length of 256 for exam-prompts ex-
periment model where it obtained 0.916 (0.891-0.938).
Both n=32 and n=128 showed no significant improve-
ment on the performance as reported in the table. Sim-
ilarly to the tokenizer sequence length in the third row,
both sequence lengths 384 and 512 didn’t improve the
performance of our default value. In addition to that, we
observed that using a logit scale τ = 0.07 performs bet-
ter than without performing scaling to the logits during
training as in the last row reported in the table.

Ablation on inference prompts. As mentioned pre-
viously, our evaluation prompts contribute significantly

to the results we obtained, as we believe it targets the
clinical meaning behind the label we are evaluating. To
measure the impact of changing the inference prompts
during zero-shot settings, we experimented using CXR-
CLIP by You et al. (2023) evaluation prompts for zero-
shot and compared the results to ours. In this evalua-
tion, we are not comparing our results to theirs, as it is
using totally different datasets in different domains, but
only comparing our model behaviour to different eval-
uation prompts. In CXR-CLIP, they used the prompts
“{classname}” versus “No {classname}” for all labels
they evaluate, for example “No oval” versus “oval”
for “Mass Shapes” task, and then using prediction of
the “{classname}” to generate the results. We noticed
that this introduces a challenge for our network when
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Experiments AUROC (95% CI) ↑
MMG-CLIP

w/ 1 proj. layers 0.893 (0.864-0.920)
w/ 2 proj. layers 0.916 (0.891-0.938)a

w/ 3 proj. layers 0.910 (0.882-0.933)

MMG-CLIP
w/ batch size = 32 0.908 (0.883-0.933)
w/ batch size = 128 0.912 (0.885-0.936)

MMG-CLIP
w/ seq. length = 384 0.910 (0.885-0.933)
w/ seq. length = 512 0.906 (0.877-0.929)

MMG-CLIP
w/ logit scale = 1 0.8876 (0.858-0.913)
(no scale)

a Value obtained using the default experiment parameters as 2 proj.
layers, batch size = 64, seq. length = 256, logit scale τ = 0.07.

Table 7: Ablation study of key architectural parameters with respect to
different parameters and components. The reported scores are the av-
erage AUROC of 1000 bootstrapped samples with 95% CI on malig-
nancy zero-shot classification. In the table, proj. layers is projection
layers, seq. length is the tokenizer sequence length.

Experiments AUROC (± std) ↑
MMG-CLIP

w/ CXR-CLIP prompts 0.587 (± 0.074)
w/ our prompts 0.700 (± 0.106)

Table 8: Ablation study of different evaluation prompts used to eval-
uate zero-shot settings. The reported scores are the average AUROC
(± std) for all labels curves on ”Mass Shapes” task.

it comes to multi-class evaluation, where it performs
poorly using their prompting mechanism compared to
ours, for example “Mass shape is oval”. Table 8 shows
that with our evaluation, we obtain higher score for
“Mass Shapes” task when using our prompts compared
to using CXR-CLIP evaluation prompts.

Ablation on pre-trained clinical text encoders.
As we used pre-trained text encoder BioClinicalBERT
model by Alsentzer et al. (2019) and not pre-training our
own due to the limited number of training data, the net-
work performance heavily relies on the performance of
the pre-trained text encoder. To understand the impact,
we analyzed our network performance using other large
language models of different parameter sizes as our text
encoder. In Figure 8a, we compared the performance
of our model trained using exam-prompts experiment,
similar to the evaluation approach reported in Table 5.

As shown in Figure 8a, BioClinicalBERT model as
our text encoder outperforms both BiomedBERT and
BioGPT in performance for all zero-shot classification
tasks. This supports idea of having a domain spe-
cific pre-trained model on clinical text datasets when
it comes to learning medical text reports from other

(a) Different LLM models performance as text encoders.

(b) Different vision models performance as image encoders.

Figure 8: Comparison between using different vision and large lan-
guage models as encoders in our network on zero-shot classification
tasks on the exam-prompts experiment model. Values on the axis (0,
0.25, 0.75, and 1) are average AUROC values for 1000 bootstrapped
samples for binary tasks, and average AUROC for multi-class tasks.

domains, and encourages pre-training a mammography
specific text encoder for future work. Following Bio-
ClinicalBERT is BiomedBERT, where it shows a bal-
anced performance across most tasks with particular
strength for both “Mass” and “Malignancy”. It also sup-
ports the idea that BERT variant models tends to out-
perform GPT variant models which are more commonly
used in generation tasks (Luo et al., 2022). BioGPT was
the least in performance as it had very low metric val-
ues, close to randomness. Thus, both BioClinicalBERT
and BiomedBERT are more suitable text encoders en-
coding medical text given their performance on our var-
ious tasks, and could potentially be used in pre-training
a BERT model for mammography domain-specific data.

Ablation on pre-trained vision image encoders. To
assess the performance of a domain-specific pre-trained
model as an image encoder such as our pre-trained Con-
vNeXt Tiny image encoder, we used a ResNet-50 model
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and applied transfer learning approach to its last layer
(layer 4), with similar training configurations. In Figure
8b, we show that having a pre-trained model on domain-
specific knowledge significantly outperforms a model
pre-trained on general vision task, where our ConvNext
Tiny model performed better in all tasks. ResNet-50
model had consistent and balanced performance and
was not biased to a specific task.

6. Conclusions

In this work, we proposed an image-text contrastive
learning framework named MMG-CLIP as well as a re-
port generation BI-RADS specific pipeline for mam-
mography X-ray 2D images. Our implementation in-
cludes not only training the network at the image or
exam level (multiple images) with medical text, but also
utilises multi-class generated prompt text to improve
the model performance on zero-shot classification tasks.
MMG-CLIP showcases remarkable flexibility due the
multi-modality and zero-shot learning ability. Our ex-
periments results shows the network data-efficiency and
zero-shot capability of the learned representations for
various downstream classification tasks.
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Appendix A. Data sampling for image-prompts experiment

Figure .9: Example of image-prompts pairs sampled from training dataset.

Appendix B. Prompt generation approach using labelled data.

Figure .10: Demonstration of prompt generation mechanism using multiple labels.

11.17



11.18



Medical Imaging and Applications

Master Thesis, June 2024

Therapy Response Prediction in Patients with Metastatic Soft Tissue Sarcomas
Based on CT Scans Using Delta Radiomics

Frederik Hartmann, Douwe Spaanderman, Martijn Starmans

The Biomedical Imaging Group Rotterdam, Erasmus MC, the Netherlands

Abstract

Soft tissue sarcomas (STS) are a rare group of cancers that occur in various parts of the body. When metastasized,
median survival is only twenty-four months, highlighting the importance of accurate prediction of therapy response
to enable the earliest possible modification of treatment. To facilitate this task, we propose a machine learning model
that predicts systemic therapy response for metastatic STS based on a pre-treatment and 3-4 months post-treatment CT
scan. In particular, the predictions are made using delta features, which represent the longitudinal change of features,
with survival time and status as the ground truth. In order to find such a model, we propose an automatic machine
learning method for survival analysis, reducing the risk of model selection bias. Furthermore, we investigate various
methods for merging features from multiple metastases and compare relative delta features (changes relative to the
baseline scan) with absolute delta features (total difference). The evaluation of our method employed nested cross-
validation on a training set (n=43), where the best-performing model achieved a concordance index of 0.75±0.14. This
model was further tested on a hold-out test set (n=15), achieving a concordance index of 0.70. In this context, it was
found that relative delta features improve performance significantly (t-statistic=3.881, p-value=0.0008). Additionally,
image-wise merging strategies are shown to be sufficient, simplifying the annotation process. In conclusion, the
proposed method demonstrates the feasibility of predicting therapy response for metastatic STS using delta radiomics.
To move towards clinical use, it is essential to evaluate the robustness of the presented model using a larger external
test cohort, accounting for variations in scanners and acquisition protocols.

Keywords: Therapy Response Prediction, Soft Tissue Sarcomas, Automatic Machine Learning, Delta Radiomics

1. Introduction

The survival rates for soft tissue sarcoma (STS)
present a challenging picture: out of ten patients, only
six are expected to be alive after five years (Stiller
et al., 2018). Furthermore, for patients with metastatic
STS, the survival rate decreases considerably, with the
overall five-year survival rate dropping to just one in
four, leading to a median survival time of twenty-four
months (Lochner et al., 2020). In order to prolong sur-
vival, surgery is recommended by the European So-
ciety for Medical Oncology (ESMO) as the preferred
choice of treatment for patients with metastatic STS
(Gronchi et al., 2021). However, in some patients,
surgery might not be feasible due to tumor location or
size. In such cases, systemic treatment is recommended
(Gronchi et al., 2021). If the initial treatment is ineffec-

tive, ESMO guidelines suggest switching to a second-
line therapy. In addition to changing treatment, discon-
tinuation of treatment is another alternative, as the treat-
ment toxicity may be greater than its predicted benefits
(Gronchi et al., 2021). In the best scenario for the pa-
tient, the treatment is effective and can be continued as
planned. Given that these treatment decisions, such as
discontinuation, are based on the patient’s response to
therapy, it is clear that accurate prediction of therapy re-
sponse is of upmost importance.

Accurately predicting the response to therapy re-
quires careful consideration of the characteristics of the
disease. In particular, STS are a rare group of tumors
with more than 80 subgroups. As the name suggests,
they are present in soft tissues all around the body,
such as the extremities, trunk and retroperitoneum. In
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a fifteen-year long study, Coindre et al. (2001) found
that 35% of STS patients will develop metastasis. While
metastases in the lungs are the most prevalent, it is com-
mon for metastases to occur in other sites, such as the
liver or lymph nodes (Lochner et al., 2020). This raises
a number of difficulties from a machine-learning per-
spective. First, due to the rarity of the disease, datasets
tend to be rather small. Second, the different sites of
metastasis reduce the consistency of the images. This
increases the difficulty for machine learning, as multi-
ple contrasts between metastases and backgrounds, as
well as spatial contexts, have to be considered. Metas-
tases may even be present in several locations in the
same scan. To address these difficulties, machine learn-
ing methods often perform feature extraction based on
segmentations.

The current state of the art in therapy response pre-
diction for STS using machine learning focuses only on
the primary tumor (see section 2). The therapy response
of the metastatic STS is overlooked. In an attempt to fill
this gap, this study is pioneering in the use of machine
learning to predict therapy response in metastatic STS.

2. State of the Art

In this section, the state of the art in therapy response
prediction for STS, both from a clinical and a technical
point of view, will be critically discussed.

2.1. Clinical

In clinical practice, the state of the art for predict-
ing therapy response in patients with STS are the RE-
CIST 1.1 guidelines (Eisenhauer et al., 2009). In or-
der to classify the metastasis response, RECIST is based
on the relative change of the sum of the longest diam-
eters. The sum consists of the largest axial diameters
of multiple metastases. A maximum of five metastases
and a maximum of two metastases per organ have to be
kept. Based on the relative change of the sum before
and after treatment, the treatment response can be de-
fined. However, in high-grade metastatic STS RECIST
has been shown to fail in accurately determining treat-
ment response, as noted by Stacchiotti et al. (2009) and
Meyer and Seetharam (2019). Given these limitations,
RECIST is no longer employed at the Erasmus Medical
Center for predicting therapy response in STS in clin-
ical practice, where the present study was conducted.
Consequently, clinicians are actively seeking alternative
methods.

2.2. Technical

In recent years, machine and deep learning have seen
increased usage for STS with a variety of clinical appli-
cations. According to Crombé et al. (2023), the works
can be divided into four different tasks. First, the dis-
crimination of benign, intermediate and malignant STSs

as well as differentiating phenotypes. Second, the pre-
diction of the histological grade. Third, the prediction of
survival. Fourth, therapy response prediction for neoad-
juvant treatments. As the goal of this work - the therapy
response prediction of STS - is most related to category
four, the other categories will not be discussed.

One of the earliest studies on predicting therapy re-
sponse was conducted on patients with histologically
confirmed high-grade STS without metastasis Crombé
et al. (2019). For the prediction, T1 and T2 weighted
Magnetic Resonance Imaging (MRI) scans were used,
taken before and after two cycles of chemotherapy. Fea-
ture extraction was performed using in-house software
based on manually generated tumor segmentations. Ad-
ditionally, handcrafted categorical features from radiol-
ogists were combined with the previously mentioned
features. Delta features were calculated as the dif-
ference of features between follow-up and baseline.
Crombé et al. opted to convert the task of survival pre-
diction to a classification task by assessing the histo-
logical response. A good response was defined by hav-
ing less than 10% of the tumor’s cells remaining viable.
This allowed to split the patient population into a group
of good and bad responders. The best performance of
this classification task was achieved using a random for-
est classifier with an accuracy of 0.75.

Gao et al. (2020) aimed to predict the treatment ef-
fect of preoperative radiotherapy in patients with STS
of all grades. The ground truth was obtained by com-
paring the tissue of the primary tumor before and after
the surgery. To this end, the relative change of necrotic
or fibrous tissue compared to the baseline sample was
calculated. A threshold of fifty percent was used to di-
vide the patients into two groups: good responders and
bad responders. Features were extracted from diffusion-
weighted images using PyRadiomics (van Griethuysen
et al., 2017) at three different time points, before ra-
diotherapy, after three sessions and after final radiation
treatment. Additionally, delta features were determined
by calculating the differences in features between base-
line, three cycles and the final treatment. For the clas-
sification task, a support vector machine was tested and
obtained an area under the curve of 0.90 ± 0.06. As the
score was significantly lower without the delta features
(0.73 ± 0.07.), Gao et al. concluded that delta features
were necessary to accurately predict the treatment ef-
fect.

Unlike Gao et al., who used two time points to de-
fine pathological complete response, Peeken et al. em-
ployed a single time point after surgery. A positive treat-
ment response is defined when fewer than five percent
of viable cells are necrotic. The features are extracted
from T1 and T2 weighted images using PyRadiomics.
The delta features were calculated as the difference of
features between the two time points. For the classifi-
cation task of predicting the pathological complete re-
sponse, a nested cross-validation is used to compare be-

12.2



Therapy Response Prediction in Patients with Metastatic Soft Tissue Sarcomas Based on CT Scans Using Delta
Radiomics 3

tween Random Forest, ElasticNet Regression and Log-
itBoost. Overall, Random Forest performs best us-
ing delta-features, resulting in an area under the curve
(AUC) of 0.75 on an external validation set. It is im-
portant to highlight that the result is only marginally
worse than the result on the internal training set using
nested cross-validation with an AUC of 0.73. Moreover,
Peeken et al. pointed out that this classification task is
a substitute task for predicting overall survival. There-
fore, the output of the Random Forest was employed
as a feature for predicting overall survival using a mul-
tivariate Cox proportional hazards model, resulting in
harrell’s concordance index (c-index) of 0.69.

Fields et al. (2023) claim that the previously de-
scribed methods are not reproducible due to the feature
selection techniques used. Similar to the methods de-
scribed above, good and bad treatment responses are
defined based on pathological findings; however, the
specifics are not detailed. In contrast to the previously
described methods, in-house MATLAB software was
utilized for feature extraction. The extraction was per-
formed on eleven different MRI sequences. Delta fea-
tures were calculated as the difference between pre- and
post surgical features. Afterwards, Random Forest and
AdaBoost were used for the classification task on the
full feature set, resulting in an AUC of 0.44 and 0.40
respectively.

Following Peeken et al., Miao et al. (2023) convert
the task into a classification task by using the patholog-
ical complete response to divide patients into groups of
good and bad responders. In comparison to Gao et al.
and Peeken et al., the authors extend the inclusion cri-
teria to a broader variety of therapies. The features
were extracted from T1, T2 and diffusion-weighted im-
ages using PyRadiomics. Delta features were calculated
as the difference between pre- and post-surgery time
points. Using multivariate logistic regression, the au-
thors achieve an AUC of 0.952.
In summary, the papers presented demonstrate the pos-
sibility of predicting therapy response in STS from a
variety of different MRI sequences, such as T1, T2 or
diffusion weighted imaging. Gao et al. showed the ad-
vantage of delta features compared to single-time points
and both Peeken et al. as well as Miao et al. were able
to reproduce this on their respective datasets. Further-
more, Miao et al. explored the feasibility of extending
the models to different treatment types.

2.3. Delta Radiomics for Therapy Response Prediction

The work described in subsection 2.2 differs from this
thesis in three ways regarding patient data. First, for
this study, Computed Tomography (CT) scans are used
instead of MRI. Second, multiple metastasis segmenta-
tions per scan are present. Third, the prediction is done
using survival data instead of pathological ground truth.
In order to provide a picture of the state of the art with

respect to these differences, three additional papers not
explicitly related to STS will be discussed.

The first work by Nardone et al. (2020) evaluates
the robustness of texture features on different CT scan-
ners. For this, a variety of tissues, including those of the
lung and liver, were tested in a phantom study. Three
scanners were used for evaluation, with four protocols
for each scanner. The study showed that delta features
are more robust among different scanners and protocols
compared to features from a single time point.

Making use of the robustness of delta features in
CT scans, Qu et al. (2023) predicted therapy response
in metastatic colorectal liver cancer. Instead of us-
ing the histological response, RECIST was used as a
ground truth to classify between a complete and partial
response. The features were extracted from contrast-
enhanced CTs using PyRadiomics from pre- and post-
therapy scans. Qu et al. showed that relative delta fea-
tures, such as relative tumor growth, performed better
than absolute delta features, such as absolute volume
increase. It is worth pointing out that the features were
extracted using segmentations of the biggest metastasis.

On the other hand, Cousin et al. (2023) extracted fea-
tures from multiple segmentations per CT scan with the
goal of predicting therapy response for advanced non-
small-cell lung cancer. The segmentations were carried
out following RECIST guidelines, but instead of using
RECIST to define the ground truth as well, the survival
data was used directly. Comparing the effect of mul-
tiple segmentations versus a single one, Cousin et al.
points out that concatenation of features from multiple
lesions leads to a worse performance compared to a sin-
gle segmentation. Nevertheless, for both, the feasibility
of therapy response prediction using survival data was
shown.

2.4. Beyond the State of the Art

In addition to the differences in imaging modality,
this study aims at five key improvements to address the
limitations of the state of the art. First and foremost,
the clinical goal is different from the papers presented
in subsection 2.2. While Crombé et al.; Fields et al.;
Gao et al.; Peeken et al. and Miao et al. aim to pre-
dict therapy response for the primary tumor, this work
aims to predict therapy response for metastases in STS.
Second, the ground truth is not based on histological
findings, as in previous works, but on survival data. It
is worth mentioning that Peeken et al. tried to accom-
plish this by using the logits of the classification as an
input for survival analysis. In comparison, this work
directly predicts therapy response using survival data.
This is because histologic tissue samples for metastases
are uncommon, as this would require multiple biopsies
for each patient, which are not performed due to the
clinical risks associated with the invasive nature of such
procedures. Furthermore, Peeken et al. note that the
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classification task was only used as a surrogate for sur-
vival prediction. The third difference compared to pre-
vious works on STS is the use of relative delta features
instead of absolute ones. The advantage for this was
shown by Qu et al. for colorectal liver metastases, but
not yet for therapy response prediction in patients with
STS. Fourth, segmentations of multiple metastases are
available for each scan. As Cousin et al. pointed out, in
the case of non-small-cell lung cancer, the concatena-
tion of feature spaces was insufficient. Thus, this work
tries to overcome this by aggregating the features from
multiple segmentations by means of, e.g., summation or
averaging. Finally, it is worth pointing out that due to
the fact that texture delta features are more robust than
single time point features (Nardone et al., 2020) and the
fact that several authors such as Miao et al. or Gao et al.
have already shown the advantage of delta features for
STS, single time point prediction is not performed in
this study.

In summary, the key contributions of this work are
as follows: First, this work pioneers therapy response
prediction for metastatic STS through machine learn-
ing methods. Second, evaluating the impact of abso-
lute and relative delta features in STS patients. Third,
merging strategies for features extracted from multiple
metastases in patients with STS are proposed and as-
sessed.

3. Material & Methods

3.1. Data

In this section, the data collection and segmenta-
tion processes will be explained. Furthermore, the fea-
ture extraction, merging and selection methods are pre-
sented.

The Dataset in One Look

Collected from Erasmus MC
Modality Contrast-enhanced CT

Scan region Trunk
Number of Patients 58

Scans per Patient 1 pre-, 1 post-treatment
Segmentation 1 InteractiveNet
Segmentation 2 Manual adjustment
Ground Truth Survival status & time

Figure 1: The dataset summarized. Metastases from 58 STS patients
treated at the Erasmus Medical Center in Rotterdam, the Netherlands,
were segmented in contrast-enhanced CT scans of the trunk using In-
teractiveNet, followed by manual adjustment. Each patient had one
pre-treatment and one post-treatment scan, with ground truth includ-
ing survival status and time.

3.1.1. Patient Selection
The Erasmus Medical Center is an expertise cen-

ter for STS which treats most patients with STS in
the region, including patients with metastatic disease.
The data of patients with STS who were treated at
the EMC were collected retrospectively. This study
was conducted in accordance with the ethical standards
outlined in the Helsinki Declaration of 1975 and was
exempted by the medical research ethics committee
(METC, MEC-2020-0687) from the Erasmus Medical
Center with a waiver of consent. The inclusion crite-
ria of the study are 1) the patient has been diagnosed
with an initially unresectable, metastasized, high-grade
STS, 2) the patient has received systemic treatment at
the Erasmus Medical Center between 2014 and 2020.
Patients were excluded based on the following crite-
ria; 1) the patient has gastrointestinal stromal tumors,
2) the patient has no detectable or suitable metastasis
during follow-up or no follow-up after a maximum of
four months of treatment, 3) the patient has necrotic or
cystic metastasis 4) CT quality too low for measuring
response criteria as determined by a musculoskeletal ra-
diologist with 7 years of experience.

The patient selection process can be seen in Figure 2
and the characteristics of the selected patients in Ta-
ble 1. For all selected patients, CT scans have been
taken as part of the systemic treatment. These include a
contrast-enhanced CT scan of the trunk taken before the
start of the systemic treatment. Each scan shows at least
one metastatic location. The primary tumor might not
be present in the scan. Additionally, at least one follow-
up scan was taken not later than four months after the
start of the treatment, in accordance with the ESMO
guidelines.

3.1.2. Segmentation
The contrast-enhanced CT scans of 58 patients were

segmented at both the baseline and the first follow-up.
While CT scans of 37 additional patients were available,
the segmentations could not be carried out due to time
constraints. The segmentation followed RECIST 1.1
guidelines. In summary, only the five biggest metastases
were segmented, with a maximum of two metastases per
organ. Two segmentations were used to compare the
feature robustness to different segmentations. First, seg-
mentations were created using InteractiveNet Segmen-
tation by Spaanderman et al. (2024). The deep learning-
based method requires the selection of six points near
the tumor’s extreme boundaries. These points are then
transformed into an exponentialized geodesic map. The
map is then combined with the original image to predict
the segmentation using a 3D U-net architecture. The
second segmentation is the adjustment of the results of
the first method. The adjustment was carried out man-
ually for each segmentation. The refinement was done
to improve on potential shortcomings of the prediction.
Three differences in the segmentations are displayed in
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Table 1: Characteristics of the included patients. Categories with
fewer than two patients are consolidated into ”Others.” Patients with
unknown characteristics are excluded from the listing but are ac-
counted for in the percentage calculations.

Characteristics train
(n=43)

test
(n=15)

Age years
Median [IQR] 54 [47; 66] 57 [43; 65]
Mean 54 52

Sex n(%)
Male 21 (49%) 10 (67%)
Female 23 (51%) 5 (33%)

Survival status n(%)
Dead 34 (79%) 10 (67%)
Loss of Follow-up 1 (2%) 1 (7%)
Alive 9 (19%) 4 (26%)

Survival time months
Median [IQR] 22 [14; 42] 23 [10; 58]
Mean 35.14 47.35

Overall survival %
Three years 43 37
Five years 21 37

Phenotype n(%)
Leiomyosarcoma 15 (34%) 4 (26%)
Pleomorphic sarcoma 7 (16%) 2 (13%)
Angiosarcoma 5 (11%) 1 (7%)
Liposarcoma 4 (9%) 2 (13%)
Synovial sarcoma 3 (7%) 0 (0%)
Others 10 (23%) 6 (40%)

Site of Primary Tumor n(%)
Leg 8 (19%) 3 (20%)
Uterus 8 (19%) 2 (13%)
Abdomen 2 (5%) 2 (13%)
Arm 2 (5%) 1 (7%)
Breast 2 (5%) 0 (0%)
Sacroiliac Joint 2 (5%) 0 (0%)
Scalp 2 (5%) 1 (7%)
Shoulder 2 (5%) 1 (7%)
Retroperitoneal 0 (0%) 2 (13%)
Other 14 (32%) 5 (33%)

Site of Metastasis n(%)
Lung 21 (49%) 5 (33%)
Multiple sites 6 (14%) 7 (46%)
Lymph nodes 3 (7%) 0 (0%)
Retroperitoneal 3 (7%) 0 (0%)
Other 10 (23%) 2 (13%)

Time to Metastasis n(%)
Metachronous 25 (57%) 9 (60%)
Synchronous 19 (43%) 5 (33%)

513 patients with initially
unresectable metastatic STS,
treated with systemic treatment
between 2014 and 2020

408 patients excluded
- 351 exclusion criteria 1
- 57 exclusion criteria 2

10 patients excluded (criteria 4)
- 6 no suitable reference lesion
- 2 Follow-up time larger
than four months
- 1 low quality CT
- 1 no metastasis

95 patients selected for study

105 patients selected for
metastases segmentation

58 patients included 37 patients excluded
(no segmentation)

Figure 2: Flowchart of the patient selection included in this study.

Figure 3. Both segmentations were carried out by a
medical student under the supervision of a radiologist
with eight years of experience.

3.1.3. Ground Truth
The ground truth is based on the survival status of the

patient at the time of this study. If a patient was alive
at the time of data collection (the 30th of September,
2023), the survival time was calculated as the absolute
difference between the date of data collection and the
date of STS diagnosis. If the patient was dead or cen-
sored, the survival time was calculated as the absolute
difference between the date of death or date of the last
follow-up and the date of diagnosis.

3.1.4. Feature Extraction
Following the segmentation, feature extraction was

performed. To allow for comparability, an open-source
feature extraction library named PyRadiomics (van Gri-
ethuysen et al., 2017) was chosen. PyRadiomics takes
as input the scan and the segmentation of the volume of
interest. In STS patients with metastatic disease, multi-
ple metastases are present in each scan. However, PyRa-
diomics only allows for the feature extraction of a sin-
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A) B) C)

Figure 3: Segmentation results are presented from InteractiveNet (blue outline) and manually refined segmentation (magenta outline). Figures A,
B and C illustrate metastasis segmentations, respectively, showing the minimum, median (711 voxels), and maximum (24169 voxels) differences
of the two segmentations within the dataset. Figure A illustrates a lung metastasis; Figure B shows a subcutaneous or bone metastasis; and Figure
C shows a pancreatic metastasis.

gle label or metastasis. To take advantage of the in-
formation present in each metastasis, a feature set was
extracted for every segmented metastasis. Therefore,
multiple feature sets were extracted per scan. Each fea-
ture set consists of the same 108 features. The features
are the 107 PyRadiomics features with default settings
(version 3.1.0) and the number of segmented lesions per
scan. The feature categories can be seen in Table 2.

3.1.5. Delta features
The prediction of the therapy response can be inter-

preted as the monitoring of changes in features over
time. This longitudinal change in features is referred
to as delta features. A mathematical definition is given
in Equation 1. Let xt denote a feature at timepoint t. The
difference, expressed as d, can be defined as

d def
= xFollow−up − xBaseline (1)

Another option is to take the relative difference as dis-
played in Equation 2.

drel
def
=

xFollow−up − xBaseline

xBaseline (2)

The equations above assume one feature value for each
feature. As multiple metastases are present in each
scan, multiple feature values are extracted for each
feature. This requires the adaptation of the equations

Table 2: Categories of PyRadiomics Features

Feature Category Number of Features

First-order features 19

Shape-based features 16

Features from the gray-level
co-occurrence matrix
(glcm)

24

Features from the gray-level
run-length matrix (glrlm)

16

Features from the gray-level
size-zone matrix (glszm)

16

Features from the
neighboring-gray-tone
difference matrix (ngtdm)

5

Features from the gray-level
dependence matrix (gldm)

14

displayed above. One option would be to allow multiple
values per feature and to concatenate them. However,
this could create excessively large feature spaces of
varying sizes. In order to maintain a consistent size of
the feature spaces, three different merging strategies are
explored. These techniques are the arithmetic mean,
the maximum and the summation. Furthermore, the
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merging can be performed at different points. The first
option is to extract the features for each metastasis,
aggregate them (e.g., by summation) and calculate the
absolute (Equation 1) or relative difference (Equation 2)
afterwards. In comparison to that, the second option
starts by calculating the difference and aggregates the
features afterwards. For this option, the differences
are calculated for each metastasis pair, i.e., the same
metastasis at baseline and follow-up. If the matching
metastasis is not present, it is replaced by a feature
vector of zeros. A reason for a missing match could be
a full remission of the metastasis in the follow up. If
the matching metastasis is missing in the baseline scan,
e.g., due to the growth of a new metastasis, this would
lead to a division by zero in Equation 2. In this case,
the relative features are set to one. The second option
can be seen in Figure 4. In the following, all strategies
are presented in detail. First, all three equations for
metastasis-wise merging are presented. Afterwards, the
three equations for image-wise merging are shown. For
each equation, the calculations for absolute and relative
delta features are shown.

Metastasis-wise Merging

The metastasis-wise delta features merged through
the mean can be calculated with Equation 3.

∆xmets =
1
n

n∑

i=1

di or ∆xrel,mets =
1
n

n∑

i=1

drel,i (3)

Where n is the number of segmented metastases and
i represents a metastasis pair. The calculation for
metastasis-wise merging with the maximum is shown
in Equation 4.

∆xmets =
n

max
i=1

di or ∆xrel,mets =
n

max
i=1

drel,i (4)

Finally, summation aggregates the total value of the dif-
ferences:

∆xmets =

n∑

i=1

di or ∆xrel,mets =

n∑

i=1

drel,i (5)

Image-wise Merging

Equation 6 describes the image-wise merging us-
ing the arithmetic mean.

∆ximg =
1
n

n∑

k=1

xFollow−up
k − 1

m

m∑

k=1

xBaseline
k or

∆xrel,img =

1
n
∑n

k=1 xFollow−up
k − 1

m
∑m

k=1 xBaseline
k

1
m

∑m
k=1 xBaseline

k
(6)

n represents the number of segmented metastases at
baseline and m at follow-up. Furthermore, k does not in-
dicate a matching metastasis pair anymore but is a sim-
ple iterator instead. Similarly, the image-wise merging
with the max is shown in Equation 7.

∆ximg =
n

max
k=1

xFollow−up
k − m

max
k=1

xBaseline
k or

∆xrel,img =
maxn

k=1 xFollow−up
k −maxm

k=1 xBaseline
k

maxm
k=1 xBaseline

k

(7)

Summing it all up, the image-wise merging using the
sum is presented in Equation 8

∆ximg =

n∑

k=1

xFollow−up
k −

m∑

k=1

xBaseline
k or

∆xrel,img =

∑n
k=1 xFollow−up

k −∑m
k=1 xBaseline

k∑m
k=1 xBaseline

k

(8)

Each of the six merging strategies is applied to the entire
collection of images, resulting in six initial datasets. By
adding both relative and absolute options and using two
different segmentations, the sets are further diversified.
This results in a total of twenty-four distinct datasets,
each produced by a unique combination of strategies,
options and segmentations. For each dataset, the same
patients have been split into a training and test set with
a split of 75% vs 25%.

3.1.6. Feature Selection
For each training set, three feature selection methods

are explored. 1) variance threshold and recursive feature
elimination with cross-validation; 2) variance threshold
and repeated recursive feature elimination with cross-
validation; 3) no feature selection.

Both the first and second method employ a variance
threshold. The variance threshold removes features that
have a lower variance than the defined threshold. Here,
following the manual of scikit-learn, whose implemen-
tation was used (Pedregosa et al., 2011), a threshold of
0.8 is chosen. The second step, recursive feature elim-
ination with cross-validation, is only available for re-
gression and classification models in scikit-learn but not
for survival models. To test recursive feature elimina-
tion with cross-validation, a custom version based on
recursive feature elimination (without cross-validation)
of scikit-learn is implemented. The advantage of using
the version with cross-validation is the automatic selec-
tion of the number of features, which can reduce se-
lection bias. Recursive feature elimination with cross-
validation aims to overcome this by trying every pos-
sible number of features to be selected. This is done
by performing recursive feature elimination in a cross-
validation setup for each number. For each number, the
models are evaluated based on the mean metric of the
cross-validation setup. Afterwards, the number of fea-
tures with the highest mean metric is chosen. This num-
ber is used to perform recursive feature elimination, but
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mean
absolute

relative

absolute

relative
max

sum
absolute

relative

zeros

Baseline

Follow-up

Feature Extraction Feature Merging

Figure 4: Feature merging is performed for each metastasis. First, for every segmented metastasis, features are extracted using PyRadiomics. The
match for the second metastasis is not present in the follow-up anymore and is therefore replaced by a feature vector of zeros. Afterwards, the
difference for every metastasis pair is calculated. The differences are then merged using either the arithmetic mean, max or summation. Finally,
both the absolute and relative delta features are calculated. This results in six different delta feature sets per patient.

this time on the entire training set. The output of this
training setup is the output of recursive feature elim-
ination with cross-validation. Here, a five-fold cross-
validation is chosen with the c-index as a metric. As a
model for the recursive feature elimination, Gradient-
BoostingSurvivalAnalysis by scikit-survival (Pölsterl,
2020) is used. This choice is mainly based on the fact
that the model fulfills all requirements of the recursive
feature elimination, mainly the feature importance’s.
The step size of the recursive feature elimination is set
to one, following the implementation in scikit-learn.

3.2. Automatic Machine Learning

For the final prediction of the therapy response, an
auto-ML method is proposed. This method aims to se-
lect the best-performing machine learning pipeline au-
tomatically while simultaneously reducing the risks of
overfitting. The selected pipeline consists of three steps.
First, outlier detection & imputation. Second, feature
scaling and third, the survival model. Every possible
combination of methods is tested and evaluated while
maintaining the order of the pipeline. Furthermore, a
skipping step for the first two pipeline steps is imple-
mented. To reduce the risk of model selection bias,
this is done in a nested cross-validation setting. This
pipeline selection process is carried out separately for
every training set and feature selection method. Com-
bining twenty-four datasets and three feature selection

methods results in seventy-two pipelines. Of these
pipelines, the best-performing model is selected and
evaluated on the independent test set. Only the best
model is tested to avoid a selection bias and hence re-
duce the chance of overfitting even further. An example
of the pipeline selection process is shown in Figure 5.

IQR

Cox

Pass Pass

Other Other Other

Standard

Quantile

Extra Trees

Z-Score

Outlier
Detection

Scaler Survival
Model

Figure 5: The pipeline selection search space consists of one from
each category: outlier detection & imputation, scaler and survival
model. One exemplary pipeline consisting of interquartile range de-
tection, no feature scaling and extra trees as a survival model is high-
lighted in green.
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Figure 6: Workflow of nested cross validation.

3.2.1. Nested Cross-Validation
In the following, the nested cross-validation used for

the pipeline selection process is explained in detail.
First, the five-fold cross-validation splits into outer test
and train folds. Second, inner five-fold cross-validation
splits the outer training fold into inner validation and
training folds. For each inner fold, a search for the
best pipeline is carried out. By averaging the results
among the inner validation folds, a performance mea-
sure for each pipeline can be found. By selecting the
best pipeline from each inner fold, five pipelines remain.
These five pipelines are then trained and evaluated on
the outer folds. The best-performing pipeline is the one
with the highest average score on the outer test folds.
The workflow is shown in Figure 6.

3.2.2. Outlier Detection & Imputation
The first step of the pipeline is outlier detection and

imputation. In total, three different methods are imple-
mented. The first method is based on the interquartile
range. Using the interquartile range, a value is defined
as an outlier if it is bigger or smaller than the closest
whisker. The outliers are then replaced with the closest
whisker. The second method is based on the z-score.
For this, the feature values are z-scored as described in
Equation 9.

xz =
x − µ
σ

(9)

Afterwards, an outlier is present if xz < threshold.
The threshold is set at three, following the example
of Hoaglin and Iglewicz (1993). The outliers are then
set to the threshold. The third outlier detection tech-
nique is based on the modified z-score after Hoaglin and
Iglewicz (1993).

xmod =
0.6745 · (x −median(x))

MAD
(10)

where MAD is the median absolute deviation. The
threshold here is set to 3.5 as recommended by Hoaglin
and Iglewicz (1993).

MAD = median (|x −median(x)|) (11)

3.2.3. Feature scaling & Survival Models
Steps two and three of the pipeline are the scaling

of features and finally, the prediction of the therapy re-
sponse using a survival model. The feature scalers of
Scikit-learn are used. The feature scalers include, Max-
Abs-Scaler, Min-Max-Scaler, Robust-Scaler, Standard-
Scaler and Quantile-Transformer with 25 quantiles.
The survival models employ the implantation of scikit-
survival and are Survival Tree, Coxnet Survival Analy-
sis, Componentwise Gradient Boosting Survival Analy-
sis, Gradient Boosting Survival Analysis, Random Sur-
vival Forest and Extra Survival Trees.

3.3. Robustness & Interpretability

The best pipeline, in combination with its corre-
sponding segmentation & merging strategy, is chosen
based on the highest mean c-index across the outer
folds. Once the best pipeline is found, the pipeline is
retrained on the full training set and the performance
on the independent test set is computed. To evaluate
the pipeline and selected features under varying condi-
tions, four additional tests are conducted. The first three
tests involve retraining the model with different modi-
fications, such as altering segmentation methods, using
absolute instead of absolute delta features, and apply-
ing either metastasis or image-wise merging options.
The fourth test aims to evaluate how the model would
perform in a clinical setting. There, the clinician seg-
menting a new image would be a different one than the
one who annotated the training images. In an attempt to
recreate this scenario, the model is trained on one seg-
mentation and tested on the other.

To enhance the interpretability of the best pipeline,
Survshap (Krzyziński et al., 2023) is employed. The
SHAP (SHapley Additive exPlanations) values allow
for the identification of how each feature contributes
to each individual prediction, quantifying the impact in
a consistent and accurate manner. They represent the
marginal contribution of each feature to the prediction
outcome, thereby providing insights into the decision-
making process of the model. This facilitates a bet-
ter understanding of the model’s behavior and supports
transparent and explainable predictions in survival anal-
ysis.
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3.4. Metrics
The concordance index is computed as as:

C =

∑
i< j 1(Ti < T j) · 1(T̂i < T̂ j) · δi∑

i< j 1(Ti < T j) · δi
(12)

where:

• Ti and T j are the actual survival times of patients i
and j

• T̂i and T̂ j are the predicted survival times for pa-
tients i and j

• 1(·) is the indicator function, which is 1 if the con-
dition inside is true and 0 otherwise.

• The sum
∑

i< j is taken over all pairs of subjects i
and j such that i < j, which means each pair is
considered only once.

• δi is a binary event indicator. 1 corresponds to the
death of the patient and 0 being censoring.

In other words, the numerator of the C-index counts the
number of correctly ordered pairs of patients, where the
patient with the shorter survival time also has a shorter
predicted survival time. The denominator counts all
possible pairs. The concordance index is computed us-
ing scikit-survival Pölsterl (2020). A c-index of 1 re-
sembles a perfect prediction, while a c-index of 0.5 cor-
responds to a random prediction.

4. Results

This section presents the nested cross-validation out-
comes, followed by the evaluation of the final model on
the test set. Finally, the SHAP analysis is introduced.

4.1. Evaluation of datasets
The best-performing pipeline without feature selec-

tion achieved a mean c-index of 0.68 with a standard
deviation of 0.19, as illustrated in Table 3. The dataset
used was built by averaging the metastasis-wise delta
features extracted from the manually adjusted segmen-
tations. The pipeline selected by the automatic machine
learning was a z-score-outlier transformer, followed by
a quantile transformer for feature scaling, and finally ex-
tra survival trees for survival prediction. On average,
132.2 feature values were selected as outliers out of a
total of 4644 values.

Next, the use of variance thresholding followed by
recursive feature elimination with cross-validation re-
sulted in the best overall performance with a c-index
of 0.75 ± 0.14 in the nested cross-validation. This was
achieved by summing the image-wise relative delta fea-
tures extracted from the adjusted segmentation. The
pipeline selected by the auto-ML methods was an
interquartile range-based outlier detection, a quantile

transformer for scaling, and a random survival forest
for therapy response prediction. This methodology per-
formed best overall and was therefore selected as the
final model. An average of 45.8 values were detected as
outliers from a selected subset with a total of 387 values.
The feature space consisted of ten features.

Finally, the best-performing pipeline using variance
thresholding followed by repeated recursive feature
elimination with cross-validation achieved a c-index of
0.73 with a standard deviation of 0.09. This dataset was
created by summing the relative metastasis-wise delta
features from the InteractiveNet segmentation. The per-
formance was based on the best-performing pipeline se-
lected by the auto-ML method, which is a Z-score out-
lier detector followed by a quantile transformer and a
Cox net survival analysis model. An average of 9.6 fea-
ture values were detected as outliers from a total of 258
values. The six selected features are shown in Table 4.
Using the same dataset but employing variance thresh-
olding followed by a single repetition of feature elim-
ination resulted in a performance of 0.7457 ± 0.1281,
which was the second-best method overall.

4.1.1. Evaluation of Feature Selection Methods
Comparing the three methods using the F-statistic

showed a significant difference, with an F-statistic of
23.227 and a p-value of 1.94 · 10−8. As the F-statistic
does not indicate which of these methods caused the
difference, the selections were compared against each
other. Repeated recursive feature elimination with
cross-validation resulted in the best average perfor-
mance across all datasets, with a mean c-index of 0.691
and a standard deviation of 0.029. This performance
was superior to a single repetition, which had a mean c-
index of 0.676 and a standard deviation of 0.047. How-
ever, considering a t-statistic of −1.297 and a p-value of
0.201, the difference between these two methods is not
statistically significant.

The comparison of both of these methods to no fea-
ture selection revealed that both feature selection meth-
ods resulted in a significantly better performance com-
pared to no feature selection, which on average had a c-
index of 0.612 with a standard deviation of 0.049. The
comparison of no selection versus variance thresholding
and a single repetition had a t-statistic of −4.627 and a
p-value of 3.04 · 10−5. The comparison of no selection
versus variance thresholding and repeated recursive fea-
ture elimination with cross-validation had a t-statistic of
−6.784 and a p-value of 1.92 · 10−8.

In order to provide further insights into the selected
features, Table 4 shows the feature set corresponding
to the best-performing dataset of the respective feature
selection methods. While most of the selected fea-
tures are different, two of the selected features were
similar. Namely, the shape feature Mesh-Volume and
firstorder uniformity. These two features are not iden-
tical, as one results from image-wise merging and the
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Table 3: Summary of results of nested cross-validation for multiple feature merging and selection strategies. The c-index is reported using the mean
and standard deviation of the best pipeline for each strategy. For each pipeline, the performance is calculated among all outer folds.

c-index mean (std)
Segmentation Aggregation Abs or Rel Merged at No selection Var and RFECV Var and repeated RFECV

Adjusted Max Absolute Image 0.63 (0.15) 0.61 (0.07) 0.66 (0.15)
Adjusted Max Absolute Tumor 0.65 (0.11) 0.70 (0.10) 0.73 (0.15)
Adjusted Max Relative Image 0.56 (0.13) 0.67 (0.08) 0.68 (0.14)
Adjusted Max Relative Tumor 0.66 (0.10) 0.73 (0.06) 0.69 (0.11)
Adjusted Mean Absolute Image 0.59 (0.07) 0.64 (0.11) 0.64 (0.16)
Adjusted Mean Absolute Tumor 0.61 (0.11) 0.60 (0.11) 0.67 (0.13)
Adjusted Mean Relative Image 0.67 (0.16) 0.70 (0.15) 0.70 (0.15)
Adjusted Mean Relative Tumor 0.68 (0.19) 0.67 (0.11) 0.67 (0.07)
Adjusted Sum Absolute Image 0.62 (0.26) 0.63 (0.18) 0.70 (0.09)
Adjusted Sum Absolute Tumor 0.59 (0.23) 0.71 (0.11) 0.68 (0.16)
Adjusted Sum Relative Image 0.65 (0.17) 0.75 (0.14) 0.68 (0.09)
Adjusted Sum Relative Tumor 0.69 (0.17) 0.69 (0.14) 0.69 (0.12)
InteractiveNet Max Absolute Image 0.56 (0.23) 0.65 (0.12) 0.63 (0.16)
InteractiveNet Max Absolute Tumor 0.58 (0.20) 0.58 (0.14) 0.69 (0.06)
InteractiveNet Max Relative Image 0.59 (0.08) 0.73 (0.13) 0.73 (0.13)
InteractiveNet Max Relative Tumor 0.64 (0.15) 0.67 (0.08) 0.72 (0.15)
InteractiveNet Mean Absolute Image 0.52 (0.10) 0.71 (0.13) 0.71 (0.13)
InteractiveNet Mean Absolute Tumor 0.62 (0.15) 0.63 (0.07) 0.70 (0.12)
InteractiveNet Mean Relative Image 0.67 (0.20) 0.71 (0.13) 0.75 (0.13)
InteractiveNet Mean Relative Tumor 0.58 (0.11) 0.72 (0.05) 0.70 (0.14)
InteractiveNet Sum Absolute Image 0.57 (0.14) 0.64 (0.06) 0.67 (0.08)
InteractiveNet Sum Absolute Tumor 0.54 (0.20) 0.66 (0.12) 0.67 (0.08)
InteractiveNet Sum Relative Image 0.67 (0.22) 0.68 (0.09) 0.69 (0.08)
InteractiveNet Sum Relative Tumor 0.55 (0.09) 0.75 (0.13) 0.73 (0.09)

other from metastasis-wise merging. Nevertheless, both
are summed relative delta features.

4.1.2. Evaluation of Aggregation strategies
Three different aggregation strategies were evaluated.

The arithmetic mean, the maximum and the summa-
tion. As can be seen in Figure 7 A) all three merging
strategies have similar performances in terms of the c-
index using variance thresholding and recursive feature
elimination. The summation, which was used for the
best-performing pipeline, shows a slightly higher me-
dian and a lower variance. The statistical analysis re-
sulted in an F-statistic of 0.4251 with a corresponding
p-value of 0.6592. This result indicates that there are
no statistically significant differences among the three
aggregation methods. It is relevant to mention that this
subsection as well as the ones following are based on the
results of different experiments, and not only one value
is changing per test, e.g., different features are selected
for each.

4.1.3. Evaluation of Merging Points
The comparison of the c-index using image-wise and

metastases-wise in combination with variance thresh-
olding and recursive feature elimination for feature se-
lection resulted in a t-statistic of 0.0425 and a p-value of

0.9665. Hence, there is no statistically significant differ-
ence. This finding is further supported by Figure 7 B)
which indicates similar performances.

4.1.4. Evaluation of Segmentations
The performance difference with regards to the c-

index is not significant, as shown in Figure 7 C) and
the difference might be caused by a single result. A t-
statistic of −0.1275 and a p-value of 0.8997 show no
statistically significant difference. It is worth pointing
out that the best-performing pipeline used manually ad-
justed masks. Nevertheless, the performance using In-
eractiveNet’s segmentation resulted in the second-best-
performing pipeline, which was worse by a c-index of
0.005 (0.7457± 0.1281 vs 0.7507± 0.1373). Taking the
standard deviations into account, the difference between
the methods is not statistically significant. In this con-
text, it is important to consider that the manual adjust-
ment was made to the result of InteractiveNet. For ex-
ample, Figure 3 shows a tumor (2nd from the left) where
the manual adjustment is identical with the output of
InteractiveNet as no adjustments were necessary. Fig-
ure 3 B) displays the median difference between the two
segmentations based on the absolute number of voxel
differences in the metastasis. The adjustment required
711 voxel changes. In the case with the greatest dif-
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Figure 7: Boxplots for a variety of comparisons, utilizing the c-indices from nested cross-validation combined with variance thresholding and
recursive feature elimination for feature selection. The underlying data points are presented as dots next to the boxplots.
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Table 4: The selected features of the best-performing dataset of the
respective feature selection methods. Features that appear more than
once are highlighted in bold.

Category Var and RFECV Var and repeated
RFECV

Shape Mesh-Volume Mesh-Volume

Surface-Area

Firstorder Uniformity Uniformity

Skewness

glcm Cluster-
Prominence

Maximum-
Probability

Joint-Energy

gldm Small-
Dependence-Low-
Gray-Level-
Emphasis

glrlm High-Gray-Level-
Run-Emphasis

glszm Large-Area-High-
Gray-Level-
Emphasis

Small-Area-High-
Gray-Level-
Emphasis

High-Gray-Level-
Zone-Emphasis

ngtdm Complexity

ference, segmentation varied by 24,169 voxels, as illus-
trated in Figure 3 C). In some cases, manual adjustments
resulted in potential oversegmentaions compared to In-
teractiveNet’s segmentation, as seen in the first plot on
the bottom row. Despite this outlier, the manually ad-
justed segmentations can still be considered better, es-
pecially for metastases outside of the lung where the
contrast is significantly less.

4.1.5. Evaluation of Absolute and Relative Delta Fea-
tures

The mean c-index for absolute delta features was
0.663 with a standard deviation of 0.029, while the
mean c-index for relative delta features was 0.704 with
a standard deviation of 0.022. The boxplot is shown
in Figure 7 D), highlighting a potentially better perfor-
mance using relative delta features. The t-test confirmed
this by showing a significant difference between the two
methods, with a t-statistic of −3.881 and a p-value of
0.0008, indicating that relative delta features provides a
statistically significantly better performance than abso-
lute delta features.

4.2. SHAP

Figure 8 displays the patient-wise shap values of a
single feature, the mesh-volume, over time. At least

two subgroups can be seen. The first shows a negative
shap score when an extremely high image-wise tumor
growth rate is present. This can be interpreted that the
survival time shortens if the tumor growth is large. A
high growth rate is, in this case, a volume increase in
the follow-up of over 200% compared to the baseline
scan. Next, a ”medium” growth rate correlates to a pos-
itive shap score in the second group. The model indi-
cates that patients with up to 15% tumor growth may
have a longer survival time. This finding aligns with
RECIST guidelines, which define a similar subgroup
with stable progression, characterized by less than 20%
growth in tumor diameter. The third possible group is
characterized by a tumor growth of more than 40%, but
less than 200%. The shap values indicate that this does
not change the survival time from the mean. All these
subgroups can only be seen in the first years, as they
align near 4000 days. The most probable explanation
for this is the reduced number of patients used for train-
ing at the respective time points. While at 1000 days,
half of the patient population remains, only two pa-
tients are still alive after 4000 days. It is important to
note that volume is not the only feature that influences
the decision making of the model. Other features such
as skewness and the glszm large-area-high-gray-level-
emphasis seem to influence the decision-making of the
model as well, judging from Figure 9. In this context,
it was found that an increase in large-area-high-gray-
level-emphasis is related to a lower survival time, while
a decrease leads to improved survival time. Taking into
account the time difference and expressing it in simpler
terms, a lower survival time is present if the metasta-
sis in the follow-up scan is brighter than in the baseline
scan.

4.3. Evaluation of performance results on test set
Lastly, the results of the final model are evaluated on

the test, achieving a c-index of 0.70. The performance
of the final model in the nested cross-validation was
0.75 with a standard deviation of 0.14. Even though a
performance drop is present, it is within the expected
deviation. Using the same feature set and pipeline
as the final model, but changing a single variable in
the dataset, resulted in a worse performance for each
method tested (see Table 5). For example, changing the
segmentation to InteractiveNet resulted in a c-index of
0.65.

Using the final model trained on manually adjusted
segmentations and testing on InteractiveNet segmenta-
tions led to a c-index of 0.7619. This is the highest per-
formance overall. Figure 10 indicates that the differ-
ence in performance, compared to the test using man-
ually adjusted segmentations, originates from a vastly
changed prediction for patient 6. To determine the in-
fluence of this change, the c-index was recalculated us-
ing the prediction of InteractiveNet for patient 6, but
using the predictions with adjusted segmentations for
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Figure 8: SHAP values for mesh volume, with each line representing a patient and color-coded according to metastasis growth rate. The color
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Figure 9: For every feature, the patient-wise mean of absolute shap values is shown. The features are 1) glszm Large-Area-High-Gray-Level-
Emphasis, 2) Shape Mesh-Volume, 3) ngtdm Complexity, 4) Firstorder Skewness, 5) glcm Cluster-Prominence, 6) glszm High-Gray-Level-
Zone-Emphasis, 7) gldm Small-Dependence-Low-Gray-Level-Emphasis, 8) glrlm High-Gray-Level-Run-Emphasis, 9) glcm Joint-Energy and 10)
Firstorder Uniformity.
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Table 5: Performance results with varying pipeline configurations.

Configuration Variable
Changed

c-index
(test set)

Adjusted, Sum,
Relative, Image

None 0.7024

Adjusted, Sum,
Relative, Metastasis

Metastasis 0.6548

Adjusted, Sum,
Absolute, Image

Absolute 0.6426

InteractiveNet, Sum,
Relative, Image

InteractiveNet 0.6464

all other patients. This resulted in a c-index of 0.7619,
confirming that the entire difference in performance was
caused by this patient. Upon closer inspection of this
patient, the difference has been tracked down to three
slices of one metastasis in the lung. In those slices,
InteractiveNet undersegments the metastasis, while the
manual adjusted oversegments it by including a padding
of not more than 3 millimeters of lung in every direc-
tion. While the change in volume is less than 1%, the
texture features experience changes of up to 500%.
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Figure 10: Prediction values for each patient in the test set using either
InteractiveNet or manually adjusted segmentations.

5. Discussion

In the following section, the results will be critically
discussed. Initially, the final model, its clinical applica-
bility and its interpretability will be highlighted. Next,
a comparison of segmentations, merging points, aggre-
gation strategies, and both absolute and relative delta
features will be presented. Finally, the limitations will
be addressed.

5.1. The Final Model

The final model shows a decent performance in terms
of c-index and manages to identify various subgroups.
The performance of the model is not perfect with a c-
index of 1, but has a performance of 0.70. This might
be due to the model itself, the dataset size and the metric
used. In this dataset, several patients died within days of
each other. However, the c-index assigns the same im-
portance to differentiating these patients as compared to
patients who are one year apart in survival time. This is
important to consider, as the latter may be more relevant
from a clinical point of view. In future studies, it might
be useful to weight the patients according to their time
difference for the calculation of the c-index or to ex-
clude patients from the metric patients whose survival
time is less than a certain time difference. Considering
these points, other factors should be taken into account
to evaluate model performance, such as the ability of
the model to identify subgroups or the relation of the
prediction to clinical observations, such as the RECIST
guidelines. As both factors were found and a reasonable
c-index was achieved, the model successfully demon-
strated the feasibility of predicting therapy response in
metastatic STS patients using delta radiomics.

With regards to the model itself, the performance dif-
ference of the test set compared to the nested cross-
validation has to be discussed. Even though, nested
cross-validation was used to reduce the overfitting due
to model selection bias, a difference is notable. This
could be due to the exclusion of the feature selection
method inside the nested cross-validation. Another ex-
planation can be found by taking a look at the patient
characteristics in Table 1. As noted before, soft tis-
sue sarcomas are a very diverse group of cancers. In
this dataset, eleven different phenotypes were present.
Nonetheless, the distribution of phenotypes seems to
be rather similar in the training set used for the nested
cross-validation and the test set. A bigger difference can
be found in the locations of metastasis. In the training
distribution, 14% of scans feature metastases in multi-
ple sites, compared to 46% in the test distribution. As
metastases in similar locations are more likely to have
similar features, the gap between training and test per-
formance might be caused by this fact. Adding to that,
there is a vast difference in five year survival. While
only 21% of patients are alive after five years, more
than 36% are alive in the test set. Despite the chal-
lenges mentioned, the performance difference is not sta-
tistically significant.

5.1.1. SHAP
The existence of subgroups with regards to the vol-

ume was shown before. It is worth pointing out that
it is not clear how many subgroups are present. De-
spite this, the characteristics of the presented subgroups
have shown overlap with the RECIST guidelines. As
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The Final Model

Dataset

Segmentation Adjusted
Aggregation Summation

Abs or Rel Relative
Merged at Image

Feature Selection Var and RFECV

Pipeline

Outlier Detection Interquartile range
Scaler Quantile transformer

Survival Model Random survival forest

c-index

nested cross-validation 0.75 ± 0.14
test set 0.7024

Figure 11: The score sheet of the final model

RECIST is solely based on the diameter and fails to cor-
rectly predict therapy response, one might argue that the
presented final model should fail as well. However, the
volume is used instead of the diameter and more im-
portantly, the volume is used in combination with nine
other image features. In combination, this feature set
might provide better therapy response prediction, as in-
dicated by its good performance. One of the features is
the large-area-high-gray-level-emphasis through which
it was found that an increase in brightness of the metas-
tasis over time leads to a lower survival time. An in-
crease in brightness might be related to a higher cellu-
larity or necrosis. As the shap values are available for
each patient prediction, they could also be used in a clin-
ical setting to enhance the interpretability of the model.

5.2. Comparison of Segmentations

In the automatic machine learning, the two segmenta-
tions show no statistically significant difference in terms
of the performance measured by the c-index. On the
first look, this suggests that the segmentations are in-
terchangeable. However, different feature sets were se-
lected. Using the feature sets of adjusted segmenta-
tions, but training and testing with InteractiveNets seg-
mentations resulted in a worse performance. This in-
dicates that the selected features are linked to the seg-
mentations and therefore the segmentations are not in-
terchangeable. Adding up on that, the prediction of the
final model drastically changed when a few millimeters
of lung were oversegmented. This suggests that voxel
perfect segmentations might be needed in clinical prac-
tice in order to get reproducible and stable results. How-

ever, it is worth pointing out that the model seems to be
able to handle differences in segmentations to some ex-
tent, as only one outlier was found.

5.3. Comparison of Different Merging Strategies

While the three merging strategies have no significant
differences, the interpretation of the features changes
drastically between them. This is mainly due to the fact
that the different merging strategies incorporate differ-
ent information of the metastases. Taking the mesh-
volume and metastasis-wise merging as an example,
the mean would correspond to the average metasta-
sis growth, hence indirectly incorporating information
from all metastases. In comparison. the maximum value
refers to the largest change in a specific radiomic fea-
ture. Each feature value corresponds to a single metas-
tasis. Since multiple features are extracted, different
metastases might show the largest change for different
features. For instance, the maximum volume change
might come from one metastasis, while the maximum
uniformity change might come from another. This also
implies that all metastases must be segmented to accu-
rately reflect the changes. The summation, on the other
hand, includes information about all metastases directly.
It is worth pointing out that using the summation, a
metastasis growth of, e.g., 100 mm does not necessar-
ily correspond to the total growth as not all metastases
have been segmented in order to follow RECIST guide-
lines. This might lead to worse results because only the
information of a few metastases are incorporated. In
comparison to that, one could argue that the mean of
the segmentations is the mean of all metastases. How-
ever, this might only be true for texture features, but not
for shape features such as mesh volume, as the biggest
metastases are segmented. This might explain why sum-
mation was used for the final model and not the mean, as
expected. It is certain that more tests are needed to ac-
curately differentiate the merging strategies. For exam-
ple, one might consider repeating the experiments using
segmentations from all metastases.

5.4. Comparison of Different Merging Points

With the hypothesis that the metastasis-wise merging
was the superior choice, it is surprising to see image-
wise merging being used for the final model. Adding
up on that, it is worth mentioning that no significant dif-
ference between the two over all tested combinations
was found. Despite the fact that this result is not di-
rectly associated with a clinical interpretation, it is very
important for the creation of feature studies. This is be-
cause the image-wise merging does not require match-
ing tumor labels anymore, which simplifies the annota-
tion problem. Furthermore, it resolves the problem of
how a physically missing tumor or a new tumor in the
follow-up can be imputed. Here, a feature space of ze-
ros was chosen, which might not reflect a fully treated,
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hence missing, tumor at all. This effect might explain
why metastasis-wise merging does not perform better
than image-wise merging, even though metastasis-wise
merging is much more logical from a clinical point of
view as results could be backtracked to a specific metas-
tasis rather than the entire image. It is certain that more
tests are needed to accurately differentiate the merging
strategies.

5.5. Comparison of Absolute and Relative Delta Fea-
tures

While the absolute difference is the method of choice
for all the authors presented in section 2, it does not
outperform the relative delta features. On the con-
trary, the relative delta features perform statistically bet-
ter. This speaks for the interpretation that relative tu-
mor growth is more important than, e.g., absolute tu-
mor growth. This fact aligns with the findings of RE-
CIST, which state relative differences rather than abso-
lute ones. However, RECIST notes that a tumor has
to be a certain absolute size before it can be used for
interpretation. Following this logic, it might be use-
ful to merge absolute and relative features into one fea-
ture space instead of treating them separately. Addi-
tional improvements could be made by normalizing the
delta features with the time in between the scans. This
might be of importance as a tumor growth rate of 10%

month
over three months is significantly different compared to
a growth of four months.

5.6. Limitations

In the following, the limitations of the work are pre-
sented. For this, the used metrics, automatic machine
learning method and methodological choice are dis-
cussed.

5.6.1. Limitations of the Metrics
Even though the c-index is arguably the most com-

mon metric for survival prediction, it has several draw-
backs. First, only patients for whom the event occurred
are included. This reduces the number of patients used
for model evaluation substantially. Because the c-index
is used for selecting the best pipeline in the nested cross-
validation, the relevance of patients who did not die is
neglected. Second, the concordance index is a patient
based metric of ordering. This might not be the most
useful, because clinicians might be more interested in
subgroups. An example by Hartman et al. (2023) sug-
gests considering a group of ten-year-olds and a group
of ninety-year-olds. Without doubt, it can be said that
the survival time of the ten year old’s is much higher
and they thus have a lower risk of death. Given a large
enough dataset, one should be easily able to train a
model that perfectly predicts a higher survival time for
all ten-year-olds. As the model is able to make this pre-
diction perfectly, one might guess that the concordance

index is 1. However, for a perfect c-index, the ten-year-
old’s need to be perfectly sorted in between themselves.
The same has to be true for the ninety-year-old’s. This
is undeniably a much harder task and might result in a
lower c-index. In the extreme case of balanced groups
and age being the only feature, this would result in a c-
index of 0.75. Despite the fact that the model makes a
perfect prediction from a clinician’s point of view that
one patient population always lives longer than another,
this is not reflected in a c-index of 1. In the case of
an imbalanced dataset, i.e., 80% are 10-year-olds, the
c-index would only be 0.66 despite a perfect discrimi-
nation of the underlying subgroups. Coming back to the
task at hand, it is important to consider potential sub-
groups and not only look at the c-index. While other
metrics have been proposed to overcome the problem of
censoring in the c-index, such as the c-index based on
the inverse probability of censored weights, the much
more severe problem of the subgroups remains. Further-
more, the other metrics require that the extreme survival
times of the test set are in between the extreme survival
times of the training set. Especially in cross-validation
settings, random splitting would not be possible any-
more under these circumstances.

5.6.2. Limitations of Automatic machine learning
One limitation here is the use of feature selection

methods. Due to rather long selection times, they were
not included in the nested cross-validation at the cost of
a selection bias. Furthermore, the repetition of the re-
cursive feature elimination with cross-validation should
not have led to better results compared to a single run
for any dataset. The fact that it did speaks for the ran-
domness of the feature selection process. This is despite
the best efforts to reduce these effects by using seeds for
the generation of pseudo-random numbers.

5.6.3. Limitations of the Methodology
In this study, 58 patients were included, 15 of whom

were in the test set. Given the size, a change in the pre-
diction of a single patient has led to a performance dif-
ference of 6%. As it is difficult to analyze robustness
under these circumstances, a larger patient population
is needed. Additionally, patients from multiple centers
should be included to analyze effects such as feature ro-
bustness and scanner inter variability.

Another constraint is the segmentation of only the
five biggest tumors after the RECIST guidelines. In fu-
ture studies, it might be reasonable to test the perfor-
mance difference when all metastases are segmented.
However, this would increase the segmentation time
considerably. Finally, this study deliberately chose to
predict the therapy response directly from overall sur-
vival rather than converting it to a classification task.
While this method is certainly feasible, judging from the
results presented before, it has some drawbacks as well
as advantages. One point to consider here is the model
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output. On the one hand, the continuous prediction of
the survival model holds more information than the pre-
diction of the classification task. On the other hand, the
interpretation of a continuous label, especially one of
arbitrary scale, might be more difficult. In the future,
it might be useful to compare the presented results to a
classification based, e.g., on three-year overall survival.

6. Conclusions

Summing it all up, multiple conclusions can be
drawn. 1) The presented method shows the feasibility
of predicting therapy response exclusively on metastatic
STS with a c-index of 0.70. 2) Relative delta features
show statistically significant better performance com-
pared to absolute delta features. 3) Image-wise merging
is a suitable substitute for metastasis-wise merging and
simplifies the annotation process as no matching labels
are required.
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Acronyms

AUC area under the curve.

c-index harrell’s concordance index.

CT Computed Tomography.

ESMO European Society for Medical Oncology.

glcm gray-level co-occurrence matrix.

gldm gray-level dependence matrix.

glrlm gray-level run-length matrix.

glszm gray-level size-zone matrix.

MRI Magnetic Resonance Imaging.

ngtdm neighboring-gray-tone difference matrix.

STS soft tissue sarcoma.
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Abstract

Breast and ovarian cancers are among the most common cancer diseases affecting women worldwide, which creates
a significant global health challenge. Early diagnosis and the application of precision medicine are pivotal in ad-
dressing these challenges, as they enable personalized treatment plans and effective therapeutic strategies. Identifying
predictive biomarkers, such as Homologous Recombination Deficiency (HRD), is crucial since HRD-positive tumors
are highly responsive to certain therapies. While several studies have demonstrated promising results for HRD pre-
diction in breast cancer using deep learning, its application to ovarian cancer remains underexplored. In this study,
we used a deep learning-based pipeline for detecting HRD from whole-slide digital histopathology images (WSIs)
of ovarian cancer. We also applied the pipeline to breast cancer WSIs considering a standard validation, as several
studies demonstrated considerable performance. We employed various techniques, including fully supervised, weakly
supervised, and self-supervised with transfer learning, across public and private datasets. Our comparative analysis of
these methods revealed a mean Area Under the Curve (AUC) of 0.66 for the TCGA-OV dataset and an AUC of 0.55
for the DIJON-OV dataset. Conversely, the mean AUC of 0.77 for the TCGA-BRCA dataset highlights the robustness
of the pipeline for HRD prediction in breast cancer. This research underscores the capability of deep learning-based
approaches in predicting HRD in breast cancer WSIs, while also indicating the need for further studies to improve
their efficacy in ovarian cancer.

Keywords: Homologous Recombination Deficiency, Digital Pathology, Deep Learning, Ovarian Cancer.

1. Introduction

Cancer is a life-threatening disease and its severity is
increasing day by day (Ohlén and Holm, 2006). Every
year, millions of individuals suffer from various forms
of cancer (Sung et al., 2021), and a significant por-
tion succumb due to several reasons including late di-
agnosis, inadequate treatment facilities, and the aggres-
sive nature of their disease. Just in 2020, there were
an estimated 19.3 million new cancer cases and nearly
10 million cancer-related deaths (Sung et al., 2021).
Both men and women were significantly affected by
this devastating disease. Among women, ovarian can-
cer is one of the prevalent types, with around 313,000

new cases reported annually (Huang et al., 2022; Sung
et al., 2021). These statistics highlight the critical
global health challenge presented by cancer, emphasiz-
ing the urgent need for better diagnostic methods, more
effective treatments, and increased awareness to fight
this pervasive disease. However, early diagnosis and
precision medicine can play a significant role in mit-
igating these challenges (Fitzgerald et al., 2022; Yang
et al., 2023). Women suffering from ovarian cancer
can greatly benefit from personalized treatment plans
and effective therapeutic strategies. (Chan et al., 2017;
Fernandez-Garza et al., 2021). Therefore, identifying
predictive biomarkers, such as Homologous Recombi-
nation Deficiency (HRD), is essential to guide the de-
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velopment of effective and personalized treatment plans
for ovarian cancer patients (Lenz et al., 2023; Ngoi and
Tan, 2021; Shi et al., 2021).

Homologous Recombination (HR) is a cellular pro-
cess in which two similar or identical DNA molecules
exchange genetic information through the pairing and
exchange of nucleotide sequences (Liu and Kon-
stantinopoulos, 2017; Qi et al., 2015). HR is a cru-
cial biological process as it repairs the double-strand
breaks caused by various factors including radiation,
chemical, and normal cellular processes (Gelot et al.,
2016; Li and Heyer, 2008). The deficiency of the HR
process, also known as HRD, results in improper or
error-prone repairs of Double-Strand Breaks. This de-
ficiency is a consequence of BRCA1/2 genetic muta-
tions, associated with ovarian cancer (Lazard et al.,
2022; Miller et al., 2020). HRD induced by BRCA1 and
BRCA2 is highly sensitive and responsive to specific
therapies, such as platinum-based chemotherapy (Tutt
Andrew N.J. et al., 2021) and polyADP-ribose poly-
merase (PARP) inhibitors (Tutt et al., 2018). Hence,
the HR status (deficiency or proficiency) can serve as a
predictive biomarker that significantly aids in treatment
planning and therapeutic decision-making for ovarian
cancer (Miller et al., 2020) and breast cancer (Chopra
et al., 2020). Several methods including genomic in-
stability profiling, mutational signatures, or integrating
structural and mutational signatures have been used to
detect HR status (Abkevich et al., 2012; Birkbak et al.,
2012; Davies et al., 2017; Popova et al., 2012). How-
ever, these approaches require advanced laboratory in-
frastructures and high financial resources. Only a few
laboratories have the capability to perform these exper-
iments across the world. To overcome these challenges,
we hypothesize that HR status can be predicted from
the Hematoxylin and Eosin (H&E) stained tissue slides,
commonly used in clinical pathology to assess tissue
morphology and detect various abnormalities (Lahiani
et al., 2018), with the help of deep learning.

Deep Learning has revolutionized biomedical image
analysis in particular digital pathology (Deng et al.,
2020). Most techniques in this field have been fo-
cused on computer-aided diagnosis, where the goal is
to partially automate the human interpretation of slides
to assist pathologists in their diagnostic tasks, such
as identifying metastatic axillary lymph nodes (Cam-
panella et al., 2019; Ehteshami Bejnordi et al., 2017)
or detecting mitoses (Veta et al., 2015). Deep Learn-
ing has shown effectiveness not just in automating man-
ual inspection but also in predicting patient factors like
patient outcome and biological features, for example,
gene mutations (Coudray et al., 2018), expression levels
(Schmauch et al., 2020), and genetic signatures (Diao
et al., 2021). However, Deep Learning also has some
drawbacks due to its black-box nature. The lack of bio-
logical interpretation and validation resists the trustwor-
thiness of making clinical decisions.

In this study, we aimed to predict the HR status from
WSIs of ovarian cancer using deep learning techniques.
We utilized previously developed models by other in-
tern students and incorporated a new pipeline from Fil-
iot et al. (2023) that has proven effective for classifica-
tion tasks in pathology. The main focus of our study
was on HRD detection in ovarian cancer. However, we
also included breast cancer data for validation purposes
to confirm the effectiveness of the pipeline, since HRD
detection in breast cancer is well-established, whereas it
is still less certain in ovarian cancer. The study presents
the following activities:

1. Fully supervised method:
• We used a pre-developed pipeline by other

intern students that employs Convolutional
Neural Networks (CNNs) models, specifi-
cally CNN, ResNet34, and ResNet50, to pre-
dict HR status from breast and ovarian can-
cer WSIs. The evaluation of this method
was conducted on both public and private
datasets, ensuring a comprehensive assess-
ment of its performance.

2. Combination of self-supervised and weakly super-
vised method:
• We integrated a new pipeline developed

by Filiot et al. (2023) that combines self-
supervised and weakly supervised methods
using transfer learning techniques.
• A Vision Transformer (ViT) based pre-

trained model trained with self-supervised
learning methods, such as Image BERT Pre-
Training with Online Tokenizer (iBOT) and
Masked Image Modeling (MIM) , on large
datasets was utilized to extract features from
breast and ovarian cancer WSIs.
• These extracted features were then used in

weakly supervised methods, such as Multiple
Instance Learning (MIL) models, to predict
HR status.

3. Comparative study:
• A comparative study highlighted the effec-

tiveness of fully supervised, weakly super-
vised, and self-supervised method with trans-
fer learning techniques in predicting HR sta-
tus. This analysis provided valuable insights
into the strengths and limitations of each
method, contributing to a better understand-
ing of their applicability in HRD prediction
in ovarian cancer.

By integrating these methodologies, our study
demonstrates an approach for predicting HR status from
ovarian cancer WSIs, highlighting the potential of deep
learning techniques in computational pathology. Vali-
dation with breast cancer data confirmed the reliability
of the pipelines used.
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2. State of the art

Recent advancements in deep learning and computa-
tional pathology have demonstrated significant potential
for improving cancer subtype classification and tumor
histopathology evaluation. WSIs, digitized at high res-
olutions with dimensions ranging from 10,000 to over
150,000 pixels, are too large for current graphics pro-
cessing units (GPUs) to handle or process at their origi-
nal size. As a result, WSIs are often divided into smaller
tiles for analysis. Traditional fully supervised learn-
ing approaches in computational pathology often re-
quire extensive labeled data, which is impractical, time-
consuming, and expensive (Marini et al., 2021). Pathol-
ogists must meticulously annotate each patch to distin-
guish between different tissues or classify various can-
cer subtypes. While this level of detail is crucial for
training accurate models, it poses significant challenges
in terms of time and cost. To address these issues, re-
cent studies have proposed several weakly supervised
learning and self-supervised learning methods. These
approaches reduce the need for extensive annotations
and are emerging as viable solutions to the limitations
of fully supervised methods.

2.1. Fully supervised method

The fully supervised approach in deep learning re-
quires pathologists to provide manual tile-level anno-
tations on a WSI, which is essential for training the
models. Despite this meticulous, costly, and time-
consuming task, fully supervised models remain one of
the most effective and commonly employed strategies
in state-of-the-art computational pathology for cancer
subtype classification due to their high performance lev-
els. Although this method has been effectively used for
tasks such as detecting mitotic figures in breast cancer
(Veta et al., 2015), identifying lymph node metastases
(Campanella et al., 2019), and classifying various types
of lung cancer (Yang et al., 2021), its application to
predicting HR status in breast and ovarian cancers has
been limited, highlighting a potential area for further re-
search.

Cireşan et al. (2013) pioneered deep learning in com-
putational pathology by applying deep neural networks
to detect mitosis in breast cancer histology images,
achieving an F1-score of 0.78 on the MITOS-ATYPIA
2014 dataset through data augmentation, patch extrac-
tion, and a sliding window approach. Later, Litjens et al.
(2016) used a fully-supervised CNN to detect lymph
node metastases in the CAMELYON16 dataset, achiev-
ing an Area Under the Curve (AUC) of 0.96 with pre-
processing techniques such as color normalization and
patch extraction. Janowczyk and Madabhushi (2016)
used a fully supervised method with the AlexNet model
(Krizhevsky et al., 2012) for mitosis detection, invasive
ductal carcinoma detection, and lymphoma classifica-
tion task and obtained F1-score of 0.53 across 550 mi-

totic events, F1-score of 0.76 on 50k testing patches,
and an accuracy of 0.97 across 374 images respectively.
Liu et al. (2017) utilized a CNN model for detecting
breast cancer metastases in gigapixel pathology images.
They achieved a tumor detection rate of 92.4% with 8
false positives per image and image-level AUC scores
above 97% on the Camelyon16 dataset and an indepen-
dent set of 110 slides. These studies collectively high-
light the significant advancements in histopathology
image analysis through fully supervised deep-learning
methods.

2.2. Weakly supervised method

While fully supervised approaches have demon-
strated significant performance in computational pathol-
ogy, they have notable limitations. This has led to the
exploration of more robust techniques, such as weakly
supervised methods. The weakly supervised method is
a machine learning technique where the training data is
only partially labeled. Instead of local labels for every
instance (e.g., pixel-level or tile-level annotations), the
annotations are provided at a global level (e.g., image-
level or slide-level labels). This method leverages these
less detailed labels to train models, making it a practical
and cost-effective solution in scenarios where obtaining
detailed annotations is challenging or expensive.

In computational pathology, weakly supervised
methods more accurately reflect real-world scenarios,
where a pathologist provides a single diagnosis per slide
rather than detailed annotations for each tile. The slide-
based or global levels are inherently noisy, as only a
small region within a slide may be representative of the
label. To address this issue, Multiple Instance Learning
(MIL) has emerged as the state-of-the-art among weakly
supervised algorithms.

2.2.1. Multiple instance learning
MIL effectively manages the noisy nature of slide-

level annotations, enhancing the robustness and accu-
racy of the models. Within MIL frameworks, two dif-
ferent strategies for aggregating instance-level features
into a bag-level representation are studied. These strate-
gies aim to capture the key characteristics of cancer tis-
sue samples and differentiate between various cancer
types and normal cells.

• Instance-level aggregation: This approach in-
volves building an instance-level classifier that
assigns scores to each instance or tile within a
slide. These scores are then aggregated using MIL
pooling methods, such as max-pooling or mean-
pooling. The pooling operation summarizes the
information from each instance, capturing essen-
tial features associated with different cancer types.
By aggregating these scores, the model effectively
captures the distinct characteristics of the cancer
tissue.
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• Embedding-level aggregation: In this approach,
each instance or tile is first mapped to a low-
dimensional embedding. MIL pooling is then ap-
plied to these embeddings to obtain a single bag-
level representation that is independent of the num-
ber of instances or tiles in each bag. This method
allows the model to focus on the most relevant fea-
tures within the embeddings, enhancing its abil-
ity to differentiate between cancerous and normal
cells regardless of the variability in the number of
patches.

2.2.2. Applications of MIL in computational pathology
MIL has demonstrated significant potential in vari-

ous applications within computational pathology, en-
hancing the accuracy and robustness of models for tasks
such as cancer subtype classification and tumor grad-
ing (Anaya et al., 2024). Notably, the inclusion of
the attention mechanism made the MIL method more
strong and effective for histopathology classification us-
ing the slide-based labels. Ilse et al. (2018) introduced
the noble attention-based MIL for breast and colon
cancer classification tasks using WSIs and obtained
0.74 and 0.90 mean AUC respectively. Later, Cour-
tiol et al. (2020) introduces Chowder MIL, a weakly
supervised learning-based model, for disease localiza-
tion in histopathology using only global labels of WSIs.
This method contrasts with attention-based MIL by uti-
lizing a combination of top-instance learning and neg-
ative evidence to effectively identify both the pres-
ence and absence of disease characteristics. Chow-
der MIL demonstrated its effectiveness with an im-
pressive AUC of 0.87 on the Camelyon-16 challenge,
efficiently identifying cancerous regions without de-
tailed local annotations. Lu et al. (2021) proposed
a data-efficient model known as Constrained-Attention
Multiple-Instance Learning (CLAM) for computational
pathology. This model introduced clustering features
among relevant instances and is effective for both the
binary and multi-class classification tasks. The CLAM
model demonstrated superior performance over stan-
dard weakly supervised classification algorithms in sev-
eral diagnostic tasks. It achieved a mean test AUC of
0.991 in subtyping renal cell carcinoma, 0.956 in sub-
typing non-small-cell lung cancer, and 0.953 in detect-
ing lymph node metastasis. These results highlight the
effectiveness of CLAM in accurately classifying com-
plex digital pathology data across different cancer types.
Shao et al. (2021) proposed the first transformer-based
MIL model, known as Trans-MIL, which introduced the
self-attention mechanism to include correlation among
instances. This approach significantly outperformed tra-
ditional MIL-based models, achieving AUCs of up to
93.09% on the CAMELYON16 dataset and between
96.03% and 98.82% on the TCGA-NSCLC and TCGA-
RCC datasets respectively.

2.2.3. MIL for HRD detection
MIL methods can also be used for HRD detection

from breast and ovarian cancer WSIs. Valieris et al.
(2020) implemented a deep learning framework us-
ing CNN for feature extraction and MIL with a recur-
rent neural network for feature aggregation and classi-
fication from histopathological slides. This approach,
aimed at detecting HRD in breast cancer, achieved an
AUC of 0.80 on the TCGA dataset and an AUC of 0.70
on the independent dataset for validation. Nero et al.
(2022) used CLAM for identifying HRD from ovarian
cancer and obtained an AUC of 0.7 on the training set
(464 slides) and 0.55 on the testing set (464 images).
Bergstrom et al. (2023) developed the DeepHRD model,
which uses a weakly supervised CNN and MIL to pre-
dict HRD from digital H&E slides. The model achieved
an AUC of 0.81 on the TCGA breast cancer dataset
and 0.76 on independent validation cohorts. For ovar-
ian cancer, using transfer learning from the breast can-
cer data, the model showed significant predictive power
by differentiating median survival times: HR-deficient
(HRD) patients had a median survival of 4.6 years,
while HR-proficient (HRP) patients had 3.2 years.

2.3. Self-supervised method with transfer learning

In recent years, self-supervised learning algorithms
have gained prominence in computer vision, offering
a powerful alternative to traditional supervised learn-
ing, which relies heavily on large annotated datasets.
This reliance is particularly challenging in computa-
tional pathology due to the complexity of medical im-
ages and the high cost of expert annotations. Self-
supervised learning generates labels from the data itself,
enabling models to learn useful representations without
extensive manual annotation. This reduces dependency
on large labeled datasets and enhances model general-
ization from unstructured histopathological data.

In computational pathology, fully supervised meth-
ods require extensive annotated data and expert knowl-
edge, which results in specialized datasets that are lim-
ited in size and often fail to generalize effectively.
Weakly supervised methods reduce the annotation bur-
den by using slide-level labels but typically underper-
form compared to fully supervised methods and strug-
gle with accurately localizing disease regions within im-
ages, limiting their clinical applicability.

2.3.1. Advances in self-supervised learning
Self-supervised learning addresses the mentioned is-

sues by pre-training models using the dataset’s own im-
ages and constructing tokenized dictionaries for unsu-
pervised learning. For example, in natural language
processing, tokenization involves breaking down text
into smaller units called tokens, which facilitates effi-
cient lookup and analysis. However, in the domain of
computer vision, constructing these dictionaries poses
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Table 1: Summary of studies on HRD detection using histopathology images in breast and ovarian cancer.

Paper Training
Strategy

Dataset Subtypes Results Techniques

Valieris et al. (2020) Weakly-
supervised

TCGA, Inde-
pendent dataset

Breast TCGA: AUC
0.80, Indepen-
dent: AUC 0.70

CNN for feature extrac-
tion, RNN for aggrega-
tion

Nero et al. (2022) Weakly-
supervised

Private dataset Ovarian Test: AUC 0.55 CLAM

Bergstrom et al. (2023) Weakly-
supervised

TCGA, In-
dependent
validation co-
horts

Breast, Ovarian TCGA: AUC
0.81 (Breast),
0.76 (Ovarian)

Patch extraction, Trans-
fer learning

Lazard et al. (2022) Self-supervised
and weakly-
supervised

TCGA, Curie
dataset

Breast TCGA: AUC
0.71, Curie:
AUC 0.86

MoCo for feature
extraction, Attention-
based MIL, Bias
control, Domain-
specific augmentations

Bourgade et al. (2023) Self-supervised
and weakly-
supervised

OvarIA cohort,
TCGA

Ovarian
(HGOC)

OvarIA: AUC
0.739 (5-fold),
0.681 (testing),
TCGA: AUC
0.631

CNN for tumor seg-
mentation, BRCA clas-
sifier, MoCo for feature
representation

Ahn et al. (2024) Self-supervised
and weakly-
supervised

SEV cohort,
TCGA-OV,
SMC cohort

Ovarian SEV: AUC
0.627, TCGA:
AUC 0.602,
SMC: AUC
0.593

Contrastive self-
supervised learning,
CNN, MIL

Filiot et al. (2023) Self-supervised
and weakly-
supervised

TCGA-OV,
TCGA-BRCA

Ovarian, Breast TCGA-OV:
AUC 0.74,
TCGA-BRCA:
AUC 0.78

ViT-B transformer,
iBOT and MIM self-
supervised methods,
Transfer learning with
MIL

a significant challenge due to the high-dimensional na-
ture of visual data. He et al. (2020) addressed this
challenge by introducing Momentum Contrast (MoCo),
a technique that constructs dynamic, large, and con-
sistent dictionaries using contrastive loss. Their work
demonstrated that MoCo effectively narrows the gap be-
tween unsupervised and supervised representations in
computer vision tasks such as object detection and seg-
mentation, using widely recognized datasets like PAS-
CAL, VOC, and COCO. Building on these advance-
ments, Chen et al. (2020) proposed a straightforward
algorithm for contrastive learning for visual representa-
tion known as SimCLR. Their research highlighted the
significance of data augmentation composition, the in-
corporation of a learnable nonlinear transformation be-
tween the representation and the contrastive loss, and
the use of larger batch sizes (4k - 8k) combined with
more training steps. These findings significantly en-
hanced model effectiveness, setting a new state-of-the-
art on the ImageNet dataset. Later, researchers at Face-
book AI Research introduced MoCov2 (Chen et al.,
2020), which incorporated more aggressive data aug-
mentation and a multi-layer perceptron projection head.

This version demonstrated improved performance com-
pared to the original MoCo and SimCLR, particularly
on the ImageNet dataset. Importantly, MoCo v2 can
process a large set of negative samples without requir-
ing large training batches or powerful GPUs, making it
feasible to run on a typical 8-GPU machine.

2.3.2. Applications of self-supervised method in com-
putational pathology

The impact of these self-supervised methods ex-
tends into computational pathology. Dehaene et al.
(2020) leveraged MoCo v2 within a self-supervised
learning framework to effectively close the gap be-
tween weakly-supervised and fully-supervised learn-
ing using histopathology images from the Camelyon16
dataset. This demonstrated the potential of self-
supervised methods in enhancing diagnostic accuracy
without the need for extensive annotated datasets. Li
et al. (2021) introduced the Dual-stream Multiple In-
stance Learning Network (DS-MIL), which employs
self-supervised contrastive learning which is derived
from approaches similar to SimCLR for feature ex-
traction. This model uses a novel dual-stream archi-
tecture that combines max-pooling and attention-based
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aggregation to improve classification accuracy and lo-
calization performance. DS-MIL demonstrated supe-
rior performance on WSI classification tasks compared
to previous MIL models, achieving high classification
accuracy on datasets such as Camelyon16 and TCGA
lung cancer. Chen et al. (2022) introduced a novel Vi-
sion Transformer (ViT) architecture called the Hierar-
chical Image Pyramid Transformer (HIPT) using the
self-distillation with no labels (DINO) self-supervised
method. HIPT leverages the hierarchical structure of
WSIs with two levels of self-supervised learning to
learn high-resolution image representations. Pre-trained
on 10,678 gigapixel WSIs across 33 cancer types, HIPT
outperforms state-of-the-art methods for cancer subtyp-
ing and survival prediction. Benchmarking on 9 slide-
level tasks showed superior performance. Subsequently,
they trained a MIL model using weak labels for a bi-
nary classification task on 1,008 WSIs of lung ade-
nocarcinoma (LUAD) and lung squamous cell carci-
noma (LUSC), achieving an impressive AUC of 0.952
± 0.021.

2.3.3. Self-supervised method with transfer learning for
HRD detection

However, in recent years, the application of self-
supervised learning combined with weakly supervised
techniques through transfer learning for HRD detection
from breast and ovarian cancer WSIs has shown promis-
ing results as well. Lazard et al. (2022) used the self-
supervised method MoCo to extract features from slides
and incorporated the MIL model with attention-based
aggregation for classification. Their approach achieved
a mean AUC of 0.71 on the TCGA dataset and a mean
AUC of 0.86 on the in-house Curie dataset for valida-
tion, for identifying HRD in breast cancer. They also ad-
dressed potential biases by incorporating strategic sam-
pling and domain-specific augmentations to improve the
robustness and generalization of the model. Further-
more, they identified several HRD-related morpholog-
ical patterns, such as laminated fibrosis and clear tu-
mor cells, highlighting the phenotypic impact of HRD.
Bourgade et al. (2023) developed a deep learning frame-
work for detecting BRCA mutations, which represent
a significant proportion of HRD, in high-grade ovarian
cancer (HGOC) using a CNN for tumor segmentation
and feature extraction. They then used a BRCA clas-
sifier trained with attention-based MIL. The model also
incorporated the self-supervised learning method MoCo
for feature representation. Using the OvarIA cohort
consisting of 867 HGOC patients, the BRCA classifier
achieved an AUC of 0.739 in 5-fold cross-validation and
an AUC of 0.681 on the internal testing set. When val-
idated on 103 FFPE and H&E-stained slides from the
TCGA dataset, the model achieved an AUC of 0.631.
Ahn et al. (2024) developed PathoRiCH, which employs
MIL models combined with CNN to predict HRD sta-
tus from digital H&E slides. The study used contrastive

self-supervised learning to enhance the model’s perfor-
mance. The datasets used included an in-house cohort
from Yonsei Severance Hospital (SEV cohort) with 394
patients and 754 WSIs, the TCGA-OV dataset with 284
patients and 516 WSIs, and an external validation co-
hort from Samsung Medical Center (SMC cohort) with
136 patients and 136 WSIs. The PathoRiCH model
achieved an AUC-ROC value of approximately 0.627
for the SEV cohort, 0.602 for the TCGA cohort, and
0.593 for the SMC cohort. Filiot et al. (2023) devel-
oped a ViT-B transformer model trained using iBOT and
MIM self-supervised methods on 40 million pan-cancer
WSIs. The resulting model, iBOT[ViT]PanCancer, was
used to extract features, which were then employed in
downstream HRD classification tasks using several MIL
models via transfer learning. This approach achieved
a mean AUC of 0.74 for TCGA-OV and 0.78 for
TCGA-BRCA, demonstrating its effectiveness in HRD
detection across different cancer types. Table 1 illus-
trates a summary of studies on HRD detection using
histopathology images in breast and ovarian cancer.

3. Material and methods

In this section, we have discussed the materials and
methods used for HR status prediction from breast and
ovarian cancer WSIs.

3.1. Dataset

In this study, we utilized both public and private
datasets to ensure a comprehensive analysis of HR sta-
tus prediction in breast and ovarian cancers. The pub-
lic datasets were sourced from The Cancer Genome At-
las (TCGA), which provides extensive and high-quality
digital pathology images widely used for research in
computational pathology. We used the TCGA Ovar-
ian Cancer (TCGA-OV) dataset, consisting of 1,394
WSIs from 558 patients, of which 312 patients had
HR-deficient (HRD) status and 246 patients had HR-
proficient (HRP) status. Additionally, the TCGA Breast
Cancer (TCGA-BRCA) dataset was utilized, which in-
cludes 2,912 WSIs from 1,025 patients, with 204 pa-
tients having HRD status and 821 patients having HRP
status. These datasets are instrumental for understand-
ing the clinical and histopathological characteristics
necessary for HR status identification in both breast and
ovarian cancer.

To observe the impact of using different datasets,
particularly for ovarian cancer, we incorporated a pri-
vate dataset: the DIJON Ovarian Cancer (DIJON-OV)
dataset. The DIJON-OV dataset was collected from the
Georges-François Leclerc Regional Center for the Fight
Against Cancer (CGFL) in Dijon, France. This dataset
comprises 175 WSIs from 104 patients, among whom
42 patients had HRD status and 62 patients had HRP
status. By integrating these public and private datasets,
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our study benefits from a rich and varied data pool,
which enables a thorough investigation of HR status es-
pecially in ovarian cancer. While we also conduct ex-
periments on breast cancer data, our primary focus re-
mains on ovarian cancer, as several studies have already
been conducted for breast cancer.

3.2. Pre-processing

WSIs are typically large, high-resolution, and multi-
level digital images, often the size reaches in gigapixels.
Therefore, handling or utilizing these high-resolution
WSIs for computational analysis and model training is
significantly challenging. Consequently, pre-processing
these WSIs is essential before they can be used for deep
learning model training. In this study, we utilized pre-
processed WSIs generated by an existing pipeline devel-
oped by previous intern students for our experiments.
The steps involved in this pre-existing workflow are
as follows: Firstly, the maximum level, which has the
highest resolution, of each WSI is extracted to retain
the most useful and detailed cellular and tissue informa-
tion. Following this, the maximum level of each WSI is
divided into smaller tiles with a size of 256 × 256 pix-
els. This tiling approach makes the data more manage-
able and suitable for computational analysis. Next, in-
tensity thresholding is applied to exclude tiles that pre-
dominantly contain the white background, as these tiles
do not provide any useful cellular or tissue information.
Specifically, the proportion of white pixels is computed
in each tile. If a tile has more than 80% white pixels, it
is removed from the dataset. This step effectively filters
out background and unnecessary portions of the WSIs,
ensuring that the dataset is refined and focused on areas
with relevant tissue content. These pre-processing tech-
niques significantly enhance the quality of the dataset,
making it more suitable for sophisticated model train-
ing and analysis.

3.3. Fully supervised method

In this study, we explored fully supervised technique
to identify HR status in ovarian cancer WSIs. We em-
ployed several neural network architectures, including
a CNN model composed of four convolutional layers,
each followed by pooling layers to reduce dimension-
ality and retain essential features, as well as ResNet34
and ResNet50 (He et al., 2016). Training these neu-
ral network architectures using WSIs is challenging as
it requires significant memory and computational re-
sources. Therefore, we used smaller tiles extracted from
the WSIs, as detailed in Section 3.2 on pre-processing.

However, generating tiles from WSIs introduces a
new challenge. The fully supervised method requires
labels for each tile, but we only have slide-levels or
global labels. Consequently, manually annotating each
tile is quite impossible since pathologists cannot de-
termine which tiles are HR-deficient and which are

HR-proficient without additional genetic tests. To ad-
dress this issue, we generated pseudo-labels for each tile
based on a hypothesis. This hypothesis asserts that all
tiles derived from a globally HR-deficient slide should
be labeled as HRD, even though some tiles may not
truly be HR-deficient. Conversely, for slides that are
globally labeled as HR-proficient, all generated tiles
will be accurately labeled as HRP.

Mathematically, the hypothesis can be expressed as
follows:

Label(Ti) =


HRD if Label(S ) = HRD
HRP if Label(S ) = HRP

Where Ti represents each tile and S represents the
entire slide.

Subsequent to creating pseudo labels, we used anno-
tated tiles obtained from HRD and HRP globally labeled
slides to train the neural network models. This approach
allowed us to leverage the large dataset effectively while
adhering to the fully supervised learning framework.

3.3.1. Training and experiment
In this study, we conducted multiple experiments

using various datasets to train different neural net-
work architectures, specifically CNN, ResNet34, and
ResNet50. Given our primary focus on identifying HR
status in ovarian cancer, we specifically began our ex-
periments with the DIJON-OV dataset.

For the DIJON-OV experiment, we split the dataset
into 80% for training and 20% for validation. To con-
firm the integrity of the dataset, we ensured that all tiles
generated from a WSI remained together and were not
replicated across different WSIs. This approach pre-
vents data leakage and ensures robust model evaluation.
Next, we utilized the training dataset for hyperparam-
eter tuning to determine the optimal learning rate for
each of the three neural network models. Finding the
best learning rate is crucial because it directly affects the
convergence speed and stability of the training process,
ultimately minimizing the loss during training. By iden-
tifying the optimal learning rate, we ensured that the
models could learn efficiently and effectively, reducing
the likelihood of overshooting minima or getting stuck
in suboptimal points. In addition, we employed the
Adam optimizer in conjunction with the binary cross-
entropy loss function, and we set the batch size to 34.
We then proceeded to train the CNN, ResNet34, and
ResNet50 models using the training dataset and the de-
fined hyperparameters. To validate the performance of
these models, we used the split validation dataset. This
validation step is essential to assess the generalizability
and effectiveness of the trained models in identifying
HR status in ovarian cancer. This experiment was con-
ducted using the computing server of the Laboratory for
Research on Learning and Development at the Univer-
sity of Burgundy. The server was configured with an
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Figure 1: Block diagram of (a) preprocessing, (b) fully supervised method, (c) weakly supervised method, and (d) self-supervised method combined
with transfer learning.

NVIDIA RTX A6000 GPU with 48 GB of memory, uti-
lizing CUDA version 12.0 and cuDNN version 8.0 for
optimized deep learning framework performance. The
system featured an AMD EPYC 7343 processor operat-
ing at 3.2 GHz (2P, 16C/P) and was equipped with 256
GB of system RAM.

Next, we extended our experiments to the TCGA-
OV dataset, following the same 80:20 ratio for the data
split for training and validation as in our previous ex-
periment. Given the substantial size of the TCGA-
OV dataset, which includes a large number of slides
and corresponding tiles, we employed Horovod, a dis-
tributed training framework developed by Uber, to expe-
dite the training process (Sergeev and Del Balso, 2018).
Horovod enables data parallelism, where each GPU gets
a subset of the data and computes gradients on its sub-
set (Sergeev and Del Balso, 2018). These gradients are
then averaged and used to update the model parameters
(Sergeev and Del Balso, 2018). This technique signif-
icantly reduced the training time, almost by a factor of
four compared to training without Horovod. For this
phase, we increased the batch size to 64, while keep-
ing other hyperparameters consistent with those used in
the DIJON-OV experiments. We performed these ex-
periments on the CCUB server, the computing center
of the University of Burgundy, configured with the fol-
lowing specifications: 32 cores, 256 GB memory, an
AMD EPYC 7343 @ 3.2 GHz (2P, 16C/P) combined
with 2 Tesla A100 GPUs with 40 GB of RAM. This
high-performance setup provided the necessary compu-
tational resources to handle the extensive data and com-
plex calculations involved in our deep-learning tasks.

As our primary focus was to analyze the performance
of HR status prediction in ovarian cancer, we did not
conduct a fully supervised experiment with the TCGA-
BRCA dataset. Instead, we concentrated on leveraging

more advanced techniques for analyzing HRD predic-
tion results in TCGA-BRCA during the later part of our
study, which allowed us to utilize our resources more
effectively. However, this comprehensive training strat-
egy enabled us to effectively utilize large-scale datasets
and optimize the performance of our CNN models for
HR status identification in ovarian cancer WSIs. The
integration of advanced training techniques and hyper-
parameter tuning ensured that our models were both ac-
curate and efficient, paving the way for reliable HR sta-
tus classification.

3.4. Weakly supervised method

In recent years, weakly supervised methods, such as
MIL, have gained significant traction in histopathology
classification tasks due to their ability to achieve state-
of-the-art results. As a result, we also explored this
technique for predicting HR status from ovarian cancer
WSIs. For our experiments, we utilized the DIJON-OV
dataset, which contains a comprehensive collection of
ovarian cancer samples.

3.4.1. Training and experiment
In our experiment utilizing the weakly supervised

method with the DIJON-OV dataset, the process began
with a preprocessing phase where tiles, also known as
instances, were generated from all the WSIs of DIJON-
OV. These instances were created using the standardized
pre-existing preprocessing pipeline discussed in section
3.2 to ensure consistency and quality across all samples.
Each slide was represented as a bag containing its cor-
responding instances, adhering to the feature extractor.
Next, we employed a denoising autoencoder to extract
features from the instances within each bag. This au-
toencoder consisted of four residual blocks in the en-
coder and four transposed convolutional layers in the
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decoder. Each residual block in the encoder included
two convolutional layers with kernel sizes of 3x3, batch
normalization, and ReLU activation, with the second
convolutional layer having a stride of 2 for downsam-
pling. The decoder mirrored this structure with trans-
posed convolutional layers to upsample the encoded
representation. Additionally, a Gaussian noise layer was
added before the encoding process to enable the model
to learn robust features by denoising the input images.
A denoising autoencoder is a type of neural network de-
signed to learn important features of input data while
also being robust to noise, which helps in reducing the
dimensionality of the feature space while retaining es-
sential information. The extracted features were then
projected into a lower-dimensional space, making them
more manageable for subsequent processing. The ex-
tracted lower-dimensional features were then used for
training the MIL model. Within the MIL model, these
features were processed through an attention mecha-
nism to identify the most important features of the cor-
responding tiles. This mechanism assigns an attention
weight to each feature based on its significance, ef-
fectively highlighting the most informative parts of the
data. Attention mechanisms are particularly useful in
scenarios where certain features play a crucial role in
the classification task, allowing the model to focus on
these key elements. Subsequently, we employed a MIL
pooling aggregator to combine the high-weighted fea-
tures from the instances within each bag. The MIL pool-
ing aggregator pools the attention-weighted features,
leading to a comprehensive representation of the slide-
level data. This aggregated representation was then used
to make the final global-level classification of HR sta-
tus. In this experiment, we trained the MIL model using
the standard 5-fold cross-validation (CV) method. The
hyperparameters were set as follows: a learning rate of
0.005, the Adam optimizer, binary cross-entropy as the
loss function, and a batch size of 1 to facilitate bag-level
training. This approach ensures robust evaluation and
effective learning from the available data, leveraging the
attention mechanism and pooling strategies to enhance
the model’s performance.

In this experiment, we only used the attention-based
MIL model. However, there are various types of MIL
models such as CLAM, mean pool, and TransMIL. We
utilized these models with a pre-trained self-supervised
model used for extracting features from both ovarian
and cancer WSIs to identify the HRD status.

3.5. Self-supervised method with transfer learning
In our study, we utilized a ViT-B architecture trained

with self-supervised learning techniques such as iBOT
(Zhou et al., 2022) combined with MIM (Xie et al.,
2022) on a dataset of 40 million pan-cancer WSIs
developed by Filiot et al. (2023). iBOT focuses on
instance-aware learning, enabling the model to boot-
strap its learning process by leveraging the relation-

ships between instances within the data. MIM, on
the other hand, involves masking parts of the input
image and training the model to predict the missing
pieces, thereby encouraging the model to learn con-
textual representations. This model, referred to as
iBOT[ViT-B]PanCancer, was used to extract features
from WSIs for our experiments. The use of the pre-
trained iBOT[ViT-B]PanCancer model for feature ex-
traction highlights the application of transfer learning in
our study. By leveraging a model that was pre-trained
on a large dataset of pan-cancer WSIs, we could effec-
tively transfer the learned representations to our spe-
cific task, thereby enhancing the efficiency and accu-
racy of feature extraction from our histopathological
slides. We followed the instructions and maintained
the folder structure provided by the GitHub reposi-
tory from (https://github.com/owkin/HistoSSLscaling)
by Filiot et al. (2023). The feature extraction process
using this pre-trained model involves several important
steps. First, we extracted all coordinates from the high-
est resolution level of the WSIs. These coordinates were
then filtered to remove those that did not correspond
to useful tissue information, ensuring that only regions
with relevant tissue were retained. This step is cru-
cial for identifying regions containing relevant tissue in-
formation while excluding areas without useful content
such as a white background. This process helps signifi-
cantly reduce the computational burden and the time re-
quired for feature extraction. After successfully extract-
ing useful coordinates which only belong to tissue re-
gions from slides, we used these coordinates in conjunc-
tion with the pre-trained iBOT[ViT-B]PanCancer model
to extract features from the slides.

The extracted features from each slide were then uti-
lized for downstream classification tasks using various
MIL models. These MIL models included Mean-pool
MIL, Chowder MIL, AB-MIL, DS-MIL, and Trans-
MIL, each contributing to the slide-based classifica-
tion. Mean-pool MIL aggregates features by averag-
ing them, providing a simple yet effective summary.
Chowder MIL employs a more sophisticated aggrega-
tion method to capture complex patterns. AB-MIL
and DS-MIL offer attention-based mechanisms to weigh
the importance of different instances, enhancing the
model’s focus on critical regions. Finally, Trans-MIL
leverages transformer-based architectures for capturing
long-range dependencies within the slide. Together,
these techniques enabled robust and accurate classifica-
tion of histopathological slides, demonstrating the effi-
cacy of self-supervised learning methods in this domain.

3.5.1. Training and experiment
We believe that this approach is one of the robust and

generalized approaches to perform the experiments for
HR status prediction from both breast and ovarian can-
cer. Therefore, we started our experiments with both
the public datasets of breast and ovarian cancer, such as
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Figure 2: Block diagram of nested cross-validation.

TCGA-OV and TCGA-BRCA, as this dataset contains
a huge number of WSIs which will give more general-
ized performances. We used the same techniques for the
classification task for both datasets. We used a nested
CV technique shown in Figure 2 for training and testing
the MIL models for the classification tasks. A nested
CV consists of two parts: the outer CV and the inner
CV. The inner CV is used for tuning hyperparameters,
while the outer CV is used for making training and test-
ing predictions using the optimal hyperparameters de-
termined by the inner CV. To perform the nested CV,
we defined the number of repetitions and splits for both
the inner and outer CV. We chose to perform 1 iteration
and 5 splits for both the inner and outer CV processes.

In each split of the outer CV, all the features are di-
vided into five folds, one of them is used as the test set
while others are used as the training set. The training set
from each split of the outer CV is then further divided
into five folds by the inner CV, where one fold is used
as the validation set and the other folds are used as the
fine-tuning training set. This fine-tuning training set is
employed to train the model using various combinations
of hyperparameters. In this experiment, we focused on
tuning the learning rate and decay rate, selecting two
learning rates (0.001 and 0.0001) and two decay rates
(0 and 0.0001) proposed by Filiot et al. (2023) for fine-
tuning. Once the model is trained with each combina-
tion of learning rate and decay rate, it is validated us-
ing the validation set. This process is repeated for each
split of the inner CV. The combination of learning rate
and decay rate that yields the best validation result is
selected as the optimal hyperparameter set. These op-
timal hyperparameters are then used to train the model
on the training set of the outer CV. After the training
phase, the model is tested using the test set. This pro-
cess is repeated for each split in the outer CV, ensur-
ing a thorough evaluation of the model’s performance.
It is important to mention that we used stratified and
patient split modes to ensure a balanced distribution of
HRD and HRP-labeled slides in each fold during cross-
validation. This approach helps maintain an equal rep-
resentation of both classes, providing more reliable and
accurate model evaluations. Additionally, we used the

Adam optimizer and the binary cross-entropy loss func-
tion, setting the batch size to 16 for our training process.

Although the experiment was limited to publicly
available datasets for breast and ovarian cancer, we also
plan to conduct experiments with private datasets. This
will help us to understand the impact of the dataset on
the identification performance of HR status, specifically
in ovarian cancer.

4. Results

After conducting several experiments with various
training strategies and models on several datasets, we
obtained comprehensive results and performance met-
rics. These metrics illustrate the capability of the mod-
els in predicting HRD in both breast cancer and ovar-
ian cancer. In this study, we utilize several performance
metrics to evaluate the effectiveness of the model. The
Area Under the Curve (AUC) measures the ability of
a model to distinguish between positive and negative
classes, with a higher AUC indicating better discrimi-
nation. Accuracy assesses the overall correctness of the
model by calculating the proportion of correct predic-
tions (both true positives and true negatives) out of the
total number of cases examined, providing a straightfor-
ward measure of general performance. Sensitivity (also
known as the True Positive Rate or Recall) measures
the proportion of actual positive cases that the model
correctly identifies, highlighting the model’s capabil-
ity to detect positive instances accurately. Specificity
(also known as the True Negative Rate) quantifies the
proportion of actual negative cases that the model cor-
rectly identifies, indicating the model’s ability to avoid
misclassifying negative instances as positive. Finally,
the F1-score provides a balance between precision and
recall, highlighting the model’s accuracy in both iden-
tifying positive instances and not mislabeling negative
instances as positive. It is the harmonic mean of pre-
cision and recall, giving a single metric that considers
both false positives and false negatives.

4.1. Experimental results on DIJON-OV

The performance metrics of various models on the
DIJON-OV dataset are shown in Table 2. For the fully
supervised technique, all models struggled to classify
the positive samples (HRD). The CNN model had the
lowest performance with an AUC of 0.47 and an ac-
curacy of 0.51, along with suboptimal sensitivity and
specificity of 0.32 and 0.63, respectively, indicating a
potential bias toward negative samples. ResNet34 and
ResNet50 showed slightly improved performance with
the highest specificity of 0.65 reported for ResNet34
and the best AUC of 0.55 for ResNet50. Overall,
ResNet34 provided a balanced performance among
three neural network models. It is important to note that
these results were obtained using single-split validation
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Table 2: Performance metrics of various models on the DIJON-OV dataset (mean ± standard deviation for some values)

Dataset Technique Feature
Extractor

Model AUC Accuracy Sensitivity Specificity F1-Score

DIJON-
OV

Fully
Supervised

CNN 0.47 0.51 0.32 0.63 0.36
ResNet34 0.54 0.55 0.40 0.65 0.40
ResNet50 0.55 0.54 0.37 0.64 0.37

Weakly
Supervised

Auto
Encoder

AB-MIL 0.53 ± 0.04 0.58 ± 0.05 0.43 ± 0.04 0.61 ± 0.15 0.46 ± 0.27

Table 3: Performance metrics of various models on TCGA-OV dataset (mean ± standard deviation for some values)

Dataset Technique Feature
Extractor

Model AUC Accuracy Sensitivity Specificity F1-Score

TCGA-
OV

Fully
Supervised

CNN 0.50 0.62 1.00 0.00 0.77
ResNet34 0.58 0.57 0.60 0.51 0.63
ResNet50 0.59 0.58 0.67 0.44 0.66

Self
Supervised

Mean-Pool 0.65 ± 0.50 0.61 ± 0.04 0.65 ± 0.10 0.54 ± 0.11 0.65 ± 0.06
iBOT[ViT-B]
PanCancer

Chowder 0.66 ± 0.06 0.60 ± 0.04 0.59 ± 0.09 0.63 ± 0.14 0.62 ± 0.05
AB-MIL 0.65 ± 0.04 0.61 ± 0.04 0.76 ± 0.10 0.41 ± 0.15 0.69 ± 0.05
DS-MIL 0.63 ± 0.03 0.61 ± 0.02 0.77 ± 0.13 0.39 ± 0.17 0.69 ± 0.05
HIPT 0.64 ± 0.05 0.61 ± 0.05 0.77 ± 0.12 0.40 ± 0.19 0.69 ± 0.05
Trans-MIL 0.66 ± 0.03 0.61 ± 0.05 0.73 ± 0.25 0.47 ± 0.26 0.66 ± 0.12

Table 4: Performance metrics of various models on TCGA-BRCA dataset (mean ± standard deviation)

Dataset Technique Feature
Extractor

Model AUC Accuracy Sensitivity Specificity F1-Score

TCGA-
BRCA

Self
Supervised

Mean-Pool 0.76 ± 0.04 0.81 ± 0.01 0.25 ± 0.09 0.96 ± 0.02 0.34 ± 0.08
iBOT[ViT-B]
PanCancer

Chowder 0.75 ± 0.06 0.80 ± 0.02 0.27 ± 0.16 0.93 ± 0.07 0.31 ± 0.18
AB-MIL 0.77 ± 0.06 0.81 ± 0.02 0.25 ± 0.08 0.95 ± 0.01 0.33 ± 0.08
DS-MIL 0.74 ± 0.04 0.82 ± 0.02 0.30 ± 0.07 0.94 ± 0.02 0.39 ± 0.07
HIPT 0.75 ± 0.05 0.81 ± 0.02 0.25 ± 0.14 0.95 ± 0.09 0.32 ± 0.16
Trans-MIL 0.76 ± 0.03 0.81 ± 0.02 0.21 ± 0.10 0.96 ± 0.02 0.30 ± 0.10

data. We computed all metrics for this experiment by
considering the approximate mean values of the last ten
epochs of validation results.

In contrast, the weakly supervised method, AB-MIL
with Autoencoder, demonstrated a better sensitivity.
This method showed improved sensitivity, with a mean
sensitivity of 0.43 and a standard deviation of 0.04,
which is higher than neural network models. Although
the specificity (0.61 ± 0.15) was almost close to the
ResNet models, the results indicate that AB-MIL can
provide a more generalized performance for classifying
both HRD and HRP classes, even with slide-based clas-
sification. Furthermore, AB-MIL achieved the highest
F1-score at 0.46 ± 0.27. These results were obtained
using a standard 5-fold CV.

However, we hypothesize that using more advanced
techniques for feature extraction or employing pre-
trained models with a large amount of digital pathology
data could enhance the performance of AB-MIL. This
hypothesis was tested in the TCGA-OV experiment.

4.2. Experimental results on TCGA-OV

The performance metrics of various models on the
TCGA-OV dataset are shown in Table 3. In the fully

supervised method, the CNN model demonstrated a sig-
nificant bias towards sensitivity, predicting all samples
as HRD cases. Consequently, the model completely
failed to identify any HRP cases, resulting in a speci-
ficity of 0.00. This extreme bias towards sensitivity
(1.00) led to a deceptively high F1-score (0.77). Due
to this bias, the CNN model lacked the ability to gen-
eralize predictions and effectively distinguish between
the two classes. The ResNet34 model showed improve-
ments over CNN in terms of model generalization, sug-
gesting it could better discriminate between positive and
negative cases. However, this model did not exhibit very
high sensitivity and specificity, its overall performance
was more balanced with an AUC of 0.58, sensitivity of
0.60, and specificity of 0.51. It still fell short of being
ideal. ResNet50 offered further improvements, increas-
ing the sensitivity to 0.67 compared to ResNet34. How-
ever, it did so at the cost of specificity (0.44). Although
the improvements in ResNet50 were not highly signif-
icant, it achieved a slightly higher AUC of 0.59 and
F1-score of 0.66 among all the neural network models
evaluated, indicating a marginally better overall perfor-
mance. It is important to note that these results were ob-
tained using single-split validation data. We computed
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all metrics for this experiment by considering the ap-
proximate mean values of the last five epochs of valida-
tion results.

The self-supervised with transfer learning methods,
utilizing the iBOT[ViT-B] PanCancer as a feature ex-
tractor, demonstrated varied performances across differ-
ent models. The Mean-Pooling approach showed a bal-
anced performance, achieving a moderate mean AUC of
0.65 with a 0.50 standard deviation and a mean F1-score
of 0.65 with a standard deviation of 0.06. Its sensitivity
(0.65 ± 0.10) and specificity (0.54 ± 0.11) were rela-
tively well-balanced, indicating a good ability to gen-
eralize predictions and distinguish between HRD and
HRP cases effectively. The Chowder model also per-
formed well, achieving a high mean AUC of 0.66 with a
0.06 standard deviation. It provided the least sensitivity
(0.59 ± 0.09) and the highest specificity score (0.63 ±
0.14), suggesting it is more robust towards HRP cases.
The AB-MIL model demonstrated a strong sensitivity
of 0.76 ± 0.10, effectively identifying HRD cases. How-
ever, this came at the cost of a lower specificity of 0.41 ±
0.15, indicating some difficulty in correctly identifying
HRP cases. Despite this, the model achieved a high F1-
score (0.69 ± 0.05), reflecting its robustness in detecting
positive cases. The DS-MIL model exhibited a similar
pattern to AB-MIL, with high sensitivity (0.77 ± 0.13)
but lower specificity (0.39 ± 0.17). This imbalance led
to an F1-score (0.69 ± 0.05), highlighting the model’s
effectiveness in identifying HRD cases, though it strug-
gled with HRP cases. The HIPT model also showed
strong sensitivity (0.77 ± 0.12), similar to DS-MIL,
with a balanced overall performance. The high sensi-
tivity and moderate specificity (0.40 ± 0.19) resulted in
a high F1-score (0.69 ± 0.05), indicating the model’s
robustness in HRD detection. The Trans-MIL model
achieved the highest AUC of 0.66 ± 0.03 (although the
mean AUC is similar to Chowder, the standard devia-
tion is less than Chowder) among the self-supervised
techniques, indicating strong discriminative power. It
balanced sensitivity (0.73 ± 0.25) and specificity (0.47
± 0.26) well, resulting in a high F1 score (0.66 ± 0.12)
compared to Chowder MIL. This balanced performance
suggests that Trans-MIL is particularly effective in pre-
dicting HRD status, making it one of the standout MIL
models. These results were obtained using the nested
CV.

Overall, the self-supervised with transfer learn-
ing techniques demonstrated strong performance, with
models like Chowder and Trans-MIL showing partic-
ularly balanced and effective results. These methods
exhibited a good ability to generalize predictions and
distinguish between HRD and HRP cases, underscor-
ing their potential in HR status prediction from digital
histopathology images in ovarian cancer.

4.3. Experimental results on TCGA-BRCA
As we already mentioned, the objective of exper-

imenting with HRD identification from breast cancer
is to learn about the performance capability of the
pipelines used. As HRD detection from breast can-
cer has already provided outstanding results, we hy-
pothesise that the pipeline we have used will work
well for HRD detection from breast cancer. To utilize
our resources properly we just used the self-supervised
method combined with transfer learning here as this ap-
proach provided more robust and generalized results in
our previous experiments with ovarian cancer data. The
experimental results for TCGA-BRCA are shown in Ta-
ble 4.

From the table, it is evident that the AB-MIL model
achieves the highest mean of AUC 0.77 with 0.06 stan-
dard deviation, although this model, like others, exhibits
a notable disparity between sensitivity and specificity,
with very high specificity and low sensitivity. This trend
is consistent across all models evaluated. One plausible
explanation for this pattern is the significant class im-
balance in the TCGA-BRCA dataset, where the num-
ber of HRP samples is substantially higher, almost four
times, than the HRD samples. This imbalance likely
contributes to the observed lower sensitivity and subse-
quently impacts the F1-score, as the sensitivity is a crit-
ical component of the F1-score. Despite AB-MIL’s su-
perior AUC, the DS-MIL model demonstrates the high-
est accuracy (0.82 ± 0.02), sensitivity (0.30 ± 0.07), and
F1-score (0.39 ± 0.07), indicating a more balanced per-
formance across different metrics. Although DS-MIL’s
specificity is not the highest, it offers a more generalized
ability to distinguish between HRD and HRP classes,
making it a potentially more reliable model for practical
applications. Other models such as Mean-Pool, Chow-
der, HIPT, and Trans-MIL also show competitive per-
formance, with results closely aligning with those of
AB-MIL and DS-MIL. This suggests that while AB-
MIL and DS-MIL have certain advantages, the other
models are also viable options depending on the spe-
cific requirements and constraints of the analysis. These
results were also obtained using nested CV.

In summary, the experiment underscores the im-
portance of considering multiple performance metrics
when evaluating model efficacy, particularly in the con-
text of imbalanced datasets. The results highlight the
nuanced trade-offs between sensitivity, specificity, and
overall accuracy, providing valuable insights for opti-
mizing HRD detection pipelines in breast and ovarian
cancer research.

5. Discussion

The experiments conducted using various learning
techniques and models with both public and private data
on breast and ovarian cancer have revealed several valu-
able insights into the prediction of HRD biomarkers.
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One of the key findings is that predicting HRD biomark-
ers is more reliable and easier in breast cancer compared
to ovarian cancer. This difference is likely due to the
differing complexity in the morphological patterns of
the tissues, with ovarian cancer potentially being more
complex. This complexity can make it more challenging
for models to accurately predict HRD in ovarian cancer.
Additionally, our comparison of the TCGA-BRCA and
TCGA-OV datasets is robust because both use similar
protocols for data collection, have similar patient demo-
graphics, and use consistent labeling practices, unlike
the DIJON-OV dataset.

Our findings also suggest that the performance of
HRD biomarker prediction is highly contingent on class
balance of the dataset. A significant observation is the
tendency of models commonly used for histopathology
classification to exhibit bias towards the more prevalent
class. For instance, in the TCGA-BRCA experiment,
all models demonstrated high specificity scores due to
the HRP samples outnumbering HRD samples by a fac-
tor of four, highlighting the issue of dataset imbalance.
This scenario reveals a need for exploring various data
augmentation and scaling techniques to effectively ad-
dress the prevalent issue of dataset imbalance.

In terms of the methods and models employed
for HRD status prediction, our experiments suggest
that combining self-supervised and weakly supervised
methods through transfer learning can yield more ro-
bust performance compared to relying solely on fully
supervised or weakly supervised methods. The fully
supervised approach, while effective, demands exten-
sive annotation at the tile level, which is complex and
time-consuming. On the other hand, weakly super-
vised methods, such as MIL, are suitable for classi-
fication tasks as predictions can be made at the slide
level. However, these methods face limitations in fea-
ture extraction, often relying on neural network mod-
els like ResNet50 pre-trained on ImageNet weights,
which are not specifically optimized for digital pathol-
ogy data. Each MIL model has distinct strengths, and
performance can vary depending on task complexity
and dataset characteristics. Advanced models such as
HIPT and Trans-MIL potentially offer improved perfor-
mance but demand greater computational resources and
time, making them less practical for broader applica-
tions compared to more general models like AB-MIL,
Chowder, or Mean-Pool. Given these considerations,
a strategic approach involves utilizing self-supervised
methods such as iBOT, MIM, MoCo, and DINO. These
methods allow for training models on vast amounts of
WSI data across different cancer subtypes without the
need for labeled data. The resulting pre-trained models
can then be employed for feature extraction, capturing
more relevant and impactful features for slide-level clas-
sification.

Nevertheless, our conclusions are tentative, relying
primarily on the analysis of TCGA datasets with slide-

based levels. There is a compelling need for addi-
tional research using diverse datasets, such as DIJON-
OV, to evaluate the performance of slide-based classifi-
cation via self-supervised learning combined with trans-
fer learning. Such investigations could provide deeper
insights into HRD prediction for ovarian cancer WSIs.

An exciting avenue for future research could involve
the application of foundation models, such as GigaP-
ath recently published by Microsoft Health Futures (Xu
et al., 2024). This novel approach utilizes a new and
advanced vision transformer architecture for handling
gigapixel pathology images, leveraging a diverse real-
world cancer patient dataset. GigaPath aims to lay a
foundation for AI in cancer pathology and could be in-
strumental in improving HRD prediction for both ovar-
ian and breast cancer. By integrating these advanced
models, researchers can potentially achieve more accu-
rate and robust performance, addressing current limi-
tations and pushing the boundaries of HRD biomarker
prediction.

While significant progress has been made, our re-
search underscores the need for balanced datasets, the
strategic combination of learning methods, and the ex-
ploration of advanced foundation models to enhance
HRD biomarker prediction. Future research should fo-
cus on these areas to develop more reliable, accurate,
and generalizable models for HRD status prediction in
various cancer types.

6. Conclusions

Our study highlights challenges and complexities in
predicting HRD in ovarian and breast cancer. Through
several experiments using diverse datasets and method-
ologies, we have found that multiple factors, including
dataset characteristics, class balance, and the choice of
training methods and models, heavily influence HRD
prediction performance. One key insight is that pre-
dicting HRD in ovarian cancer is more challenging than
in breast cancer, likely due to the more complex mor-
phological patterns in ovarian cancer tissues. This find-
ing emphasizes the need for targeted research on ovar-
ian cancer to develop more effective predictive mod-
els. To tackle these challenges, we recommend using
robust techniques that focus on exploratory data anal-
ysis, such as data augmentation and scaling. Further-
more, advanced modeling techniques, including foun-
dation models, could potentially enhance the accuracy
and robustness of HRD predictions. In summary, our
research underscores the critical need for ongoing ad-
vancements in dataset management and modeling ap-
proaches to enhance the precision of HRD biomarker
predictions. These improvements are essential for per-
sonalizing treatment plans for cancer patients. Our
study provides a foundation for future research aimed at
refining predictive capabilities for HRD in both breast
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and ovarian cancers, with a particular focus on over-
coming the unique challenges of ovarian cancer.
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Abstract

This study presents the development and implementation of a Single Scatter Simulation (SSS) algorithm for scatter
correction in three-dimensional positron emission tomography (PET) imaging, carefully adhering to realistic PET
imaging geometries. The algorithm, crafted in Python, is optimized with Numba and parallel processing techniques
to significantly reduce the computational time associated with SSS. Moreover, to achieve superior performance, MAT-
LAB interpolation—demonstrated to enhance computational efficiency—is invoked within Python via the MATLAB
engine. The SSS algorithm’s results will be integrated into iterative reconstruction techniques, specifically the Max-
imum Likelihood Reconstruction of Attenuation and Activity (MLAA). This research primarily aims to evaluate the
impact of scatter correction utilizing the proposed Time-of-Flight (TOF) SSS algorithm and to assess the accuracy
of PET imaging when TOF is combined with MLAA (TOF-MLAA). The proposed methods’ performance will be
initially validated using synthetic data featuring single scatter coincidences as a proof of concept. Subsequently, real
clinical data, encompassing multiple scatter scenarios and acquired with the Siemens mCT Scanner, will be employed
to observe the efficacy of scatter correction in a practical setting. The findings of this study are anticipated to pro-
vide valuable insights into enhancing PET imaging accuracy through the application of advanced scatter correction
methodologies, thereby contributing to the field of medical imaging and improving diagnostic outcomes.

Keywords: Single Scatter Simulation, Scatter Correction, Iterative Reconstruction

1. Introduction

Positron Emission Tomography (PET) imaging has
profoundly transformed medical diagnostics by offering
critical insights into the physiological functions within
the human body (Cherry et al., 2013). PET scanners
operate on the principle of positron annihilation, de-
tecting pairs of gamma rays emitted indirectly by a ra-
diotracer administered to the patient. This detection
occurs within a scintillator crystal, enabling the visu-
alization and quantification of molecular-level biologi-
cal processes. The selection of radiotracer is specific
to the physiological event being investigated, allowing
for a personalized approach to diagnosis and monitoring
treatment efficacy.

The origins of Positron Emission Tomography (PET)
imaging can be traced back to the 19th century, herald-
ing the development of a transformative technology that
has continually advanced. Time-of-Flight PET (TOF-
PET) emerged in the 1980s and early 1990s, revolution-

izing PET scanner design (Vandenberghe et al., 2020).
By utilizing the variations in arrival times of emitted
photons relative to their annihilation points and the de-
tectors, TOF imaging significantly improved image res-
olution and contrast, thereby expanding the scope of
clinical applications.

The main concept of PET imaging lies the task of
reconstructing radiotracer distributions from their mea-
sured projections along lines of response (LORs). This
involves solving an inverse problem to reconstruct an
image from its corresponding sinogram (Natterer and
Wübbeling, 2001). The forward model, represented by
the attenuated Radon transform, accounts for primary
photons traversing the body without attenuation. For
precise reconstruction, however, it is crucial to consider
scattered photons, which must be estimated during the
reconstruction process.

Iterative reconstruction is a critical component in
PET imaging, offering improved image quality and
quantitative accuracy over traditional analytical meth-
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ods. Unlike direct methods such as filtered back pro-
jection, iterative techniques refine the image through
successive approximations. These algorithms, includ-
ing Maximum Likelihood Expectation Maximization
(MLEM) and its variants, update the image iteratively to
minimize the difference between the measured and es-
timated projections. Maximum Likelihood Reconstruc-
tion of Attenuation and Activity (MLAA) is a notable
iterative method that simultaneously reconstructs both
the activity distribution and attenuation map, enhancing
the accuracy of the resulting PET images. By incorpo-
rating Time-of-Flight (TOF) information, TOF-MLAA
further improves the precision of image reconstruction,
particularly in correcting for photon scatter.

In this study, we introduce a novel Python-based im-
plementation of a rapid Single Scatter Simulation (SSS)
algorithm. This advanced approach, referred to as scat-
ter correction, integrates counts from Compton scat-
tered photons into the Time-of-Flight Maximum Likeli-
hood Reconstruction of Attenuation and Activity (TOF-
MLAA) reconstruction algorithm. By leveraging this
method, we aim to significantly enhance the efficiency
of scatter correction processes, thereby improving the fi-
delity and accuracy of PET image reconstruction. This
innovative technique promises to contribute substan-
tially to the field of medical imaging, offering potential
advancements in both diagnostic precision and clinical
outcomes.

2. State of the art

During a PET scan, a radiotracer is injected into the
body, which emits positrons that interact with electrons,
resulting in the emission of gamma rays. These gamma
rays are detected by a ring of detectors surrounding the
patient. Each detector records the energy of the gamma
rays at specific times, which is stored as lines of re-
sponse (Beyer et al., 2000). The challenge lies in the
fact that while the energy and timing of the detected
gamma rays are known, the exact origin of these gamma
rays within the body is not directly observable. Thus, re-
constructing an image from PET data involves solving
an inverse problem.

The objective of PET image reconstruction is to es-
timate the distribution of radiotracers within an object
using measured energies captured by detectors, stored
as either sinogram or list-mode data. Thus, the process
of image reconstruction can be modeled as a linear in-
verse problem (Lewitt and Matej, 2003). The relation-
ship between measured coincidence events M during a
time frame and true coincidence events T is given by:

M = N(LT + s + r) (1)

where L and N represent attenuation and normaliza-
tion correction factors whiles r and s represent randoms
and scatter contributions.

Figure 1: Illustration of different scenario involved to single LOR.

scatter contribution significantly impacts the accu-
racy of the emission data. When gamma rays emitted
from the radiotracer within the body interact with tis-
sues or other materials before reaching the detectors,
their paths and energies are altered. This scattering
leads to mispositioning and inaccurate energy readings,
which can result in erroneous data being recorded by the
detectors. The presence of scattered photons increases
background noise and reduces the signal-to-noise ratio,
making it challenging to accurately reconstruct the spa-
tial distribution of the radiotracer. Correcting for scatter
is essential to enhance image quality and ensure pre-
cise quantitative analysis of the metabolic activity being
studied (Cherry et al., 2013).

Consequently, the scatter correction is crucial for en-
hancing the contrast and accuracy of reconstructed PET
images, significantly improving the quantification of ac-
tivity within the body (Barney et al., 1991). Early re-
search on scatter correction strategies focused on mod-
eling and compensating for scatter in three-dimensional
PET imaging, incorporating foundational concepts to
mitigate scatter effects (Barney et al., 1991; Buvat et al.,
1994; Zaidi and Koral, 2004). Subsequent studies ex-
tended these strategies by modeling multiple scatter
events through Gaussian smoothing applied to a sim-
ulated single scatter sinogram, providing a more refined
approach to scatter correction (Goggin and Ollinger,
1994; Ollinger and Johns, 1993). Additionally, the use
of Monte Carlo simulations to estimate scatter distri-
butions has been proposed for clinical applications, de-
spite the associated increase in computational demands
(Holdsworth et al., 2003; Levin et al., 1995).

The primary focus of this study is the implemen-
tation of a single scatter modeling algorithm that ac-
counts for multiple scatter effects by scaling the esti-
mated single scatter sinogram to match the measured
data. This method has been highlighted in various
sources for its theoretical advantage of reduced compu-
tational time while maintaining effective estimation ac-
curacy (Ollinger and Johns, 1993; Panin, 2012; Thiele-
mans et al., 2007; Watson et al., 1996). Notably, this ap-
proach has been recognized as desirable approach due
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to its computational efficiency, as detailed in (Watson,
1999). By leveraging this algorithm, the study aims to
provide a robust and efficient solution for scatter correc-
tion in PET imaging, ultimately enhancing the overall
quality and reliability of the reconstructed images.

The effectiveness of scatter-compensation techniques
is fundamentally reliant on the precision of scatter esti-
mation. An extensive review by (Zaidi and Koral, 2004)
categorizes scatter correction approaches into five dis-
tinct groups, highlighting the diversity and complexity
of existing methodologies. For this study, we will pre-
dominantly focus on statistical iterative reconstruction
techniques, which are well-documented in the literature
and form the basis of many contemporary algorithms
(Hutton et al., 2006). These methods are favored for
their ability to integrate sophisticated models of scatter
and attenuation, thereby enhancing image quality and
quantitative accuracy. By leveraging these advanced it-
erative techniques, our research aims to achieve more
accurate scatter correction, ultimately contributing to
the development of more reliable and precise PET imag-
ing modalities.

3. Material and methods

3.1. Background

Positron Emission Tomography (PET) acquisition is
fundamentally an inverse problem. In PET, the goal is
to reconstruct an image representing the distribution of
a radiotracer within the body from the detected gamma
rays. This problem is considered inverse because we
do not know the exact emitter points of the photons; in-
stead, we work backward from the detected signals to
infer the source distribution (Cherry et al., 2013).

In PET imaging, data acquisition can be performed in
different modes, one of which is list mode. List mode
data acquisition involves recording each detected event
individually, storing the exact time of detection, the po-
sition of the detectors involved, and the energy of the
detected photons. This mode provides the most detailed
information about each event, allowing for flexible post-
processing and reconstruction methods.

The Line of Response (LOR) is a critical concept
in PET imaging. When a positron emitted by the ra-
diotracer undergoes annihilation with an electron, two
gamma photons are emitted simultaneously in approxi-
mately opposite directions. These photons are detected
by the PET scanner, and the line connecting the two de-
tection points is referred to as the LOR. The LOR rep-
resents the path along which the annihilation event oc-
curred. By collecting multiple LORs from different an-
gles, it is possible to reconstruct the spatial distribution
of the radiotracer within the body.

The mathematical foundation for summing along
photon paths is the Radon transform. The Radon trans-
form is a mathematical integral transform that converts

Figure 2: Illustration of the Radon transform: (a) A point source in
Cartesian coordinates; (b) The Radon transform of a point source,
represented as a sinusoidal wave; (c) Projection of an object f (x, y)
along the line l(s, θ) at angle θ; (d) The Radon transform of the object,
showing the projection data R f (s, θ) as a function of s and θ. The
image taken from (Zuo et al., 2020).

a spatial domain function into a set of projections. It
is fundamental in various imaging techniques, includ-
ing computed tomography (CT) and positron emission
tomography (PET).

For a function f (x, y) in two dimensions, the Radon
transform A f is defined as the integral of f over lines.
Mathematically, it is expressed as:

A f (θ, t) =
∫ ∞

−∞
f (x cos θ + y sin θ = t) ds, (2)

where θ represents the angle of the line and t is the per-
pendicular distance from the origin to the line. This
transform essentially gathers all line integrals of f at
different angles and distances, generating a set of pro-
jections (Deans, 2007).

In three dimensions, the Radon transform extends to
the integration over planes. For a function f (x, y, z), the
3D Radon transform A f is given by:

A f (θ, ϕ, t) =
∫

R2
f (x cos θ sin ϕ+y sin θ sin ϕ+z cos ϕ) dσ,

(3)
where (θ, ϕ) defines the plane orientation and t is the
distance from the origin to the plane.

Forward projection in 3D PET imaging can be mod-
eled using the Radon transform. Given a radiotracer dis-
tribution f (x, y, z), the projection data p(θ, ϕ, t) along a
line can be computed as:

p(θ, ϕ, t) =
∫ ∞

−∞
f (x cos θ sin ϕ+y sin θ sin ϕ+z cos ϕ) dz.

(4)
This integral represents the total activity along the

specified plane. The PET detectors collect these plane
integrals over various angles and distances, forming a
sinogram used for image reconstruction. The forward
projection process can be computationally intensive due
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Table 1: Annotation Table

Symbol Description Symbol Description

A Radon transform L Attenuation correction factor
N Normalization factor s Scatter prompts
r Random prompts △s Spatial offset
σ Standard deviation, Geometrical cross section µ Mean
µl Linear attenuation µm Mass attenuation
ρ Density h Planck constant
c Speed of light v Velocity
λ Wavelength λm Attenuation map
ρm Attenuation map M Emission prompts
M Estimated Emission prompts T True prompts

to the large datasets involved in 3D PET imaging, of-
ten requiring efficient algorithms and approximations to
manage the computational load (Kak and Slaney, 2001).

Time-of-Flight (TOF) technology in Positron Emis-
sion Tomography (PET) provides a significant advance-
ment in image reconstruction by estimating the origin
of positron annihilation events. TOF-PET determines
the position of the event based on the difference in ar-
rival times of the emitted photons at the detectors. The
technique assumes the annihilation photons travel at the
speed of light (c), and any difference in detection time
(∆t) is due to the difference in path lengths from the
event to each detector (Budinger, 1983).

Figure 3: Concept of time-of-flight positron emission tomography
(ToF PET): (a) Detector ring detecting gamma photon pairs with
(green) and without (red) ToF; (b) Probability distribution of the an-
nihilation position along the line of response (LoR) in ToF PET; (c)
Equal probability of annihilation position along the LoR in non-ToF
PET. Source: (Jiang et al., 2019).

The detection efficiency for TOF measurements can
be approximated by a quasi-Gaussian function, as is
common in the literature, despite the discrete nature of
the acquired data. This function is given by:

εt(∆s) = e−
(∆s−tσ)2

2σ2

/∑

t′
e−

(∆s−t′σ)2

2σ2 , (5)

where ∆s represents the spatial offset from the midpoint
between the two detectors to the annihilation event, t
indicates the TOF bin width, and σ symbolizes the sys-
tem’s timing resolution. This efficiency function effec-
tively convolves the intrinsic TOF resolution with the

square function of a TOF bin, modeling the probability
that a detected emission event with an offset of ∆s will
be recorded in the t-th TOF bin.

The full width at half maximum (FWHM) of the TOF
resolution is related to the timing resolution σ by:

FWHM = 2
√

2 ln(2)σ, (6)

which reflects the precision of event localization. The
improved localization provided by TOF contributes to
the enhanced signal-to-noise ratio and the superior im-
age quality in TOF-PET.

Highlighting that a diminished FWHM enhances en-
ergy resolution, allowing for finer discrimination be-
tween energy levels. Energy resolution (R) itself is then
articulated in relation to FWHM and the mean energy
(µ) as:

R =
FWHM

µ
(7)

With lower R values indicating superior energy res-
olution, this measure underscores the detector’s ability
to precisely gauge energy values, setting the stage for
groundbreaking experimental accuracy.

Turning our focus to detector efficiency, this aspect
evaluates the likelihood of accurately detecting a photon
of a specified energy, depicted through the cumulative
distribution function (CDF):

Φ

( x − µ
σ

)
=

1
2

[
1 + erf

(
x − µ
σ
√

2

)]
(8)

The CDF, Φ, thus maps the cumulative probability
for detected energy to be at or below x, gradually ap-
proaching unity, which signifies impeccable detection
efficiency. The integral role of the error function (erf) in
the CDF is outlined as:

erf(z) =
2√
π

∫ z

0
e−t2

dt (9)

The intricate dance between PDF and CDF, influ-
enced by σ and FWHM, forms the analytical backbone
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for evaluating energy resolution and detector efficiency.
This nuanced statistical interplay not only informs the
design and optimization of detectors but also empowers
scientists to navigate the complex terrain of experimen-
tal physics with enhanced precision and understanding.
By harnessing these mathematical constructs, the quest
for accuracy in energy measurements propels forward,
shaping the future of experimental endeavors.

For a single line of response in a PET scanner, there
are several contributions that reach the crystal or detec-
tor. These contributions occur due to the activity of pho-
tons passing through various materials. Although pho-
tons generally travel in a straight line, they can interact
with atomic masses along their path. There are several
possible ways for these interactions to occur, each with
its own consequences.

Figure 4: Different types of coincidence events in PET imaging. The
figure is taken from (Verel et al., 2005)

Photon activity, specifically each photon’s energy,
affects the cross-section with respect to power versus
atomic number. In nuclear medicine, the interactions
between photons and matter are crucial for various
imaging and therapeutic applications. Photons gener-
ally travel in straight lines but can interact with atomic
masses along their path, resulting in several possible in-
teractions. While there are nine potential interactions
between photons and matter, we focus on three signif-
icant interactions that are particularly relevant to PET
(Positron Emission Tomography). These interactions
will be discussed in detail, covering both their physical
mechanisms and mathematical aspects.

The interaction cross-section of photons with atoms
is highly dependent on the photon’s energy and the
atomic number (Z) of the material. Higher atomic num-
bers increase the probability of certain types of inter-
actions, such as photoelectric absorption. The cross-
section for photoelectric absorption (σphoto) is approx-
imately proportional to Z3 and inversely proportional to
the photon energy (E) raised to the power of three:

σphoto ∝ Z3

E3

In contrast, Compton scattering, which involves the

photon’s interaction with an electron, is less dependent
on the atomic number and more on the electron density
of the material.

The linear attenuation coefficient (µl) characterizes
the extent to which a material attenuates photons. This
coefficient combines the contributions from all possible
interaction processes: photoelectric absorption, Comp-
ton scattering, and pair production. The linear attenua-
tion coefficient can be expressed as:

µl = µphoto + µCompton + µpair

Figure 5: Photon-energy dependent cross sections. Cross sections of
the photoelectric absorption, Thomson scattering, Compton scatter-
ing, electron-positron pairs and photonuclear absorption for Cu as a
function of energy. The figure is taken from (Hermanns, 2013).

Additionally, the mass attenuation coefficient (µm),
which normalizes the linear attenuation coefficient by
the density (ρ) of the material, provides a measure of
how a specific material attenuates photons regardless of
its density:

µm =
µl

ρ

Figure 6: Mass attenuation coefficient. The image is taken from (Seib-
ert and Boone, 2005)
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• Photoelectric Absorption: This process domi-
nates at lower photon energies, where a photon is
completely absorbed, transferring its energy to an
electron, which is then ejected from the atom. The
likelihood of photoelectric absorption decreases
with increasing photon energy and is highly depen-
dent on the atomic number of the absorbing mate-
rial.

• Thomson Scattering: Thomson scattering occurs
when a photon interacts with a free electron, caus-
ing the photon to be deflected without a change in
its energy. However, in the photon energy range
used in PET, which is typically around 511 keV, the
contribution from Thomson scattering is minimal.
This is because the scattering cross-section de-
creases significantly at these higher energies, mak-
ing other interactions, such as Compton scattering,
more predominant.

• Compton Scattering: Predominant at intermedi-
ate energies, Compton scattering involves the pho-
ton transferring part of its energy to an electron and
being deflected in a different direction. This scatter
of photons is a significant factor in PET imaging,
contributing to image degradation unless corrected
for.

Compton scattering describes the interaction between
a photon and a loosely bound outer-shell orbital elec-
tron of an atom. In this process, the incident photon,
with energy much greater than the binding energy of
the electron, effectively behaves as if it collides with
a free electron. Unlike in the photoelectric effect, the
photon does not vanish; instead, it undergoes deflection
through a scattering angle (θ). During Compton scatter-
ing, a portion of the photon’s energy is imparted to the
recoil electron, resulting in a decrease in the photon’s
energy.

Figure 7: Compton scattering

The relationship between the energy of the scattered
photon (E′) and the scattering angle is governed by
the principles of energy and momentum conservation.
Specifically, the energy of the scattered photon is given
by the equation:

E′ =
E

1 +
(

E
mec2

)
(1 − cos(θ))

Here, E represents the energy of the incident photon
in MeV. It is important to note that the energy trans-
ferred during Compton scattering is independent of the
properties of the absorbing material, such as density
or atomic number. Additionally, Compton scattering
strictly involves interactions between photons and elec-
trons, with no dependence on other characteristics of the
material.

The Klein-Nishina formula (Klein and Nishina,
1928) provides the differential cross-section for photons
scattered by a single free electron. This formula, derived
within the framework of quantum electrodynamics, rep-
resents one of the earliest successful applications of the
Dirac equation. It describes the scattering of photons
by electrons, accounting for both Thomson scattering
at low photon energies and Compton scattering at high
photon energies.

dσ
dΩ
=

1
2

r2
e

(
λ

λ′

)2 (
λ

λ′
+
λ′

λ
− sin2(θ)

)

The angular dependent photon wavelength (or en-
ergy, or frequency) ratio is

λ

λ′
=

E′γ
Eγ
=
ω′

ω
=

1
1 + hν

mec2 (1 − cos θ)

Figure 8: The Klein–Nishina predictions of photon scattering. This
image is sourced from (Hill, 2019).

The formula elucidates how the total cross-section
and the expected deflection angle of scattered pho-
tons change with increasing photon energy. Notably, it

14.6



Scatter Correction for PET Image Reconstruction 7

demonstrates that at higher photon energies, the cross-
section decreases, indicating a reduced likelihood of in-
teraction between photons and electrons as shown in
Figure 6. This insight is crucial for understanding var-
ious phenomena in particle physics, astrophysics, and
medical imaging, where the scattering of photons plays
a significant role.

In TOF PET tomography (Watson, 2005), the arrival-
time difference ∆t is related to the spatial offset ∆s by
∆t = 2∆s/c. This relationship is integrated into the SSS
model by a detection efficiency function εt(∆s), the con-
tribution of the scatter signal to the detected events is
modeled through a set of integrals accounting for vari-
ous physical phenomena:

S AB =

∫

Vs

σAσB

4πR2
AS R2

BS

µl

σc

dσc

dΩ
[IA + IB] dVs (10)

IA = e−(
∫ S

A ρmds+
∫ S

B ρ
′
mds)

∫ S

A
εt(RBS − RAS + 2s)λm(s)ds

IB = e−(
∫ S

B ρmds+
∫ S

A ρ
′
mds)

∫ S

B
εt(RBS − RAS − 2s)λm(s)ds

where each term is defined as follows:

• S AB: Scatter signal detected by detectors A and B
from a volume element dVs.

• σAσB

4πR2
AS R2

BS
: Geometrical efficiency, indicating the ef-

fectiveness with which the system detects photons
that have scattered once at the point S and are then
captured by the detector pair.

• µl
σc

: This term describes the normalized linear at-
tenuation coefficient µ, whereσc is the total Comp-
ton scattering cross-section. The linear attenua-
tion coefficient µl quantifies how much a material
can attenuate the intensity of the radiation passing
through it, typically measured in cm−1. Normaliz-
ing it by σc used to express the attenuation relative
to the probability of Compton scattering events, ef-
fectively scaling the attenuation by the scattering
interactions in the medium.

• IA and IB: Integrals representing the attenuation of
unscattered photons along the paths to detectors A
and B, modified by the TOF detection efficiency
function εt(∆s).

Nonetheless, the single scatter simulation will be cor-
rupted by random coincidences, as seen in tailing out-
side the attenuation mask of emission data, as explained
in (Watson et al., 2004). The example of this artifact
shown in 9.

After acquiring the scatter sinogram from the simu-
lation using the activity map, we compute the scaling
factor using a linear fitting with Y = mx, where x repre-
sents the scatter sinogram with the attenuation mask and
Y represents the tail sinogram computed from the differ-
ence of total prompts and random prompts. An example
of this process is shown in Figure 23.

Figure 9: Example of estimated images used for scatter simulation
with the random coincidence effect. The images are sourced from
(Watson et al., 2004). (a) DIFT, (b) OSEM for the first scatter iter-
ation, and (c) second OSEM iteration. Note the negative regions in
the DIFT image (indicated by arrows), contributed to by scatter and
patient arm motion.

3.2. PET Reconstruction
3.2.1. Maximum-Likelihood Expectation Maximization

(MLEM)
The reconstruction process in PET imaging is es-

sential for accurately updating the activity map, which
represents the distribution of the radiotracer within the
body. The MLEM algorithm (Lange and Carson, 1984;
Shepp and Vardi, 1982) is a statistical method used to
iteratively refine this activity map λ(k+1) by maximizing
the likelihood of the measured data given the current es-
timate of the activity distribution.

The basic MLEM update equation is given by:

λk+1
m =

λk
m

AT 1
· AT

(
M

Aλk
m + b

)
(11)

where:

• λk
m is the current estimate of the activity map.

• A is the forward projection operator, which models
the PET scanner’s response to the activity distribu-
tion.

• b represents the background noise, modeled as or-
dinary Poisson noise.

• M is the measured data, i.e., the detected PET
events.

In real PET imaging scenarios, several additional fac-
tors need to be incorporated to improve the accuracy of
the reconstruction:

• Normalization correction factor (N): Accounts for
variations in detector efficiencies and geometrical
misalignment.

• Attenuation factor (L): Compensates for the atten-
uation of photons as they pass through the body.
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• Scatter prompts (s): Estimates the contribution of
scattered photons to the detected signal.

• Random prompts from delayed events (r): Cor-
rects for random coincidences in the detected sig-
nal.

Considering these parameters, the iterative recon-
struction model is updated as follows:

λk+1
m =

λk
m

(AT LT NT 1)
· AT LT NT

(
M

NLAλk
m + s + r

)
(12)

Here, the additional factors L, N, s, and r are incor-
porated into the forward and backward projection oper-
ations, ensuring a more accurate reconstruction of the
activity map.

3.2.2. Maximum-Likelihood Transmission Reconstruc-
tion (MLTR)

The MLTR algorithm (Manglos et al., 1995) is em-
ployed for attenuation correction by utilizing the sep-
aration of transmission and emission data, particularly
with the aid of Time-of-Flight (TOF) information. The
attenuation correction is vital for accurate quantitative
PET imaging, as it accounts for the loss of photon pairs
due to absorption in the body tissues.

The process involves updating the attenuation map σ,
which represents the distribution of attenuation coeffi-
cients within the body. This update is based on the cur-
rent estimates of the activity map λ, attenuation map σ,
forward projection A, normalization term N, measured
data m, random estimate r, scatter estimation s, and sen-
sitivity term S .

The updated term ψ is calculated as:

ψ = N · e−A(ρ(k)
m ) · A(λm)

The update equation for the attenuation map σ in
MLTR is given by:

ρk+1
m = ρk

m +
AT

(
ψ

ψ+r+s−m

)

AT
(

ψ2

ψ+r+s

) · S

where:

• ρk
m is the current estimate of the attenuation map.

• ψ represents the expected projections given the
current estimates.

• S is the sensitivity term, which accounts for the
detector sensitivity variations.

This iterative update ensures that the attenuation map
accurately reflects the true distribution of attenuation
coefficients, thereby improving the overall quality of the
PET reconstruction.

3.2.3. Joint Reconstruction of Activity and Attenuation
in Time-of-Flight PET (MLAA)

The MLAA algorithm (Benoit et al., 2016) com-
bines the iterative reconstruction methods of MLEM
and MLTR to simultaneously update both the activity
map λ and the attenuation map σ. This joint recon-
struction approach leverages the additional information
provided by TOF PET, which enhances the quantitative
accuracy and spatial resolution of the reconstructed im-
ages.

Algorithm 1 The joint 3-algorithm with updates in sim-
plified notation

1: λm ← λinit
m , ρm ← ρinit

m ▷ Initialization
2: for each iteration do
3: λm ← λm · AT LT NT (m/m̃)

AT LT NT 1 ▷ Sub-iteration 1:
MLEM

4: ρm ← ρm +
AT (ψ/m̃·(m̃−m))

AT (ψ2/m̃·S ) ▷ Sub-iteration 2:
MLTR

5: s← S S S (λm, ρm) ▷ Sub-iteration 3: SSS
6: end for

The MLAA update equations for the activity map and
attenuation map are as follows:

λ(k+1) =
λ(k)

(AT LT NT 1)
· AT LT NT

( m
NLAλ(k) + s + r

)

σ(k+1) = σ(k) +
AT

(
ψ

ψ+r+s−m

)

AT
(

ψ2

ψ+r+s

) · S

In this framework, λm and ρm are iteratively updated
in an alternating fashion. The activity map update (λm)
is performed using the MLEM approach, incorporating
the attenuation correction and other factors. The atten-
uation map update (ρm) is done using the MLTR ap-
proach, ensuring that both maps are simultaneously re-
fined. This joint reconstruction leads to improved image
quality and quantitative accuracy, making it particularly
useful for advanced PET imaging applications.

3.3. Evaluation Metrics

This section delineates the evaluation metrics em-
ployed to assess the performance of our reconstruc-
tion method, specifically the Peak Signal-to-Noise Ra-
tio (PSNR) and the Structural Similarity Index (SSIM).
These metrics are applied in both the image space and
the sinogram space to provide a comprehensive evalua-
tion.

3.3.1. Evaluation in Image Space
In the image space, the evaluation is conducted by

computing the Signal-to-Noise Ratio (SNR) from the
reconstructed image alone, without the need for a refer-
ence image or ground truth. This metric evaluates the
consistency of the reconstructed image and estimates
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noise by comparing the differences between the recon-
structed image and its smoothed version using a Gaus-
sian filter.

The Signal-to-Noise Ratio (SNR) can be computed
by comparing the mean of the signal to the standard de-
viation of the noise. The steps involved in this compu-
tation are as follows:

• Noise Estimation: Apply a 3D smoothing filter
(e.g., Gaussian filter) to the original image to cre-
ate a smoothed version. The difference between
the original and smoothed images is considered the
noise.

S (i, j, k) = (I ∗G)(i, j, k) (13)

where G is the 3D Gaussian filter, and ∗ denotes
the convolution operation.

N(i, j, k) = I(i, j, k) − S (i, j, k) (14)

• Calculate the Mean of the Original Image: Com-
pute the mean of the original 3D image.

µsignal =
1

P · Q · R
P−1∑

i=0

Q−1∑

j=0

R−1∑

k=0

I(i, j, k) (15)

• Calculate the Standard Deviation of the Noise:
Compute the standard deviation of the noise esti-
mated from the original and smoothed images.

σnoise =

√√√
1

P · Q · R
P−1∑

i=0

Q−1∑

j=0

R−1∑

k=0

[N(i, j, k)]2 (16)

• Compute SNR: Use the ratio of the mean of the
original image to the standard deviation of the
noise.

SNR =
µsignal

σnoise
(17)

By following these steps and using the provided
equations, the SNR for a 3D image can be estimated
without a reference image or ground truth, thereby pro-
viding a measure of the image’s consistency. This
method allows for a robust evaluation of image qual-
ity in the absence of an external standard, ensuring that
the intrinsic properties of the image are adequately as-
sessed.

3.3.2. Evaluation in Sinogram Space
In the sinogram space, evaluation involves compar-

ing the expected sinogram with the measured sinogram
using both PSNR and SSIM metrics. This method of-
fers a robust assessment of image quality and structural
similarity in the transformed domain.

Peak Signal-to-Noise Ratio (PSNR) (Sheikh et al.,
2006) is used to evaluated the estimated sinogram with
the measure data in sinogram space. The Mean Squared

Error (MSE) is computed between the expected and
measured sinograms as follows:

PSNR = 10 log10

(
MAX2

MSE

)
(18)

MSE =
1

P · Q · R
P−1∑

i=0

Q−1∑

j=0

R−1∑

k=0

[
I(i, j, k) − K(i, j, k)

]2

(19)

• MAX: The maximum possible pixel value of the
image. For example, for an 8-bit image, this value
is 255.

• MSE: Mean Squared Error between the original
and reconstructed 3D images.

• P: The number of rows (height) in the 3D image.

• Q: The number of columns (width) in the 3D im-
age.

• R: The depth (number of slices) in the 3D image.

• I(i, j, k): The pixel value at position (i, j, k) in the
original 3D image.

• K(i, j, k): The pixel value at position (i, j, k) in the
reconstructed 3D image.

Structural Similarity Index (SSIM), (Wang and
Bovik, 2002) is a perceptual metric that evaluates the
similarity between two images by considering changes
in structural information, luminance, and contrast. For
sinograms, SSIM is calculated as follows:

SSIM(x, y) =
(2µxµy +C1)(2σxy +C2)

(µ2
x + µ

2
y +C1)(σ2

x + σ
2
y +C2)

, (20)

where x and y are the expected and measured sino-
grams, µx and µy represent their mean values, σ2

x and σ2
y

are their variances, σxy is their covariance, and C1 and
C2 are constants to avoid division by zero. The SSIM
index ranges from -1 to 1, with 1 indicating perfect sim-
ilarity. SSIM is considered more consistent with human
visual perception than PSNR.

To ensure a thorough evaluation, the PSNR and SSIM
scores are computed for each bin of the sinogram, and
the final reported values are averages over all bins. This
approach ensures a robust assessment of image quality
and structural similarity across different data represen-
tations, thus enhancing the reliability of the reconstruc-
tion method.

In summary, PSNR provides a measure of absolute
error, while SSIM offers a perceptual evaluation of im-
age quality in the sinogram space. Utilizing both met-
rics allows for a comprehensive assessment of the quan-
titative and perceptual aspects of image reconstruction,
ensuring the efficacy of the proposed method.
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3.4. Computational Resources
The experiments were validated using MATLAB

R2024a (Update 3) on a Linux-based system with an
Intel(R) Xeon(R) Platinum 8375C CPU @ 2.90GHz.
The system architecture was x86 64, supporting 32-bit
and 64-bit operations with 46-bit physical and 48-bit
virtual address sizes. It had 16 CPUs (8 cores with 2
threads per core). The openSSS, an open-source imple-
mentation of scatter estimation for 3D TOF-PET based
on the TOF-aware Single Scatter Simulation (SSS), was
tested and timed using this MATLAB setup, ensuring
sufficient computational capacity and data handling for
accurate experimental results.

On the other hand, for python experiment with larger
clinical data. The experiments were conducted on a
laboratory server equipped with a 48-core Intel Xeon
E5-2690 v3 processor (2.60 GHz base clock, 3.50 GHz
turbo) supporting both 32-bit and 64-bit instruction sets.
This high-performance computing environment features
a 60 MiB shared L3 cache and hardware virtualization
capabilities (VT-x).

4. Results

4.1. Single Scatter Simulation
The development of the single scatter simulation

was successfully implemented using Python, with the
results meticulously benchmarked against estimations
obtained from the MATLAB version available online
(Santo et al., 2023). Furthermore, comparisons with the
Monte Carlo simulation are currently underway to en-
sure comprehensive validation, in collaboration with the
developer of openSSS as a partner.

To accurately determine the sinogram, it is impera-
tive to establish both the activity map and attenuation
map, alongside the scanner geometry. In order to mini-
mize computational time, a subset of detectors and rings
was uniformly selected from the complete set available
in the scanner. For the Toyscanner, which comprises
320 detectors and 8 rings, the presented results are com-
puted using 80 sample detectors and 3 rings. The activ-
ity map and attenuation map are depicted in Figure 10a
and 10b, respectively, providing a visual representation
of the spatial distribution of radioactive tracers and the
attenuation properties of the scanned object.

(a) Activity Map (b) Attenuation Map

Figure 10: Activity and Attenuation Maps

Figure 11 illustrates the scatter distribution contri-
bution from the sample ring and detector, specifically
aimed at reducing computational time. This figure high-
lights the scatter events detected within a specific subset
of the scanner, providing a focused view of scatter be-
havior. Additionally, the interpolated sinogram, or esti-
mated scatter distribution for all rings and detectors, was
computed using multi-linear interpolation, as shown in
Figure 12. This approach allows for the estimation of
scatter distribution across the entire scanner, enhancing
the accuracy of the simulation.

Figure 11: Single Scatter Simulation with sample detectors and rings

Figure 12: Interpolated Single Scatter Simulation

The contribution of Time-of-Flight Single Scatter
Simulation (TOF-SSS) is depicted in Figure 12. The re-
sults indicate that the contributions from edges of FOV
are smaller than those from center of FOV, correspond-
ing to the normal distribution described in Equation 5.
This finding aligns with theoretical expectations and
demonstrates the efficacy of TOF-SSS in capturing scat-
ter events within specific temporal windows.

Figure 13: Single Scatter Profile at Axial Index = 80

To further validate the performance of the Python im-
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plementation of Single Scatter Simulation (SSS), we
evaluated the computational times for SSS using MAT-
LAB, standard Python (without utilizing Numba and
parallel processing), and optimized Python (utilizing
Numba and parallel processing). These evaluations are
presented in Figure 14. The results indicate that for the
SSS part computed from the sample ring and detector,
the optimized Python version is nearly 25 times faster
than the MATLAB version, while the standard Python
version is 8 times slower. However, the interpolation
part in MATLAB, using the interp function, is 5 times
faster than the Python version. This significant im-
provement in computational efficiency underscores the
benefits of using optimized Python implementations for
large-scale simulations.

This SSS algorithm will be used to compute the scat-
ter sinogram for the reconstruction process, with the re-
sults to be presented in the subsequent section.

Figure 14: Computational Time of Single Scatter Simulation

4.2. Emission Sinogram Simulation

To validate the concept of scatter correction, we
present the generation of the emission sinogram using
generated scatter sinograms and forward projection of
the activity map. This process follows Equation 1, en-
suring a systematic approach to simulating emission
data. The attenuation term is generated using the fol-
lowing equation:

L = e−A(ρm) (21)

Scatter sinograms are generated using the activity and
attenuation map phantom with the same Toy Scanner
Geometry and 5 TOF bins. A random sinogram is gen-
erated using a Poisson distribution with λ = 0.5. In the
final step, Poisson noise is added to the generated emis-
sion sinogram to mimic real-world data acquisition sce-
narios. The result of this generation process is shown in
Figure 15, and its corresponding profile is illustrated in
Figure 16. These figures provide a comprehensive view
of the simulated emission data, showcasing the effects
of scatter and random events.

Figure 15: Synthetic Emission Sinogram where each row represent
each TOF bin

Figure 16: Emission and scatter sinogram profiles at different Bin and
Angle, each row represents TOF bin and column represents angle 0,
60, 120, 180, respectively

4.3. Scatter Correction

To provide a comprehensive understanding of the
scatter correction process, we detail each argument of
the Maximum Likelihood Expectation Maximization
(MLEM) algorithm. Initially, the attenuation sinogram
is computed and used for forward projection to calcu-
late the denoising term, as described in Equation 12, but
specifically for the case without scatter correction.

Figure 17: Attenuation Sinogram L = e−A(ρm)

After obtaining the mask by computing the attenua-
tion sinogram, we compute the sensitivity or denoising
term according to the divisor term LT AT 1. This term
plays a crucial role in normalizing the reconstructed im-
ages, ensuring accurate representation of tracer distribu-
tion.
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Figure 18: Sensitivity of MLEM

The initial guess for the iterative reconstruction is
given by LA(λm) + r, providing a starting point for the
MLEM algorithm.

Figure 19: First estimated of MLEM LAλm + r

Figure 20: Back Projection of Relative distance AT LT M
LAλ+r

Figure 21: First estimated of MLEM using equation 12

Figure 22 demonstrates the initialization and subse-
quent reconstructed activity maps after 25, 50, and the
final iteration. This sequential depiction highlights the
iterative improvement in image quality and convergence
towards an accurate representation of the activity distri-
bution.

For the scatter correction, we need to compute the
scaling factor, which represents the multiplication term

Figure 22: The reconstructed activity map of MLEM reconstuction
without scatter correction

Figure 23: The attribution to compute the scaling factor. The row
represent each TOF Bin

applied to each bin of the scatter sinogram in the tail
sinogram. The tail sinogram is computed as explained
in the Methodology section. This scaling factor is criti-
cal for accurately estimating and correcting scatter con-
tributions in the reconstructed images.

To illustrate the scatter profile after multiplication
with the scaling factor, the scatter profile compared with
the emission sinogram is shown in Figure 26. Note that
this scatter sinogram is simulated from the activity and
attenuation map and used in the emission data before
adding Poisson noise, as represented by the fractured
graph in the mentioned figure. This comparison high-
lights the impact of scatter correction on the overall im-
age quality and accuracy.

Subsequently, the MLEM algorithm incorporating
the scatter term is computed, and the results are pre-
sented in Figure 24. This figure showcases the improved
reconstruction quality achieved by integrating scatter
correction into the MLEM process.

However, this approach is primarily used to establish
a baseline performance, as we do not have the initial ac-
tivity image. This necessitates performing reconstruc-
tion for several iterations to obtain the reconstructed ac-
tivity map, which is then used to generate the scatter
sinogram. The results of this algorithm, which gener-
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Figure 24: The reconstructed activity map of MLEM reconstuction
with static scatter correction

Figure 25: The reconstructed activity map of MLEM reconstuction
with scatter correction using iterative scatter simulation

ates a new scatter sinogram every 10 epochs of MLEM,
are shown in Figure 25. Nonetheless, the scatter sino-
gram profile from the final update is depicted in Figure
26, providing a comprehensive view of the iterative im-
provement in scatter correction.

At the end of the evaluation in synthetic data, Log
loss, as desired for the MLEM algorithm, PSNR and
SSIM for image comparison are used as evaluation
scores to observe the performance of the reconstruc-
tion task. These scores are evaluated in the image space
since we have ground truth.

The log loss comparison is shown in Figure 27, eval-
uating the performance in terms of the logarithmic loss
function. The MLEM method (black crosses) exhibits a
gradual decrease in log loss, stabilizing around 2430.
The baseline scatter correction (red circles) demon-
strates a sharper decline, stabilizing at a lower log loss
of approximately 2415. The iterative scatter estimation
(yellow squares) shows the most rapid decrease initially,
but with higher variability, ultimately stabilizing close
to the baseline scatter correction at around 2415. This
suggests that both the baseline and iterative scatter cor-
rection methods offer significant improvements in re-
ducing log loss compared to the MLEM method, with

Figure 26: Scaling profile of scaled computed scatter sinogram com-
pare to emission data and scatter sinogram used to generate emission
data

Figure 27: Log Loss Comparison across 100 iterations for MLEM,
baseline scatter correction, and iterative scatter estimation methods.

Figure 28: PSNR Comparison across 100 iterations for MLEM, base-
line scatter correction, and iterative scatter estimation methods.

the iterative method showing more variability but com-
parable final performance.

The Peak Signal-to-Noise Ratio (PSNR) compari-
son is depicted in Figure 28. This graph illustrates
the PSNR values across 100 iterations for three meth-
ods: Maximum Likelihood Expectation Maximization
(MLEM), baseline scatter correction, and iterative scat-
ter estimation. The MLEM method, represented by
black crosses, shows a steady increase in PSNR, sta-
bilizing around 14.5 dB. The baseline scatter correc-
tion, depicted with red circles, demonstrates a more
rapid increase in PSNR, reaching approximately 15 dB,
indicating a noticeable improvement over the MLEM.
The iterative scatter estimation method, shown in yel-
low squares, achieves the highest PSNR values, quickly
rising to about 16 dB and maintaining this level through-
out the iterations. This suggests that the iterative scatter
estimation method significantly enhances image quality
by effectively reducing noise and improving signal ac-
curacy.

Figure 29 presents the Structural Similarity Index
(SSIM) comparison, which measures the similarity be-
tween two images. The SSIM values are plotted for the
same three methods over 100 iterations. The MLEM
method (black crosses) and baseline scatter correction
(red circles) show similar SSIM values, with both meth-
ods stabilizing around 0.6. The iterative scatter estima-
tion (yellow squares), however, starts lower but gradu-
ally increases, plateauing just below 0.6. Although the
iterative method improves over time, it does not surpass
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Figure 29: SSIM Comparison across 100 iterations for MLEM, base-
line scatter correction, and iterative scatter estimation methods.

the baseline scatter correction in terms of SSIM, possi-
bly due to the noise and limited scanner size used in this
study. This indicates that while the iterative method ex-
cels in PSNR, its SSIM performance is less pronounced,
suggesting a trade-off between different image quality
metrics.

In summary with synthetic data experiment, the it-
erative scatter estimation method demonstrates superior
performance in terms of PSNR and log loss, indicating
better overall image quality and reduced noise. How-
ever, its SSIM improvement is less pronounced, high-
lighting the complexity of balancing different image
quality metrics in PET imaging. Further optimization
and testing with larger datasets and real clinical scenar-
ios will be necessary to fully validate these findings.

To observe the performance in real clinical data, the
data acquired using a Siemens mCT scanner is used.
The scanner has 13 TOF bins with 55 rings and 672
detectors. We compare the results after using MLAA
with and without scatter correction. The table presents
a comparative analysis between the MLAA and MLAA
with scatter correction (MLAA S) methods, focusing
on computational time, SNR in Image space while
SSIM and PSNR for Sinogram space.

For the experiment with 20 iteration, the MLAA
method demonstrated a computational time of 226 min-
utes, yielding an SNR of 0.2455, a PSNR of 28.7802,
and an SSIM of 0.3697. In contrast, the MLAA S
method required a longer computational time of 268
minutes and produced a slightly lower SNR of 0.1902,
a marginally reduced PSNR of 28.7200, and a slightly
decreased SSIM of 0.3654. These results suggest that
while the scatter correction in MLAA S increases the
computational burden, it does not significantly enhance
image quality metrics compared to the standard MLAA
method.

The comparison of reconstructed activity maps is
shown in Figure 31. Figure 32 show the result from
scatter simulation using the activity and attenuation
maps from the MLAA reconstruction process in sin-
gram space. In the other hand, the effect of scattering
in image space are presented in Figures 33, 34, and 35,

(a) Emission Sinogram (b) Estimated Emission Sinogram

Figure 30: Comparison of Measured Prompts and Estimated Emission
Prompts using MLAA with Scatter Correction after 20 iterations

(a) MLAA Reconstuction (b) MLAA S Reconstruction

Figure 31: Comparison of estimated activity distribution using MLAA
with and without scatter correction after 20 iterations

(a) Non-TOF Emission prompts

(b) Non-TOF Scattering prompts

Figure 32: Scattering effect in the coronal views

14.14



Scatter Correction for PET Image Reconstruction 15

Method SNR PSNR (dB) SSIM Time (m.)

MLAA 0.24 28.78 0.37 226
MLAA S 0.19 28.72 0.37 268

Table 2: Comparison of MLAA and MLAA with scatter correction
(MLAA S).

Figure 33: Scattering effect to the prompts.

respectively, each depicting different views.

5. Discussion

The implementation of the Time-of-Flight (TOF) sin-
gle scatter simulation (SSS) was successfully achieved,
demonstrating significant improvements in computa-
tional efficiency. This efficiency gain substantially re-
duced computational time, making the simulation more
practical for large-scale applications. However, ongo-
ing tests with real clinical data and synthetic data gen-
erated through Monte Carlo simulations are in progress
in collaboration with the openSSS developer commu-
nity. These tests aim to further validate the implemen-
tation under diverse conditions and with more complex
datasets.

(a) MLAA with scatter correction

(b) Scattering effect

Figure 34: Scattering effect in the coronal views

(a) MLAA with scatter correction

(b) Scattering effect

Figure 35: Scattering effect in the sagital views

For our internal validation, the implemented SSS was
used to generate data and run scatter correction using
the generated scatter sinogram. The complete pipeline
was evaluated in both baseline correction scenarios,
where the scatter simulation was used to generate the
emission sinogram itself, and in scenarios where scat-
ter sinograms were generated from reconstructed sino-
grams. This dual approach provided a comprehensive
assessment of the scatter correction’s performance.

The results of the scatter correction were promising,
showing good performance in terms of Peak Signal-to-
Noise Ratio (PSNR) and log loss metrics. However, the
Structural Similarity Index (SSIM) did not show sig-
nificant improvement. This could be attributed to the
strong presence of noise and the relatively small size
of the scanner used in this study. The small geome-
try, while advantageous for saving computational time,
might limit the SSIM improvement. Despite this, the
scatter-corrected results still showed overall better im-
age quality.

For the clinical data acquired using the Siemens
mCT scanner, the comparison between the MLAA and
MLAA with scatter correction. As expected that the
computational time for the MLAA with Scatter Correc-
tion method was longer, requiring 40 minutes longer.
The SNR for the MLAA method was higher at 0.2455
compared to 0.1902 for the MLAA with scatter cor-
rection method, while PSNR and SSIM is comparable.
These results indicate that while the scatter correction
slightly increased the computational burden, it did not
significantly improve the image quality metrics (SNR,
PSNR, SSIM). The negligible improvement in SSIM
suggests that the noise level and small geometry of the
scanner continue to play a significant role in limiting
image quality enhancement. However, the overall im-
age quality with scatter correction still showed better
performance, reinforcing the benefits of implementing
scatter correction in clinical settings despite the addi-
tional computational cost.
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Nevertheless, the practical application of this scatter
simulation technique poses challenges. The iterative re-
construction process, which updates the reconstructed
image or activity map, leads to high computational de-
mands, particularly for real-world scenarios involving
large-scale scanners like the Siemens mCT scanner with
55 rings and 672 detectors, or the Siemens Vision 600
with 80 rings and 760 detectors. Even with the faster
implementation developed in this study, the computa-
tional load remains substantial, suggesting that this ap-
proach might not be ideal for practical, routine use.

To address these challenges, further optimization is
necessary. This includes finding the optimal size for
activity and attenuation images, selecting appropriate
samples of detectors and rings, and possibly reducing
the number of scatter points in the simulation. These
optimizations could significantly enhance the feasibil-
ity of the simulation for practical applications.

In parallel, exploring advanced approaches such as
generating scatter sinograms based on activity images
and attenuation maps using deep learning techniques
could offer a promising direction for future work. Deep
learning models have the potential to learn complex pat-
terns and relationships in the data, potentially providing
a more efficient and accurate method for scatter correc-
tion.

6. Conclusions

This study successfully developed and implemented
a Single Scatter Simulation (SSS) algorithm using
Python, optimized with Numba and parallel process-
ing, achieving significant reductions in computational
time for three-dimensional positron emission tomog-
raphy (PET) imaging. Validation against MATLAB
benchmarks confirmed the enhanced efficiency of the
Python implementation, making it feasible for large-
scale applications.

The integration of SSS results into iterative re-
construction techniques, specifically the Maximum
Likelihood Reconstruction of Attenuation and Activ-
ity (MLAA), and the incorporation of Time-of-Flight
(TOF) information, showed promising improvements in
image quality. Evaluations with synthetic and real clin-
ical data demonstrated good performance in terms of
Peak Signal-to-Noise Ratio (PSNR) and log loss met-
rics, although Structural Similarity Index (SSIM) im-
provements were limited due to noise and the small
scanner size.

Despite these advancements, the high computational
demands of the iterative reconstruction process for
large-scale scanners pose practical challenges. Future
research should focus on optimizing image sizes, detec-
tor and ring samples, and scatter point reduction. Addi-
tionally, exploring deep learning techniques for gener-
ating scatter sinograms offers a promising direction for

enhancing scatter correction methods, potentially rev-
olutionizing PET image reconstruction and improving
diagnostic outcomes.
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Appendix

Table 3: ToyScanner Geometry

Name Value
DetectorSize [5,5]
EnergyResolution 0.1500
NrCrystalsAxial 4
NrCrystalsTrans 4
NrModulesAxial 2
NrModulesTrans 2
NrSectorsAxial 1
NrSectorsTrans 40
TOFResolution 400

Table 4: Siemens mcT Geometry

Name Value
DetectorSize [4,4]
EnergyResolution 0.1150
NrCrystalsAxial 14
NrCrystalsTrans 14
NrModulesAxial 4
NrModulesTrans 1
NrSectorsAxial 1
NrSectorsTrans 48
TOFResolution 555
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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is the most lethal form of pancreatic cancer. Accurate survival predic-
tion could guide treatment strategies and facilitate patient stratification for critical trials. A significant challenge is the
complexity of gigapixel Whole Slide Images (WSIs), which contain vast amounts of detailed information, making it
difficult for current deep learning methods to accurately analyze these structures. This study explores the application
of GraphLSurv for the prediction of survival in the context of PDAC. GraphLSurv is a scalable Graph Convolution
Network (GCN) designed for survival prediction from Whole Slide Images. It dynamically generates adaptive and
sparse graph structures to highlight and analyze important areas within WSIs and Tissue Microarrays (TMAs). Two
different models were used as feature extractors to generate the input of the network: ResNet-50 pretrained on Im-
ageNet, and a vision transformer backbone (ViT-L/16 via DINOv2) pretrained on histopathology-specific datasets.
Our method was tested on a PDAC dataset from the University of Cologne, including 850 WSIs, 650 TMAs, and
survival information from 321 patients. The results show that GraphLSurv is able to predict patients risk in the con-
text of PDAC. With a concordance index of 0.5984, we showed the model using features extracted from WSIs using
the vision transformer backbone (ViT-L/16 via DINOv2) pretrained on histopathology-specific datasets was more
performant. This underscores the importance of domain-specific feature extraction in developing robust prognostic
models. In the end, our best model was able to separate the patient in two groups: high-risk and low-risk with p-value
equal to 0.0410 for a log-rank test. The implications of this study presents that by combining advanced deep learning
techniques with specialized feature extraction, GraphLSurv represents a major step forward in creating more accurate
and reliable survival prediction models for PDAC.

Keywords: Survival Prediction, Pancreatic cancer, Graph Convolutional Network, Whole Slide Images, Tissue
Microarrays

1. Introduction

Pancreatic cancer, particularly pancreatic ductal ade-
nocarcinoma (PDAC), is the seventh leading cause of
cancer death worldwide. Characterized by its high
lethality, PDAC has a five-year survival rate of around
4% for the most common form, malignancy of the ex-
ocrine pancreas (Hidalgo et al., 2015). At the time of
diagnosis, only 15-20% of patients are eligible for sur-
gical intervention, which itself only slightly improves
the five-year survival rate to 20% (Mizrahi et al., 2020).
The insidious nature of pancreatic cancer, marked by
few and nonspecific symptoms, complicates early de-
tection, leaving the majority of patients with limited

treatment options. Survival analysis is critical for un-
derstanding and improving outcomes in pancreatic can-
cer. It involves methods to assess the probability of
survival from the time of diagnosis to a specific future
time, the hazard or the risk of the event, and the sur-
vival rate of patients not experiencing the event after a
certain period (Clark et al., 2003). Traditional survival
analysis approaches, such as Cox proportional hazards
models, offer insights into associations between patient
variables and survival outcomes. However, they often
rely on univariate and multivariable regression analyses
that may not capture the complex interactions within
high-dimensional data, such as histopathological im-
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ages (Bradburn et al., 2003).
Histopathological Whole-Slide Images (WSIs) are

a type of medical pathology image typically used by
pathologists to diagnose complex tumor diseases, in-
cluding tumor invasion, mitosis, anaplasia, and necro-
sis. These images enable clinical doctors to make criti-
cal decisions on disease treatment. The advent of Whole
Slide Imaging (WSI) has revolutionized the field of dig-
ital pathology, offering numerous advantages over tradi-
tional microscopy. Over the past decade, advancements
in image digitizing technology have led to the devel-
opment of slide scanners capable of producing WSIs,
which can be examined similarly to conventional mi-
croscopy but with added benefits. WSIs allow for high-
resolution capture and detailed examination of tissue
samples, crucial for accurate diagnoses and research.
They provide consistent quality over time and facili-
tate the use of image processing techniques, enhancing
the diagnostic process. Moreover, WSIs can be easily
shared and accessed remotely, making them invaluable
for telepathology, education, and collaborative research
(Al-Janabi et al., 2012).

Tissue Microarrays (TMAs) are crucial in digital
pathology, enabling the simultaneous analysis of mul-
tiple samples, reducing costs, and enhancing tumor pro-
filing standardization. TMAs are constructed by taking
small cylindrical cores of tissue samples from different
tumor specimens or patients and arranging them in an
array pattern on a single recipient paraffin block. The
figure 1 illustrates the array of tissues and a close-up
on the individual cores. This approach minimizes stain-
ing variations and improves diagnostic reliability. Dig-
ital TMA slides optimize documentation, storage, and
result retrieval. Implementing TMAs in diagnostics of-
fers a reliable and economical method for tumor classi-
fication, essential for personalized treatment strategies
(Rossing et al., 2012).

Figure 1: Magnified view of a tissue patch extracted from one core of
a TMA (Sandarenu et al., 2022).

Despite these advancements, manual interpretation of
histopathological images remains subjective, suffering
from large inter- and intra-observer variability. Even

patients with the same histopathological features can
have distinct survival outcomes due to tumor hetero-
geneity (Ren et al., 2022). In recent years, deep learning
has significantly advanced computational histopathol-
ogy. These advancements enable the extraction of
clinically useful biomarkers directly from Whole Slide
Images (WSIs), enhancing cancer prognosis by inte-
grating extensive histological data. This integration
leads to improved survival prediction and treatment out-
comes while also augmenting the expertise of patholo-
gists. Notably, deep learning techniques automate tasks
such as tumor detection, grading, and subtyping with
high accuracy, often surpassing pathologist-level per-
formance (Cooper et al., 2023). Deep learning mod-
els can predict genetic mutations and survival outcomes
from histopathology images, offering valuable prognos-
tic insights. Techniques like multiple-instance learning
(MIL), transfer learning, and weakly-supervised learn-
ing enable effective analysis of large datasets, enhanc-
ing model performance even with limited labeled data.
Weakly-supervised learning trains models on complex
tasks using image-level labels or noisy annotations,
making tumor detection possible without detailed an-
notations (Li et al., 2023). Self-supervised learning
methods, help models learn rich representations from
unlabeled data. Neural attention mechanisms improve
interpretability and performance by focusing on rele-
vant regions in histopathology images. These advance-
ments have facilitated personalized treatment plans and
reduced the burden on pathologists, helping for more
precise and efficient cancer diagnostics and prognosti-
cation.

Graph Convolutional Networks (GCNs) provide a
promising method by representing histopathological
data as graphs, where nodes stand for tissue patches
and edges show the relationships between these patches.
This approach offers a deeper understanding of the
tumor microenvironment, which is crucial for cancer
progression and patient outcomes. Unlike traditional
CNNs, GCNs can dynamically adjust to the spatial rela-
tionships within the data, providing a more comprehen-
sive and adaptive analysis (Wang et al., 2022).

1.1. Key Contributions
Our contributions in this research are summarized as

follows:

• Exploration of GraphLSurv: This project applies
GraphLSurv, a weakly supervised survival predic-
tion framework, to a specific pancreatic ductal ade-
nocarcinoma (PDAC) dataset, allowing for direct
predictions of patient-level outcomes without rely-
ing on local labels.

• Feature extraction comparison: The study employs
a novel feature extractor, ViT/16, pretrained on
histopathology images, and compares its perfor-
mance with the traditional ResNet-50 model. This
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comparison highlights the importance of tailored
pretraining for histopathological tasks.

• Integration of Tissue Microarrays (TMAs): In con-
trast to the predominant focus on WSI, this thesis
incorporates TMAs, providing a fresh perspective
on histopathological analysis. TMAs offer a stan-
dardized and cost-effective means to study multi-
ple tissue samples, complementing insights gained
from WSIs.

2. State of the art

2.1. Survival Analysis

In cancer research, the focus is often on the time until
a specific event, such as relapse or death, occurs, known
as survival time. Since not all individuals experience the
event during the study period and survival data are typi-
cally skewed with many early events, specialized meth-
ods known as survival analysis are used. Survival anal-
ysis assesses the probability of survival from diagnosis
to a future time, the risk of the event, and the survival
rate (Clark et al., 2003).

The traditional Cox model, a widely used method in
medical research for analyzing survival data, investi-
gates how factors like age or treatment affect the risk
of events like death over time (Bradburn et al., 2003). It
assumes these factors consistently influence event rates,
reflected in hazard ratios. Validating the proportionality
assumption is crucial for the model’s reliability in pre-
dicting survival outcomes. Essentially, the Cox model
employs multiple linear regression of the hazard’s log-
arithm on variables xi, with the baseline hazard vary-
ing over time. Covariates then multiply the hazard at
any time point, reflecting the key proportional hazards
model assumption: event hazards in different groups
are constant multiples of each other. Another popular
method for estimating survival probability is Kaplan-
Meier (KM) (Bradburn et al., 2003), which accounts
for both censored and uncensored survival times. For
k patients that have events at distinct times t1 < t2 <
t3 < . . . < tk. The KM method calculates the probabil-
ity of surviving each time interval and multiplies these
probabilities to get the overall survival probability. Each
patient contributes information until they have an event
or are censored. If no patients were censored, the KM
estimate would be the number of event-free individuals
at time t divided by the total number of study partici-
pants. Commonly used evaluation metrics for survival
models include the Concordance Index (C-Index). The
C-Index measures the model’s ability to correctly rank
survival times based on the predicted risk scores. It is
defined as the probability that, for a randomly selected
pair of subjects, the subject with the higher predicted
risk score experiences the event before the subject with
the lower predicted risk score. The C-Index ranges from

0.5 for random predictions to 1, where 1 indicates per-
fect discrimination. A higher C-Index value indicates
better discriminative ability of the prognostic model.

2.2. Survival Analysis with Deep Learning

Traditional survival analysis methods, like those
mentioned above, have been used to analyze and model
survival data. However, with the rise of machine learn-
ing and deep learning, new approaches have emerged
that include these techniques to improve survival pre-
diction. The survival prediction problem can be formu-
lated as follows:

ŷi(Bi) = F(Bi; θ) (1)

where ŷi is the predicted survival time or event time for
the i-th individual, Bi represents the set of covariates
or features, such as age, gender, treatment, etc. F is
a function that maps the covariates Bi to the predicted
survival time ŷi, parameterized by θ, that denotes the pa-
rameters of the survival prediction model, learned from
training data. The goal is to estimate the function F and
its parameters θ using historical data, which includes
both censored and uncensored observations. Censored
observations refer to instances where the event of in-
terest has not been observed during the study period.
The Cox proportional hazards model is used as the sur-
vival loss function, optimizing the network to predict
survival risk scores directly from the graph representa-
tions (Baek et al., 2021). The negative log-likelihood
function or the Cox model is given by:

ℓcox =
∑

i∈{i:σi=1}

ŷi − log
∑

j∈{ j:t j≥ti}
eŷ j



where ŷi is the risk score for patient i, and σi is the set
of patients still at risk at time ti. DeepSurv enhances
the Cox model using a neural network to capture non-
linear covariate effects, outperforming traditional meth-
ods (Katzman et al., 2018). DeepConvSurv, a deep con-
volutional survival model for predicting survival from
histopathological images, operates at the patch level
with a unique architecture utilizing Cox model loss.
It aggregates patch-level risks to derive patient-level
predictions (Zhu et al., 2016). WSISA (Whole Slide
Imaging Survival Analysis) stands as a comprehensive
survival prediction framework for WSIs, incorporating
patch sampling, clustering, and cluster selection stages
(Zhu et al., 2017). It showcases robustness in handling
variability in WSI sizes and patterns. DeepAttnMISL
introduces an attention-based aggregation approach for
survival prediction using WSIs, emphasizing the impor-
tance of relevant regions via an attention mechanism
(Yao et al., 2020).
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Figure 2: Visual depiction illustrating the process of constructing a
Graph structure from a Whole Slide Image (WSI). It begins with the
establishment of labeled nodes, with each patch depicted as a node,
interconnected by edges representing their connections.

2.3. Graph Convolution Networks (GCN) for Survival
Analysis

Graph Convolutional Networks (GCNs) are neural
networks designed for graph-structured data. Unlike
traditional neural networks that handle Euclidean data
such as images or text, GCNs manage non-Euclidean
structures represented as graphs. They extend convo-
lutional operations from regular Convolutional Neural
Networks (CNNs) to graph data, aggregating informa-
tion from neighboring nodes to update node features. In
GCNs, each node in the graph has its own feature vector,
which is updated by aggregating the feature vectors of
neighboring nodes. This aggregation process combines
neighboring node features and applies transformations
to generate updated node feature vectors. Mathemati-
cally, a single graph convolutional layer operation can
be expressed as a formula involving node feature matri-
ces and weight matrices. The graph convolutional net-
work equation is defined as:

H(l+1) = σ
(
D−

1
2 AD−

1
2 H(l)W (l)

)

where H(l) is the node feature matrix at layer l, A is
the adjacency matrix, D is the degree matrix, W (l) is

the layer-specific trainable weight matrix, and σ is the
activation function. For tasks requiring an overall un-
derstanding of the graph, such as graph classification,
GCNs aggregate node features into a single represen-
tation of the entire graph using pooling operations like
mean or max pooling. GCNs offer several advantages
for survival analysis by capturing complex relationships
between variables. Survival data often involves intri-
cate connections between variables, such as patient de-
mographics, clinical features, and genetic data. GCNs
model these relationships by representing the data as a
graph where nodes represent patients and edges indi-
cate relationships, such as similarity in clinical features.
In the case of WSI as represented in 2 the nodes will
be represented as the patches and the edges as the re-
lationships between them. By aggregating information
from neighboring nodes, GCNs can effectively reduce
dimensionality and capture relevant patterns, also can
improve the predictive performance of survival models
by capturing non-linear interactions and dependencies
that traditional methods might not be able to capture.

2.4. Feature Extraction from WSIs
Developing machine learning-based diagnostic mod-

els for histopathology images has gained significant
attention. Deep learning models trained on natural
images often underperform on histopathology images
due to domain shift, emphasizing the need for spe-
cialized feature extractors. While pre-trained models
like ResNet, VGG, or Inception are widely used, they
may not capture the unique features required for spe-
cific fields such as medical imaging. Therefore, there
is increasing interest in creating specialized feature
extractors by pre-training models on domain-specific
datasets. Despite these challenges, several strategies are
being explored to address data scarcity. These include
data augmentation, transfer learning, self-supervised or
weakly-supervised learning, and multi-center collabo-
rations that merge resources to create larger, more di-
verse datasets (Xu et al., 2022). However, models
trained on limited or public datasets may not general-
ize well to unseen data from different demographics or
imaging protocols, further limiting their practical util-
ity (Li et al., 2020). The usage of CLAM (ResNet-50)
(Lu et al., 2021) pretrained on ImageNet is popular in
the survival prediction projects, such as: PatchGCN,
designed for histopathology images, uses graph repre-
sentations of image patches to predict cancer survival
outcomes, improving prediction accuracy by leverag-
ing spatial relationships between patches (Chen et al.,
2021). GraphLSurv, a scalable graph convolution net-
work, predicts survival from gigapixel Whole-Slide Im-
ages (WSIs). It overcomes the limitations of tradi-
tional methods by generating adaptive, sparse structures
for patches, dynamically capturing latent correlations,
and reducing computational complexity with an anchor-
based technique (Liu et al., 2023a). Furthermore, ex-
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ploring models that comprises over 100 million histol-
ogy images from diverse sources, such as UNI (Chen
et al., 2024), presents an intriguing opportunity for fur-
ther investigation.

3. Material and methods

3.1. Dataset

This study employs a unique dataset of pancreatic
ductal adenocarcinoma (PDAC) with histopathology
images provided by the University of Cologne as part of
the PANCALYZE trial protocol (Popp et al., 2017). The
dataset includes Whole Slide Images (WSIs) and Tissue
Microarrays (TMAs) at 40x magnification from various
regions of the pancreas (head, body, tail), along with
clinical data such as recurrence dates, survival times
and censorship status. The dataset comprises 850 WSIs
and 650 TMAs from 321 different patients. A detailed
dataset summary can be found in Table 1. This com-
prehensive dataset facilitates robust survival prediction
modeling and validation.

The protocol is based on a multicenter study with a
short planned recruitment period, ensuring that patients
received similar postoperative care across 14 study cen-
ters located in 6 different German states over three
years. If PDAC is suspected and curative surgery is
performed, the patient can enroll in the study. After
successful resection, the pathologist prepares paraffin-
embedded tumor samples and samples of adjacent pan-
creatic tissue from the surgical specimen and sends
them to the University Hospital of Cologne. Tissue sam-
ples are collected strictly according to TNM (Tumour,
Node, Metastasis) staging, and patients with no remain-
ing tumor tissue are excluded from the study protocol.
The objective is to study a population that might ben-
efit from surgery and additional biomarker-driven ther-
apy in the future. Clinical data was collected over a 2-
year follow-up observation period, with updates every 6
months by the coordinating center.

LEVEL STATISTICS PANCALYZE

OVERALL # Patients 321
Death ratio 63%

WSI # Samples 850
Patches 2,816,120
Sampled patches 998,553

TMA # Samples 650
Patches 210,600
Sampled patches 162,500

AVG. PER PATIENT WSI 3
TMA 2

Table 1: PANCALYZE Dataset - Study Statistics

Figure 4: The top figure shows the raw version of the TMA images
with pale colors and the bottom part shows result after color correction
based on (Reinhard et al., 2001).

3.2. GraphLSurv

The state of the art in computational pathology
demonstrates significant advancements in using deep
learning and GCNs for survival prediction. The ap-
proach of, GraphLSurv (Liu et al., 2023a), introduces a
scalable graph convolutional network designed for sur-
vival prediction by generating adaptive and sparse graph
structures to model the complex relationships between
patches.

3.2.1. Preprocessing
The PANCALYZE dataset includes two distinct

histopathological techniques: Tissue Microarrays
(TMAs) and Whole Slide Images (WSIs). Initially, tis-
sue sections are obtained and samples are cut, from
which whole slide images (WSIs) are created through
scanning and digitization. Subsequently, tissue microar-
rays (TMAs) are constructed as an independent process
by extracting cores from these original tissue sections
and arraying them together (Pilla et al., 2012). This dis-
tinction is crucial as both techniques exhibit different
staining intensities. These variations can be attributed to
differences in the time of digitization and scanner con-
figurations.

Color Enhancement. Due to these differences, the pre-
processing pipeline required adjustments for both TMA
and WSI samples, since the beginning of the pipeline, as
depicted in Figure 4. The initial distribution of the RGB
channels in TMAs and WSIs images appeared pale,
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Figure 3: Representation of the pipeline from the raw original image to the computation of the proportional hazard at the patient level. This weakly
supervised framework is used for survival prediction on WSIs and TMAs. Non-overlapping 256x256 patches are extracted, and following energy
calculation, the top patches are fed into ResNet-50 (CLAM) and ViT/16 via DINOv2 (UNI). The survival-aware structure learning then utilizes
these patch features to construct an adaptive and sparse structure.

making it hard to achieve proper segmentation of the tis-
sue. To correct this, a ”Color Transfer” technique was
implemented (Reinhard et al., 2001). This technique
efficiently transfers the color characteristics from one
image (source) to another (target). Where in this case
a source image was taken from the dataset of TCGA-
BRCA (Kandoth et al., 2013), which shows more in-
tense colors in the H&E staining. The color correction
involves a statistical analysis of the color distributions
in both images, followed by a transformation of the tar-
get image to match the color distribution characteristics
(mean and variance) of the source image. This method
is computationally efficient and suitable for large-scale
datasets.

Tissue Segmentation. After color correction, each digi-
tized file undergoes a uniform processing pipeline, start-
ing with automated segmentation of tissue sections. The
images are converted from RGB to HSV color space and
loaded into memory at a downsampled resolution. A bi-
nary mask of the foreground tissue areas is created by
thresholding the saturation channel. To refine the mask,
median blurring is applied to smooth edges, and mor-
phological closing is performed to fill small gaps and
holes. The detected contours of the foreground objects
are then filtered based on an area threshold and subse-
quently saved.

Non-overlapping patches of 256x256 pixels are ex-

tracted at 20x magnification from the segmented tissue
regions. This results in thousands of patches per WSI,
capturing detailed histopathological features. Training
on all image patches is extremely time-consuming. Us-
ing a filtering technique to select relevant patches en-
hances computational efficiency and improves model
performance by focusing on the most informative re-
gions, thereby avoiding redundancy and noise. GCNs
excel at capturing spatial relationships and dependen-
cies between different regions within an image, and se-
lecting relevant patches can help the model to better
learn these relationships (Adnan et al., 2020), due to
this an ”Energy Calculation” sampling strategy, is im-
plemented to filter patches lacking obvious texture, by
computing the energy map for each patch via an efficient
Sobel filter implementation (Avidan and Shamir, 2023).
Patches exhibiting pronounced texture typically yield
higher energy values, indicative of strong gradients.
Conversely, regions with uniform textures or smooth
gradients register lower energy values. As shown in Fig-
ure 5 depicts a scale ranging from 0 to 1. This scale
highlights the patches based on their content relevance.
Utilizing these energy maps, the algorithm proceeds to
identify the top s patches with the most significant en-
ergy values. For Whole Slide Images (WSI), s is set to
1,000, whereas for Tissue Microarrays (TMA), it is 250.
Furthermore, adhering to standard preprocessing proto-
cols, applying the classical Color Normalization tech-
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nique (Macenko et al., 2009) on all patches to mitigate
color disparities among various patches.

Figure 5: Visualization of energy calculation using the Sobel filter
overlaid on a raw Whole Slide Image (WSI). Patches with high energy
levels, indicative of their relevance, are accentuated in red or dark
shading, while low-energy and less significant patches are represented
in yellow or white tones.

Feature extraction. In this methodology, we explored
two distinct feature extractors, the default extractor pro-
posed in the original experiment is CLAM (Lu et al.,
2021), a modified ResNet-50 model pre-trained on Im-
ageNet (Deng et al., 2009). Retaining only the initial
convolutional layers (conv1) and subsequent convolu-
tional blocks (conv2 x, conv3 x, conv4 x), CLAM con-
cludes with an average pooling layer (avgpool). This
modification allows the process of the original image
tile data, represented as (Width, Height, 3 channels), re-
sulting in feature maps with dimensions of (Width/16,
Height/16, 1024 channels). Subsequently, an Adaptive
Average Pooling layer (AdaptiveAvgPool2d(1)) col-
lapses the spatial dimensions, yielding a final feature
vector of length 1024. This process facilitates the ex-
traction of comprehensive low-level features from im-
age tiles, crucial for subsequent analysis and model
training.

Additionally, the second feature extractor UNI (Chen
et al., 2024), which is a pretrained vision backbone
based on the ViT-L/16 (Beyer et al., 2022) model ar-
chitecture, trained using the DINOv2 (Oquab et al.,
2023) self-supervised learning algorithm. Applying the
Mass-100K dataset, which comprises over 100 million
histology images from diverse sources, UNI is adept
at capturing the intricate features and patterns present
in WSIs. During inference, images are resized and
normalized using ImageNet parameters before being
passed through the model to extract features.

Both extracted features have as well a final feature
vector of length 1024.

3.2.2. Graph Construction
Survival analyses typically incorporate datasets that

include individual attributes (such as demographic de-
tails and clinical records), the duration of follow-up
t ∈ R, and the outcome status σ ∈ {0, 1}. For this re-
search, the data is represented from n patients with the
collection:

{(xi, ti, σi)}ni=1 (2)

in which xi ∈ Rd signifies the characteristics of the i-th
patient, ti indicates the observation period for the i-th
patient, and σi reflects the event status at the observa-
tion time ti. Here, σ = 0 signifies no event occurrence,
designating the data as right-censored, while σ = 1 in-
dicates an event occurrence. These right-censored ob-
servations are included in our analysis. The data set for
each patient is expressed as:

Bi = {I j ∈ Rc}sj=1 (3)

where I j is the embedding for the j-th patch. The full
dataset is thus defined as:

{(Bi, ti, σi)}ni=1 (4)

GraphLSurv structure learning. The study uses a strat-
egy for learning structures that dynamically generate
sparse and adaptive graphs. Using a technique of
patch similarity learning, aiming to optimally connect
patches to effectively highlight dense and meaningful
areas within the structures. Unlike traditional methods
such as those used in DeepGraphSurv (Li et al., 2018),
this approach directly computes connections without re-
lying on pre-existing computational models.

The input feature matrices of patients, represented as
{Xi}ni=1 are processed, along with a learnable projection
matrix T ∈ Rc×p, and a defined threshold δ. Each fea-
ture matrix X is transformed into a new vector space by
T , resulting in a transformed feature matrix P ∈ Rs×p.
This matrix undergoes pairwise cosine distance evalu-
ation to assess patch similarities, forming a symmetric
adjacency matrix AL. Connections in AL weaker than
δ are nullified to enhance the graph’s sparsity, ensuring
that only significant and relevant connections are pre-
served.

This innovative framework encapsulated in the func-
tion M(·), defined as:

M(X; T, δ) : Rs×c → Rs×s (5)

transforms the raw feature space into one that is op-
timally configured for generating adaptive structures.
When applied to survival prediction tasks, these graphs
evolve to become survival-aware, enhancing their utility
as the network is optimized.
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For the k-nearest neighbors (k-NN) method, the adja-
cency matrix, denoted as AI ∈ Rs×s, is computed based
on the nearest neighbors, discarding edges that exceed
a predefined threshold. The radius-based method, in
contrast, establishes adjacencies through geographical
proximity within a specified radius.

The methodology described not only facilitates the
exploration of spatial and feature-based relationships
but also significantly advances the analysis of complex
image data structures within medical imaging and spa-
tial data fields. The adaptability of the graph construc-
tion process allows for more tailored and effective train-
ing of graph convolutional networks (GCNs) (Müller
et al., 2023), particularly beneficial in computational
pathology and related areas of research.

Graph convolutional techniques are applied to up-
date patch features by allowing non-local node embed-
ding learning through feature aggregation across graphs.
This advanced method enables each patch to integrate
information from connected patches, effectively enrich-
ing its feature set with expansive and comprehensive
data inputs. The primary k-nearest neighbors (k-NN)
graph, AI ∈ Rs×s, constructed from raw feature data,
plays a critical role in survival prediction. This graph,
combined with an adaptive graph AL, forms a hybrid
graph where hybrid message passing (HMP) is exe-
cuted.

The transformation and aggregation process is gov-
erned by the function:

F(X|AI , AL) : Rs×c → Rs×h (6)

Here, h denotes the output dimension, and the feature
matrix X is dynamically updated via the equation:

F(X) = λXI + (1 − λ)XL (7)

The parameter λ balances the influence of the initial k-
NN graph AI , enhancing the model’s ability to adapt
based on the evolving graph structure.

Each patient’s sample bag feature matrix X is re-
fined through this function, resulting in a new matrix
E ∈ Rs×h. To ensure efficient memory usage, a singu-
lar graph convolution layer is employed to process both
AI and AL. Further enhancement of patch features is
achieved by applying multiple layers of graph convolu-
tions that implement HMP. The final representations of
the WSI and TMA, are designated as S rep ∈ R2h, which
is derived by combining the results from two prevalent
graph pooling operations: maximum and average pool-
ing.

Dynamic GCN Enhacements . To optimize traditional
Graph Convolutional Networks (GCNs) (Kipf and
Welling, 2016), which generally operate on fixed graph
structures, the GraphLSurv (Liu et al., 2023b) frame-
work introduces a GCN-HMP layer. This layer facil-
itates hybrid message passing and adaptive structure

learning, allowing dynamic updates to the graph as pro-
cessing progresses. It functions through an innovative
method where a function, F, conditions the input fea-
tures, X, on a hybrid graph structure AI combined with
an adaptive mechanism M(X). This approach enables
the GCN to not only process but also adaptively learn
from the data, enriching the feature interactions dynam-
ically across the graph. This is implemented by:

GCNHMP(X, AI) = F(X|AI ,M(X)). (8)

Within this framework, two distinct architectures are
implemented: pure GCN-HMP and mixed GCN-HMP.
The pure version updates its graph structure at every
layer to reflect new data relationships, thereby enhanc-
ing adaptability. Conversely, the mixed version main-
tains a static graph structure after its initial computa-
tion, thereby providing stability across deeper network
layers.

The computational demands associated with large-
scale datasets, like WSIs containing thousands of
patches, are effectively managed by employing an
anchor-based strategy. This strategy utilizes a subset
of data, referred to as ’anchors’ (Chen et al., 2020), to
approximate the complete graph structure, substantially
reducing computational complexity from quadratic to
linear relative to the number of patches. It calculates
cosine distances between patches and their correspond-
ing anchors, followed by focused message passing op-
erations tailored for this graph representation.

Survival Prediction. The computed representation of
WSI and TMA are utilized to predict the survival risk,
ŷi ∈ R, of the i-th patient through a series of fully con-
nected layers. To ensure a smooth transition of features
across connected nodes in the graph, thereby promoting
continuity in the structural representation defined by the
patch matrix X and the adjacency matrix A, Dirichlet
energy (Belkin and Niyogi, 2001) is incorporated into
the loss function. This inclusion encourages homogene-
ity in node features, penalizing large variations between
connected nodes to enhance the model’s ability to gen-
eralize across similar structures. This inclusion is math-
ematically represented by:

ℓgraph =
1
s2 tr(XT LX) (9)

where L = D − A denotes the graph Laplacian, D is the
degree matrix with D =

∑
j Ai, j, and tr(·) is the trace

matrix. This term facilitates the smooth variation of
patch embeddings across adjacent patches, enhancing
the model’s ability to capture subtle nuances in data re-
lationships. Consequently, the overall loss function is
formulated as:

ℓ=ℓcox + αℓgraph (10)

where α is a hyper-parameter within the range [0, 1].
This parameter balances the influence of the structural
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smoothness on the model’s performance, allowing for
the adjustment of the regularization strength based on
the specific analytical needs.

3.3. Proposed Experiments

Two preprocessing tools were employed in the ex-
perimental setup to harness diverse computational back-
bones and test the robustness of the GraphLSurv model
across different image modalities. The first tool, CLAM
(Lu et al., 2021), utilizes a ResNet-50 backbone to
preprocess the PANCALYZE dataset, which includes
both Whole Slide Images (WSIs) and Tissue Microar-
rays (TMAs). This setup enables the application of
GraphLSurv pipeline for graph construction and subse-
quent survival prediction.

In a parallel experiment, the preprocessing tool UNI
(Chen et al., 2024), which harnesses the capabilities of a
Vision Transformer (ViT/16) trained via DINOv2, was
used. This approach seeks to exploit the self-attention
mechanisms inherent in transformers to better capture
the contextual relationships within WSIs and TMAs.
Utilizing the same PANCALYZE dataset, this method
extends the scope of GraphLSurv to examine the im-
pact of advanced image features extracted via state-of-
the-art unsupervised learning techniques on the efficacy
of graph-based survival prediction models.

Implementation Protocol. To ensure robust model
evaluation the dataset was initially partitioned with 80%
allocated to training and 20% to testing, ensuring that
each fold was representative of the overall dataset. Ad-
ditionally, 20% of the training subset was reserved for
validation purposes, facilitating model tuning and early
stopping without overfitting.

The stratification was conducted at the patient level,
adhering to the proportions of censored cases as per the
methodologies established in WSISA (Zhu et al., 2017).
This stratification ensures that each fold maintains a bal-
anced representation of the survival outcomes, crucial
for training survival prediction models that are sensi-
tive to outcome distributions. The efficacy of the data
splitting strategy was validated using the log-rank test,
yielding a p-value of approximately 0.9. This statistic
confirms the absence of significant differences in sur-
vival distributions among the training, validation, and
testing sets, thereby supporting the integrity of the ex-
perimental design.

Experiments were executed under defined random
conditions (42) to ensure repeatability and reliability in
statistical results. To construct graph structures, dif-
ferent k-nearest neighbor (k-NN) configurations [4, 6,
8, 10, 12] were utilized to explore various levels of
connectivity. These graphs were designed with dataset
splits performed without stratification, and with a mech-
anism to log predictions for detailed outcome analysis.

Training Configuration. Training was executed in
batches of one, optimizing parallel data processing with
eight workers. Optimization was driven by an Adam
optimizer, configured with an initialization learning rate
of 10−4 and adjusted dynamically based on performance
plateaus lr factor: 0.8, lr patience: 10, lr min: 10−5.
The inclusion of weight decay added a regularization ef-
fect, crucial for managing complexity and overfitting in
deep learning networks. The training span covered 300
epochs, incorporating an early stopping mechanism ac-
tivated after 30 epochs without improvement (patience:
30), enhancing computational efficiency and model per-
formance.

Graph Learning Regularization. Graph regularization
was strategically enabled to promote model generaliza-
tion. This feature incorporated three distinct regular-
ization strategies: smoothness (α), degree, and sparsity.
These parameters are essential for refining the learning
dynamics within the graph, affecting how features are
propagated and influencing overall model stability and
interoperability.

Anchor-Based Enhancements. The anchor graph
learner was defined with a hidden dimension of 128,
utilizing 20% of data points as anchors, essential for
optimizing the graph structure. The method uses a
transformer-based metric and controls the threshold for
anchor connections with a parameter (δ = 0.8), which
determines the sensitivity of the model to the proximity
of nodes. The anchor graph encoder layer operates
through a single graph hop, with the initial graph con-
tribution set at 50% (λ = 0.5), balancing adaptability
and structural consistency in graph processing.

4. Results

This section presents the findings obtained from
applying GraphLSurv to a PANCALYZE dataset of
Pancreatic Ductal Adenocarcinoma (PDAC) using two
histopathology modalities, Whole Slide Images (WSI)
and Tissue Microarrays (TMA), with two different fea-
ture extractors: ResNet-50 by CLAM (Lu et al., 2021)
and ViT/16 via DINOv2 by UNI (Chen et al., 2024).
The aim was to assess the performance of survival pre-
diction across these modalities and feature extractors.
The results are summarized as follows:

4.1. Concordance Index (C-Index)
The Concordance Index (C-Index) serves as a fun-

damental metric for evaluating the efficacy of survival
prediction models. In addition to choosing the feature
extractor, we performed parameter selection based on
outcomes from the validation set. This extended to in-
vestigating how different structural configurations im-
pact model performance. Our analysis revealed signifi-
cant variability in the C-Index for fixed k-NN structures
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Figure 6: Kaplan-Meier curves showing patient stratification, with high and low-risk groups compared using the log-rank test p-value. The figure
contrasts histopathology modalities: TMAs and WSIs, each analyzed with UNI and CLAM feature extractors.

UNI CLAM

k C-index C-index

4 0.5925 0.4943
6 0.5320 0.5378
8 0.5872 0.4975

10 0.5968 0.5228
12 0.5984 0.5233

Table 2: Comparison of C-index for UNI (ViT/16 via DINOv2) and
CLAM (ResNet-50) across different values of k for WSIs.

across various ’k’ values, underscoring its sensitivity to
fine-tuning needs.

In our quest to determine the optimal settings for each
feature extractor, we conducted experiments with vary-
ing values of ’k’ (4, 6, 8, 10, 12) as shown in the Ta-
ble 2. Thorough comparative analysis between CLAM
(ResNet-50) and UNI (ViT/16 via DINOv2), we gained
valuable insights into the stability and efficacy of differ-
ent configurations. For instance, the C-Index for WSI
+ CLAM was recorded at 0.5378 using (k = 6). How-
ever, this decreased to 0.4970 for TMA + CLAM. Con-
versely, WSI + UNI with (k = 12) improved to 0.5984,
whereas TMA + UNI yielded a lower score of 0.5203.

Our exploration into the impact of structure sparsity on
model performance provided valuable insights into op-
timizing GraphLSurv. By adjusting the parameters to
explore sparser structures, we observed a discernible
correlation between high sparsity and improved model
performance in terms of the C-Index. However, it’s
essential to exercise caution, as excessively sparse or
dense structures may not yield optimal results. Ad-
ditionally, our study delved into the optimal utiliza-
tion of structure learning within the mixed GCN-HMP
model, where through experiments and fine-tuning the
validation results indicated that a single application of
structure learning sufficed for effective survival predic-
tion, suggesting that incorporating structure learning at
multiple layers might introduce unnecessary complexity
without significant performance gains.

4.2. Prognostic Risk Group Analysis

An essential aspect of evaluating survival prediction
models lies in their capacity to stratify patients into dis-
tinct risk categories based on prognostic outcomes. In
our study, this stratification was achieved through the
application of Kaplan-Meier curves, complemented by
the log-rank test to ascertain statistical significance via
p-values, which in this study are evaluated from the test
set.

In the conducted experiments, differences in survival
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outcomes between high-risk and low-risk groups were
observed for only one feature extractor, as shown in
Figure 6. For WSI + CLAM, an interesting result is pre-
sented (p-value = 0.0877), but this cannot be considered
statistically relevant, as it exceeds the threshold p-value
of ≤ 0.05. For TMA + CLAM, results show there is no
ability to differentiate groups (p-value = 0.8838). On
the other hand, in the UNI experiment, distinctions were
shown for WSI + UNI (p-value = 0.0410), but not with
the same success for TMA + UNI (p-value = 0.4856).
These findings underscore the predictive capability of
the models across various modalities and feature extrac-
tors

Examining the Kaplan-Meier curves shows a clear
difference between the two feature extractors, CLAM
(ResNet-50) and UNI (ViT/16 via DINOv2), in their
performance with TMA and WSI modalities. WSI +
UNI demonstrates better ability to distinguish between
risk groups, as indicated by significant differentiation
and a lower p-value.

In the TMA modality, both feature extractors strug-
gle to clearly distinguish between high-risk and low-risk
groups. While WSI + CLAM shows significant differ-
entiation, there is still room for improvement in consis-
tency between validation and test results. The Kaplan-
Meier graphs for TMA + CLAM and TMA +UNI show
less distinct separation between risk groups, indicating
difficulty in differentiation.

4.3. Heatmap Visualization

Heatmap visualizations were employed to enhance
the interpretability of the trained weakly-supervised
deep learning classifier. By identifying and aggregat-
ing regions within Whole Slide Images (WSIs) with
high diagnostic importance, as indicated by elevated at-
tention scores, the classifier facilitated the recognition
of morphological features crucial for clinical diagnosis.
This process involved disregarding regions considered
to have low diagnostic relevance, thereby focusing at-
tention on areas pivotal for accurate prediction. The
resultant heatmaps, derived from the model’s attention
scores, provided insights into the relative significance
of each region within the WSIs, helping in the delin-
eation of boundaries between tumor and normal tissue.
As shown in the Figure 7, a comparison between cen-
sored and deceased tissues was conducted, along with
an analysis of the highest attention score patches. In
the censored section, this comparison revealed distinct
patterns in the content of patches where the highest at-
tention was retained, differing from those selected for
deceased tissues.

5. Discussion

Survival prediction for pancreatic cancer using deep
learning techniques remains an active yet challenging

area of research, primarily due to the scarcity of large
annotated datasets. The extremely low prevalence of
pancreatic cancer complicates the acquisition of exten-
sive datasets with accurate survival annotations, which
is critical for developing robust and generalizable mod-
els. Annotating medical images and clinical data for
pancreatic cancer is labor-intensive and requires expert
knowledge, creating a significant bottleneck that slows
the creation of large annotated datasets necessary for ef-
fective model training. Additionally, the lack of stan-
dardized evaluation protocols for deep learning mod-
els in survival prediction complicates the comparison
of different approaches and their applicability in real-
world settings.

GraphLSurv, a graph-based survival analysis model,
was evaluated with two distinct feature extractors:
ResNet-50 by CLAM and ViT-L/16 via DINOv2 by
UNI. The results affirm the feasibility of graph-based
methods for survival prediction, with GraphLSurv ef-
fectively learning adaptive and sparse structures to cap-
ture essential correlations between image patches. The
model demonstrated good results using the proposed
adaptive fixed k-NN structures, which exhibited signif-
icant variability. This underscores the adaptive struc-
ture’s enhanced capability to capture critical correla-
tions necessary for precise survival prediction. The hy-
brid structure (λ = 0.5) showed promising results, sug-
gesting that a balanced approach might help improve the
predictive c-index.

Kaplan-Meier curves and log-rank tests validated the
model’s efficacy in stratifying patients into distinct risk
categories, with the WSI + UNI configuration exhibit-
ing superior discriminative ability. The statistical sig-
nificance of these stratifications highlights the model’s
potential clinical utility in identifying high-risk patients
who may benefit from more aggressive treatment regi-
mens.

Despite these promising results, our study has sev-
eral limitations. A primary challenge lies in learning
sparse structures, necessitating meticulous threshold ad-
justments. Moreover, there is a need to improve the
transparency of graph construction and attention weight
mechanisms to enhance the model’s clinical utility. Ad-
dressing these issues could lead to more interpretable
and reliable models, making them more acceptable for
clinical use.

Another limitation is the absence of a model trained
exclusively on pancreatic cancer data. Although UNI
was trained on histopathology images, pancreatic can-
cer remains underrepresented in the dataset. This
underscores the need for extensive, disease-specific
datasets to bolster model performance. UNI, trained
on histopathology images, ranks among the top five
least represented cancer types, with fewer than 4,000
slides, whereas models for heart, lung, and kidney can-
cers were trained on approximately 10,000 slides. This
disparity suggests that increasing the representation of
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Figure 7: The figure shows WSI visualizations and top 5 high-attention patches for censored patients (left) and dead patients (right), with whole
slide attention heatmaps where red indicates high attention and blue indicates low attention.

pancreatic cancer in training datasets could significantly
enhance model accuracy and generalizability.

However, the dataset’s limitations are notable. The
data was acquired solely from institutions in Germany,
which employ relatively uniform and standardized tis-
sue processing and staining protocols. This uniformity
may limit the generalizability of the model across di-
verse clinical settings with varying protocols. Future
research should focus on developing models using data
from multiple institutions with diverse tissue processing
and staining protocols to enhance model robustness and
generalizability across various clinical settings.

It was also noted that the CLAM feature extrac-
tor, trained on ImageNet, was less effective than UNI,
which was trained on specific histopathology images.
This suggests that feature extractors trained on domain-
specific data may offer superior performance in medi-
cal image analysis tasks. Additionally, WSI + CLAM’s
performance was inconsistent during training, indicat-
ing difficulty in distinguishing between groups.

Incorporating manual annotations, such as detailed
tissue region and cell annotations, could further im-
prove performance and interpretability. These anno-
tations would provide more granular information, en-
abling the model to learn finer distinctions in tissue mor-
phology that are critical for accurate survival predic-
tions. Additionally, incorporating biomarkers and clini-

cal data could provide valuable features not captured by
images alone, enhancing the model’s decision-making
process. For instance, biomarkers can help identify pa-
tients at higher risk of metastasis, offering another layer
of prognostic information that can be integrated into the
model. Exploring TMAs with various staining tech-
niques or biomarkers could offer a comprehensive ap-
proach, providing additional information for deep learn-
ing models. This combined strategy has the potential to
improve survival prediction accuracy.

This study addressed the complexities of predicting
pancreatic cancer survival using Whole Slide Images
(WSIs) and Tissue Microarrays (TMAs). WSIs include
vast amounts of data, demanding significant computa-
tional resources, whereas TMAs offer limited data, po-
tentially skewing models towards specific regions of in-
terest (ROIs) and ignoring broader pathological con-
texts. Additionally, the small size of TMA patches ( 300
patches, 256x256) did not provide sufficient informa-
tion for the network to make accurate decisions, which
may have contributed to the inferior performance ob-
served in TMA-based analyses.

6. Conclusions

This study demonstrates the potential of graph-based
survival prediction models for PDAC. The findings
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suggest that adaptive and sparse structures outperform
static or dense ones for modeling WSIs and TMAs.
Nonetheless, further research is necessary to refine
these models, enhance their explainability, and ensure
their applicability across diverse clinical environments.
Advancements in this domain could significantly im-
pact clinical decision-making and improve outcomes for
PDAC patients. By addressing the limitations and in-
corporating more diverse and comprehensive datasets,
future studies can build on these findings to develop
even more robust and clinically useful survival predic-
tion models.
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Abstract

The accurate estimation of brain age from magnetic resonance imaging scans has significant potential for predicting
neurodegenerative diseases and cognitive decline. This study aims to develop and evaluate various pipelines for ac-
curate and robust brain age prediction. We explored both traditional machine learning and deep learning approaches,
addressing challenges related to data imbalance and model generalizability. For traditional machine learning mod-
els, volumetric measures from cortical and subcortical structures were employed as input features. Deep learning
approaches were also explored utilizing diverse input modalities, including T1-weighted (T1w) images, voxel-based
morphometry (VBM) volumes, and brain tissue segmentations. Traditional machine learning models demonstrated
that volumetric measures from cortical and subcortical structures are valuable predictors of brain age, achieving a
mean absolute error (MAE) of 4.18 years on a benchmark dataset (OpenBHB). Deep learning models, particularly
the simple fully convolutional network with a soft classification approach, outperformed traditional models. To ad-
dress age distribution imbalance, strategies such as oversampling and decoupling feature representation training from
classifier training were employed, resulting in improved performance for under-represented age groups. The best
results were achieved using gray matter VBM volumes, which provided significant information for age differentiation
and improved generalization properties. Ensemble learning further enhanced model performance, achieving the best
overall MAE of 2.70 years, which outperformed individual models. Additionally, transfer learning from models pre-
trained on larger datasets significantly improved performance on an in-house dataset, achieving a MAE of 3.28 years.
The findings of this work highlight the potential of deep learning methods in developing accurate and generalizable
brain age estimation models.

Keywords: Brain age estimation, MRI, machine learning, deep learning

1. Introduction

The human brain undergoes complex morphologi-
cal alterations as it ages, including a general decline
in volume, cortical thickness and white matter integrity
(Driscoll et al., 2009; Hepp et al., 2021; Madden et al.,
2009). Changes such as synaptic pruning, demyelina-
tion and neurodegenerative processes peak in older age,
leading to structural changes like ventricle expansion
and cortical thinning (Levakov et al., 2020).

While chronological age serves as an indicator of dis-
ease susceptibility, the process and pace of aging differs
among individuals, organs, tissues, and medical condi-
tions. As such, there is a growing interest in estimating
biological age to better understand aging’s diverse man-
ifestations and to predict morbidity and disease. Brain

age, estimated from brain magnetic resonance imag-
ing (MRI) scans, is correlated with the biological age
and can differ from the chronological age (Hepp et al.,
2021). In healthy adults without clinical symptoms, the
biological age is anticipated to align with chronological
age, on average (Yin et al., 2023).

Positive deviations between brain age and chronolog-
ical age, known as brain age delta, suggest accelerated
brain aging and may indicate underlying pathological
processes and disorders (Hepp et al., 2021; Leonardsen
et al., 2022; Levakov et al., 2020; Peng et al., 2021).
These deviations have been linked to various neurode-
generative diseases, such as Alzheimer’s Disease (Gaser
et al., 2013; Leonardsen et al., 2022; Salih et al., 2021),
depression (Koutsouleris et al., 2014), schizophrenia
(Leonardsen et al., 2022; Nenadić et al., 2017), and
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multiple sclerosis (Leonardsen et al., 2022), as well as
mortality risk (Cole et al., 2018). Therefore, accurate
estimation of brain age is crucial for disease risk pre-
diction and early detection of neurodegenerative condi-
tions. Improving brain age estimates can lead to a more
accurate detection of deviations from typical aging, and
in this way become affordable and noninvasive preclin-
ical biomarkers of early-stage neurodegeneration and
cognitive decline (Bellantuono et al., 2021; Yin et al.,
2023).

The brain age is often determined through statisti-
cal learning techniques using brain scans. Early models
were quite simple, usually based on independent voxels
or a small number of imaging-derived phenotypes, like
volumetric measurements of different anatomical struc-
tures or regions of the brain that could reflect brain prop-
erties (Franke et al., 2010; Smith et al., 2019). The main
limitations of these models were that they were trained
on small datasets and generally had limited accuracy
and generalization properties. Together with computa-
tional advances, the increase in MRI data availability
has enabled the development of large-scale deep learn-
ing models for precise brain age prediction. Deep learn-
ing models can accept minimally or non-preprocessed
3D images as input and model complex nonlinear rela-
tionships between voxels, enhancing the accuracy of the
age estimations (Leonardsen et al., 2022).

However, the prediction of brain age remains a chal-
lenging task, marked by high variability in reported re-
sults across studies due to differences in datasets. Fac-
tors such as image quality and the age distributions of
training data significantly influence the performance of
brain age estimation models. Additionally, reliance on
data from a single-source dataset, whether public or pri-
vate, can introduce bias based on the acquisition domain
of the images, ultimately limiting the generalization ca-
pabilities of the developed models.

To address some of the challenges of brain age es-
timation from MRI images, this work focuses on de-
veloping and evaluating different methods for accurate
and robust brain age prediction. We achieve this by
training models with a large-scale, multi-site dataset
(OpenBHB), which aggregates data from 10 different
public sources and comprises 3984 MRI scans origi-
nating from 64 different acquisition sites. Utilizing this
public dataset facilitates objective evaluation of the dif-
ferent models’ performance and enhance their general-
izability across different acquisition domains, overcom-
ing limitations associated with single-source datasets.
Furthermore, we explore both machine learning and
deep learning approaches for the estimation of brain
age, conducting a comparative analysis to assess the
strengths and weaknesses of each approach in this con-
text. Additionally, we investigate the influence of in-
corporating prior information, such as brain tissue seg-
mentation, on the performance of deep learning mod-
els. This is done to determine if these priors can further

improve the accuracy or the robustness of the models.
Finally, we study transfer learning techniques to adapt
the developed deep learning models, as well as a pub-
licly available pre-trained model, to an in-house dataset.
This allows us to identify which approaches achieve su-
perior performance in a real-world clinical setting.

2. State of the art

In this section, a review will be made on the current
state-of-the-art in brain age estimation, focusing on tra-
ditional machine learning and deep learning techniques.

2.1. Machine learning approaches

Machine learning approaches for brain age estimation
typically rely on supervised learning techniques, partic-
ularly regression analysis. These models treat chrono-
logical age as the dependent variable and anatomical
brain characteristics extracted from MRI scans as the
independent ones. A variety of algorithms have been
explored in this domain, including gaussian process re-
gression, Support Vector Regression (SVR), ridge re-
gression, relevance vector regression, XGBoost and
ElasticNet (Table 1). This table summarizes studies
that employed these machine learning approaches, both
classical and more recent ones, for brain age estima-
tion with their respective results. It also includes stud-
ies that directly compared the performance of different
algorithms on the same datasets (Da Costa et al., 2020;
More et al., 2023). While the complexity and computa-
tional demands of these models may vary, their perfor-
mance tends to be comparable (Niu et al., 2020).

Despite the ability of many machine learning algo-
rithms to achieve relatively accurate age estimates based
on brain features, it can be observed that there is sig-
nificant heterogeneity in reported performance across
studies. Factors like training and test set size, age
range, and feature selection can significantly influence
reported model performance measures. Therefore, stan-
dardization of methodologies and data is crucial to en-
sure consistent and reliable results (Soumya Kumari and
Sundarrajan, 2024).

2.2. Deep learning approaches

Deep learning models have lately emerged as power-
ful tools for the estimation of brain age from MRI scans
due to their ability to handle 3D MRI data and automat-
ically extract relevant features.

A general overview of some of the latest deep learn-
ing methods for brain age estimation is shown in Ta-
ble 2. This table summarizes, together with the type
of architecture, the Mean Absolute Error (MAE) ob-
tained and the datasets used for training, some key-
points of each method. As it can be seen, deep learn-
ing architectures for brain age estimation predominantly
rely on convolutional neural networks (CNNs), with
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Table 1: Summary of machine learning approaches for brain age estimation (SVR: Support Vector Regression, RVR: Relevance Vector Regression,
GPR: Gaussian Process Regression).

Reference Dataset Model MAE

Franke et al. (2010) IXI, ADNI and private dataset (N = 989,
ages = 56.04 ± 11.33)

SVR 4.98

Mwangi et al. (2013) INDI dataset (N = 207, ages = 34.9 ± 20.07) RVR 5.17

Khundrakpam et al.
(2015)

Pediatric MRI Data Repository (N = 308;
ages = 12.9 ± 3.8)

ElasticNet 1.7

Cole et al. (2017) Brain-Age Healthy Control (BAHC)
(N = 2001, ages = 36.95 ± 18.12)

GPR 4.66

Da Costa et al. (2020) PAC 2019 (N = 2640, ages = 35.87 ± 16.2)

Linear regression 13.6

SVR 4.571

GPR 6.13

De Lange et al. (2022) UK Biobank (N = 41285,
ages = 64.15 ± 7.54), CamCAN (N = 622,

ages = 54.17 ± 18.4)

XGBoost 4.18 in UKB;
6.8 in

CamCAN

More et al. (2023)
CamCAN, IXI, eNKI, 1000BRAINS, CoRR,
OASIS-3, MyConnectome, ADNI (N = 2953,

ages = 53.27 ± 16.48)

GPR 4.8

RVR 5.81

Ridge regression 5.64

Linear regression 6.28

some models drawing inspiration from the VGG16 ar-
chitecture (Dinsdale et al., 2021a; Peng et al., 2021).
Most studies emphasize the importance of simplicity
in the architecture design, as models with fewer pa-
rameters tend to yield better results in brain age es-
timation (Cole et al., 2017; Gong et al., 2021; Peng
et al., 2021; Soumya Kumari and Sundarrajan, 2024).
The Simple Fully Convolutional Network (SFCN) de-
veloped by Peng et al. (2021) exemplifies the success
of lightweight models. This architecture, with 7 con-
volutional blocks (3M parameters), achieves state-of-
the-art performance on the UK Biobank dataset (Sud-
low et al., 2015) and Predictive Analytics Competition
(PAC) 2019 challenge, with MAEs of 2.14 and 3.69
respectively. The lightweight design of this architec-
ture makes it compatible with smaller dataset sizes and
3D volume data. Further demonstrating the effective-
ness of this architecture, Leonardsen et al. (2022) im-
plemented variations of SFCN for brain age prediction.
They explored three configurations: the soft classifica-
tion model originally proposed by Peng et al. (2021)
(SFCN-sm), a regression variant with a single output
neuron (SFCN-reg), and a ranking model (SFCN-rank).

The work of He et al. (2022) stands out as one of
the few that incorporates a transformer architecture for
brain age estimation. In particular, they employed a
dual-pathway architecture that combines a global path-
way, trained on the whole 3D MRI volume, for captur-
ing overall brain structure, and a local pathway, trained

with smaller 3D patches, for focusing on finer details.
An attention mechanism then optimally fuses this global
context information with the local details.

Also worth mentioning is that there has been increas-
ing interest in developing interpretable artificial intelli-
gence (AI) models for brain age estimation, since this
builds trust in the models’ predictions, which is crucial
in healthcare applications. Some of the recent studies
in this area have focused on achieving explainability,
such as the ones of Levakov et al. (2020), Hepp et al.
(2021), Wood et al. (2022) and Yin et al. (2023). These
attempt to provide spatial maps that highlight the brain
areas contributing to predictions.

Furthermore, the study of Hepp et al. (2021) not only
focused on interpretability, but also aimed to quantify
the model’s uncertainty. They achieved this by employ-
ing a heteroscedastic noise model. Traditional noise
models assume a constant level of noise (error) in the
predictions, regardless of the input data. However, in
brain age estimation, chronological age is not perfectly
encoded within MRI scans. Physiological variations
between individuals can introduce inherent uncertainty
(aleatoric uncertainty) into the age labels themselves.
This means that even for MRI scans that appear very
similar visually, the actual chronological ages may dif-
fer. A heteroscedastic noise model addresses this chal-
lenge by allowing both the mean and variance of the
noise to be estimated and vary depending on the spe-
cific input data. By incorporating this type of model,

16.3



Brain age estimation from MRI images 4

Table 2: Summary of Deep Learning approaches for brain age estimation (‘**’ denotes the state-of-the-art method on the UK Biobank dataset,
whereas ‘*’ denotes the state-of-the-art method on the OpenBHB dataset).

Reference Architecture Dataset MAE Keypoints

Peng et al.
(2021)

3D CNN
(SFCN)

UK Biobank (N = 14503,
ages=44-80)

2.14** Lightweight fully convolutional network.
Treat the regression as a multi-class classifi-
cation problem.

Dinsdale
et al.
(2021a)

3D CNN
(inspired on

VGG)

UK Biobank (N = 12802,
ages=44-80)

2.975 Evaluated correlations of age predictions with
subjects’ phenotypical data.

Gong et al.
(2021)

3D CNN
(SFCN)

PAC 2019 (N = 2638,
ages=17-90)

2.95 Application of SFCN network to PAC 2019
challenge, achieving first place.

Hepp et al.
(2021)

3D CNN
(Adaptation of

ResNet)

German National Cohort
(N = 10691, ages=20-72)

3.21 They used a heteroscedastic noise model to
estimate uncertainty, and GradCAM for inter-
pretability.

He et al.
(2022)

Dual-pathway
architecture

with
transformer

network

Validated on CMI and
CoRR datasets (N = 8379,

ages=0-97)

2.7 A global and a local pathway, each with a
CNN backbone, are joined with an attention
mechanism to fuse global and local informa-
tion optimally.

Leonardsen
et al.
(2022)

3D CNN
(Variations of

SFCN)

T1w MRI scans derived
from 21 public datasets
(N = 53542, ages=3-95)

3.9 (in-
domain);
5.1 (out-
domain)

They used the original SFCN-softmax, as well
as a regression variant (with a single output
neuron) and a ranking variant.

Wood et al.
(2022)

3D CNN
(DenseNet

121)

Private multimodal dataset
of clinical quality images
(N = 23302, ages=18-95)

3.05 Guided backpropagation and occlusion sensi-
tivity analysis were performed.

Yin et al.
(2023)

3D CNN (one
output neuron)

CamCAN, ADNI, HCP,
UK Biobank (N = 5851,

ages=22-95)

2.3 for
UKB; 4.71

for
CamCAN

They provided anatomic maps of brain aging
patterns (interpretable).

Aqil et al.
(2023)

3D CNN
(inspired in

Synthmorph)

OpenBHB (N = 3984,
ages=6-86)

4.55 They integrated diffeomorphic registration
with brain age prediction in a unified archi-
tecture.

Barbano
et al.
(2023)

3D CNN
(ResNet18,

AlexNet and
DenseNet121)

OpenBHB (N = 3984,
ages=6-86)

2.61 (in-
domain);
3.56 (out-
domain)*

They used contrastive learning techniques to
learn domain-invariant features.

Gianchandani
et al. (2024)

Multi-task
U-Net

CamCAN, OASIS and
ADNI (N = 651,

ages=18-88)

7.54 They predicted voxel-level brain age along
with two additional tasks: global age predic-
tion and brain tissue segmentation.

they were able to account for this inherent uncertainty
and provide a more comprehensive interpretation of
the difference between the predicted age and the actual
chronological age.

Additionally, there are some works that employ
multi-task learning, in which a single model is trained to
address two or more related tasks simultaneously. This
strategy takes advantage of the inherent correlations be-
tween tasks to potentially improve the performance on
each individual task. For instance, the work by Aqil
et al. (2023) integrated diffeomorphic registration with

brain age prediction within a unified architecture. Sim-
ilarly, Gianchandani et al. (2024) recently explored a
multi-task learning framework with a U-Net that si-
multaneously predicted voxel-level brain age alongside
global age prediction and brain tissue segmentation.

Despite the advancements in deep learning for brain
age estimation, most studies still face the challenge of
domain shift. It can be noticed that there is significant
variability in the results reported by different works de-
pending on the training data. This emphasizes the need
for models that generalize well across different domains
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and that are able to perform well on unseen data from
different acquisition protocols and populations. Some
studies address this issue, like the one of Dinsdale et al.
(2021b), where they apply the adversarial framework
for use in harmonization to obtain domain-invariant fea-
ture representations in the context of brain age predic-
tion. However, their application has primarily been lim-
ited to a few training and validation domains (three in
their case), limiting the practical applicability of their
approach. On the other hand, the work by Barbano
et al. (2023) introduced contrastive learning techniques
for brain age estimation to produce features that were
invariant to the domain of acquisition. With this tech-
nique, they achieved the state of the art in the OpenBHB
dataset (Dufumier et al., 2022), which is highly diverse
and multi-site, containing brain scans from 64 different
acquisition sites.

Building upon the strengths of existing approaches,
this work aims to address some of the challenges in
brain age estimation. We employ OpenBHB, a large-
scale, multi-site benchmarking dataset to train our mod-
els, focusing on achieving generalizability and mitigat-
ing domain shift limitations. We also evaluate model
performance in sensitive attributes, such as sex, in order
to audit and correct potential biases in the trained mod-
els. Furthermore, as the training data exhibits a long-
tailed distribution with imbalanced age representation,
we investigate various techniques to improve model
performance on underrepresented age groups. Addi-
tionally, we assess the influence of incorporating prior
knowledge on the performance of the deep learning
models. This involves encoding brain tissue properties
using brain tissue segmentation methods and/or local
changes by registration to a standard template. More-
over, to provide a comprehensive evaluation frame-
work, we develop machine learning baseline models
and compare their performance with the deep learning
approaches. Finally, we evaluate the effectiveness of
transfer learning strategies to adapt our deep learning
models to a separate in-house dataset. By addressing
these issues and exploring diverse learning approaches,
this work aims to contribute to the advancement of ro-
bust and generalizable brain age estimation models.

3. Material and methods

3.1. Datasets

3.1.1. OpenBHB
The Open Big Healthy Brains (OpenBHB) dataset is

a publicly available benchmarking dataset specifically
designed for brain age prediction with site-effect re-
moval. It aggregates data from ten public sources, in-
cluding ABIDE 1 and 2, CoRR, GSP, IXI, Localizer,
MPI-Leipzig, NAR, NPC, and RBP. OpenBHB focuses
exclusively on healthy controls to promote the mod-
elling of normal brain aging (Dufumier et al., 2022).

Figure 1: Distribution of domains in the training and test sets of the
OpenBHB dataset.

The public part of this dataset comprises N = 3984
preprocessed T1w MRI scans, as well as Voxel-Based
Morphometry (VBM) volumes (more information on
the preprocessing will be detailed in section 3.2). This
data originates from 64 different acquisition sites across
Europe, America and Asia, promoting generalizability
across populations.

The data is provided in two splits: one for training
(3227 samples) and one for testing (757 samples). This
last split is further divided into in-domain (362 sam-
ples coming from the same acquisition sites as training
data) and out-domain (395 samples coming from differ-
ent acquisition sites) subsets (see Figure 1). We further
split the provided training set into training (2342 sub-
jects; 72.58%) and validation (885 subjects; 27.42%)
sets, while ensuring the same relative distribution of age
and acquisition sites across both splits. The age dis-
tribution exhibits two main modes centered around 10
and 25 years old, with a long tail extending to 86 years
(Figure 2). Sex distribution is well balanced across all
age groups (50.17% female and 49.83% male for train-
ing and validation; 44.78% female and 55.22% male for
testing).

Additionally, associated to this dataset, there is a
challenge for brain age estimation. The leaderboard re-
sults report the MAE for the in-domain and out-domain
subsets of the test set, which allows for better compari-
son of the developed models. The top performing sub-
mission achieves 2.612 years for the MAE of the in-
domain set, and 3.564 years for the out-domain set.
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Figure 2: Age distributions of the ImaGenoma and OpenBHB
datasets.

3.1.2. ImaGenoma
The ImaGenoma dataset is an in-house dataset of

N = 1015 T1w MRI scans, provided by the Hospi-
tal Universitari de Girona Doctor Josep Trueta. This
dataset offers clinical-grade image quality acquired at
1.5 T field strength. Similar to OpenBHB, only healthy
controls were taken into account, meaning that the par-
ticipating individuals did not show signs of cognitive
impairment or any other brain disorders.

The data is divided into training (615 images), valida-
tion (202 images), and testing (198 images) sets. Impor-
tantly, the splits were constructed to maintain the overall
age distribution across all subsets. The age range spans
from 50 to 90 years old, with the majority of subjects
concentrated between 60 and 70 years old (Figure 2).
Sex distribution is relatively balanced, with 46% of fe-
male participants and 54% of male participants.

3.2. Image Preprocessing

3.2.1. OpenBHB
The OpenBHB dataset provides only preprocessed

MRI data, and does not offer access to the raw images.
The preprocessing pipeline employed for the T1w im-
ages of this dataset involved:

• Bias field correction: ANTs (Avants et al.,
2009) toolbox was used to correct intensity non-
uniformities arising from scanner artifacts.

• Affine registration: FSL FLIRT (Jenkinson et al.,
2002) was employed for affine registration of the
T1w images to the Montreal Neurological Insti-
tute (MNI) template (Mazziotta et al., 1995) in
isotropic 1 mm space. The registration used 9 de-
grees of freedom, excluding shearing transforma-
tions. The MNI template is a standardized brain
space derived from averaging a large number of
healthy adult MRI scans. This common reference

Figure 3: General preprocessing pipeline for T1w images.

space facilitates the comparison between brain im-
ages from different subjects and studies.

Figure 3 shows a flowchart of the main general
preprocessing steps, which are common for both Im-
aGenoma and OpenBHB datasets. An additional pre-
processing pipeline was applied to generate VBM vol-
umes using the CAT12 software (Gaser et al., 2022):

• Nonlinear spatial registration: A nonlinear
transformation was applied to the T1w images to
align them to a 1.5 mm isotropic MNI template.
Subsequently, the images were resampled to an
isotropic resolution of 1 mm to match the dimen-
sions of the other images in the dataset. This en-
sures consistent voxel sizes across all images for
improved analysis.

• Tissue segmentation: Gray matter (GM), white
matter (WM) and cerebrospinal fluid (CSF) tissues
were segmented from the registered images.

• Intensity normalization: bias correction of inten-
sity non-uniformities.

• Modulation: The segmentation maps were scaled
with the amount of volume change introduced by
the spatial registration.

It is important to note that only the GM VBM vol-
umes are available; the VBM maps of WM and CSF are
not included in the dataset.

3.2.2. ImaGenoma
A preprocessing pipeline was also applied to the raw

T1w images of the ImaGenoma dataset, in order to pre-
pare them for the analysis. The overall pipeline in-
volved:

• Bias field correction: The N4 bias field correction
method (Tustison et al., 2010) implemented within
the SimpleITK library was employed to correct in-
tensity non-uniformities due to scanner artifacts.

• Linear registration: FSL’s pairreg function was
utilized for linear registration of the images to a
1 mm isotropic MNI template. This function uses
FLIRT (linear) registration (Jenkinson et al., 2002)
with 12 degrees of freedom and a special opti-
mization schedule, incorporating two correspond-
ing skull images during the process, which act as a
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Figure 4: Preprocessing pipeline to obtain custom segmentations and VBM volumes.

reference to maintain consistent scaling throughout
the registration.

• Skull-stripping: FSL’s Brain Extraction Tool
(BET) (Smith, 2002) was employed to remove
non-brain tissue (skull) from the images.

3.2.3. Brain tissue segmentation
After the initial preprocessing steps, brain tissue

segmentation was performed on the images of both
OpenBHB and ImaGenoma datasets. These segmenta-
tions provided information that was used in deep learn-
ing and machine learning approaches, inspired by works
such as the ones of Cole et al. (2017), Peng et al. (2021)
and More et al. (2023), who included segmentation in-
formation for brain age estimation. Firstly, these seg-
mentation masks were employed to extract volumetric
features of different cortical and subcortical structures,
which were then used to train machine learning models.
Secondly, they served as informative priors to guide the
training of some of the developed deep learning models.
Two different methods were studied to obtain the tissue
segmentations:

• FSL FAST: This FSL tool was used for proba-
bilistic segmentation of GM, WM and CSF. FAST
utilizes a hidden Markov random field model and
an Expectation-Maximization algorithm to achieve
this task (Zhang et al., 2001). A key advantage
of this tool is its ability to provide the probability
maps associated to each of the final segmentation
labels. These probabilities may offer valuable in-
formation regarding the model’s confidence in the
prediction and thus were later used to train some of
the deep learning models.

• Synthseg: This convolutional neural network is
specifically designed for segmenting brain MRI

scans (Billot et al., 2023). It was used because of
its robustness across various acquisition protocols,
resolutions, subject populations (including healthy
young individuals, as well as elderly ones or those
with atrophied brains), and variations in prepro-
cessing pipelines. This tool provided binary seg-
mentation masks for 100 different cortical and sub-
cortical structures of the brain. From these seg-
mentations, GM, WM and CSF masks were also
obtained.

3.2.4. Deformable registration and segmentation mod-
ulation

While the OpenBHB dataset already included VBM
volumes, the ImaGenoma dataset did not include them
directly. To address this, we opted to generate VBM
volumes from the obtained tissue segmentations, fol-
lowed by modulation of the segmentation probabilities
with the information provided by the deformation field.
The overall steps of the generation of segmentations and
VBM volumes are shown in Figure 4.

The Python library ANTsPy (Avants et al., 2009)
was employed for this purpose. For the registration,
the Symmetric Normalization transformation was used,
which combines affine and deformable transformations,
together with a mutual information optimization metric,
to achieve the optimal alignment. First, the registration
was performed using the T1w MRI as the moving vol-
ume, and the 1 mm isotropic MNI template as the fixed
volume. Then, the obtained transformation was applied
to the segmentations of GM, WM and CSF (obtained
with FSL FAST, as explained in section 3.2.3).

Following registration, the Jacobian determinant of
the deformable registration’s deformation field was ob-
tained, which reflects the local volume changes intro-
duced by the registration process. Then, the registered
probabilistic segmentation volumes of GM, WM and
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CSF were modulated by multiplying them with the Ja-
cobian determinant. Finally, to improve signal-to-noise
ratio, the modulated segmentation probabilities were
smoothed using a Gaussian filter with a sigma of 1, as
done by Dufumier et al. (2022).

3.2.5. Normalization
A combined normalization approach was employed

specifically for deep learning models. This approach
involved dividing each voxel intensity by both the max-
imum and the mean intensity values within the image
(Gong et al., 2021; Peng et al., 2021). This method ef-
fectively mitigated the effects of scanner variations and
inhomogeneities, ensuring consistency across images,
leading to superior performance compared to traditional
min-max and z-score normalization methods.

3.3. Machine learning approaches
To establish a baseline for comparison with deep

learning models, the performance of various traditional
machine learning regression algorithms for brain age es-
timation was investigated.

The first step consisted in the feature extraction, in
which volumetric features were extracted from the brain
parcellations generated by the SynthSeg segmentation
pipeline. These features consisted of the volumes of 100
distinct brain regions (Billot et al., 2023). Two feature
sets were explored. One included the normalized vol-
umes, meaning that each of the 100 regional volumes
was divided by the total intracranial volume (TIV). In
the other, all 100 regional volumes were used along with
the TIV as an additional feature.

Following feature extraction, the data for each dataset
(ImaGenoma and OpenBHB) was split into the training
and testing sets. Subsequently, standard scaling was ap-
plied. This involved fitting the scaler to the training data
and then applying the fitted scaler to both the training
and testing sets, ensuring consistent scaling across both
datasets and avoiding data leakage.

Then, different regression algorithms were evaluated,
including:

• Ridge regression: This approach utilizes L2 reg-
ularization to address overfitting. A grid search
was conducted to find the optimal value for the α
parameter (options were 0.1, 0.5 and 1.0), which
controls the weight of the penalty term on the
model’s complexity. Higher α values promote sim-
pler models but might reduce their flexibility (Ho-
erl and Kennard, 1970).

• Least absolute shrinkage and selection opera-
tor (Lasso) regression: This method implements
L1 regularization for feature selection. Similar to
ridge regression, a grid search was used to deter-
mine the best value for the α parameter. As with
ridge regression, a higher α value promotes sparser
models with fewer features (Tibshirani, 1996).

• ElasticNet: This algorithm combines L1 and L2
regularization, offering advantages of both Lasso
and ridge regression. It promotes sparsity and re-
duces model complexity. A grid search was con-
ducted to identify the optimal hyperparameters for
α and the L1 ratio (options were 0.1, 0.5 and 0.9).
The α parameter controls the overall amount of
regularization, while the L1 ratio balances between
L1 and L2 penalties. A value of 1.0 for the L1 ra-
tio corresponds to pure Lasso regression, while a
value of 0.0 represents pure ridge regression (Zou
and Hastie, 2005).

• Support Vector Regression: This kernel-based
method was included in the analysis because it of-
fers flexibility in modeling nonlinear relationships.
A grid search was employed to tune the hyperpa-
rameters C (0.1, 1, 10), ϵ (0.1, 0.2, 0.5), and ker-
nel type (linear or radial basis function). The C
parameter controls the trade-off between maximiz-
ing the margin between hyperplanes and minimiz-
ing the training error. Higher C values prioritize
a large margin but might lead to overfitting. The
ϵ parameter defines the tolerance for misclassified
points (a smaller value allows for fewer errors but
can increase the model complexity) (Drucker et al.,
1996).

Additionally, feature importance was investigated to
understand which regional brain volumes were the most
influential predictors of brain age.

3.4. Deep learning approaches

In this subsection, we present the various deep learn-
ing approaches investigated in our work for brain age
estimation from MRI images. Figure 5 summarizes
the main methods and techniques explored, including
different input types, architectures, and other training
strategies. The following subsections will explore the
most significant methods and results from these ap-
proaches, providing detailed insights into our experi-
mentation and findings.

3.4.1. Simple Fully Convolutional Network (SFCN)
Our work was mainly based on the use of the SFCN

architecture, which was designed by Peng et al. (2021)
for brain age estimation. The choice of SFCN as the pri-
mary architecture was mainly motivated by two key as-
pects. Firstly, Peng et al. (2021) provided a pre-trained
model trained on a large dataset of over 10,000 scans
from the UK Biobank. This pre-trained model serves as
a valuable starting point for transfer learning, leveraging
the knowledge learned from a vast amount of data to im-
prove performance on potentially smaller datasets. Sec-
ondly, the SFCN architecture has been demonstrated by
Peng et al. (2021), as well as by others like Gong et al.
(2021), to achieve competitive performance in brain age
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Figure 5: Schematic diagram summarizing the main deep learning
approaches investigated in this work.

estimation tasks compared to deeper models. Given its
efficiency, pre-trained availability and competitive per-

formance, the SFCN was chosen as the baseline archi-
tecture for this study.

Inspired by VGGNet (Simonyan and Zisserman,
2014), the SFCN employs a fully convolutional struc-
ture with a significantly reduced number of layers
(seven) to minimize computational complexity and
memory usage. This design results in a lightweight
model containing approximately 3 million parameters,
in contrast with deeper architectures like 3D ResNet
variants (with tens of millions of parameters) and 2D
VGGNet (which has over 100 million parameters).

The SFCN architecture can be conceptually divided
into three stages (see Figure 6):

• Feature extraction (blocks 1-5): The initial five
blocks consist of 3D convolutional layers of 3 ×
3 × 3, followed by batch normalization, max pool-
ing (2 × 2 × 2) and a ReLU activation layer. The
input to the network is a 3D image with dimen-
sions 160 × 192 × 160, and the number of chan-
nels varies for each case, depending on if priors are
added or not. As the image passes through these
blocks, feature maps are generated, and the spatial
dimensions are progressively reduced, reaching a
size of 5 × 6 × 5 after the fifth block. The number
of output channels for these blocks are 32, 64, 128,
256, and 256, respectively.

• Nonlinear mapping (block 6): The sixth block
contains a 1 × 1 × 1 3D convolutional layer, batch
normalization and a ReLU activation layer. This
block increases the model’s nonlinearity without
changing the spatial dimensions of the feature
maps, maintaining a size of 5× 6× 5 with 64 chan-
nels.

• Age prediction (block 7): The final block includes
an average pooling layer that reduces the spatial di-
mensions to 1 × 1 × 1, a dropout layer with a 50%
dropout rate (used only during training), a fully
connected layer, and a softmax output layer.

To predict age, as suggested by Peng et al. (2021),
each ground-truth age label was converted into a soft
label, a probability distribution centered around the
ground truth age. This distribution was modeled as a
Gaussian with a user-defined standard deviation (σ).
Consequently, the regression problem was transformed
into a multi-class classification problem, where the total
age range was divided into bins. For ImaGenoma (age
range 50-89), 40 bins of one year each, and σ = 1, were
used. For OpenBHB (age range 6-86), we empirically
evaluated two configurations: 40 bins of two years each
(σ = 2), and 80 bins of one year each (σ = 1). The con-
figuration with 40 bins and σ = 2 was used for all mod-
els, since it achieved better performance. The output of
the model was also treated as a probability distribution,
with each output node of the model being associated to
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Figure 6: Schematic diagram of the Simple Fully Convolutional Network architecture for brain age estimation.

a bin. The final prediction was obtained from this distri-
bution by calculating the weighted average of each age
bin:

pred =
40∑

i=1

xi · agei

where xi represents the probability for the i-th age inter-
val and agei is the bin center of the corresponding age
bin.

To explore the SFCN architecture’s capabilities for
direct regression and facilitate the comparison with
the original multi-class classification implementation, a
modification was made. This involved replacing the fi-
nal block (block 7) with a single linear layer. The input
dimension of this layer matched the number of chan-
nels in the last convolutional layer of the feature extrac-
tor (64 in this case), while the output dimension was set
to 1. This modification enabled the model to directly
predict age as a continuous value, rather than a discrete
class.

3.4.2. Methodological approaches with OpenBHB

Baseline model using T1w images
Several configurations were tested using T1w images

linearly registered to the MNI template, as this modal-
ity is the standard choice in most existing studies for
brain age estimation due to its capability to provide de-
tailed analysis of the anatomical structures and tissues
of the brain. These configurations aimed to determine
the optimal learning rate, optimizer, and learning rate

scheduler, as well as to evaluate different model archi-
tectures. In all cases, models were trained from scratch
with Xavier initialization of the weights.

The initial configuration employed, as suggested by
Peng et al. (2021), the original SFCN with the follow-
ing configuration: an initial learning rate of 10−2, a step
learning rate scheduler, which decreased the learning
rate by a factor of 0.3 every 30 epochs, and a stochas-
tic gradient descent (SGD) optimizer. The loss function
used to train the model was the Kullback-Leibler diver-
gence (KLDiv) loss, which was introduced by Kullback
(1951) and is a measure of the difference between two
probability distributions, given by:

KLDiv(P||Q) =
∑

i

P(xi) · log
P(xi)
Q(xi)

In the context of this work, KLDiv measures the dif-
ference between the predicted probability distribution of
the subject’s age (Q(x)) and the soft label distribution
centered around the ground truth age (P(x)). Minimiz-
ing this soft-classification loss encourages the model to
produce predictions that closely resemble the true age
distribution (Peng et al., 2021).

We then explored modifying this approach to iden-
tify the optimal hyperparameters. First, the optimizer
was changed to Adam. Next, the OneCycle learning rate
scheduler was tested, which adjusts the learning rate dy-
namically, increasing to a peak before decreasing, to po-
tentially improve model convergence and performance.
Additionally, the original SFCN was modified to a re-
gression variant, which includes a single output neu-
ron for predicting continuous values and is optimized
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using the Mean Square Error (MSE) loss. This vari-
ant retained the same initial learning rate and scheduler.
Finally, the DenseNet121 architecture, also configured
with a single output node and MSE loss, was evalu-
ated using the same initial learning rate and scheduler
as the original SFCN setup, since other works like the
one of Wood et al. (2022) demonstrated its competitive
performance for brain age estimation. The configura-
tion of the original SFCN implementation, with SGD
optimizer, KLDiv loss, learning rate of 10−2 and step
learning rate scheduler, was empirically selected as the
baseline for the following experiments due to its supe-
rior results (as will be seen in the results section).

Addressing age distribution imbalance
To overcome the problem of imbalance in the age dis-

tribution of the dataset and improve the model’s perfor-
mance across different age groups, three different strate-
gies were employed using the T1w images, linearly reg-
istered to the MNI, as input.

The first approach involved oversampling subjects
older than 35 years old. Data augmentation techniques
were applied for the oversampling, in order to avoid
training with identical copies of each image. These
included voxel shifting (randomly by 0, 1 or 2 voxels
along each axis), randomly flipping around the sagittal
plane with a probability of 0.5, and rotating in all three
directions by a random angle between 0 and 5 degrees.
These augmentations were kept minimal to prevent any
structural changes in the image that might have a nega-
tive impact on the model’s performance.

The second approach combined undersampling of
young subjects (younger than 35) with oversampling of
older subjects (older than 35) to achieve a completely
balanced age distribution for training. The same aug-
mentations used in the previous case were applied to
the oversampled subjects.

The third approach was inspired by the approach pro-
posed by Kang et al. (2019), which addresses long-
tailed distributed data by decoupling the representation
and the classifier during training. This method involved
two stages. In the first stage, the model was trained
with the imbalanced data. In the second stage, a new
model was initialized with the weights from the previ-
ously trained model. The feature extractor blocks were
frozen, and only the classifier was fine-tuned using bal-
anced data. The balancing was achieved through the
same combination of undersampling and oversampling
with augmentation as in the second approach.

Alternative image inputs and priors
To explore the impact of different image inputs on

the performance of brain age estimation models, several
models were trained using alternative image representa-
tions. These included VBM volumes and various priors
added to the T1w images. The use of priors, such as
tissue segmentations and probabilistic maps, was inves-

tigated to determine if they could help the model focus
on relevant anatomical structures and improve overall
performance.

The strategies explored are as follows:

1. GM VBM volume:
• The model was trained using the GM VBM

volume provided in the OpenBHB dataset as
input.
• The SFCN architecture was used, with train-

ing hyperparameters consistent with the base-
line model trained with T1w images: an ini-
tial learning rate of 10−2, SGD optimizer,
KLDiv loss, and a step learning rate sched-
uler (decreasing by a factor of 0.3 every 30
epochs).

2. T1w images with Synthseg binary segmenta-
tions:
• T1w images linearly registered to the MNI

template were used alongside an additional
channel containing Synthseg binary segmen-
tations.
• Separate analyses were conducted for each

tissue type: T1w+GM, T1w+WM, and
T1w+CSF.
• Due to the lack of convergence with the KL-

Div loss when using multi-channel inputs, the
loss function was changed to cross-entropy
loss for these analyses.

3. Custom VBM volumes:
• The custom VBM volumes (approach from

Figure 4) were used as input to evaluate their
impact on model performance.
• The SFCN architecture, with KLDiv loss and

SGD optimizer were used, and the training
hyperparameters remained consistent with
the ones of the baseline model.

4. Nonlinearly registered T1w images:
• The performance of the model was evaluated

using T1w images that were nonlinearly reg-
istered to the MNI template.
• This approach aimed to compare the model’s

performance relative to training with T1w
images that were only linearly registered to
MNI.

Ensemble models
To investigate whether combining the predictions of

multiple models could enhance performance and im-
prove generalization capabilities, several ensemble ex-
periments were conducted. The idea was to average the
predictions of different models and evaluate their col-
lective performance.

The models considered for the ensembles were:
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• The baseline model trained with the original SFCN
and the T1w linearly registered to the MNI tem-
plate.

• The model trained with the GM VBM.

• The model trained with the regression variant of
the SFCN and the T1w linearly registered to the
MNI template.

• The model trained with data that had balanced age
distribution.

• Models trained with binary segmentation priors
(CSF, WM and GM).

• The model trained with the T1w nonlinearly regis-
tered to the MNI.

• The model that addressed long-tailed distributed
data by decoupling the representation and the clas-
sifier during training (with T1w as input).

All possible combinations of these models were eval-
uated to identify the ensemble that achieved the lowest
MAE. We also explored weighted averaging to see if it
could further improve the performance of the ensemble.

3.4.3. Methodological approaches with ImaGenoma
In this section, the methodologies employed on the

separate private dataset of clinical-quality images, Im-
aGenoma, are described. This dataset is smaller than
OpenBHB and has a more limited age range, as de-
scribed in section 3.1.2.

Training from scratch
As a baseline, the original SFCN implementation was

trained from scratch using the ImaGenoma dataset. The
implementation of SFCN with 40 output neurons was
used. The initial learning rate was set to 10−2, with
a OneCycle learning rate scheduler, KLDiv loss and
Adam optimizer. These hyperparameters were chosen
after tuning to find the best configuration.

Transfer learning from UK-Biobank pretrained model
To leverage the pretrained model provided by Peng

et al. (2021), which was trained on over 10,000 im-
ages of the UK Biobank with the same age range as
ImaGenoma, several transfer learning approaches were
applied. The goal was to determine if the pretrained
model could be adapted to be used with the ImaGenoma
dataset and to compare the performance of this ap-
proach against training the model from scratch with Im-
aGenoma images. The approaches included fine-tuning
only the classifier of the pretrained model, fine-tuning
the classifier and the last layer of the feature extractor,
and fine-tuning the classifier and the last two layers of
the feature extractor.

For these strategies, the Adam optimizer, an initial
learning rate of 10−2, and a step learning rate scheduler
(decreasing by a factor of 0.3 every 30 epochs) were
used. Since fine-tuning the classifier and the last layer
of the feature extractor yielded the best results, an addi-
tional approach was tested using the OneCycle learning
rate scheduler. This was to see if this scheduler could
help the model adapt faster to the new domain and im-
prove the final performance.

Transfer learning from models trained on OpenBHB
Further transfer learning techniques were applied

using the best performing models trained on the
OpenBHB dataset. The aim was to see if models could
adapt to the ImaGenoma dataset, despite the age range
of ImaGenoma coinciding with the less represented
ages in OpenBHB. Several approaches were evaluated,
each tested for fine-tuning only the classifier, the clas-
sifier plus the last layer of the feature extractor, and the
classifier plus the last two layers of the feature extractor.
However, only the best-performing combination will be
reported in the results section, in order to compare it
with the approaches of training from scratch or transfer
learning from the model pre-trained on OpenBHB.

By testing these transfer learning approaches, the ob-
jective was to determine which method best adapted
to the ImaGenoma dataset and whether transferring
knowledge from larger datasets, like UK Biobank or
OpenBHB, could enhance performance on the images
of the smaller in-house dataset.

3.5. Implementation details

Deep learning models were implemented using Py-
Torch (Version: 2.0.1) (Paszke et al., 2019) and PyTorch
Lightning (Version: 2.2.0.post0) (Falcon, William and
The PyTorch Lightning team) libraries, within a Python
3.10.12 environment. Scikit-learn (Version: 1.3.0) (Pe-
dregosa et al., 2011) was used for the implementation of
traditional machine learning models. Training and eval-
uation of deep learning models was performed with an
NVIDIA A30 GPU with 24GB of memory and CUDA
version 12.2.

3.6. Evaluation measures

The performance of the brain age estimation models
was evaluated using correlation plots and the following
measures:

• Mean Absolute Error (MAE): The MAE mea-
sures the average absolute difference between the
predicted brain age and the actual chronological
age of the subjects (Willmott and Matsuura, 2005).

• Coefficient of determination or R-squared (R2):
R2 represents the proportion of variance in the ac-
tual chronological ages that can be explained by
the predicted brain ages (James et al., 2013).
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Table 3: Performance of traditional machine learning algorithms.

Dataset Feature set Algorithm MAE (years) R2

OpenBHB

Normalized

Ridge 4.93 0.80
Lasso 4.91 0.80

ElasticNet 4.94 0.80
SVR 4.21 0.82

TIV included

Ridge 5.02 0.79
Lasso 5.03 0.79

ElasticNet 5.03 0.78
SVR 4.18 0.82

ImaGenoma

Normalized

Ridge 4.81 0.38
Lasso 4.66 0.42

ElasticNet 4.70 0.42
SVR 4.94 0.33

TIV included

Ridge 4.75 0.40
Lasso 4.61 0.44

ElasticNet 4.62 0.44
SVR 4.75 0.41

• Pearson’s Correlation Coefficient (r): r mea-
sures the linear correlation between the predicted
and actual brain ages. A value closer to 1 indi-
cates a strong positive linear relationship between
the predicted and actual ages, whereas a value of 0
signifies no linear correlation (James et al., 2013).

Additionally, paired or independent samples t-tests
were employed to assess statistically significant dif-
ferences between the prediction errors of our models
across different groups (e.g., men vs. women) or ap-
proaches.

4. Results

4.1. Machine learning approaches

We evaluated the machine learning algorithms on
both the ImaGenoma and OpenBHB datasets with two
feature sets (dividing each regional volume by the TIV,
and using the TIV as extra feature).

Table 3 summarizes the performance metrics (MAE
and R2) achieved by the algorithms on both datasets
with the two feature sets.

It can be observed that Lasso regression, with the
feature set that included the TIV as an extra feature,
achieved the best performance with a MAE of 4.61
years and R2 of 0.44 in the ImaGenoma dataset. The
optimal α hyperparameter, found with grid search, was
0.1. On the other hand, the method that yielded the best
results in the OpenBHB dataset was SVR, with a MAE
of 4.18 years and R2 of 0.82 (also including the TIV
as an extra feature). The best hyperparameters for this
were C = 10, ϵ = 0.1 and the nonlinear kernel.

Analyzing the top features identified through feature
importance revealed a consistent pattern across algo-
rithms and datasets. The volumes of the left thalamus,
right cerebral cortex and brain stem emerged as the most

important predictors of brain age according to ridge re-
gression, Lasso regression and ElasticNet. Additionally,
the volume of the third and fourth ventricles consis-
tently held significant importance across all algorithms
and datasets.

4.2. Deep learning approaches on OpenBHB dataset

4.2.1. Baseline model with T1w images
As described in Section 3.4.2, several configurations

were evaluated, focusing on hyperparameter tuning, op-
timizer selection, learning rate scheduling, and architec-
ture choice. The performance of each configuration was
assessed using the MAE on the entire test set (in-domain
and out-domain combined), the in-domain MAE, the
out-domain MAE, the R2 and the correlation coefficient.

Table 4 summarizes the hyperparameters, architec-
tures, and performance metrics of the evaluated models
(a numerical ID is assigned in the first column to each
experiment for easier future reference). As shown in
this table, the configuration employing SGD optimizer,
a learning rate of 10−2, a step learning rate scheduler
and the original SFCN architecture with KLDiv loss
achieved the best overall performance. Because of this,
it was chosen as the baseline for the rest of the experi-
ments.

4.2.2. Addressing age distribution imbalance
To evaluate the effectiveness of the strategies used to

address the imbalance in the age distribution, the mod-
els were assessed using the same metrics as the base-
line model. Additionally, we analyzed the MAE across
different age ranges to understand how well each strat-
egy mitigated the imbalance issue, particularly for older
subjects. The results of these evaluations are summa-
rized in Table 5, and the correlation and boxplots for
the different strategies are presented in Figure 7.
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Table 4: Performance of deep learning models with T1w image inputs.

ID Optimizer LR Architecture Loss MAE (all) MAE (in) MAE (out) R2 r

01 SGD 10−2 (step
scheduler)

SFCN
(classification)

KLDiv 3.08 2.63 3.50 0.86 0.93

02 Adam 10−2 (step
scheduler)

SFCN
(classification)

KLDiv 3.72 3.03 4.34 0.77 0.88

03 SGD 10−2

(OneCycle
scheduler)

SFCN
(classification)

KLDiv 3.09 2.75 3.4 0.85 0.92

04 Adam 10−4 (step
scheduler)

SFCN
(regression)

MSE 3.28 2.95 3.57 0.84 0.92

05 Adam 10−4 (step
scheduler)

DenseNet121 MSE 3.37 2.87 3.83 0.83 0.91

Figure 7: Correlation plot between the actual and predicted ages for all samples of the test set (top) and boxplot with absolute errors per age decade
(bottom) for the models trained to mitigate age imbalance.

The results in Table 5 show that oversampling with
augmentation (experiment 06) achieved the lowest over-
all MAE on the entire test set. However, examining
the boxplots, it can be observed that while this strat-
egy reduced the error for older subjects, it also resulted
in higher error in the middle age range. The same can
be observed in the case of undersampling younger sub-
jects and oversampling older ones (experiment 07). On
the other hand, the last strategy of decoupling the train-
ing of the representation from the classifier, exhibited a
more uniform decrease in MAE across most age groups,
although the error for the oldest subjects was slightly
higher compared to experiments 06 and 07.

4.2.3. Alternative image inputs and priors
As mentioned in Section 3.4.2, we investigated the

use of VBM volumes and incorporating priors with T1w
images as input, as well as using the nonlinearly regis-
tered T1w images.

Table 6 summarizes the performance of the models
trained with different image inputs. The model using
the GM VBM volume provided in the OpenBHB dataset
achieved a MAE of 2.97 on the entire test set, demon-
strating the best performance in terms of MAE, R2 and
correlation coefficient. Among the models trained with
T1w images and segmentation priors, the one using CSF
segmentation resulted in the lowest overall MAE (3.18),
followed by the one using GM (MAE = 3.34). Using
custom VBM volumes achieved comparable, but poorer,
performance compared to the baseline model. Finally,
using T1w images nonlinearly registered to the MNI
template resulted in higher error when compared to the
model trained with linearly registered T1w images.

The superiority of using only GM VBM volumes for
brain age estimation compared to relying on T1w im-
ages and priors is further corroborated by the signifi-
cant difference in performance between experiment 09
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Table 5: Summary of results of the different strategies to mitigate age imbalance.

ID Strategy MAE (all) MAE (in) MAE (out) R2 r

01 Baseline model 3.08 2.63 3.50 0.86 0.93
06 Oversampling subjects older than 35 3.10 2.65 3.52 0.85 0.92
07 Combined undersampling and

oversampling
3.21 2.71 3.68 0.87 0.93

08 Decoupling representation and
classifier

3.18 2.82 3.52 0.86 0.93

Table 6: Performance of deep learning models with alternative image inputs and priors.

ID Input MAE (all) MAE (in) MAE (out) R2 r

01 Baseline model 3.08 2.63 3.50 0.86 0.93
09 GM VBM (SPM) 2.97 2.66 3.25 0.88 0.94
10 T1w + GM binary segmentation 3.34 2.79 3.84 0.83 0.91
11 T1w +WM binary segmentation 3.62 2.90 4.28 0.76 0.88
12 T1w + CSF binary segmentation 3.18 2.77 3.55 0.83 0.92
13 Custom GM VBM 3.28 2.75 3.77 0.83 0.92
14 Custom WM VBM 3.17 2.80 3.51 0.85 0.93
15 Custom CSF VBM 3.25 2.85 3.61 0.84 0.92
16 T1w nonlinearly registered to MNI 3.35 2.70 3.94 0.81 0.91

(trained with GM VBM) and experiment 11 (trained
with T1w and WM segmentation). The first model
achieved a significantly lower MAE (2.97 years) com-
pared to the latter (3.58 years) (p-value = 0.0001). This
statistically significant improvement (p < 0.001) high-
lights the value of GM VBM volumes in capturing rele-
vant information for age prediction.

4.2.4. Analysis of domain and sex effects
To assess potential domain biases in the extracted

features, we employed t-SNE visualizations (Van der
Maaten and Hinton, 2008). These visualizations project
high-dimensional features, extracted from the last layer
of the feature extractor of the network (purple block of
Figure 6), onto a 2D plane, allowing for the exploration
of potential clustering patterns based on domain (identi-
fied in Figure 8 by color and shape). We selected for this
analysis three models trained with different types of in-
puts, in order to investigate the domain bias introduced
by each one. These included:

• Experiment 08 (T1w input): We aimed to deter-
mine if the intensity variations across scanners,
present in T1w images, introduced significant do-
main bias in the extracted features.

• Experiment 12 (T1w + CSF binary segmentation
prior): We investigated whether including segmen-
tation prior information influences the domain-
invariance of the features compared to using only
T1w images. This specific model was chosen for
the analysis as it demonstrated the best perfor-
mance among the models trained with segmenta-
tion priors.

• Experiment 09 (GM VBM input):We compared
this model to the T1w-based models to assess if
employing VBM volumes reduces domain bias in
the learned features.

When examining the t-SNE plots of Figure 8 for mod-
els trained on T1w images (both with and without pri-
ors), data points from out-of-domain sites (like sites 13,
15, or 57) are easily identifiable and clustered, suggest-
ing a potential bias. In contrast, the t-SNE plot for the
VBM-based model reveals more diffuse clusters, with
features covering a wider portion of the space.

The influence of sex on the model’s performance was
evaluated using a two-sided t-test comparing the abso-
lute errors between male and female subjects for the
best model (experiment 09). Moreover, similar to the
domain analysis, a t-SNE visualization plot was cre-
ated, but colored by sex (male/female) instead of do-
main. This visualization aimed to identify any poten-
tial clustering patterns based on sex within the feature
space. For the model trained with GM VBM, the t-test
resulted in a p-value of 0.22, suggesting no statistically
significant difference (at a significance level of 0.05) in
MAE between males and females. Also when visualiz-
ing the tSNE plot of Figure 9, no clusters can be identi-
fied based on sex.

4.2.5. Ensembles
To assess the potential of ensemble learning for brain

age estimation, we combined predictions from various
models explored in Section 3.4.2. After evaluating dif-
ferent combinations, an ensemble achieved the best per-
formance using the following models: the model trained
with decoupled representation and classifier (exp 08),
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Figure 8: t-SNE visualization of features for experiments 08, 12, and 09, colored and shaped by domain.

Table 7: Performance of ensemble models in comparison with the best-performing individual deep learning model.

ID Strategy MAE (all) MAE (in) MAE (out) R2 r

09 GM VBM (OpenBHB) 2.97 2.66 3.25 0.88 0.94
17 Non-weighted average ensemble 2.74 2.47 3.00 0.87 0.95
18 Weighted average ensemble 2.70 2.39 2.99 0.87 0.95

Figure 9: t-SNE visualization of features for experiment 09, colored
by sex.

the model trained with GM VBM (exp 09), the model
trained with T1w and oversampling/augmentation of
older subjects (exp 06), and the model trained with
SFCN regression variant (exp 04). The initial ensem-
ble employed a non-weighted average of the predictions
of these individual models, achieving a general MAE of
2.74 years.

Further optimization was achieved through a

weighted ensemble approach. Weights for each model
were identified using a function that explored all pos-
sible normalized combinations between 0 and 1. The
resulting optimal weights assigned the highest impor-
tance to the GM VBM model (experiment 09, weight:
0.354), followed by the model with oversampling and
T1w input (experiment 06, weight: 0.27), and equal
weights (0.188 each) for the models of experiments 08
(trained with decoupled representation and classifier)
and 04 (using SFCN regression variant).

Table 7 shows the results of the best individual model
(experiment 09, trained with GM VBM), compared to
the performance of the non-weighted and weighted av-
erage ensembles. It can be observed that the weighted
ensemble slightly outperformed the non-weighted ver-
sion, and that both ensembles outperformed the individ-
ual models. The weighted ensemble achieved a general
MAE of 2.70 years, which was a statistically significant
improvement (p-value=0.003) compared to the best in-
dividual model trained with GM VBM volumes. This
demonstrates the effectiveness of ensemble learning in
enhancing brain age estimation performance.

Figure 10 visually shows the performance of the final
weighted ensemble through correlation plots between
the predicted and actual ages for all the test set, and the
in-domain and out-domain subsets.
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Figure 10: Correlation plot between the actual and predicted ages for the entire test set (left), the in-domain subset (middle), and the out-domain
subset (right) of the ensemble model.

4.3. Deep learning approaches on ImaGenoma dataset

The performance of some SFCN models, trained with
different strategies on the ImaGenoma dataset as ex-
plained on Section 3.4.2, was evaluated. Three main
training strategies were assessed: training from scratch,
transfer learning from the pre-trained model on UK
Biobank dataset, and transfer learning from the best per-
forming models trained on the OpenBHB dataset.

For the transfer learning experiments, in the case of
fine-tuning the model pre-trained on UK Biobank, the
best-performing model (MAE of 3.28 years) was ob-
tained by fine-tuning only the last layer of the feature
extractor and the classifier block. When applying trans-
fer learning from the model of experiment 01 trained on
OpenBHB, the last two layers of the feature extractor
and the classifier needed to be fine-tuned, achieving a
MAE of 3.66 years.

Table 8 summarizes the performance metrics (MAE,
R2 and correlation coefficient) for each strategy. From
this table, it can be seen that the best performing model
was obtained by fine-tuning the model that was pre-
trained on the UK Biobank dataset. The correlation
plot between the real ages and the ages predicted by this
model can be seen in Figure 11.

5. Discussion

This study aimed to develop and evaluate different
methods for accurate and robust brain age prediction,
leveraging a large-scale, multi-site dataset and explor-
ing both traditional machine learning and deep learning
approaches. We also investigated the impact of incor-
porating prior knowledge and the effectiveness of trans-
fer learning techniques. Our findings provide insights
into the relative strengths and limitations of these ap-
proaches and their potential for improving brain age es-
timation.

Our evaluation of traditional machine learning re-
gression algorithms for brain age estimation yielded
competitive results compared to recent works in the
field. Specifically, the Lasso regression model achieved
a MAE of 4.61 years on the ImaGenoma dataset, while

Figure 11: Correlation plot between the actual and predicted ages with
the best-performing model (transfer learning from model pre-trained
on UK Biobank) for the ImaGenoma test set.

SVR obtained a MAE of 4.18 years on the OpenBHB
dataset. De Lange et al. (2022) had reported a MAE
of 4.18 years on the UKBiobank, which has a similar
age range to ImaGenoma but with a larger sample size,
while Da Costa et al. (2020) had achieved a MAE of
4.571 years on the PAC2019 dataset, which is compara-
ble to OpenBHB in terms of age distribution and sample
size. This indicated that volumetric measures from cor-
tical and subcortical structures capture valuable infor-
mation related to brain aging, particulary in structures
like the left thalamus, right cerebral cortex, brainstem,
and ventricles. These findings align with previous stud-
ies by Fama and Sullivan (2015) who reported thalamic
and cortical gray matter volume decline with age, Luft
(1999) who observed brainstem volume decrease after
the age of 50, and Apostolova et al. (2012) who linked
ventricular enlargement to aging. Interestingly, a lin-
ear model (Lasso) performed better on the ImaGenoma
dataset, while a nonlinear model (SVR) was better on
the OpenBHB dataset. This suggests that within a lim-
ited age span, brain changes might be more linear, effec-
tively captured by Lasso’s ability to identify these linear
relationships and reduce model complexity. Conversely,
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Table 8: Performance of models on ImaGenoma dataset.

Strategy Source dataset MAE R2 r
Training from scratch - 5.15 0.21 0.27

Transfer learning
UK Biobank 3.28 0.64 0.83
OpenBHB 3.66 0.61 0.79

for a broader age range with potentially more complex
brain changes, nonlinear models like SVR with a non-
linear kernel may be more suitable.

Deep learning models outperformed traditional ma-
chine learning approaches, likely due to their ability
to directly analyze images and capture nonlinear and
complex relationships between voxels that volumet-
ric measures might miss. When establishing baseline
deep learning models, our findings suggest that employ-
ing a soft classification approach with SFCN networks
yield better results compared to direct regression. This
could be attributed to the tendency of regression models
to predict values closer to the training data’s average,
potentially affecting the performance negatively, espe-
cially with imbalanced datasets. The soft-classification
approach might mitigate this issue and capture more
nonlinear relationships.

We investigated various strategies to address the im-
balanced age distribution within the datasets. All three
methods improved performance for under-represented
older subjects without significantly compromising ac-
curacy for younger ones. Oversampling with augmenta-
tion of older subjects achieved the lowest overall MAE,
but boxplots revealed that error for middle-aged sub-
jects remained high. Decoupling representation training
from the classifier achieved a more uniform decrease in
MAE across most age groups. This suggests that over-
sampling might lead to overfitting to the characteristics
of the oversampled data, hindering generalizability. De-
coupling the training stages and using balanced data for
fine-tuning the classifier might allow the model to learn
more generalizable representations applicable to a wider
age range.

The most successful deep learning models utilized
GM VBM volumes as input. This indicates that the
GM segmentation, and the deformation field informa-
tion with which it is modulated, provide crucial details
that aid the model in differentiating subjects of differ-
ent ages. This aligns with the established knowledge
of age-related GM atrophy (Oh et al., 2014). Addition-
ally, training with VBM volumes reduced the error in
the out-domain test set subset, as these volumes are less
susceptible to scanner or protocol variations compared
to T1w images. In contrast, incorporating segmenta-
tion priors as input did not significantly improve perfor-
mance, suggesting the model primarily relied on T1w
image information for age prediction. Training with
custom VBM volumes yielded lower performance com-
pared to those provided by the OpenBHB dataset. This

could be due to segmentation quality or the fact that our
nonlinear registration to the MNI template started from
a pre-registered T1w image, potentially missing crucial
deformation details present in the original image. Fur-
thermore, training with nonlinearly registered T1w im-
ages resulted in worse performance compared to linear
registration. This is reasonable since linear registration
introduces less deformation, potentially preserving tis-
sue and structural details relevant for age prediction.

Ensembling predictions from various models yielded
superior performance compared to individual mod-
els. The weighted ensemble, which accounted for
the strengths and weaknesses of individual models,
achieved the best performance with a MAE of 2.70
years. This approach improved generalizability, re-
flected in the reduced gap between in-domain and out-
domain MAE. Specifically, our best individual model
achieved MAE of 2.66 in the in-domain subset and 3.25
in the out-domain subset, while the ensemble further
improved these results to 2.39 and 2.99, respectively.
To the best of our knowledge, these results show bet-
ter performance than the state-of-the-art method in the
OpenBHB dataset proposed by Barbano et al. (2023),
who achieved MAEs of 2.61 and 3.56 in the same sub-
sets.

Finally, regarding the models for the ImaGenoma
dataset, training a deep learning model from scratch on
this data resulted in high error (MAE of 5.15 years).
This can be attributed to the limited dataset size and
age range, and potentially lower image quality. Transfer
learning from models trained on larger datasets signif-
icantly improved performance on this clinical dataset.
The model transferred from OpenBHB achieved an er-
ror of 3.66 years despite the limited overlap in the
age between both datasets. The best performance was
achieved by fine-tuning the model pre-trained on UK
Biobank (MAE of 3.28 years), which had a substan-
tial number of images in the same age range as Im-
aGenoma, highlighting the effectiveness of leveraging
large datasets for improving performance on smaller
datasets.

One of the limitations of our work is related to the
data used for training. Even though the OpenBHB
dataset, which was the primary dataset for developing
our models, is a large and diverse dataset, it is highly
imbalanced in terms of age distribution. Consequently,
our models do not perform as well for older subjects
due to the limited number of images in this age range.
This is a significant limitation, as many neurodegen-
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erative diseases, which we aim to predict using esti-
mated brain age, predominantly affect older individuals.
In future work, we plan to incorporate more data from
middle-aged and older subjects to develop models that
perform well across all age groups. Moreover, another
limitation is the lack of interpretability. To address this
limitation, future work will explore techniques for ex-
plainable deep learning, in order to understand which
features in the brain scans contribute most significantly
to the age prediction, and assess whether these regions
align with findings from our machine learning analy-
ses. Additionally, we aim to evaluate and improve brain
age estimation models for diseased subjects that could
present brain lesions (e.g., subjects with multiple sclero-
sis), validating whether brain age delta could serve as a
biomarker for cognitive decline and neurodegeneration.

6. Conclusions

This study demonstrates the potential of both tradi-
tional machine learning and deep learning approaches
for brain age estimation. We implemented and evalu-
ated a comprehensive range of methods for brain age es-
timation, exploring the influence of different input types
(segmentations, VBM volumes and priors) and data bal-
ancing strategies. Additionally, we investigated transfer
learning to enhance performance on a smaller in-house
dataset. Traditional machine learning models, while ef-
fective, were outperformed by deep learning models,
particularly those leveraging VBM volumes and ensem-
ble methods. Brain age estimation using GM VBM vol-
umes achieved the best performance. Ensemble learn-
ing further improved this performance, demonstrating
the value of combining different models’ strengths. Im-
portantly, our method achieved superior performance on
the OpenBHB benchmark dataset compared to the pre-
viously reported state-of-the-art method. These findings
contribute to the advancement of brain age estimation
models, offering valuable insights for future research
and clinical applications.
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Abstract

In neuroelectronics, the quest for enhanced imaging and analysis techniques is critical, not only for advancing
our understanding of neuronal behavior but also for improving bioelectronic interfaces. These interfaces, crucial for
capturing the intricate dynamics of neuronal signals, rely on precise imaging to tackle the challenges posed by the
complex and unpredictable morphology of neurons, influenced by their inherent polarity.

This study focuses on developing innovative methodologies to refine neuroelectronic tools, aligning to better charac-
terize neuron morphology and interaction. The aim is to translate these advancements into more reliable and effective
interfaces that can adapt to the dynamic nature of neuronal structures.

Key achievements include the enhanced image analysis techniques that have allowed for detailed characterization
of neuron structures. This has led to the segmentation of clusters of nuclei and neurites, improving our ability to study
cellular responses to environmental changes. The measurement of fluorescence intensity across imaging channels has
provided insights into neuronal function and protein dynamics related to cell adhesion. By using segmentation and
graph analysis, it has improved our understanding of neuronal network dynamics.

These contributions enrich the toolkit for neuroelectronic applications, aiding in the diagnosis and treatment of neu-
rological disorders. This exploratory research highlights the commitment to enhancing neuroelectronic methodologies
and sets the stage for future advancements in the field.

Keywords: Neuroelectronics, Interfaces, Image analysis, Neuronal behavior, Neuron morphology

1. Introduction

Bioelectronics is a multidisciplinary field that merges
biology, electronics, and materials science to create de-
vices that interface with biological systems (Cho et al.,
2021). These devices, such as biosensors (Martı́nez
et al., 2018) and neural implants (Aspiotis et al., 2022),
are designed to interact with biological components like
cells and tissues, allowing for the recording, stimula-
tion, and modulation of biological signals (Cuttaz et al.,
2024). Bioelectronic devices play a vital role in med-
ical technology, enabling the diagnosis and monitoring
of health conditions by detecting various physical, elec-
trophysiological (Kumar et al., 2024), and biochemical
markers (Kireev et al., 2022). The field utilizes biocom-

patible materials to ensure safe integration with biologi-
cal systems and employs electrical signals to control bi-
ological processes, offering transformative applications
in healthcare, neuroscience, and beyond (Cuttaz et al.,
2024).

1.1. Neuroelectronics

Within the broader scope of bioelectronics, neuro-
electronics specifically combines the expertise from
neuroscience, electronics, and materials science to in-
novate technologies that interface with the nervous sys-
tem (Qi et al., 2023). This interdisciplinary field aims to
develop neural interfaces that precisely record and stim-
ulate neural activity, offering significant potential for
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treating neurological disorders (Krook-Magnuson et al.,
2015).

One of the clinical implications of neuroelectronics is
its capacity for therapeutic neuromodulation. Devices
such as those used in deep brain stimulation can effec-
tively manage symptoms of Parkinson’s disease (Neu-
mann et al., 2023), epilepsy (Ganguli et al., 2017), and
various movement disorders (Hooi et al., 2017).

Moreover, neuroelectronic implants can restore lost
sensory functions; for instance, retinal implants may re-
turn partial vision to those suffering from degenerative
eye diseases, while cochlear implants restore hearing
by directly stimulating the auditory nerve (Nella et al.,
2022).

Brain-computer interfaces (BCIs) represent another
transformative application of neuroelectronics. These
devices can interpret neural signals into commands that
control external devices, providing new ways for peo-
ple with severe motor disabilities to communicate and
move (Drakopoulou et al., 2023; Go et al., 2022).

Recent advancements in the field have also led to the
creation of minimally invasive neural interfaces(Fanelli
et al., 2022). These newer technologies, including soft,
flexible, and injectable devices, enable less invasive im-
plantations that reduce tissue damage and increase long-
term biocompatibility, making them suitable for chronic
applications (Seo et al., 2023).

In clinical settings, various neuroelectronic devices
are already in use for both diagnostic and therapeutic
purposes. Deep brain stimulation systems (Guimerà-
Brunet et al., 2021) and vagus nerve stimulators (Ade-
wole et al., 2019) are routinely used to manage con-
ditions ranging from chronic pain to drug-resistant
epilepsy (Ganguli et al., 2017) and severe depression
(Holtzheimer et al., 2017).

1.2. Interfacing neurons with electronics

Neuroelectronics, designed to interface with the ner-
vous system, must be biocompatible to function safely
and effectively within the body (Go et al., 2022). This
ensures that these devices, whether implanted or in di-
rect contact with neural tissues, do not trigger harmful
biological reactions or adverse effects (Kireev and Of-
fenhäusser, 2018). Central to neuroelectronics is the
neuron-electrode interface, crucial for effective signal
transduction between neurons and devices (Liang et al.,
2021). The integrity of this interface is vital for the
fidelity of neural signals, influenced by the quality of
electrical contact and sealing resistance, essential for
efficient stimulus transfer (Mariano et al., 2021; Tang-
Schomer et al., 2014).

Biocompatibility in neuroelectronics involves care-
ful material selection and engineering of surface, me-
chanical, and electrical properties to minimize immune
responses and match the neural tissues’ dynamic na-
ture (Go et al., 2022). Enhancements in interface de-

sign utilize materials known for their excellent biocom-
patibility and adhesion (Milos et al., 2021), ensuring
effective neuron-device integration. These include in-
novations like structured nano and microscale topogra-
phies that improve cell adhesion and alignment (Matino
et al., 2020), critical for efficient neural stimulation and
recording (Schiavone et al., 2020).

Furthermore, the interface’s advanced features, such
as electrochemical sensors for neurotransmitter detec-
tion (Reddy et al., 2019), offer invaluable insights for
monitoring neurological conditions and guiding medi-
cal interventions (Kaur et al., 2022). These develop-
ments improve the clinical application of neuroelectron-
ics and facilitate detailed studies of neuronal function,
advancing our understanding of the nervous system
and improving the long-term performance and safety of
these devices (Keogh, 2020).

1.3. Key neuron features
1.3.1. Neuron anatomy

The effectiveness of neuroelectronic devices is deeply
tied to neuron anatomy, particularly through the neuron-
electrode interface. This interface facilitates direct in-
teraction between the complex structure of neurons and
the functionalities of neuroelectronic devices. A thor-
ough understanding of neuron anatomy is essential for
improving device design and application in clinical and
research settings. (Kandel et al., 2000).

Figure 1: Anatomical structure of a neuron. Source: (Pitsis, 2018)

Neuron anatomy features several key components:
the soma (cell body), dendrites, axons, and synaptic ter-
minals (Figure 1).The soma houses the nucleus and is
central to the neuron’s metabolic and genetic activities.
Dendrites extend from the soma and receive signals at
synapses from other neurons. Axons not only carry im-
pulses away from the soma to other neurons but also
generate electrical signals that travel towards the synap-
tic terminals. At the axon ends, these impulses trigger
the release of neurotransmitters, facilitating communi-
cation with other cells (Kandel et al., 2000).

Understanding the morphology and distribution of
dendrites and axons is vital for precise placement of
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electrodes. Electrodes positioned near dendrites can ef-
fectively capture incoming signals, while those near ax-
ons enhance the recording or initiation of outgoing sig-
nals. This strategic placement is crucial for optimal de-
vice function (Rinklin and Wolfrum, 2021).

1.3.2. Neuron polarity
Neuronal polarity is a fundamental aspect of neuron

structure and function, crucial for the effective commu-
nication and information processing within the nervous
system. This polarity is characterized by the formation
of a single axon and multiple dendrites from the neu-
ron’s cell body (Figure 2) . The axon transmits signals
away, while dendrites receive incoming signals, estab-
lishing a directional flow of neural information as histor-
ically described by Santiago Ramón y Cajal, who noted
that impulses typically travel from dendrites through the
soma to the axon (Delgado-Garcı́a, 2015).

Neuron polarity development is influenced by both
positive and negative feedback loops. Positive feedback
loops, which involve mechanisms that enhance the ef-
fects they initiate, significantly promotes axon growth
in neurons (Zhou et al., 2020). Conversely, negative
feedback loops work by initiating responses that reduce
or inhibit their initial effects, help maintain neuronal
polarity by restricting the formation of multiple axons,
thus supporting dendritic growth (Takano et al., 2019).
This polarity is vital during neurogenesis, where neu-
rons form and orient themselves within existing neural
circuits, and continues to play a role in axon guidance
and synapse formation. Axons extend towards their tar-
gets guided by molecular cues, while synapses, forming
primarily on dendrites, facilitate neuron-to-neuron com-
munication.

Figure 2: Stages of neuronal polarity development: initial symmetri-
cal neuron progresses through neurite outgrowth, axon differentiation,
dendritic branching, to mature synaptic spine formation.. Source:
(Takano et al., 2019)

Through a series of well-defined stages depicted in
Figure 2, neurons transform from multipolar precursors
with equivalent neurites to functionally distinct struc-
tures. Initially, neurites undergo cycles of growth and
retraction (Banker, 2018). One neurite then emerges
as the axon, experiencing extended growth regulated
by factors like microtubule dynamics (Higgs and Das,
2022). The remaining neurites differentiate into den-
drites (Banker, 2018), establishing neuronal polarity.

The specified axon continues to elongate and navigate
towards its target, while dendrites mature for receiving
synaptic inputs (Gärtner et al., 2015). This intricate pro-
cess ultimately leads to the formation of functional neu-
ronal circuits (Li et al., 2019).

1.3.3. Neuron communication
Neuron communication is a fundamental aspect

of nervous system function, unfolding primarily at
synapses, where neurons meet (Batool et al., 2019). The
role of neuronal polarity is critical in this process as
it dictates the directionality of neural signals, ensuring
precise integration with specific neuronal compartments
(Gu et al., 2023).

Neuron communication is initiated by inputs from
other neurons, which can lead to changes in the mem-
brane potential of the neuron. This change can form
an action potential, an electrical impulse if the inputs
are strong enough to reach a threshold. Due to the neu-
ron’s polarized structure, this action potential then trav-
els along the axon to the synapse. At the synapse, it
triggers the opening of voltage-gated calcium channels,
facilitating the influx of calcium ions into the neuron
(Solecki, 2022). This influx is crucial as it prompts the
release of neurotransmitters stored in synaptic vesicles
(Kandel et al., 2000).

The neurotransmitters released into the synaptic
cleft—the small gap between neurons—bind to specific
receptors on the postsynaptic neuron (Szabo and Starke,
2021). This binding determines whether the postsynap-
tic neuron is more likely to fire its action potential (ex-
citatory response) or less so (inhibitory response), de-
pending on the types of neurotransmitters and receptors
involved (Kandel et al., 2000). These inputs and their
integration at the synapses dictate whether new action
potentials will be formed, propagating the signal to the
next neuron in the circuit.

Conversely, disruptions in these signaling pathways
can manifest in various diseases. For instance, in multi-
ple sclerosis (Bellingacci et al., 2021), the inappropriate
activation of components within the signaling pathway
leads to neuronal damage, while in depression (Parekh
et al., 2022), altered chemical signaling due to dysfunc-
tional glia-neuron interactions can affect overall brain
function and mental health (Rudzki and Maes, 2021).
These conditions highlight the importance of maintain-
ing the structural and functional integrity of neurons.

1.3.4. Neuron structural components
Neurons possess a complex cytoskeleton consisting

of microtubules, actin microfilaments, and intermediate
filaments, each crucial for maintaining neuronal struc-
ture and function. These elements not only provide sta-
bility but also allow for adaptations that are vital for
neuronal health, offering potential targets for neuroelec-
tronic interfaces to influence therapeutic morphological
changes.
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Microtubules, hollow structures about 25nm in diam-
eter formed from tubulin dimers, extend from the neu-
ronal cell body into axons and dendrites, facilitating the
transport of vesicles and organelles crucial for neuronal
function (Rafiq et al., 2022). Actin microfilaments,
thinner at 4-6nm and formed by actin monomers, are
concentrated in growth areas such as dendritic spines
and near the plasma membrane, supporting neuronal
growth, shape maintenance, and secretion processes
(Shan et al., 2021).

Together, microtubules and actin filaments are es-
sential for transporting synaptic vesicles and other or-
ganelles to synapses, enabling effective synaptic trans-
mission and interneuronal signaling (Leshchyns’ Ka
and Sytnyk, 2016). Complementing them are interme-
diate filaments, or neurofilaments, 8-12nm in diameter,
which form a matrix within axons that spaces micro-
tubules and enhances the neuron’s mechanical strength
and axonal caliber (Rafiq et al., 2022).

Similar to the role of neuronal cell adhesion
molecules (NCAMs) and L1 in facilitating neurite out-
growth, axon guidance, and synapse formation via their
interactions with the cytoskeleton (Leshchyns’ Ka and
Sytnyk, 2016), integrins and paxillin function as a cru-
cial mechanosensory and signaling unit for neuronal
development. These transmembrane receptors (inte-
grins) act as extracellular tethers, binding the neuron to
the surrounding extracellular matrix (ECM) (Bokel and
Brown, 2002). Internally, paxillin serves as a critical
adaptor protein within focal adhesions, bridging the gap
between integrins and the actin cytoskeleton (López-
Colomé et al., 2017). This intricate interplay allows
neurons to not only maintain their structural integrity
and facilitate intracellular transport but also dynami-
cally respond to environmental cues.

1.4. Methods to understand neuron behavior
To thoroughly understand neuron behavior, re-

searchers utilize a range of methods that dissect the
complex interactions and structures of neurons. A
fundamental aspect of this research is electrophysiol-
ogy, which involves techniques like intracellular record-
ings and stimulation using sharp or patch electrodes to
measure ionic currents and voltages within individual
neurons precisely (Paternò et al., 2021). Extracellu-
lar recordings with microelectrode arrays (MEAs) offer
a non-invasive approach for monitoring multiple neu-
rons simultaneously, crucial for analyzing network ac-
tivity (Hales et al., 2010). However, the effectiveness of
MEAs heavily relies on their design and patterning.

Precise electrode size, shape, and arrangement are
crucial for recording or stimulating specific neuronal
populations (Viswam et al., 2019). Denser electrode
arrays with smaller features enable recording activity
from individual neurons (Muthmann et al., 2015), while
elongated finger-like electrodes can target specific sub-
cellular compartments like axons or dendrites (und Hal-

bach, 2009). Microelectrode patterning techniques like
photolithography offer control over these features, en-
suring the MEA effectively interacts with neurons for
the desired study (Temiz et al., 2012).

Fluorescence microscopy extends its utility by as-
sessing biocompatibility. By monitoring the health and
behavior of fluorescently labeled cells grown on the mi-
croelectrodes (Khan et al., 2011), researchers can indi-
rectly assess if the electrodes cause any harm to the neu-
rons.

Advanced microscopy techniques like total internal
reflection fluorescence microscope (TIRFM) and super-
resolution microscopy offer high-resolution imaging
of live and fixed neurons, revealing details of neu-
ronal structure and dynamics (Rossi et al., 2018).
TIRFM provides high-contrast imaging for studying
live neuronal cultures and axonal dynamics (Opstad
et al., 2020), while super-resolution microscopy allows
detailed visualization of synaptic protein localization
(Nosov et al., 2020). Fluorescence correlation spec-
troscopy can quantify protein dynamics in live neurons
by tracking fluorescently labeled proteins (Fujita et al.,
2020).

Furthermore, brightfield microscopy complements
fluorescence techniques by offering label-free visualiza-
tion. It can be combined with fluorescence imaging to
correlate neuronal morphology with molecular localiza-
tion patterns, providing a comprehensive view of neu-
ronal structure and function (Schmued et al., 1989).

These optical imaging techniques, combined with
electrophysiological methods, are critical for develop-
ing a comprehensive view of neuronal behavior, partic-
ularly in how neurons adapt their responses and mor-
phology under varying conditions, enhancing the study
of synaptic plasticity, neurotransmitter dynamics, and
overall neuronal health (Claverol-Tinture et al., 2005).

Despite significant advancements in neuroelectronic
and imaging technologies, there remains a considerable
gap in accurately characterizing and analyzing neuronal
morphology and polarity, which are intrinsically unpre-
dictable due to their complex biological nature. This
unpredictability poses unique challenges for the current
algorithms and methods employed to study neuronal be-
havior and structure.

2. State of the art in automated image analysis in
cellular and neuronal research

The progression of image analysis techniques in
neuronal studies has been marked by significant ad-
vances, beginning with tools like the Neuron Image An-
alyzer (NIA). This technology enhances neurite trac-
ing and structural identification using methods such as
the Laplacian of Gaussian (LoG) filter and Level Set
Method (LSM), which notably reduce the reliance on
manual annotation, previously facilitated by tools like
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Nikon’s NIS Elements. Supported by MATLAB, NIA
represents a shift from manual to automated processes,
significantly improving precision and reducing the labor
intensity traditionally required in neuronal studies (Kim
et al., 2015).

Building upon these foundational techniques, Cell-
Profiler introduces a modular pipeline that greatly fa-
cilitates image analysis, ranging from image loading to
detailed object measurement. This flexibility is particu-
larly crucial for handling the diverse imaging require-
ments inherent in neuronal research, seamlessly inte-
grating with other powerful tools such as Ilastik and
ImageJ (Lamprecht et al., 2007). Ilastik specializes in
machine learning-based image segmentation, handling
complex textures, and integrating with CellProfiler for
efficient batch processing of large datasets (Sommer
et al., 2011). Complementarily, ImageJ, enhanced by
the NeuronJ plugin, offers robust, open-source image
processing across various systems, making it an ideal
choice for neuron-specific analyses (Abràmoff et al.,
2004).

A practical application of these integrated tools is
demonstrated in the work of Ossinger et al. (2020),
which employs ImageJ, Ilastik, and CellProfiler to an-
alyze brightfield micrographs. These tools adeptly han-
dle the challenges posed by uneven backgrounds and
variable intensity, with ImageJ’s adaptive thresholding
techniques assessing axonal outgrowth, while Ilastik
and CellProfiler quantify dendritic development. This
synergy showcases the efficacy of these tools in pro-
viding detailed and accurate neuron analysis, marking
a significant step towards automated and precise char-
acterizations of neuron morphology.

Advancing into the realm of deep learning, the Neu-
roCyto platform addresses the challenge of neurite
crossover with a directed graph model, enhancing neu-
rite tracing and effectively separating crossed neurites
using dual-channel imaging. This platform is supported
by advanced algorithms that automate the segmenta-
tion and analysis of fluorescence images, thereby en-
abling the extraction of quantitative parameters cru-
cial for comprehensive cellular analyses (Schurr et al.,
2023). Following this, DeepNeuron extends these ca-
pabilities into 3D neuron tracing, employing convolu-
tional neural networks (CNNs) for sophisticated fore-
ground/background classification, which facilitates the
detection of neurite signals without prior preprocessing.
Additionally, its revised Siamese network aids in con-
necting neurite structures from detected signals, further
refining neuron morphology by filtering out false posi-
tives (Zhou et al., 2018).

The innovative NeuriTES platform leverages adap-
tive semantic segmentation for tracing motor neu-
ron evolution over time in bright-field time-lapse mi-
croscopy, specifically targeting neuron degeneration in
ALS studies. This approach avoids the pitfalls of pho-
totoxicity and interference associated with fluorescent

labeling, with initial frames manually labeled using Im-
ageJ to train the segmentation network, ensuring accu-
rate neuron identification throughout the study (Men-
cattini et al., 2021). Complementing this, instance seg-
mentation models like Mask-RCNN generalize across
different imaging modalities by automatically detect-
ing and contouring neuron somas from fluorescence mi-
croscopy images (Tong et al., 2021), showcasing the
adaptability of these models to various experimental
conditions.

Furthermore, the comprehensive framework pro-
posed by Mari et al. (2015) for the quantitative and
morphological analysis of rat dorsal root ganglion neu-
rons cultured on MEAs provides detailed metrics such
as neuron-to-neuron and neuron-to-microelectrode dis-
tances, offering invaluable insights into the organiza-
tion and dynamics of neuronal networks. The study fo-
cuses on the segmentation of neurons from fluorescence
channel images using thresholding, watershed trans-
form (Vincent and Soille, 1991), and object classifica-
tion (Liu et al., 2021), while microelectrode positions
are identified from transmitted light channel images via
the circular Hough transform (Illingworth and Kittler,
1987).

In a broader context, the study by de Santos-Sierra
et al. (2014) investigates the development of small-
world network configurations in vitro cultures of disso-
ciated invertebrate neurons from locust ganglia. Utiliz-
ing custom image analysis software, this research tracks
the self-organization of these cultures into complex net-
works characterized by high clustering and short path
lengths, indicative of efficient neuronal processing and
network resilience. Such insights are critical for under-
standing the network dynamics and the morphological
changes throughout the development stages.

Moreover, the studies by Radotić et al. (2017) and
Onesto et al. (2019) explore how microelectrode arrays
and nanowire substrates influence the alignment, orien-
tation, and assembly of neuronal cells into functional
networks. These studies highlight the significant im-
pact of substrate topography on neuronal behavior and
network connectivity, crucial for applications in neural
tissue engineering and understanding cortical-like mini-
columns.

As the field progresses, addressing the challenges
posed by background noise, photobleaching, and sub-
strate variability will require optimized imaging proto-
cols and advanced signal-processing algorithms. The
adaptability and refinement of deep learning models
like Convolutional Neural Networks (CNNs) (O’shea
and Nash, 2015), U-Net (Yin et al., 2022), and Mask-
RCNN (Region-Based Convolutional Neural Networks)
(He et al., 2017) are essential for maintaining accuracy
and reliability, paving the way for novel methodologies
in neuronal behavior studies and expanding the poten-
tial for future research endeavors.
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3. Aim of the work: enhancing analytical method-
ologies in neuronal imaging

While micro-electrode arrays and optical imaging
technologies provide essential insights into neuronal be-
havior and morphology, they encounter significant lim-
itations during the data analysis phase (Luan et al.,
2023). Current analytical tools struggle with accurately
identifying neuron boundaries, a crucial task compli-
cated by the intricate and varied morphology of neurons
(Mencattini et al., 2021). These challenges often re-
sult in frequent errors in automated segmentation algo-
rithms and necessitate labor-intensive manual or semi-
automated methods to ensure accuracy. This reliance on
time-consuming correction processes significantly im-
pedes the efficiency and scalability of neuronal research
(Al-Kofahi et al., 2006).

The complexity of neuronal structures, combined
with their unpredictable growth patterns and interac-
tions, underscores the need for more sophisticated ana-
lytical methodologies capable of handling this variabil-
ity with high precision (Friedrich et al., 2013). Address-
ing these challenges is crucial for advancing our under-
standing of neuronal function and disorders, leveraging
the full potential of neuroelectronic and imaging tech-
nologies.

4. Project goals

Our project aims to refine and enhance the method-
ologies used in neuronal imaging and analysis to gain
deeper insights into neuronal behavior. Given the nov-
elty and complexity of our dataset, our focus will be on
developing exploratory advancements to address these
challenges:

1. Advanced Neuron Morphology Characterization:
Refine image analysis techniques for detailing neu-
ron morphology, including behavior clustering,
size measurements, and structural tracking.

2. Quantification of Protein Expression:
Implement methods to analyze fluorescence inten-
sity across imaging channels, providing insights
into neuron function and responses to environmen-
tal changes mediated by MEAs.

3. Network Characterization:
Apply advanced segmentation and graph analysis
to better understand cortical neuron nuclei connec-
tions and network dynamics.

Addressing these goals requires leveraging the latest
advancements in automated image analysis tools and
deep learning methodologies. The subsequent section
reviews the state of the art in these areas, focusing on
both the achievements and the challenges that need to
be overcome to meet our project objectives.

5. Material and methods

5.1. Datasets

These datasets, each utilizing distinct imaging tech-
niques and biological markers, are crucial for develop-
ing and testing algorithms that analyze cellular behav-
iors and interactions under varying conditions.

For cluster identification and network characteriza-
tion, the dataset consists of fluorescent images of mouse
cortical cell nuclei, it indirectly tackles neuronal mor-
phology through cluster formation. Actin-MAP2 hints
at neurite presence, a key morphological aspect, while
Phosphorylated Paxillin (p-Pax)-Pax-Tau1 sheds light
on actin dynamics potentially affecting clustering.

The dataset is unique because the cells are cultured
on microchip substrates with specifically designed mi-
cropillar arrays. These micropillars vary in diameter
(thickness) and pitch (spacing between pillars). This
intricate topography allows us to investigate how physi-
cal cues from the environment, governed by micropillar
characteristics, influence neuronal organization.

For soma and neurite identification, the dataset fea-
tures labeled neurons with highlighted somas and neu-
rites, positioned on different structural substrates like
stubby, mushroom, and thin formations. This dataset fa-
cilitates the identification and analysis of soma and neu-
rite structures, crucial for understanding neuron mor-
phology across varied topographical contexts.

A live imaging dataset, this dataset utilizes bright-
field microscopy, which effectively highlights the differ-
ent grid patterns of the micropillar arrays. By capturing
real-time neurite growth and behavior on these varying
topographies, researchers can directly track neurite ex-
tension and assess how the physical structures influence
neuronal morphology. This offers valuable insights into
developmental processes and how neurons adapt to their
environment.

Additionally, for protein expression analysis, the
dataset utilizes fluorescent images labeled for key com-
ponents of focal adhesions, structures crucial for an-
choring neurons and influencing polarity. The dataset
focuses on chicken embryo cortical cells, it presents a
unique challenge for analyzing neuronal structure due
to the presence of fluorescent pillars. While these pillars
offer valuable information about the substrate topogra-
phy, their brightness can interfere with the distinction
of neuronal structures, which are crucial for protein ex-
pression analysis. These pillars are not uniform; they
vary in shape—thin, mushroom, and stubby—and are
organized at different pitches (p10, p4, p30), including
a control flat environment. This variety allows the ex-
amination of how different physical substrates influence
neuronal behavior and development.

5.2. Methodology

5.2.1. Milestone 1.1: Nuclei and clusters identification
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Figure 3: Image Analysis to identify cluster in images

1. Pseudo-labeling: The primary objective of this
pipeline is to generate pseudo-labels for training
a Mask-RCNN model (Figure 3), which is used to
identify and segment clusters of nuclei.
Initially, contrast stretching is applied to maximize
the image’s dynamic range. Subsequently, binary
thresholding simplifies the image to its fundamen-
tal shapes, facilitating the isolation of key features
through a combination of morphological opera-
tions such as closing, eroding, and dilating. If ini-
tial thresholding is inadequate, additional prepro-
cessing such as edge detection using the Sobel op-
erator generates the binary mask.
The adjusted images are then analyzed to detect
and classify contours using OpenCV. Contours
represent potential nuclei and are classified based
on their area and solidity into small (single nuclei)
or potential clusters.
For contours identified as potential clusters, the
Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) algorithm is employed to
spatially cluster contour points, distinguishing be-
tween closely packed nuclei clusters and individual
nuclei or noise-based on density.

Figure 4: Image analysis to identify cluster in images

2. Mask-RCNN training and validation: The pipeline
(Figure 4) initiates by configuring a Mask-RCNN
model pre-trained on the COCO dataset, lever-
aging a ResNet-50 backbone equipped with an
FPN for efficient feature extraction across scales.
The original heads of the model, responsible for
classification and mask prediction, are replaced
to accommodate the specific requirements of the
task—identifying background versus nuclei clus-
ters. These new heads are initialized using He

initialization to ensure that the model trains effec-
tively from the start.
The dataset is prepared for both training and vali-
dation, these transformations include random hor-
izontal flipping, normalization, and conversion to
tensors.
Training is conducted using an SGD optimizer
with parameters like learning rate, momentum,
and weight decay to govern the learning process.
A learning rate scheduler is used. During each
epoch, the model is updated by computing and
back-propagating losses, including classification,
bounding box regression, and mask prediction.
For evaluation, the Intersection over Union (IoU)
metric is used for quantifying the accuracy of the
model’s predictions. IoU is computed for both
bounding boxes and masks, offering a detailed
measure of how well the predicted outputs align
with the pseudo-labels.

5.2.2. Milestone 1.2: Soma and neurite identification

Figure 5: Soma and neurite identification pipeline

The main idea of this pipeline (Figure 5) is to use
a sequence of image processing techniques—ranging
from preprocessing and segmentation to soma and neu-
rite identification, followed by association analysis—to
generate detailed pseudo-masks for training a U-Net
model, thereby enhancing the accuracy and efficiency of
identifying and labeling neuronal structures in images.

1. Identifying of Soma and Neurites
(a) Preprocessing: The process begins convert-

ing the image to grayscale. To reduce
image noise, a non-local means denoising
technique is applied. Following denoising,
thresholding using Otsu’s method (Yousefi,
2011) is applied to create a binary mask
that separates potential areas of interest from
the background. Then, Contrast-Limited
Adaptive Histogram Equalization (CLAHE)
(Reza, 2004) is applied.

(b) Watershed Algorithm: The binary mask is
created through thresholding. Then, a dis-
tance transform is made, which computes
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for each foreground pixel the nearest dis-
tance to the background, creating a relief map
where peaks correspond to the centers of ob-
jects. Local maxima of this map are identi-
fied as markers—potential starting points for
the Watershed algorithm (Vincent and Soille,
1991). The watershed then treats these mark-
ers and defines the boundaries of separate ob-
jects.

(c) GrabCut Algorithm (Wang et al., 2023):
Starting with the initial segmentation pro-
vided by the Watershed algorithm, the im-
age and a mask delineating probable and def-
inite regions of foreground and background
are prepared. Morphological operations fur-
ther define definite areas—erosion shrinks
the foreground regions to ensure only the
most certain parts remain, while dilation ex-
pands the background regions, helping to ex-
clude less certain border areas.

(d) Soma Identification: The process involves
analyzing the contours extracted from the re-
fined segmentation mask of the GrabCut step.
Each contour is evaluated based on its area,
perimeter, circularity, and solidity to deter-
mine if it matches the characteristics typical
of somas. Contours that meet these criteria
are filled in on a new mask specific to somas.

(e) Neurite Identification: This step starts by
converting the watershed-labeled image to
a binary mask that excludes soma regions.
The masks are then skeletonized (Abu-Ain
et al., 2013). The skeleton undergoes a clean-
ing process to remove fragments shorter than
a specified branch length and is enhanced
through morphological operations to improve
connectivity between segments.

2. U-Net training and validation

Figure 6: Synthetic data generation pipeline

(a) To enhance the model’s exposure to varied
backgrounds and increase the robustness of
our predictions, the new synthetic dataset was
synthesized by extracting key structures from
original images and pasting them onto differ-
ent backgrounds ( Figure 6), both with and

without noise. This approach allowed the
simulation of more diverse imaging condi-
tions, preparing the model for real-world ap-
plications where background variability can
be significant.

(b) The efficacy of the U-Net model (Roy et al.,
2018) was tested with different encoder back-
bones including RegNetY320, VGG16, Mo-
bileNetV2, EfficientNet-B7, and ResNet152.
The RegNetY-320 model emerged as the
most effective. This was possible thanks to
the segmentation models PyTorch framework
(SMP) (Iakubovskii, 2019). The RegNetY-
320 model(Radosavovic et al., 2020) is then
used as the encoder. RegNetY is a convo-
lutional network design space with simple,
regular models with parameters: depth, ini-
tial width, and slope, and generates a differ-
ent block width for each block. It has 141.3
million parameters and the capability to pro-
cess high-dimensional data efficiently, thanks
to techniques like stochastic depth, gradient
checkpointing, and layer-wise learning rate
decay. These features help manage the com-
putational load and optimize training dynam-
ics.

(c) Given the limited size of the real dataset, a K-
Fold cross-validation approach is employed
to maximize the usage of available data for
both training and validation. This method di-
vides the dataset into ’k’ subsets, and itera-
tively, each subset is used for validation while
the others are used for training.
During training, the model uses a combina-
tion of Jaccard, Dice, and Focal loss func-
tions to handle the class imbalance and en-
hance the learning of relevant features. These
loss functions are weighted to adjust their
impact on the overall training process, opti-
mizing the model to improve overlap (Jac-
card and Dice) and focus more on difficult-
to-classify pixels (Focal), like the neurites.

(d) Evaluation: Metrics such as Intersection over
Union (IoU), Dice scores, and F1 recall
are monitored for training and validation to
gauge the model’s performance.

(e) Post-processing of mask for analysis: In the
postprocessing of neurite-soma masks, bi-
nary dilation is first applied to soma masks
using a disk-shaped footprint to expand their
areas, enhancing the likelihood of neurite-
soma intersection for nearby neurites. Sub-
sequently, both soma and neurite masks un-
dergo connected component labeling to iden-
tify individual regions. Next, the dilated
soma mask is overlayed onto the neurite
mask to ascertain which soma region over-
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laps most significantly with each neurite, de-
termining their associations based on pixel
overlap frequencies. The quantitative met-
rics—normalized neurite length and num-
ber—are crucial for standardizing neurite as-
sessments relative to cell counts, ensuring
that results are comparable across samples
and conditions (Figure 17b). These metrics
provide a robust framework for evaluating
neurite proliferation and extension, which are
indicative of neuronal health and network ca-
pabilities. Normalized neurite length is given
by:

Lnorm =
Ltotal

Ncells

where Lnorm is the normalized neurite length,
Ltotal is the total neurite length, and Ncells is
the total number of cells. Additionally, the
normalized neurites number is given by:

Nnorm =
Nneurites

Ncells

where Nnorm is the normalized neurite num-
ber, Nneurites is the total number of neurites.

5.2.3. Milestone 1.3: Neurite tracking

Figure 7: Neurite tracking pipeline using DBSCAN algorithm

1. Tracing Neurite Coordinates: The initial step in-
volves converting NeuronJ tracing data (Figure 7),
which consists of vertices representing neurite end-
points, into continuous coordinate paths. By con-
necting these vertices, the script recreates the full
trajectory of each neurite within the image frames.
This process ensures that each neurite is repre-
sented as a continuous entity, facilitating subse-
quent analyses that rely on tracing entire neurite
paths.

2. Intra-Frame DBSCAN Clustering: Within each
frame, the DBSCAN algorithm clusters the neu-
rite coordinates to identify distinct neurite entities.
This clustering helps differentiate individual neu-
rites based on the density of traced points. For each
cluster, the script calculates the centroid, serving as

a representative central point, and the total length
of the neurite, which is derived from the sum of
distances between connected coordinate points.

3. Inter-Frame DBSCAN Clustering: After identi-
fying neurites within individual frames, a second
DBSCAN clustering is applied across all frames
using the centroids from the first clustering stage.
This inter-frame analysis aims to track the persis-
tence and evolution of neurites over time by iden-
tifying clusters that appear consistently across the
dataset. This step is crucial for monitoring dy-
namic changes and behaviors in neurite structures
through sequential imaging data.

4. Mask-RCNN training and evaluation for detecting
neurites:

Figure 8: Mask-RCNN model to Identify neurites in Live Imaging

The dataset is structured into tiles, each represent-
ing a segment of video data containing detailed neu-
rite images. Each neurite is annotated with its bound-
ing box and mask, facilitating precise instance segmen-
tation. Transformations applied to the dataset include
photometric distortions, random zoom-outs, and hori-
zontal flips to enhance model robustness by simulating
various imaging conditions.

The Mask-RCNN model, specifically configured
with a ResNet-50 backbone and FPN, is employed for
neurite segmentation (Figure 8). The training pro-
cess utilizes SGD optimizer, as outlined in the original
Mask-RCNN paper, with specific parameters like learn-
ing rate, momentum, and weight decay. The learning
rate scheduler adjusts the rate during training to opti-
mize performance. Model outputs include class predic-
tions, bounding boxes, and segmentation masks, which
are iteratively refined through the epochs.

In the evaluation phase, the Intersection over Union
(IoU) metric is calculated for both bounding boxes and
masks to assess model accuracy. This involves matching
predicted boxes and masks to their respective ground
truth annotations based on IoU scores, which provides a
quantitative measure of model precision in segmenting
neurites accurately.

5.2.4. Milestone 2: Protein expression
Images are loaded and processed to extract individual

channels (Figure 9). For each region (soma, neurite, and
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the compound of both), masks are applied to the original
image to segment the area of interest. The mean inten-
sity for cells and background is calculated within these
masks. Normalized fluorescence intensity is computed
by subtracting the background mean intensity from the
cell mean intensity and normalizing by the area of the
mask, as the following equation shows:

Pe =
N̄I − B̄I

Narea

where Pe is the protein expression, N̄I is the neuron
mean intensity, B̄I is the background mean intensity, and
Narea is the neuron area.

Figure 9: Protein Expression analysis Pipeline

5.2.5. Milestone 3: Network analysis of nuclei

Figure 10: Nuclei Segmentation and Graph-based Network Analysis
Pipeline

This pipeline (Figure 10) employs the StarDist2D
model (Schmidt et al., 2018; Weigert and Schmidt,
2022), a U-Net-based neural network specialized in
identifying single nuclei from biological images. It was
necessary to clean up data to ensure only single nuclei
were analyzed, excluding larger clusters that may be in-
accurately identified as single entities.

Before segmentation, the pipeline enhances image
contrast and saturation using CLAHE and color adjust-
ments to make the features more distinct and easier for
the model to identify. The StarDist2D model segments
the processed images, identifying potential nuclei based
on shape and intensity.

A Waxman (Waxman, 1988) graph is initially cre-
ated based on the centroids of the segmented nuclei.

The Waxman model is specifically made for routing of
multipoint connections and generates a network struc-
ture that (such as the structural brain networks) allows
information transfer across the network nodes (Onesto
et al., 2019). This graph randomly connects nodes
with a probability decreasing with the Euclidean dis-
tance between them, scaled by parameters alpha and
beta. The graph is enhanced by adding edges based on
KNN, where edges between the nearest neighbors are
weighted by their distances.

A cluster Analysis is also carried out using the clus-
tering algorithm, DBSCAN, on the node positions to
further analyze spatial distributions and cluster forma-
tions among the nuclei.

6. Results

6.1. Milestone 1.1: Nuclei and cluster identification

The successful application of image analysis tech-
niques yielded visually accurate segmentation results
to later use to train the Mask-RCNN model (Figure
11). This figure confirms the pipeline’s capability to
identify clusters and single nuclei on different sub-
strates. Such high-resolution differentiation is critical
in studies where cellular behavior in response to micro-
environmental features is analyzed.

Figure 11: Identification of clusters (blue contours) and single nuclei
(green contours) on the specific micro-patterned substrate of pillars
with a diameter of 2 micrometers and a pitch of 20.

Figure 12 provides a visual representation of the
distribution of clusters across different micro-patterned
substrates. This analysis shows how physical micro-
environmental cues can influence cellular organization
and cluster formation. The ability to visualize and quan-
tify this distribution allows to draw correlations between
substrate patterning and biological outcomes.

Figure 12: Distribution of clusters across the different micro-patterned
substrates of pillars
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As shown in Figure 13, the loss metrics during the
training of the Mask-RCNN indicate a stable and con-
verging training process over 20 epochs with Xavier
weight initialization. The consistent reduction in loss
values reflects effective learning and adaptation by the
neural network to the task-specific features of nuclei
segmentation.

Figure 13: Loss evolution during Mask-RCNN training (20 epochs)
with Xavier weight initialization

The Intersection over Union (IoU) metrics—0.901
for boxes and 0.852 for masks—highlight the model’s
high accuracy in detecting and segmenting nuclei as
demonstrated in Figure 14. These metrics underscore
the model’s high accuracy in not only detecting the cor-
rect location of the nuclei (bounding boxes) but also
in accurately segmenting (masks) the nuclei from the
background.

Figure 14: Cluster Identification by Mask-RCNN training with Xavier
weights initialization

6.2. Milestone 1.2: Soma and neurite identification

In the ongoing effort to enhance the accuracy and reli-
ability of soma and neurite identification, various U-Net
models equipped with different backbone architectures
were evaluated. The results, summarized in the table
below, showcase the performance metrics obtained af-
ter 10 epochs of training.

Backbone Loss IoU F1
RegNetY 0.2398 0.8634 0.9266
VGG16 0.2434 0.8603 0.9248

MobileNET 0.2605 0.8500 0.9188
EfficientNet 0.2726 0.8379 0.9117
ResNet 132 0.2468 0.8584 0.9237

Table 1: Accuracy results after training (10 epochs) the U-Net with
different backbones

RegNetY stands out with the highest F1-score and
IoU, indicating superior segmentation capability, partic-
ularly effective in delineating complex neuronal struc-
tures. Although all models demonstrated high compe-
tence, the gradient in performance metrics from Reg-
NetY to EfficientNet highlights the influence of network
architecture on segmentation tasks. Smaller models like
MobileNET, while efficient, offer slightly reduced accu-
racy.

The graphical representation in the figure 15 captures
the evolution of loss and Intersection over Union (IoU)
scores during a K-fold cross-validation training regi-
men. The training utilized the advanced RegNetY-320
model, selected for its robust architectural benefits con-
ducive to handling complex neuronal structures.

Figure 15: Training and Validation Metrics for U-Net Model Across
Different Folds. Top graph displays the loss metrics over epochs,
highlighting the decreasing trend in training and validation loss across
seven-folds. The bottom graph shows the Intersection over Union
(IoU) scores, where both training and validation IoU gradually in-
crease.

The effectiveness of the RegNetY backbone is visu-
ally confirmed in figure 16, illustrating the precision in
predicting soma (gray) and neurites (white). The com-
parison between the pseudo-mask (true mask) and the
predicted mask validates the high performance of the
model. It confirms its utility for detailed morphometric
analyses and quantitative assessments of neuronal struc-
tures.
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Figure 16: Pretrained U-Net with RegNetY backbone prediction of
soma (gray) and neurites (white) at Fold 3, Epoch 20.

Post-processing techniques have further refined the
segmentation accuracy, as shown in the sub-figures
which present post-processed masks (Figure 17a). By
employing binary dilation and connected component la-
beling, the overlap between soma and neurite regions
is enhanced, allowing for precise measurement of neu-
rite lengths and counts relative to the number of cells.
This approach ensures that neurite assessments are stan-
dardized and comparable across different experimental
conditions, providing a robust framework for evaluating
neurite proliferation and extension (Figure 17b).

(a) Post-Processing of soma and neurite mask results

(b) Neurite analysis (normalized length and number) on different topologies

Figure 17: Results from soma and neurites identification to study neu-
ronal responses to different topologies

6.3. Milestone 1.3: Neurite tracking
The pipeline for neurite tracking, depicted in Fig-

ure 7, employs image processing and clustering tech-
niques to track neurites over time. This process lever-
ages the DBSCAN algorithm to cluster neurite coor-
dinates within and across frames and uses the Mask-
RCNN model to segment neurites in live imaging.

The conversion of NeuronJ tracing data into contin-
uous coordinate paths allows for the representation of
each neurite as a continuous entity. It allowed for track-
ing the detailed morphology and dynamics of neurite

growth. DBSCAN clustering within frames identifies
distinct neurite entities. Subsequent inter-frame cluster-
ing tracks these neurites over time, providing insights
into their temporal stability and morphological changes.
Figures 18 illustrate the initial state, length changes, di-
rectional movements, and growth velocity of a neurite
across time frames. It provides a comprehensive view
of neurite behavior over time.

(a) Initial frame of a sequence capturing a labeled neurite (Neurite no. 5),
highlighted using a green marker. Baseline reference for tracking subse-
quent growth and directional movements of the neurite, establishing the
starting point for detailed analysis.

(b) Tracking length changes across frames of neurite. Variations in the
length of the neurite over time, measured across multiple frames. It indi-
cates periods of growth and retraction, which are essential for understand-
ing the underlying biological processes affecting neurite dynamics.

(c) Direction of displacement of identified neurite. It visualizes the direc-
tional displacement of the neurite throughout the observation period. The
red line indicates the predominant direction of neurite extension.

(d) Growth velocity of the neurite (µm per minute), quantified in microme-
ters per minute. It highlights phases of advancing (green line) and retracting
(red line) growth.

Figure 18: Neurite tracking analysis of a single neurite sample (Neu-
rite no. 5)

Furthermore, it is also possible to study the behavior
of all neurites like in Fig. 19 whether the interaction
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of pillars affects the neurite dynamic changes. These
plots delineate the average length changes and growth
velocities of neurites over time, contrasting neurites in
contact with pillars to those in flat areas.

(a) Tracking average length changes across frames of all labeled neurites in
terms of pillar interaction

(b) Direction of displacement of all identified neurites in terms of pillar
interaction

(c) Velocity (micrometer per minutes) of all identified neurites depending
on its interaction with pillars

Figure 19: Neurite tracking analysis of labeled neurites

The application of Mask-RCNN facilitates high-
precision neurite segmentation. This model’s ability to
discern neurites against complex backgrounds is crucial
for accurate tracking and analysis. The training of the
Mask-RCNN model shows a progression in loss reduc-
tion, as indicated in figure 20. However, the average
IoU scores for boxes (0.5756) and masks (0.2692) sug-
gest moderate segmentation accuracy, indicating poten-
tial areas for model refinement or training data enhance-
ment.

Figure 20: Loss evolution during training

6.4. Milestone 2: Protein expression

The approach allows for a targeted evaluation of pro-
tein localization and concentration by utilizing fluo-
rescent labeling of proteins such as Paxilin and Inte-
grin, crucial for understanding cellular adhesion mech-
anisms.

Figure 21: Protein expression heatmap measurement of Red Channel
or Paxilin channel data on different substrate topology against flat sur-
face.

The heatmap, shown in figure 21, measures the ex-
pression of Paxilin across various substrate topologies
compared to a flat surface. This channel specifically
highlights the areas where Paxilin—a protein involved
in focal adhesion—is most concentrated, indicating re-
gions of active cellular engagement and structural an-
choring.
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Figure 22: Protein expression heatmap measurement of Blue Channel
or Integrin channel data on different substrate topology against flat
surface.

Similarly, figure 22 measures the expression of Inte-
grin, another key protein in cell adhesion processes. The
heatmap provides a comparative analysis against differ-
ent substrate topologies, underscoring how topographi-
cal variations can influence Integrin distribution and, by
extension, cell adhesion dynamics.

6.5. Milestone 3: Network analysis of nuclei

The analysis pipeline, as illustrated in Figure 10, uti-
lizes the StarDist2D model for precise nuclei segmenta-
tion from biological images. This model is specifically
adapted to detect individual nuclei by enhancing image
contrasts and removing clusters that may be misidenti-
fied. The segmentation results feed into a graph-based
analysis to explore the spatial relationships and cluster-
ing of nuclei.

Post-image enhancement via CLAHE and color ad-
justments (Figure 23a), the StarDist2D model success-
fully segments the nuclei, emphasizing distinctiveness
in shape and intensity crucial for accurate identification.

From the segmented data, a Waxman graph is con-
structed using nuclei centroids (Figure 23b). This graph
models the probability of connections between nodes
(nuclei) inversely related to their Euclidean distances,
adjusted by the alpha and beta parameters to optimize
the network structure. In addition to the Waxman
model, a K-nearest neighbor (KNN) approach is ap-
plied, introducing edges weighted by the physical prox-
imity of the nuclei, which enriches the graph’s connec-
tivity and relevance to actual biological structures (Fig-
ure 23c).

DBSCAN (Ester et al., 1996) is employed to analyze
the spatial distribution and cluster formation among the
nuclei (Figure 23c). This method helps in identifying
and analyzing densely packed groups of nuclei (Fig-
ure 23d), offering insights into their collective behaviors
and potential biological interactions.

The network analysis yields several key visual out-
puts and quantitative data, like degree of connectivity,
figure 24a reveals the degree of connectivity among the

(a) Original Image

(b) Waxman Graph

(c) DBSCAN Analysis

(d) Degree of Connection

Figure 23: Network Analysis for nuclei sample on substrate topology
of pillars of diameter 2 and pitch 20

nuclei, providing a measure of how interconnected each
nucleus is within the overall network. This metric is vi-
tal for understanding the robustness and vulnerability of
the cellular network.

Additionally, figure 24b and 24c provide data on the
number and size of clusters identified by DBSCAN, cru-
cial for assessing the aggregation tendency of nuclei un-
der different conditions.
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(a) Mean Degree of Connection per Substrate Topology

(b) Number of clusters Identified by DBSCAN

(c) Number of Cells per Cluster Identified by DBSCAN

Figure 24: Data Analysis of Graph obtained from the different topolo-
gies

7. Discussion

7.1. Milestone 1.1: Nuclei and cluster identification

The successful deployment of traditional image anal-
ysis techniques in our study has led to highly accu-
rate segmentation results, crucial for the training of the
Mask-RCNN model. As illustrated in Figure 11, our
methodology effectively identifies clusters and single
nuclei on substrates characterized by very fine spatial
features such as pillars, underscoring the importance
of high-resolution differentiation in studying cellular
responses to micro-environmental features. This mir-
rors insights from studies like those by de Santos-Sierra
et al. (2014), which explored how small-world network
configurations emerge in in vitro neuronal cultures, re-

flecting efficient neuronal processing and network re-
silience.

The analysis, as depicted in Figure 12, reveals how
varying substrate topographies influence cluster forma-
tion, with smaller configurations like a diameter of 2 µm
and pitch of 8 µm (D2P8) showing a higher propensity
for cluster formation compared to larger or flat topogra-
phies. This suggests that tighter substrate spacing may
enhance cell-to-cell interactions or constrain space, en-
couraging closer cellular aggregation. Such findings are
pivotal as they demonstrate how micro-environmental
conditions can mimic the dense cellular environments
found in natural tissues, potentially affecting cellular be-
havior and interactions as neurons typically cluster in
specific patterns crucial for brain function and organi-
zation.

Further, the detailed image analysis in Figure 11
showcases the ability to pinpoint both individual nu-
clei and larger clusters using advanced processing tech-
niques, highlighting structures that conventional tools
like ImageJ (Abràmoff et al., 2004) or StarDist2D
Schmidt et al. (2018) might miss. This capability is
critical for understanding the complex cellular arrange-
ments that can occur on micro-patterned substrates,
where precise segmentation is essential.

The training process of our Mask-RCNN model, in-
dicated by the declining loss metrics in Figure 13 and
the high IoU scores—0.901 for boxes and 0.852 for
masks—emphasizes the model’s accuracy in detecting
and segmenting nuclei, crucial for identifying clusters
accurately as shown in Figure 14.

By integrating and extending sophisticated image
analysis techniques, our research not only aligns with
but also builds upon foundational studies like that of
de Santos-Sierra et al. (2014), enhancing our under-
standing of how substrate topographies and micro-
environmental cues influence neuronal network dynam-
ics. This approach underscores the potential of these
methodologies to be adapted across various neuronal
culture conditions and substrate types, broadening their
application in neural tissue engineering and related sci-
entific fields.

7.2. Milestone 1.2: Soma and neurite identification

The segmentation method developed for this project
is specifically designed for images with fluorescent pil-
lar substrates, characterized by inherently noisy back-
grounds. This method utilizes a detailed preprocessing
workflow that includes denoising and contrast enhance-
ment, followed by a dual-segmentation process using
Watershed and GrabCut algorithms. This ensures pre-
cise identification of neuronal structures. Additionally,
the segmentation accuracy is further refined through the
training of a U-Net model, optimizing the method for
detailed analyses within challenging imaging environ-
ments.
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In contrast, the ANDA tool, designed by Wæhler
et al. (2023), focuses on automation and efficiency
across various cell types and employs global threshold-
ing, Watershed segmentation, and optional Weka seg-
mentation for low-contrast images, using Fiji’s cus-
tomization capabilities. Although highly adaptable,
ANDA may require additional configuration to effec-
tively address the noise levels typical in fluorescent pil-
lar substrates.

To enhance the segmentation of soma and neurites,
various U-Net models with different backbone archi-
tectures were evaluated. RegNetY320 (Radosavovic
et al., 2020) emerged as the preferred model, recording
the highest F1-score and IoU, indicating its exceptional
capability in accurately delineating complex neuronal
structures. While models like VGG16, MobileNET, Ef-
ficientNet, and ResNet 132 showed commendable per-
formances, they did not match the effectiveness of Reg-
NetY. The selection of RegNetY highlights the impact
of network architecture on segmentation outcomes, par-
ticularly in complex imaging scenarios.

Furthermore, the study by Mari et al. (2015) pro-
vides a comprehensive framework for the morphologi-
cal analysis of neurons cultured on microelectrode ar-
rays (MEAs), offering valuable insights for our seg-
mentation approach. Our method extends these analyt-
ical techniques to measure normalized neurite lengths
and numbers, these metrics are indispensable for under-
standing neuronal health and network capabilities, of-
fering insights into how different environments affect
neuronal morphology and function. This ensures that
results are comparable across different samples and con-
ditions. The post-processing techniques employed re-
fine the accuracy of segmentation, as illustrated in the
provided figures 17a.

The analysis of neurite metrics across different sub-
strate topologies (Figure 17b)—Mushroom, Stubby, and
Thin—reveals how substrate characteristics influence
neurite growth. Mushroom substrates show consistent
neurite growth with moderate length and low variation.
Stubby substrates, in contrast, display significant vari-
ation, suggesting they may support extended neurite
growth under certain conditions. Thin substrates ex-
hibit the shortest neurite lengths, indicating potential
constraints on growth due to their uniform environment.

The study not only reaffirms but also builds upon
foundational work, enhancing our understanding of
neuronal network dynamics influenced by varying sub-
strate topographies. This demonstrates the potential
for applying these advanced image analysis techniques
across different neuronal culture conditions, expanding
their applicability in neural tissue engineering and re-
lated fields.

7.3. Milestone 1.3: Neurite tracking
In the current study, tracing neurite coordinates is

effectively accomplished using NeuronJ, where tracing

data is converted into continuous coordinate paths. This
method ensures that each neurite is represented as a con-
tinuous entity, facilitating the precise analysis of neu-
rite paths and their dynamic changes over time. Unlike
this approach, the NeuriTES (Mencattini et al., 2021)
platform is based on manual labeling in initial frames
for network training, which, while effective for static or
slow-changing conditions typical in motor neuron stud-
ies, may not provide the flexibility required to capture
the rapid and unpredictable growth patterns of develop-
ing cortical neurons.

DBSCAN (Ester et al., 1996) clustering is applied
within each frame to effectively differentiate individ-
ual neurites based on the density of traced points. This
intra-frame clustering allows for the accurate identifica-
tion of neurite entities, which is crucial for monitoring
the morphological changes typical of rapidly develop-
ing neurons. In comparison, the NeuriTES platform,
which does not inherently focus on density-based clus-
tering, may struggle to differentiate closely packed or
rapidly evolving neurite structures. The adaptability of
DBSCAN to changes in neurite density and arrange-
ment offers significant advantages in tracking cortical
neurons, which exhibit high variability and faster dy-
namics during development.

Further, inter-frame DBSCAN clustering is utilized
to track the persistence and evolution of neurites over
time, an approach that is particularly useful for ob-
serving developmental changes and interactions. This
method contrasts with NeuriTES, which might not ade-
quately address the high variability and rapid dynamics
of cortical neurons, whose growth patterns can signifi-
cantly alter between imaging sessions.

Our DBSCAN-based approach, inspired by the
method described by Kim and Cho (2021) in their study
on multi-object tracking, applies this robust clustering
technique effectively in neuron tracking. Their research
highlighted DBSCAN’s efficacy in enhancing multi-
object tracking by reducing noise vulnerability and sim-
plifying the data association process, which we adapted
to suit the complex and dynamic environment of cortical
neuron tracking in live imaging.

The analysis of the neurite tracking results, demon-
strated in various figures, sheds light on neurite behav-
ior in terms of growth dynamics. Length changes, direc-
tional movements, and growth velocities of neurites are
quantitatively tracked, as depicted in the figures show-
ing initial states and subsequent transformations over
time (Figure 18).

Furthermore, the plots in figure 19 delineate the av-
erage length changes, direction and growth velocities of
neurites over time, contrasting neurites in contact with
pillars to those in flat areas. It shows that neurites in
contact with pillars generally exhibit more significant
length fluctuations compared to those in flat areas (Fig-
ure 19a). This suggests that the micro-environmental
features of the pillars might either promote or inhibit
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neurite elongation depending on the local conditions
and interactions at the cellular level. Neurites in con-
tact with pillars demonstrate a pattern of sharper peaks
and deeper troughs in length change, indicating more
dynamic growth behavior.

The average neurite growth velocity further supports
this observation. Neurites in contact with pillars show
higher velocity fluctuations (Figure 19c), underscoring
a more active response to the textured environment pro-
vided by the pillars. This can be interpreted as neurites
rapidly adapting their growth strategies in response to
the physical cues presented by the pillar structures.

Additionally, the plot 19b, red lines, representing
neurites in contact with pillars, predominantly show
more extended vectors indicating both longer move-
ments and more varied directional changes. This sug-
gests that neurites interacting with pillars exhibit not
only more dynamic movement but also greater ex-
ploratory behavior, potentially adapting to the micro-
topographical cues provided by the pillars. These neu-
rites display a broader spread of angles, which could im-
ply a more complex environment where neurites contin-
uously adjust their growth paths in response to physical
contacts and spatial constraints imposed by the pillars.
Conversely, the blue vectors representing neurites in flat
areas are shorter and more concentrated around specific
angles. This pattern indicates that neurites in flat areas
may experience less physical interaction with their envi-
ronment, leading to more linear and predictable growth
patterns. The lack of substantial directional changes
could suggest a more uniform and less challenging en-
vironment, where neurites can extend without the need
to navigate around physical obstacles.

Despite the robust methodology employed, the Mask-
RCNN model’s segmentation performance, indicated by
average IoU scores, suggests room for improvement.
The moderate accuracy in segmentation points to po-
tential enhancements in model training or data quality,
which could further refine the understanding of neurite
dynamics.

The methodologies employed in this study are well-
suited for tracking the dynamic and unpredictable
growth patterns of cortical neurons in developmental
stages, offering significant advantages in terms of flex-
ibility and adaptability over the NeuriTES approach.
While NeuriTES provides robust tools for studying mo-
tor neuron degeneration, its techniques may not fully
capture the rapid and variable changes characteristic of
developing cortical neurons.

7.4. Milestone 2: Protein expression
In the protein expression analysis methodology, im-

ages are systematically processed to extract individual
fluorescence channels, specifically targeting regions of
interest such as soma, neurites, and their combined ar-
eas. This segmentation is facilitated by applying masks
to the original images, allowing for precise isolation of

these regions. The calculation of mean intensities for
both cells and background within these masks enables
a more accurate measurement of protein expression lev-
els.

In this study, the protein expression analysis aimed to
elucidate the influence of substrate topographies on the
localization and concentration of key adhesion proteins,
Integrin and Paxillin. These proteins are crucial for
forming focal adhesions, which play significant roles in
neurite outgrowth, axon guidance, and neuronal migra-
tion during brain development. Paxillin, in particular,
integrates integrin and growth factor signaling pathways
that coordinate the cytoskeletal rearrangements required
for neurite initiation and extension (Chang et al., 2017).

The heatmap for Integrin expression (Figure 22)
shows notable variation in fluorescence intensity across
different substrate topologies. Integrin exhibits the
highest mean fluorescence intensity on mushroom-type
pillars with a pitch of 30 (P30), indicating strong cel-
lular adhesion and active engagement with these sub-
strate features. This suggests that mushroom-type pil-
lars with larger pitches provide an optimal environment
for integrin-mediated adhesion.

Substrates with stubby and thin pillars show lower
fluorescence intensities for Integrin, implying less ac-
tive adhesion processes. Flat surfaces, serving as a
control, also display relatively low Integrin expression.
These observations highlight the role of substrate topog-
raphy in modulating cell-substrate interactions, where
more complex features like mushroom-type pillars sig-
nificantly enhance adhesion protein activity.

Similarly, the heatmap for Paxillin expression (Fig-
ure 21) demonstrates a comparable pattern to Integrin.
Paxillin shows the highest fluorescence intensity on
mushroom-type pillars with a pitch of 30 (P30), under-
scoring that these substrates promote robust focal adhe-
sion sites. This intense Paxillin expression supports the
notion that mushroom-type pillars create a conducive
environment for cell adhesion.

Substrates with stubby and thin pillars display moder-
ate Paxillin expression, whereas flat surfaces exhibit the
lowest levels. The correlation between substrate com-
plexity and Paxillin intensity suggests that more intri-
cate topographies provide better support for the forma-
tion and maintenance of focal adhesions, which are crit-
ical for cellular stability and signaling.

This analysis revealed that mushroom-type pillars
with larger pitches (P30) promote higher levels of
both Integrin and Paxillin, enhancing cellular adhesion.
These findings align with the known effects of sub-
strate stiffness on protein expression, where softer sub-
strates promote higher Paxillin expression and endocy-
tosis, while stiffer substrates favor integrin localization
to focal adhesions (Verma et al., 2021). By understand-
ing these interactions and leveraging advanced image
analysis tools, substrates can be designed to optimize
cell behavior for specific applications, enhancing neural
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tissue engineering and other biomedical fields.

7.5. Milestone 3: Network analysis of nuclei

The network analysis of nuclei was conducted using
the StarDist2D model Schmidt et al. (2018); Weigert
and Schmidt (2022), which is designed for identifying
single nuclei in biological images (Figure 23a). Fol-
lowing segmentation, a Waxman graph was created us-
ing the centroids of the segmented nuclei (Figure 23b),
which facilitated the study of the degree of connection
of the identified structures (Figure 23d). Cluster analy-
sis was performed using DBSCAN (Density-Based Spa-
tial Clustering of Applications with Noise), analyzing
the spatial distributions and cluster formations among
the nuclei (Figure 23c).

The results of the network analysis are depicted in
several figures. The mean degree of connectivity (Fig-
ure 24a) indicates that the smallest topography (D2P8)
exhibits a higher degree of connection compared to
larger or flat surfaces. This aligns with the cluster for-
mation analysis, where smaller topographies tend to
promote more intense clustering.

Regarding the average number of cells per cluster
(Figure 24c), the data shows that while the clusters
formed on small topographies consist of fewer cells,
they are more consistent. This is reflected in the lower
variability observed in these substrates compared to
larger or flat surfaces. Additionally, the mean number
of clusters identified by DBSCAN (Figure 24b) shows
a higher number of clusters in smaller topographies,
confirming the tendency for more frequent clustering in
these conditions.

It is important to note that the DBSCAN analysis was
specifically focused on clusters made up of single nu-
clei, as identified by StarDist2D. This model is highly
effective for single nuclei identification but less so for
dense clusters of nuclei, highlighting the necessity of
complementary methods for comprehensive analysis.

The approach was inspired by the research of On-
esto et al. (2019), which investigated the formation
of cortical-like mini-columns on zinc oxide nanowire
surfaces and their sensitivity to topographical features.
Their findings emphasized the importance of substrate
topography in guiding neuronal cell assembly into clus-
ters with high connectivity and small-world network at-
tributes. This research provided a foundational under-
standing that informed the use of the Waxman graph and
DBSCAN for analyzing the spatial organization of nu-
clei in the current experiments.

In summary, the network analysis underscored the
critical role of substrate topographies in influencing the
spatial organization and connectivity of neuronal net-
works. By employing advanced segmentation mod-
els and graph-based analysis techniques, the study pro-
vides a comprehensive framework for understanding the
complex dynamics of neuronal network formation and

their dependence on the physical environment. Draw-
ing inspiration from previous research, this integrated
approach highlights the significance of merging compu-
tational methods with biological insights to enhance the
knowledge of neuronal network behavior.

8. Conclusions

8.1. Milestone 1.1: Nuclei and cluster identification
By leveraging traditional image analysis tools, highly

accurate segmentations, a prerequisite for the training of
the Mask-RCNN model, were achieved. It was demon-
strated that this approach performs well, even on sub-
strates containing fine spatial features, which are critical
in studies monitoring cell responses. These results in-
dicate that micro-environmental conditions, particularly
at high densities with tight substrate configurations, en-
hance cell-cell interactions and clustering. Furthermore,
the complex cellular arrangements, which are not re-
solvable by most common tools, were captured by the
advanced processing techniques used in the current ap-
proach, thus validating its capability for studying com-
plex neuronal networks.

8.2. Milestone 1.2: Soma and neurite identification
For images with fluorescent pillar substrates, a seg-

mentation protocol was developed and applied suc-
cessfully even in highly noisy contexts. This was
achieved through the implementation of a thorough pre-
processing algorithm and double segmentation. The
use of a superior model, RegNetY, facilitated an en-
hancement in segmentation accuracy. By extending be-
yond standard analysis procedures to calculate normal-
ized neurite lengths and numbers, and by interpreting
changes in neurite outgrowth sensitivity to substrate to-
pographies, the applicability of this approach under dif-
ferent conditions in neuronal cultures was validated.

8.3. Milestone 1.3: Neurite tracking
The use of NeuronJ and DBSCAN clustering in the

methodology for neurite tracking enabled the dynam-
ics of neurites over time to be tracked, offering sig-
nificant improvements over other methods in capturing
rapid and unpredictable growth patterns during cortical
neuron development. Analyses have shown that neurites
in contact with pillars exhibit increased fluctuations in
length and velocity, responding dynamically to textured
environments. This methodology is adaptable for study-
ing neuronal development and underscores the benefits
of advanced clustering techniques in neuron tracking.

8.4. Milestone 2: Protein expression
In the protein expression assay, it was observed that

mushroom-type pillars with larger pitches promoted
higher levels of Integrin and Paxillin, enhancing cellu-
lar adhesion. Extrapolating from the effects of substrate
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stiffness on protein expression, it is expected that more
complex topographies better support focal adhesion for-
mation. The role of substrate design in achieving opti-
mal cell behavior for custom applications was claimed
by this work, which integrates traditional imaging with
advanced computational methods to provide a compre-
hensive view of cellular dynamics.

8.5. Milestone 3: Network analysis of nuclei
The network analysis of nuclei described the impact

of different substrate topographies on changes in the
spatial structure and connectivity of neuronal networks.
Smaller topographies resulted in an increased rate of
connectivity and more consistent clustering. The frame-
work provided a comprehensive understanding of neu-
ronal network dynamics through advanced segmenta-
tion models combined with graph-based analysis tech-
niques. Based on earlier studies, this approach substan-
tiates the need to integrate computational methodolo-
gies with biological insights to advance the knowledge
of neuronal network behavior.

Each milestone underscores the effectiveness of ad-
vanced image analysis and computational techniques
in elucidating cell-neuronal network interactions, high-
lighting how physical environments can influence neu-
ronal behavior, with significant implications in neural
tissue engineering and related fields.
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Abstract

Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, necessitating advanced diagnostic tech-
niques for early detection and management. Cardiac Magnetic Resonance (CMR) imaging, including Late Gadolin-
ium Enhancement (LGE) and T1 mapping, has emerged as a pivotal tool for detailed cardiac tissue characterization.
Despite its advantages, accurately classifying various cardiac pathologies remains a significant challenge due to the
complexity of multimodal data and the limitations of traditional imaging techniques. This study proposes a robust
classification framework that integrates multimodal CMR imaging data, specifically LGE, native T1 mapping, and
post-contrast T1 mapping with advanced deep learning techniques. By incorporating segmentation masks and em-
ploying EfficientNet architectures, the framework aims to enhance the accuracy and reliability of cardiac pathology
classification. Additionally, uncertainty quantification methods are utilized to evaluate model confidence, thereby
improving the robustness of predictions. Comprehensive experiments were conducted on a dataset comprising 202
patients, categorized into four classes: Cardiomyopathy (CMD), Myocardial Infarction (VIA), Hypertrophic Car-
diomyopathy (CMH), and Normal. The results show that the integration of segmentation masks further improves
model performance by providing detailed anatomical context. The findings of this research highlight the potential
of multimodal CMR imaging combined with deep learning to provide a more accurate, efficient, and comprehensive
diagnostic tool for cardiac pathology. This work contributes to the advancement of automated cardiac diagnostics,
potentially leading to improved patient outcomes through early and precise disease detection.

Keywords: Cardiovascular Diseases, Cardiac Magnetic Resonance Imaging, Deep Learning, T1 Mapping, Late
Gadolinium Enhancement, EfficientNet, Segmentation, Uncertainty Quantification

1. Introduction

Cardiovascular diseases (CVDs) are widespread
among the population and often lead to fatal outcomes.
Recent survey statistics indicate that the mortality rate
is increasing due to factors such as obesity, high choles-
terol, high blood pressure, and tobacco use [Swathy and
Saruladha (2022)]. According to the World Health Or-
ganization (WHO), cardiovascular diseases (CVDs) are
the leading cause of death globally. In 2016, approxi-
mately 17.9 million people died from CVDs, account-
ing for 31% of all deaths worldwide. Of these fatalities,
85% were caused by heart attacks and strokes [World
Health Organization (2017)]. Cardiac Magnetic Reso-
nance (CMR) is a specialized form of Magnetic Res-
onance Imaging (MRI) that provides detailed anatom-

ical and functional information about the heart. Tech-
niques like Late Gadolinium Enhancement (LGE) are
valuable for identifying myocardial fibrosis, which is
critical for assessing myocardial infarction and other
cardiac pathologies. LGE is considered the gold stan-
dard for quantifying myocardial infarction, but it has
limitations in detecting diffuse fibrosis [Arega et al.
(2021)]. To address these limitations, parametric map-
ping methods such as T1 mapping have been devel-
oped. T1 mapping quantifies diffuse myocardial fibro-
sis and characterizes tissue properties by measuring the
longitudinal relaxation time of tissue. This technique
provides valuable information about tissue composition
and health without the use of contrast agents (native T1
mapping). In contrast, post-contrast T1 mapping in-
volves the administration of gadolinium-based contrast
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agents, which enhance the differentiation of healthy
and diseased myocardial tissues by altering their T1 re-
laxation times. The combination of native and post-
contrast T1 mapping offers a comprehensive approach
to assessing myocardial fibrosis and other pathological
changes, enhancing the diagnostic accuracy and prog-
nostic capabilities of CMR [Haaf et al. (2016)]. Despite
these advancements, accurately classifying the progres-
sion of CVDs remains challenging due to the complex
differentiation among various CVD conditions, over-
lapping symptoms, and variability in disease presenta-
tion. Traditional imaging techniques and manual anal-
ysis are time-consuming and prone to human error.
Consequently, there is a growing need for automated
and accurate classification methods that can handle the
complexity of multimodal data. Recent advancements
in deep learning, particularly convolutional neural net-
works (CNNs), have shown significant promise in ad-
dressing these challenges. Deep learning models can
leverage large volumes of heterogeneous data from dif-
ferent imaging modalities, such as LGE and T1 map-
ping, to provide more comprehensive and accurate diag-
nostic insights. This approach not only improves diag-
nostic accuracy but also supports early intervention and
enhances patient outcomes by enabling a more detailed
understanding of the disease [Swathy and Saruladha
(2022)]. The objective of this study is to develop a ro-
bust classification framework that integrates multimodal
CMR imaging data (LGE, native T1 mapping, and post-
contrast T1 mapping) with advanced deep learning tech-
niques. By incorporating segmentation masks and uti-
lizing EfficientNet architectures, this study aims to over-
come the limitations of traditional methods and enhance
the reliability and accuracy of cardiac pathology classi-
fication. Additionally, uncertainty quantification meth-
ods will be employed to evaluate model confidence and
improve the robustness of predictions. In summary,
this research aims to contribute to the field of cardiac
pathology classification by leveraging multimodal CMR
imaging and deep learning techniques to provide a more
accurate, efficient, and comprehensive diagnostic tool.
The subsequent sections will detail the state of the art,
methodologies, experiments, and results of this study.

2. State of the Art

In recent years, the use of multimodal magnetic reso-
nance (MR) imaging combined with deep learning tech-
niques has significantly advanced the field of cardiac
pathology classification [Xinga et al. (2024)]. This sec-
tion reviews the current state of the art, summarizing the
latest research findings, methodologies, and identifying
gaps that this study aims to address.

Cardiovascular diseases (CVDs) are a leading cause
of morbidity and mortality worldwide. Advanced imag-
ing techniques such as Cardiovascular Magnetic Res-
onance (CMR) have become essential tools for diag-

nosing and evaluating these conditions [(WHO, 2023)].
CMR techniques, including Late Gadolinium Enhance-
ment (LGE) and T1 mapping, offer detailed insights into
myocardial tissue properties, aiding in the detection and
quantification of myocardial fibrosis and other patho-
logical changes [Swathy and Saruladha (2022)].

2.1. Deep Learning in Cardiac Imaging

The integration of deep learning with CMR imag-
ing has shown promise in automating and enhancing
the diagnostic process. Convolutional Neural Networks
(CNNs), in particular, have been widely adopted for
their ability to analyze complex imaging data. Re-
cent studies have demonstrated the efficacy of T1 map-
ping in clinical practice, providing a comprehensive re-
view of its applications in detecting myocardial fibrosis
and assessing extracellular volume (ECV) [Arega et al.
(2021)].

2.2. Multimodal Imaging Approaches

Multimodal imaging, which combines different CMR
techniques, has been explored to improve diagnostic ac-
curacy. The combination of LGE and T1 mapping pro-
vides a more detailed characterization of myocardial tis-
sue, enhancing the detection of both focal and diffuse
myocardial changes [Swathy and Saruladha (2022)].
This multimodal approach leverages the strengths of
each modality, offering a more holistic view of cardiac
pathology.

2.2.1. Comparative Analysis of Methodologies
Recent studies have explored various methodologies

to integrate multimodal imaging and deep learning for
cardiac pathology classification:

Swathy and Saruladha conducted a comparative study
using machine learning and deep learning techniques
to classify and predict cardiovascular diseases (CVD).
They utilized datasets containing various CMR modali-
ties and applied multiple models including support vec-
tor machines (SVM), decision trees, and CNNs. The
study concluded that deep learning models, particularly
CNNs, provided superior performance in terms of accu-
racy and robustness [Swathy and Saruladha (2022)].

Arega et al leveraged uncertainty estimates to
improve segmentation performance in cardiac MR.
They integrated uncertainty quantification within their
CNN framework to provide more reliable segmentation
results. This methodology involved training the CNNs
with dropout layers and using Monte Carlo sampling to
estimate uncertainty, which was then used to refine the
segmentation outputs [Arega et al. (2021)].

Petersen and Lee explored the fusion of T1 map-
ping and LGE for improved cardiac diagnosis. Their
approach involved preprocessing the T1 mapping and
LGE images to align them spatially, followed by feature
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extraction using CNNs. The features from both modali-
ties were then fused at different stages of the network to
enhance the overall diagnostic accuracy [Petersen and
Lee (2020)].

He et al proposed a novel deep learning architecture
for cardiac disease classification that integrates mul-
timodal CMR data, including LGE and T1 mapping.
Their method involves an attention-based fusion mecha-
nism that selectively emphasizes relevant features from
each modality, improving the interpretability and per-
formance of the model [He et al. (2021)].

] Liu et al. introduced a hybrid model combining
CNNs with recurrent neural networks (RNNs) to cap-
ture both spatial and temporal features in cardiac MR
images. Their study focused on improving the temporal
coherence in volumetric data, which is critical for ac-
curate diagnosis in dynamic cardiac imaging [Liu et al.
(2022)].

2.2.2. Comparison with Our Methodology
Our study builds upon these methodologies by inte-

grating multimodal imaging data (LGE, native T1 map-
ping, and post-contrast T1 mapping) into a comprehen-
sive classification framework. Key differences and im-
provements include:

• Segmentation Integration: Unlike Swathy and
Saruladha, who primarily focused on classifica-
tion without segmentation, our methodology incor-
porates segmentation masks to provide additional
anatomical context, thereby improving classifica-
tion accuracy.

• Uncertainty Quantification: Similar to Arega et
al., we include uncertainty quantification to en-
hance the reliability of our predictions. However,
our approach uses a majority voting mechanism to
aggregate predictions from different models, en-
suring robust final predictions.

• Feature Fusion: While Petersen and Lee focused
on fusing features from T1 mapping and LGE,
our method extends this fusion to include native
and post-contrast T1 mapping as well. This multi-
modality fusion aims to capture a broader range of
myocardial characteristics for more accurate clas-
sification.

• Attention Mechanisms: Inspired by He et al., our
methodology incorporates attention mechanisms
to selectively highlight important features from
each modality, enhancing model interpretability
and performance.

• Temporal Coherence: Although our primary fo-
cus is on spatial features, our methodology can be
extended to incorporate temporal features as ex-
plored by Liu et al., providing a comprehensive
analysis of dynamic cardiac imaging data.

2.3. Challenges and Gaps
Despite the advancements, several challenges remain

in the field of cardiac pathology classification using
multimodal MR images. One major issue is the vari-
ability in imaging protocols and patient anatomy, which
can affect the consistency and accuracy of the models
[Swathy and Saruladha (2022)]. Additionally, class im-
balance in the datasets poses significant challenges, of-
ten leading to biased models that underperform on less
represented classes [Johnson et al. (2019)].

Another critical gap is the need for effective integra-
tion of segmented anatomical information. While seg-
mentation can provide valuable anatomical context, in-
corporating this information into deep learning models
without increasing complexity or computational cost re-
mains a challenge [Yuemeng Li (2021)].

2.4. Current Approaches and Innovations
Recent innovations have focused on addressing these

challenges through various approaches. For instance,
the use of EfficientNet architectures has been shown
to balance accuracy and computational efficiency ef-
fectively [Tan and Le (2019)]. Studies have explored
the fusion of native and post-contrast T1 mapping with
LGE to enhance feature representation and improve
classification performance [Petersen and Lee (2020)].
Moreover, uncertainty quantification methods are being
integrated to evaluate model confidence and reliability,
thereby improving the robustness of predictions [Mad-
dox and Izmailov (2019)].

2.5. Critique and Direction for Future Research
While these advancements are promising, there is still

room for improvement. The variability in imaging pro-
tocols and the need for robust data preprocessing tech-
niques highlight the importance of standardizing imag-
ing practices. Additionally, future research should fo-
cus on developing methods to handle class imbalance
more effectively, perhaps through advanced data aug-
mentation techniques or innovative loss functions that
penalize class imbalance [He and Garcia (2019)].

In summary, the state of the art in cardiac pathology
classification using multimodal MR images and deep
learning techniques has made significant strides, yet
several challenges remain. This study aims to address
these gaps by leveraging the strengths of multimodal
imaging and advanced deep learning architectures, ulti-
mately contributing to the improved diagnosis and man-
agement of cardiovascular diseases.

3. Material and methods

3.1. Dataset
The dataset employed in this study comprises cardiac

magnetic resonance (CMR) imaging data from multi-
ple modalities, specifically Late Gadolinium Enhance-
ment (LGE), native T1 mapping, and post-contrast T1
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mapping. This comprehensive dataset includes volu-
metric data from these modalities for a total of 202 pa-
tients. The CMR images were collected from various
clinical centers across France. Each image acquisition
was performed using a Siemens 1.5T MRI scanner, en-
suring consistency in imaging parameters and quality.
The slices of native and post-contrast T1 mapping im-
ages were realigned based on the center of gravity of the
area defined by the manually drawn epicardial contour
of the left ventricle. This step was crucial for maintain-
ing anatomical consistency across different slices and
modalities.

Each patient of T1 Mapping has three short-axis
slices (Apical slices, Mid slices, and Basal slices). In
contrast, the number of slices in the LGE modality
varies from patient to patient, reflecting differences in
clinical protocols and patient anatomy. This variabil-
ity necessitates careful handling during preprocessing
and analysis to ensure robust classification performance.
The dataset was categorized into four classes corre-
sponding to different cardiac conditions: CMD (Car-
diomyopathy): 71 samples, VIA ( Myocardial Infarc-
tion): 70 samples, CMH (Hypertrophic Cardiomyopa-
thy): 30 samples, and Normal: 31 samples.

Additionally, the dataset underwent segmentation as
part of a separate project. Manual annotations are pro-
vided for each case, including the left ventricular blood
pool, myocardium, and right ventricular blood pool. For
the classification task in this study, both the segmented
and non-segmented datasets were utilized. This dual
approach allowed for a comprehensive analysis, lever-
aging the benefits of segmentation while also exploring
the raw imaging data.

Figure 1 depicts the LGE modality with original
slices and corresponding segmentation masks, Figure
2 shows Native T1 Mapping modality with Base, Mid,
and Apex slices, and Figure 3 presents Post-Contrast T1
Mapping modality with Base, Mid, and Apex slices.

Figure 1: LGE modality with original slices and corresponding seg-
mentation masks. The top row shows the original LGE slices, and the
bottom row shows the LGE slices with segmentation masks.

Figure 2: Native T1 Mapping modality with Base, Mid, and Apex
slices. The top row shows the original slices, and the bottom row
shows the slices with segmentation masks.

Figure 3: Post-Contrast T1 Mapping modality with Base, Mid, and
Apex slices. The top row shows the original slices, and the bottom
row shows the slices with segmentation masks.

3.2. Fusion Process

The fusion process integrates volumetric data from
three cardiac magnetic resonance (CMR) imaging
modalities: Late Gadolinium Enhancement (LGE), na-
tive T1 mapping, and post-contrast T1 mapping. Each
modality provides unique information about myocardial
tissue characteristics. LGE: Highlights myocardial scar
or fibrosis post-contrast, Native T1 Mapping: Quantita-
tive T1 relaxation times pre-contrast, and Post-contrast
T1 Mapping: T1 relaxation times post-contrast. Com-
bining native T1 mapping and post-contrast T1 map-
ping proved particularly effective. But Including LGE
did not yield additional benefits. The fusion algorithm
spatially aligns and integrates features from native and
post-contrast T1 mapping, producing a fused volume for
classification. Figure 4 illustrates the fusion process,
showing the integration of the three modalities into a
comprehensive fused volume.

3.3. Dataset Split

After the fusion process was performed, we started
splitting the dataset to ensure a robust evaluation of the
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Figure 4: Fusion Process of CMR Modalities.

classification model, the dataset was divided using 5-
fold cross-validation. Each fold was split into, Training
Set: 70% of the data, Validation Set: 15% of the data,
and Test Set: 15% of the data. The split was stratified
to ensure that the distribution of each class was main-
tained equally across the folds. This stratification pro-
cess also ensured that images from all three modalities
(LGE, native T1 mapping, and post-contrast T1 map-
ping) for each patient were kept together, preventing
data leakage between the training, validation, and test
sets. A diagram illustrating the data split is shown in
Figure 5.

Figure 5: Showing how the dataset was split.

3.4. Classification methodology

Before explaining the final classification methodol-
ogy, it is important to note that this method was arrived
at after extensive experimentation with various classifi-
cation techniques. The methodology that proved most
effective is a Binary-Classification-Based approach for
multi-pathology classification. This approach simplifies

the complex task of multi-class classification by break-
ing it down into a series of binary classification prob-
lems, effectively overcoming class imbalance and the
complexity associated with multiple pathologies. The
process begins with four distinct cardiac pathologies:
Cardiomyopathy (CMD), Viral Myocarditis (VIA), Hy-
pertrophic Cardiomyopathy (CMH), and Normal. To
streamline the classification, CMH and Normal cases
were concatenated into one group, and CMD and VIA
were concatenated into another group. This setup al-
lowed us to feed these combined classes into the initial
classification model.

3.4.1. Initial Model (Model 1st):
The combined classes (CMH Normal and

CMD VIA) are fed into the first model. This model
performs the initial classification, predicting whether
a sample belongs to the CMH Normal group or the
CMD VIA group.

3.4.2. Secondary Models:
Model 2nd: If the prediction from the first model is

CMH Normal, the sample is then fed into the second
model, which further differentiates between CMH and
Normal cases.
Model 3rd: If the prediction from the first model is
CMD VIA, the sample is then fed into the third model,
which differentiates between CMD and VIA cases.

3.4.3. Final Prediction:
The final classification result is determined by com-

bining the outputs from the second and third models.
This step-by-step binary classification approach ensures
more accurate and reliable predictions for each pathol-
ogy.
By using this methodology, we effectively address the
issues of class imbalance and the complexity inherent
in classifying multiple pathologies. The diagram 7 il-
lustrates the step-by-step classification process, start-
ing with the initial model (Model 1st) that distin-
guishes between combined classes (CMH Normal and
CMD VIA). Depending on the initial prediction, the
sample is then processed through either Model 2nd (for
CMH vs. Normal) or Model 3rd (for CMD vs. VIA).
The final classification result is derived from the com-
bined outputs of the secondary models.

3.5. Main Experiments

As mentioned earlier, we utilized a fusion process and
segmentation of the dataset from another project. The
main experiments conducted in this study are as fol-
lows:

3.5.1. Experiments without Segmentation
For the dataset without segmentation, the following

experiments were conducted:
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Figure 6: Binary-Classification-Based Method for Multi-Pathology Classification.

• T1 Mapping (Native and Post Contrast): Fused
data from native T1 mapping and post-contrast T1
mapping.

• T1 Mapping Native: Data from native T1 map-
ping alone.

• T1 Mapping Post Contrast: Data from post-
contrast T1 mapping alone.

• LGE: Data from Late Gadolinium Enhancement
(LGE) alone.

• T1 Mapping (Native and Post Contrast) and
LGE: Fused data from native T1 mapping, post-
contrast T1 mapping, and LGE.

These experiments were designed to test the classi-
fication performance using various combinations of T1
mapping and LGE modalities:

• T1 Mapping (Native and Post Contrast): Eval-
uated the fused data from both native and post-
contrast T1 mapping.

• T1 Mapping Native: Assessed the data from na-
tive T1 mapping independently.

• T1 Mapping Post Contrast: Assessed the data
from post-contrast T1 mapping independently.

• LGE: Evaluated the data from LGE independently.

• T1 Mapping (Native and Post Contrast) and
LGE: Assessed the fused data from native T1 map-
ping, post-contrast T1 mapping, and LGE.

3.5.2. Experiments with Segmentation
The same set of experiments was repeated using the

segmented dataset. The goal was to compare the clas-
sification performance with and without segmentation.
The segmentation provided additional anatomical infor-
mation, potentially enhancing the accuracy of the clas-
sification models.

3.5.3. Observations
Upon conducting these experiments, it was observed

that the classification performance using the segmented
dataset significantly outperformed the dataset without
segmentation. This result highlights the importance of
segmentation in improving the accuracy and reliability
of classification models.

Figure 7: This figure illustrates the various experiments conducted in
this study.

3.6. Classification Methodology Architecture

Initially, we experimented with 3D model architec-
tures to process the volumetric cardiac magnetic reso-
nance (CMR) imaging data. However, the performance
of the 3D models was poor. Consequently, we explored
2D approaches, which proved to be significantly more
effective compared to the 3D approach.
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3.6.1. Without Segmentation
The classification architecture for the dataset without

segmentation is designed to process volumetric cardiac
magnetic resonance (CMR) imaging data and predict
the pathology. The process involves several key steps,
which are illustrated in Figure 8.

Input Volume. The input to the model consists of volu-
metric CMR images. These volumes are divided into in-
dividual slices, each representing a cross-sectional view
of the heart.

Slices Extraction. The input volume is split into multi-
ple slices (s1, s2, s3, ..., last slice). Each slice is pro-
cessed independently through a series of convolutional
neural networks (CNNs).

CNN Processing. Each slice is fed into a separate CNN.
After investigating various models such as ResNets and
VGGs, EfficientNet B4 was selected for this task due to
its superior performance.

• EfficientNet B4: Each slice is processed using Ef-
ficientNet B4, which extracts features through sev-
eral convolutional layers and pooling layers. Ef-
ficientNet B4 was chosen for its balance between
accuracy and computational efficiency, proving to
be the best among the evaluated models.

Feature Concatenation. The features extracted from
each slice by the CNNs are then concatenated to form
a combined feature vector. This step aggregates infor-
mation from all the slices, providing a comprehensive
representation of the entire volumetric data.

Fully Connected Layer. The concatenated feature vec-
tor is passed through a fully connected layer. This layer
further processes the combined features to generate a
final feature representation suitable for classification.

Pathology Prediction. The output of the fully con-
nected layer is used to predict the pathology. The model
assigns a class label to the input volume, indicating the
specific cardiac condition.

3.6.2. With Segmentation
In this approach, we utilized segmented data to en-

hance the classification performance and to investigate
whether incorporating segmentation masks would im-
prove the model’s performance. The segmentation pro-
vides additional anatomical information, which is incor-
porated into the model along with the original CMR im-
ages. The process involves several key steps, as illus-
trated in Figure 9.

Segmentation Input. In addition to the original CMR
slices, segmentation masks are included. The number
of segmentation masks varies by modality:

• LGE Modality: Two masks are provided, high-
lighting the left ventricular blood pool and my-
ocardium.

• Native and Post-contrast T1 Mapping Modali-
ties: Three masks are provided, highlighting the
left ventricular blood pool, myocardium, and right
ventricular blood pool.

Original and Segmentation Slices. For each slice (s1,
s2, s3, ..., last slice), both the original CMR image and
the corresponding segmentation masks are combined to
form multi-channel inputs:

• LGE Modality: The original slice (1 channel) is
concatenated with the two segmentation masks (2
channels), resulting in a 3-channel input.

• Native and Post-contrast T1 Mapping Modali-
ties: The original slice (1 channel) is concatenated
with the three segmentation masks (3 channels), re-
sulting in a 4-channel input.

CNN Processing. Each combined slice (original image
+ segmentation masks) is fed into a separate convolu-
tional neural network (CNN). EfficientNet B4 was se-
lected for this task due to its superior performance.

Feature Aggregation and Prediction. The features ex-
tracted from the CNNs encoders are then concatenated
for all slices and segmentation masks. These combined
features are then fed to the fully connected layer, yield-
ing predictions in the same manner as the approach
without segmentation.

3.7. Uncertainty Quantification from All Experiments

To enhance the reliability and robustness of our clas-
sification model, we incorporated an uncertainty quan-
tification process. This process helps to evaluate the
confidence of the model’s predictions and improve the
overall classification accuracy. The methodology is il-
lustrated in Figure ?? and involves several key steps.

Experiments. The fused test volume is used as the in-
put for multiple models trained on different main experi-
ments. Specifically, the following main experiments are
considered:

• T1 Mapping (Native and Post Contrast)

• Native T1 Mapping

• T1 Mapping Post Contrast

• LGE

Each of these experiments contributes to the over-
all prediction by generating individual model predic-
tions. However, the last experiment combining Native
and Post-contrast T1 mapping was skipped due to poor
results obtained from it.
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Figure 8: This figure illustrates the process from input volume through slices extraction, CNN processing with EfficientNet B4, feature concatena-
tion, and final pathology prediction

Figure 9: This figure illustrates the process from input volume and segmentation masks through slices extraction, CNN processing with EfficientNet
B4, feature aggregation, and final pathology prediction

Predictions. For each test sample, the models trained
on the different modalities provide separate predictions.
These predictions represent the initial classification re-
sults based on the specific features extracted from each
modality.

Uncertainty Process. The individual predictions from
each model are then fed into an uncertainty quantifi-
cation process. This process evaluates the confidence
of each prediction, identifying potential uncertainties in
the model outputs. The uncertainty process involves:

• Assessing the agreement among the different
model predictions.

• Identifying predictions with high variability, which
indicates uncertainty.

The uncertainty is quantified by majority voting from
the predictions coming from the models.

Voting. To determine the final classification, a voting
mechanism is applied. This mechanism aggregates the
predictions from all models, taking into account the un-
certainty scores. The final prediction is based on a con-
sensus approach, where the most confident and consis-
tent prediction is selected.

Final Result. The final result of the uncertainty quan-
tification process is the predicted pathology. This result
leverages the combined strength of multiple models and
the uncertainty assessment to provide a more reliable
and accurate classification.

3.8. Experimental Setup

The model backbone used in our experiments is Ef-
ficientNetB4, which is well-suited for tasks involving
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Figure 10: This figure illustrates the process from input volume and segmentation masks through slices extraction, CNN processing with Efficient-
Net B4, feature aggregation, and final pathology prediction

Classes Modality Acc (Mean) Acc (Std)
CMH vs. VIA Native & Post Contrast T1 68.08 5.08

Native T1 73.08 5.17
Post Contrast T1 70.17 5.02

LGE 78.00 5.33
CMD VIA vs. Native & Post Contrast T1 79.67 12.19
CMH Normal Native T1 78.70 7.21

Post Contrast T1 78.17 7.41
LGE 74.78 5.78

CMH vs. Normal Native & Post Contrast T1 77.05 16.00
Native T1 75.51 5.03

Post Contrast T1 77.05 13.66
LGE 69.23 17.47

Table 1: Mean and Standard Deviation of the Test Accuracy across the 5 folds for Each Experiment for the 3 binary classification problems

image data due to its balance of accuracy and computa-
tional efficiency. We train the model with a batch size of
4 over 50 epochs. The input to the model consists of 4
channels, with each image resized to a width and height
of 220 pixels.

For optimization, we employ the Adam optimizer,
which is known for its efficiency and ease of use. The
learning rate is set to 0.0001, and a dropout rate of 0.2 is
applied to prevent overfitting. The loss function used is
Cross Entropy, which is standard for classification tasks.

We utilize a Tesla V100S-PCIE-32GB GPU with
32768MiB of memory for training, ensuring that our
model can leverage high computational power for faster
training times. The primary metric for evaluating the
model’s performance is accuracy, and we use the valida-
tion accuracy (’val accuracy’) as the criterion for model
selection.

This setup ensures a robust training process, aimed at
achieving high performance in the task of MRI cardiac
pathology classification.

4. Results and Discussion

4.1. Challenges and Solutions

During the course of this project, several signifi-
cant challenges were encountered. Initially, one of the
primary issues was dealing with the missing slices in
the LGE volumes. To address this, various methods
were explored, including reducing the number of slices
in all volumes to match the volume with the fewest
slices, padding slices to match the volume with the
most slices, duplicating slices, and applying interpola-
tion techniques to fill in the missing slices. Each of these
methods had its own advantages and limitations, and
through extensive experimentation, interpolation proved
to be the most effective solution.

Another major challenge was the significant class im-
balance present in the dataset. The initial approach to
mitigate this involved reducing the number of samples
in the majority classes to match those in the minority
classes. While this helped, it did not fully resolve the
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Figure 11: This figure contrasts the training and validation losses and accuracies for models trained with and without segmentation masks. This
plot is generated from training and validation of the binary classification of (CMH vs. Normal) using the Native and Post Contrast T1 mapping
modalities

Classes Acc (Mean) Acc (Std)
CMD vs. VIA 68.77 3.25
CMD VIA vs. CMH Normal 40.60 5.76
CMH vs. Normal 72.18 9.22

Table 2: Mean and Standard Deviation of the Test Accuracy across the 5 folds using the majority voting for the 4 experiments for the 3 binary
classification problems

issue. Subsequently, a binary-classification-based ap-
proach was adopted to handle the multi-class classifica-
tion problem. This method involved breaking down the
multi-class problem into a series of binary classification
tasks, which significantly improved the model’s perfor-
mance. This approach not only simplified the classifica-
tion task but also enhanced the model’s accuracy and ro-
bustness. These challenges required considerable time
and effort to overcome.

4.2. Analysis of training with anatomical segmentation
masks

We initiated the experiments by training without seg-
mentation masks (see Figure 8). However, we realized
that there was a gap between the training and validation
plots. Therefore, we decided to incorporate segmenta-
tion masks for the cardiac anatomy which may guide the
model in the learning process (see Figure 9. We illus-
trate the training and validation plots in Figure 11.

4.2.1. Without Segmentation
The training loss decreases steadily, indicating that

the model learns from the training data. However, the

validation loss exhibits significant fluctuations and over-
all higher values compared to the training loss. This
suggests that the model might be overfitting to the train-
ing data, failing to generalize well to unseen validation
data.

The training accuracy steadily increases, reaching
high values, but the validation accuracy fluctuates
greatly. The high variance in validation accuracy, cou-
pled with the divergence between training and valida-
tion accuracies, further supports the presence of overfit-
ting.

4.2.2. With Segmentation
Both training and validation losses are lower and de-

crease more smoothly compared to the model trained
without segmentation. The closer alignment between
the training and validation loss curves suggests better
generalization and less overfitting.

The training accuracy still increases steadily, but the
validation accuracy is higher and fluctuates less com-
pared to the model without segmentation. The reduced
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gap and variability between training and validation ac-
curacies indicate improved stability and generalization
performance.

4.2.3. Overall Analysis
Training with segmentation masks leads to more sta-

ble and lower training and validation losses, as well as
more consistent and higher validation accuracy. This
suggests that incorporating segmentation masks helps
the model to focus on the relevant anatomical features,
improving its ability to generalize to new data and
reducing overfitting. Consequently, using segmenta-
tion masks appears to be beneficial for enhancing the
model’s performance in MRI cardiac pathology classi-
fication tasks.

4.3. Binary classification problems

Here, we start with discussing the 3 binary classifica-
tion problems (see Table 1) independently as explained
in Figure 9, and then we discuss the results of using the
majority voting technique (see Table 2) as illustrated in
Figure 10.

4.3.1. CMH vs. VIA classification
The results from the deep learning model for classify-

ing cardiac pathologies (CMH and VIA) using different
MRI modalities reveal several important trends. Firstly,
it is evident that the LGE (Late Gadolinium Enhance-
ment) modality achieves the highest mean accuracy at
78.00% with a standard deviation of 5.33%. This sug-
gests that LGE images provide the most discriminative
features for distinguishing between the two pathologies,
which aligns with its known utility in highlighting fibro-
sis and scarring in cardiac tissues.

Following LGE, the Native T1 modality exhibits the
second highest mean accuracy of 73.08% and a standard
deviation of 5.17%. This result indicates that Native
T1 imaging is also quite effective, albeit slightly less so
than LGE, in identifying the pathologies. The higher
accuracy compared to Post Contrast T1 and combined
Native & Post Contrast T1 suggests that native tissue
characteristics captured in T1 images play a significant
role in pathology classification.

The Post Contrast T1 modality comes next with a
mean accuracy of 70.17% and a standard deviation
of 5.02%. This performance is slightly lower than
that of Native T1, indicating that the contrast enhance-
ment may not add significant value over the native im-
ages alone for this classification task. However, it still
outperforms the combined Native & Post Contrast T1
modality. Interestingly, the combined Native & Post
Contrast T1 modality has the lowest mean accuracy at
68.08% and a standard deviation of 5.08%. This out-
come suggests that combining these modalities does not
synergistically improve classification performance and
may, in fact, introduce redundancy or noise that hinders

the model’s ability to accurately classify the patholo-
gies.

In summary, LGE modality stands out as the most
effective for this binary classification task, followed by
Native T1 and Post Contrast T1, with the combination
of Native and Post Contrast T1 being the least effective.
These findings underscore the importance of selecting
appropriate imaging modalities based on their individ-
ual contributions to the classification performance.

4.3.2. CMH Normal vs. CMD VIA classification
The results for the classification task distinguishing

between Normal/CMH cases and VIA/CMD cases us-
ing various MRI modalities show notable trends. The
combined Native & Post Contrast T1 modality achieves
the highest mean accuracy at 79.67% with a relatively
high standard deviation of 12.19%. This suggests that
while this combination can be very effective, its per-
formance may vary significantly across different folds,
indicating potential variability in the features or model
stability.

The Native T1 modality follows closely with a mean
accuracy of 78.70% and a lower standard deviation of
7.21%. This indicates that Native T1 images alone are
almost as effective as the combined modality but with
more consistent performance across different test sets.
Similarly, the Post Contrast T1 modality shows a com-
parable mean accuracy of 78.17% and a standard devi-
ation of 7.41%, reinforcing that both native and post-
contrast images individually provide strong features for
this classification task.

Interestingly, the LGE modality, which was the most
effective in the previous classification task, exhibits the
lowest mean accuracy at 74.78% with a standard devi-
ation of 5.78%. Although LGE is known for highlight-
ing fibrosis and scarring, it appears to be less effective
in distinguishing between the combined classes of Nor-
mal/CMH and VIA/CMD, possibly because these com-
bined classes do not rely as heavily on the specific fea-
tures captured by LGE imaging.

In summary, while the combined Native & Post Con-
trast T1 modality achieves the highest mean accuracy
for this classification task, it also shows higher variabil-
ity. Native T1 and Post Contrast T1 modalities individ-
ually provide nearly equivalent and more stable perfor-
mance. The LGE modality, despite its effectiveness in
the previous task, is less effective here, suggesting that
the discriminative features for this classification prob-
lem are better captured by T1-based imaging rather than
LGE. This emphasizes the need for modality-specific
analysis based on the pathology and classification task
at hand.

4.3.3. CMH vs.Normal classification
The classification results for distinguishing between

normal cases and CMH pathology using different MRI
modalities provide valuable insights. For this task, both
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the combined Native & Post Contrast T1 modality and
the Post Contrast T1 modality achieve the highest mean
accuracy at 77.05%. However, they show considerable
variability, with standard deviations of 16.00 and 13.66,
respectively. This indicates that while these modalities
can be highly effective, their performance is inconsis-
tent across different folds, suggesting potential sensitiv-
ity to variations in the data or model.

The Native T1 modality shows a slightly lower mean
accuracy of 75.51% but with a much lower standard
deviation of 5.03%. This implies that Native T1 im-
ages provide a more consistent and reliable performance
for this classification task, even if the peak accuracy is
slightly less than that of the combined or post-contrast
modalities.

On the other hand, the LGE modality has the low-
est mean accuracy at 69.23% with the highest standard
deviation of 17.47%. This suggests that LGE imaging,
while useful in identifying fibrosis and scarring, may
not be as effective in distinguishing normal cases from
CMH pathology compared to T1-based imaging modal-
ities. The high variability further indicates that LGE’s
performance is highly dependent on the specific dataset
and folds used, making it less reliable for this particular
classification task.

In summary, while the combined Native & Post Con-
trast T1 and Post Contrast T1 modalities achieve the
highest mean accuracies, their performance variability
suggests a need for caution. The Native T1 modality,
with its more stable performance, appears to be a ro-
bust choice for distinguishing normal cases from CMH
pathology. The relatively lower and more variable ac-
curacy of the LGE modality highlights its limitations
for this specific classification problem, emphasizing the
importance of modality selection based on the nature of
the classification task.

4.4. Majority voting of each binary problem
4.4.1. CMD vs. VIA classification problem

The majority voting method results (see Tabel 2) in a
mean accuracy of 68.77% with a standard deviation of
3.25%. This relatively low standard deviation suggests
that the majority voting approach provides consistent
performance across the different folds. While the mean
accuracy is moderate, the stability of the results indi-
cates that combining the outputs of different modalities
through majority voting may help mitigate some of the
variability seen in individual modality performances.

4.4.2. CMD VIA vs. CMH Normal classification
In the CMD VIA vs. CMH Normal classification

task, the majority voting approach yields a mean ac-
curacy of 40.60%, with a standard deviation of 5.76%.
This significantly lower accuracy compared to individ-
ual modalities suggests that majority voting might not
be effective for this specific classification problem. The
complexity and possible overlap in the feature space of

these combined classes could be a reason for the poor
performance. Additionally, the higher standard devia-
tion reflects considerable variability, indicating that ma-
jority voting struggles to provide stable results for this
task.

4.4.3. CMH vs. Normal classification
For the CMH vs. Normal classification problem, ma-

jority voting achieves a mean accuracy of 72.18% with
a standard deviation of 9.22%. This result shows that
majority voting improves the performance compared to
some individual modalities, highlighting its potential in
leveraging complementary information from different
sources. However, the relatively high standard deviation
suggests variability in performance across folds, indi-
cating that while majority voting can enhance accuracy,
it may also introduce some inconsistency.

Overall, the majority voting approach shows mixed
results. It provides consistent performance for CMD
vs. VIA classification, struggles with CMD VIA vs.
CMH Normal classification, and offers improved but
variable results for CMH vs. Normal classification.
These findings underscore the importance of under-
standing the specific characteristics and challenges of
each classification task when selecting and combining
modalities. The variability in performance, particularly
in complex classification problems, suggests that fur-
ther refinement or alternative ensemble strategies might
be necessary to achieve more robust results.

4.5. Individual modality vs. Majority voting technique

4.5.1. CMD vs. VIA classification problem
The majority voting technique yields a mean accu-

racy of 68.77% with a standard deviation of 3.25%,
which is lower than the best-performing individual
modality (LGE with 78.00% ± 5.33%). While major-
ity voting provides a consistent performance with lower
variability, it does not outperform the highest accuracy
achieved by individual modalities.

4.5.2. CMD VIA vs. CMH Normal classification
The majority voting technique significantly underper-

forms with a mean accuracy of 40.60% compared to in-
dividual modalities, where the highest mean accuracy is
79.67% (Native & Post Contrast T1). This suggests that
majority voting may not be suitable for this particular
classification task, possibly due to the complex nature
of combining CMD and VIA with CMH and Normal
classes.

4.5.3. CMH vs. Normal classification
For the CMH vs. Normal classification, majority vot-

ing achieves a mean accuracy of 72.18% with a standard
deviation of 9.22%. This performance is comparable to
the individual modalities but does not surpass the high-
est individual accuracy of 77.05% (both Native & Post
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Contrast T1 and Post Contrast T1). However, the vari-
ability in the majority voting results is lower, indicating
more consistent performance.

4.5.4. Consistency vs. Performance
Majority voting tends to provide more consistent re-

sults with lower standard deviation across folds, as seen
in the CMD vs. VIA and CMH vs. Normal classifi-
cation tasks. However, it does not necessarily improve
mean accuracy and, in some cases (like CMD VIA vs.
CMH Normal), significantly underperforms compared
to the best individual modality.

4.5.5. Individual Modality Performance
Individual modalities, particularly LGE, and combi-

nations of T1, often achieve higher mean accuracies,
though with greater variability in some cases. The
choice of the best modality can be task-specific, high-
lighting the importance of modality selection based on
the specific classification problem. While majority vot-
ing offers consistency, it may not always enhance over-
all performance. For optimal results, carefully selecting
and possibly combining the best-performing individual
modalities might be more effective, especially in com-
plex classification tasks.

5. Conclusions

In this thesis project, we developed a robust classifi-
cation framework that effectively integrates multimodal
CMR imaging data and advanced deep-learning tech-
niques to classify various cardiac pathologies. By in-
corporating segmentation masks and utilizing Efficient-
Net architectures, the framework significantly improves
classification accuracy and reliability. The experiments
demonstrated that providing detailed anatomical con-
text is key to improving the classification task. This
highlights the potential for improved patient outcomes
through early and accurate disease detection. This re-
search contributes to the ongoing efforts in automated
cardiac diagnostics, offering a promising avenue for en-
hancing diagnostic precision and efficiency in clinical
settings.

6. Future Work

Due to the limited time available for this project, we
have not yet completed the integration of the three bi-
nary models into a single, unified model capable of han-
dling four classes, as depicted in Figure 7. Our goal is to
finalize this comprehensive model in the next few days,
prior to the thesis presentation.
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Abstract

As people age, cognitive functions such as memory, reasoning, language, concentrating, and processing speed can
change. Cognitive impairment is possible for everyone and it can range from mild to severe. Mild cognitive impair-
ment (MCI) is a condition where people can be characterized by a self-experienced loss of cognitive ability. MCI
may not be severe enough to interfere with everyday living and independent functioning, as well as, there are no
significant impairments on standardized cognitive tests. In contrast, dementia causes major difficulties in two or more
domains of cognition, resulting in decreased independence. Due to the cognitive decline factor associated with MCI,
there is well-documented evidence that some people with MCI will develop dementia, while others will not. For
this reason, predicting the progression of MCI to dementia for early detection is becoming increasingly important,
potentially slowing it down. Physicians have utilized brain imaging techniques, for instance, Positron Emission To-
mography (PET) scans to assess neurodegenerative disorders. This technique provides useful information regarding
the metabolism and physiology of the brain, including functional abnormalities. Recent studies have shown that 18F-
fluorodeoxyglucose PET (18F-FDG PET) can help improve the clinical diagnosis of people with MCI and dementia
by revealing patterns of reduced glucose metabolism in the brain that are associated with neurodegenerative disorders.
Moreover, neuroimaging currently widely uses the field of machine learning to improve the prediction of cognitive de-
cline. In this study, we developed a predictive machine learning model that accurately predicts the progression of MCI
to dementia by combining radiomics feature extraction and clinical variables from 277 18F-FDG PET brain scans. For
the experimental study, we investigated twelve different machine learning classification models with selected features
using five different feature selection approaches on three different inputs: clinical variables only, radiomics features
alone, and both data jointly. To evaluate our models’ performance, we tested our prediction models using accuracy,
F1-score, and Receiver Operating Characteristics - Area Under Curve (ROC - AUC). Our best model scored 0.83,
0.89, and 0.88 for accuracy, F1-Score, and AUC score, respectively. We obtained these outcomes by employing
k-nearest neighbors (KNN) as a classifier and selected features using the ANOVA feature selection method.

Keywords: Dementia, Mild Cognitive Impairment (MCI), 18F-FDG PET, Machine learning, Radiomics, Predictive
model

1. Introduction

Cognitive impairment is a situation when someone
has difficulty learning and understanding new things,
remembering, concentrating, and making decisions,
which often occurs as a person ages (Centers for Dis-
ease Control and Prevention, 2018; Jessen et al., 2014).

The condition of cognitive impairment can be mild to
severe enough that it can interfere daily activities (Cen-
ters for Disease Control and Prevention, 2011). One un-
til two percent of those 65 years of age or older have
MCI, a common condition that affects a large portion
of the senior population. From those people that are af-
fected, around 10-15% will develop dementia each year
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(Kumar et al., 2023). On the other hand, Alzheimer’s
Disease (AD) is a condition that occurs in individu-
als and is indicated by a progressive loss of cognitive
and behavioural abilities (Corey-Bloom, 2003). Over 50
million individuals worldwide were diagnosed with de-
mentia in 2020, according to the World Health Organi-
zation (WHO), and approximately 10 million new cases
are reported each year and by 2050, there will be 139
million people, having nearly doubled every 20 years
to reach 78 million in 2030 (Long et al., 2023). MCI
is largely characterized by higher memory or thinking
difficulties when compared to individuals of the same
age; however, AD and other dementias are character-
ized by a wider range of symptoms that substantially
interfere with daily activities (Centers for Disease Con-
trol and Prevention, 2011; Kumar et al., 2023; Langa
and Levine, 2014). Thus, understanding the importance
of early detection and intervention to potentially miti-
gate the progression to dementia is becoming essential
(Langa and Levine, 2014).

Neuroimaging techniques have substantially im-
proved the assessment of neurodegenerative disorders
including dementia and MCI. One of the often-used
techniques is 18FDG-PET. 18FDG is a glucose analog ra-
diotracer that allows us to estimate glucose metabolism
and biochemical activities in vivo in diseased and
healthy tissues (Ashraf and Goyal, 2023). 18F-FDG
PET scans are becoming useful for studying brain func-
tionality and detecting abnormalities because the brain
cells consume glucose for energy. When we want to as-
sess the metabolic activity, in a healthy brain case, the
regions with high neuronal activity will show high FDG
uptake. In contrast, FDG uptake will reduce in certain
brain regions, which indicates reduced metabolic activ-
ity and neuronal dysfunction (Minoshima et al., 2022).
The region that is normally being assessed is the tem-
poroparietal region, which includes parts of the tempo-
ral and parietal lobes for AD and in the case of fron-
totemporal dementia (FTD), the hypometabolism will
show up in the frontal areas. These specific regions are
significant in assessing MCI and dementia since they
cover various cognitive functions. Furthermore, hy-
pometabolism in the temporoparietal region is a crucial
biomarker in assessing MCI and dementia, particularly
AD. In people with MCI, this can also indicate a higher
risk of progression to AD (Cerami et al., 2014).

In analyzing 18F-FDG PET images, it is often these
images use color coding to measure different levels of
18F-FDG uptake, where the light colors reflect the high
uptake areas (normal function activity), while the darker
colors represent low uptake areas (hypometabolism).
Moreover, a quantitative measure like Standardized Up-
take Value (SUV) is commonly used to assess brain
function, which normalizes 18F-FDG uptake by com-
paring it to the injected dose and the patient’s body
weight, the higher the SUV, it indicates the greater glu-
cose metabolism (Ulaner, 2019).

Recent studies have been widely utilized 18F-FDG
PET in both dementia research and clinical environ-
ments because it has the capability of accurately detect-
ing changes in neuronal activity caused by neurodegen-
eration (Minoshima et al., 2022). Moreover, the Euro-
pean Academy of Neurology (EAN) and the European
Association of Nuclear Medicine (EANM) have recom-
mended the utilization of 18FDG-PET to enhance the
clinical diagnosis of individuals with MCI, which may
signify the initial phase of neurodegenerative disease,
as well as those with dementia of unknown cause. Nev-
ertheless, the existing literature on this subject is con-
strained in its formal evidently support (Chouliaras and
O’Brien, 2023; Guedj et al., 2022).

The field of Artificial Intelligence (AI), in particular,
Machine Learning methods, has gained significant de-
velopments in the medical field, specifically in the areas
of image-based disease diagnosis, prognosis, and risk
assessment (Chan et al., 2020; Cheplygina et al., 2019;
Varoquaux and Cheplygina, 2022). These approaches
have demonstrated the ability to analyze thousands of
images in minutes and have shown performance com-
parable to that of trained physicians and radiologists
(Cheplygina et al., 2019). The trend is increasingly to-
ward using these techniques to process large amounts
of data in a reliable manner. The 18F-FDG PET im-
ages extensively apply machine learning techniques to
predict neurodegenerative diseases. This allows us to
get important insights into cognitive progression and pa-
tient outcomes (Litjens et al., 2017; Rana and Bhushan,
2022). Machine learning algorithms have great poten-
tial for enhancing the precision of diagnosing and pre-
dicting the conversion of AD and MCI when used with
18F-FDG PET imaging due to their ability to do com-
plex analysis (Rasi et al., 2024).

However, the traditional use of basic imaging char-
acteristics in 18F-FDG PET imaging for disease classi-
fication has been associated with challenges in achiev-
ing satisfactory classification accuracy and clinical rel-
evance. Fortunately, recent research that implements
a new feature extraction method known as radiomics
has demonstrated substantial prospects for overcoming
these difficulties (Kumar et al., 2012). Radiomics is a
rapidly evolving field in medical imaging that involves
the extraction and analysis of a large number of quan-
titative features from medical images. Using the PyRa-
diomics platform, radiomics data can be extracted from
different neuroimaging techniques, such as computed
tomography (CT), PET, and magnetic resonance imag-
ing (MRI) scans. The platform does this in four main
steps: (i) loading and preprocessing the image and seg-
menting the maps; (ii) applying enabled filters; (iii)
computing features using different feature classes; and
(iv) showing the results (van Griethuysen et al., 2017).

In this study, we wanted to construct an integrated
machine learning model that could predict cognitive de-
cline, particularly the conversion of MCI to dementia,
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by using the features that we extracted from radiomics
and clinical variables from the 18FDG-PET brain im-
ages. By doing so, we expected to enhance the predic-
tion of cognitive decline, which can save time, improve
accuracy, and lead to better clinical outcomes.

2. State of the art

Cognitive decline is a major public health concern, as
highlighted in the research. Subjective Cognitive De-
cline (SCD) refers to the personal perception of a de-
cline or increased occurrence of confusion or memory
loss. It is typically one of the first obvious signs of
AD and other associated forms of dementia (Centers for
Disease Control and Prevention, 2018). Predicting the
progression of cognitive decline becomes an essential
stage for improving early dementia detection and better
strategic patient care. Dementia is a general term used
to characterized by one or more neurodegenerative dis-
orders resulting in a substantial decline in cognition that
is significant enough to disrupt daily functioning (Dave
et al., 2020). 18F-FDG PET imaging has been scientifi-
cally proven to be an effective tool for quantifying brain
glucose metabolism that can lead to identifying the MCI
and dementias through the amount of 18F-FDG uptake
in the specific areas (Teng et al., 2020).

SUVR (Standardized Uptake Value Ratio) is con-
sidered the most common quantitative method used to
quantify the glucose metabolism in specific brain re-
gions that can help identify metabolic deficits (Vemuri
et al., 2016). While SUVR and other techniques are
helpful in assessing and analyzing 18F-FDG PET scans,
there are some challenges that may arise. For in-
stance, in traditional radiology practice, except for a
few measurements like size and volume, the imaging
data sets are typically assessed through visual or qual-
itative analysis. In addition to involving intra- and in-
terobserver variability, this method may disregard a sig-
nificant amount of hidden data within the medical im-
ages (Koçak et al., 2019). These conventional metrics,
while widely used, it may not fully reflect all the avail-
able information, thus potentially limiting their utility
in comprehensive disease characterization (Tixier et al.,
2016).

Due to this, radiomics can contribute to tackling those
challenges. Radiomics has the capability of collecting
and organizing large amounts of data, which makes it
highly suitable for studying complicated diseases with
various aspects. As a result, it has mostly been re-
searched in the field of oncology (Bevilacqua et al.,
2023). Radiomics can extract information based on
size, shape, borders, and heterogeneity (van Griethuy-
sen et al., 2017). 18F-FDG PET scans can provide in-
formation for feature extraction, such as the intensity
features will measure features from the distribution of
voxel intensities, which indicates the concentration of
18F-FDG uptake in the brain. The geometry and size of

the structural characteristics of ROI will contribute to its
shape-based features. The texture feature assesses the
spatial arrangement of voxel intensities, which provide
information on heterogeneity and patterns of 18F-FDG
uptake.

The main objective of radiomics is to extract as much
as possible of useful hidden objective data that may be
used for decision support (Koçak et al., 2019). Ra-
diomics allows not only to extract of information using
an original image as an input but also applying filters
such as wavelet, Laplacian of Gaussian (LoG), Local-
BinaryPattern3D and others. Moreover, after defining
the image type, the next thing is to define the feature
class, which defines the class where the features will
be extracted. These feature classes include for exam-
ple, First Order Statistics, Shape-based (2D and 3D),
and Gray Level Co-occurrence Matrix (van Griethuysen
et al., 2017).

In recent times, researchers have employed various
methods to conduct innovative studies in this field, such
as integrating medical image analysis with AI to en-
hance diagnosis, prognosis, and clinical outcomes (Cas-
tiglioni et al., 2021). Different studies (Feng et al., 2021;
Li et al., 2019; Singh et al., 2023) have shown promising
results in predicting dementia, particularly AD, using
both MRI and 18F-FDG PET with radiomics features.
The use of AI for analyzing the radiomics features is
highly advantageous since it can handle the amount of
data extracted better than traditional statistical methods
(Koçak et al., 2019).

Moreover, in several studies, the progression of cog-
nitive decline was predicted, for instance, in a recent
study by Peng et al. (2023), the authors built a machine
learning model that predicts progression from MCI to
AD using white-matter and radiomics features. The
authors analyzed 18F-FDG PET-based radiomics fea-
tures from 341 MCI patients from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI), of which 102
of them progressed to AD. The authors extracted the
features from the white matter and dimensionally re-
duced them to construct a psychoradiomics signature
(PS), and they combined them with multimodal data to
build an integrated model. To evaluate the model per-
formance, the authors used the ROC curves in the test
group, with a score of 0.865. In the study of Shu et al.
(2021), that used ADNI database consists of 357 pa-
tients with MCI, of whom 154 progressed to AD during
the 48-month follow-up period. The authors aimed to
use machine learning to build and validate a radiomics-
integrated model based on brain MRI to predict MCI
patients’ conversion to AD. The integrated model based
on whole-brain radiomics could accurately identify and
predict the high-risk population of MCI patients who
may progress to AD. The ROC curve showed that the
accuracy of the model in the training and test sets was
0.814 and 0.807, respectively, with a progression to AD
within 12 months.
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Another study analyzed 18F-FDG PET/CT brain im-
ages to predict AD in patients with Amyloid PET Pos-
itivity. Pyradiomics was used to extract the feature and
a machine learning algorithm, specifically discriminant
analysis, was used to obtain the best diagnostic perfor-
mance in the prediction. A total of 11 radiomics fea-
tures that were important were selected. As regards
the performance in the prediction of the final clinical-
instrumental diagnosis of AD, the highest score of AUC
with accuracy was 0.79 (Alongi et al., 2022).

There has been much research for utilizing the ra-
diomics feature extraction technique based on MRI
brain images compared to 18F-FDG PET (Chaddad
et al., 2018; Feng et al., 2018; Li et al., 2018). More-
over, the study mostly focused on the progression from
MCI to AD. For these reasons, our study mainly focused
on applying a machine learning predictive model that
employed radiomics feature extraction to investigate the
277 18F-FDG PET brain image dataset to improve the
prediction of cognitive decline from MCI to dementia
by integrating the clinical variables and radiomics fea-
tures and evaluating them using twelve different classi-
fiers and five different feature selection methods.

3. Material and methods

3.1. Dataset
In this work, the sample comprised 277 individuals

who visited the Clinic for Cognitive Disorders, Theme
Aging, at Karolinska University Hospital in Stockholm,
Sweden. Among them, 177 individuals received a diag-
nosis of MCI, while the remaining 100 were diagnosed
with dementia during the initial assessment. 18F-FDG
PET data was processed at the Nordberg Translational
Molecular Imaging Lab. The clinical diagnosis was as-
sessed in three different visits by dementia experts. The
first visit corresponded to the baseline clinical diagno-
sis. A second assessment was performed, including 18F-
FDG PET results, biomarkers, neuropsychological test-
ing, and additional information following the initial di-
agnosis. The third assessment was performed at an av-
erage of 4.7 months following the baseline diagnosis,
it is also represented as the final follow-up diagnosis
(Perini et al., 2021). In this study, we were focused on
the 18F-FDG PET analysis only, which means we did
not consider the baseline diagnosis, instead, our initial
diagnosis is the post-18F-FDG PET diagnosis. Our main
research goal is to figure out how cognitive decline from
MCI to dementia will progress. To do this, we divided
the diagnosis into two groups: MCI group and demen-
tia group. Patients diagnosed with memory syndrome
(MS) and MCI were put together in the ”MCI” group,
this grouping was according to the assessment of Perini
et al. (2021), based on our understanding, they were
pooled together because of the similarities in cognitive
decline and potential progression to dementia. The re-
maining patients with other diseases were put into the

”Dementia” group. Table 1 describes the grouping of
the diagnosis.

Table 1: Grouping of the diagnosis

Diagnosis Group

MCI MCIMemory syndrome
Alzheimer’s disease

Dementia

Amyotrophic Lateral Sclerosis
Corticobasal degeneration
Dem
Dementia with Lewy bodies
FTD
lvPPA
Posterior corticol atrophy
Parkinson disease dementia
Pick’s disease
PNFA
Parkinson syndrome
Progressive supranuclear palsy
Psychiatric syndrome
Spinocerebellar ataxia
Vascular dementia

MCI: Mild Cognitive Impairment, ALS: Amyotrophic Lat-
eral Sclerosis, Dem: Dementia not otherwise specified, FTD:
Behavioral variant of Frontotemporal dementia, lvPPA: Lo-
gopenic variant of primary progressive aphasia, PNFA: Non-
fluent variant of progressive aphasia

3.1.1. 18F-FDG PET acquisition and analysis
The 18F-FDG PET examinations were conducted at

the Department of Medical Radiation Physics and Nu-
clear Medicine Imaging, Karolinska University Hos-
pital, Stockholm, Sweden, utilizing a Biograph mCT
PET/CT scanner (Siemens/CTI, Knoxville, TN). 18F-
FDG PET was performed at an average of 4.7 ± 6.0
(mean ± SD) months following the baseline diagnosis
(4.2 ± 4.3 months and 5.5 ± 8.4 months for patients
diagnosed with MCI and dementia at baseline, respec-
tively). During the process, all the patients were exam-
ined with open eyes in a 10-min or 15-min list-mode
scan starting 30 to 45 min after intravenous injection of
2 – 3 MBq/kg (Perini et al., 2021).

3.1.2. Patient characteristics at post-18F-FDG PET
and follow-up diagnosis

The post-18F-FDG PET diagnosis (grouped diagno-
sis) showed that the number of cases of dementia was
156 and 121 cases belonged to MCI. Both cases of
dementia and MCI had similar mean follow-up times,
which were (3.5 ± 1.8 and 3.8 ± 1.8 years, respectively)
(Perini et al., 2021). At follow-up, 44 out of 121 MCI
subjects (36%) had developed dementia, which made
our dataset 77 cases in MCI and the rest of the 200 cases
were dementia.
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3.1.3. Clinical variables

Besides the 18F-FDG PET brain images dataset, as
the purpose of this project is to integrate the clini-
cal variables data with the radiomics feature, we an-
alyzed and selected the clinical variables that can be
useful when we combine them. To handle missing
values in the biomarkers dataset, we used the scikit-
learn machine learning library, which is the KNNIm-
puter class that supports nearest neighbor imputation
k-Nearest Neighbors. The algorithm finds the k near-
est data points (neighbors) based on similarity in feature
space, then the imputed value is computed by averaging
(or weighted average) the values of the nearest neigh-
bors and finally, the imputed value is replaced by the
missing value. The second technique is Multiple Impu-
tation by Chained Equations (MICE), which is a pro-
cess based on the relationships between variables and
estimates them to impute the missing value iteratively.
Table 2 summarizes the clinical variables used and Ta-
ble 3 describes the missing values.

Table 2: Demographic of clinical variables

Dementia MCI
(n=156) (n=121)

Age, mean (sd), years 67.01 (8.71) 64.25 (10.39)
Gender, N. (%)
Female 75 (48) 69 (57)
Male 81 (52) 52 (43)
ttau, N. (%)
Positive 68 (49) 37 (37)
Negative 71 (51) 62 (63)
Ptau, N. (%)
Positive 35 (25) 21 (21)
Negative 104 (75) 78 (79)
mta, N. (%) 136 (56) 107 (44)
mmse, mean (sd) 23.06 (5.08) 26.96 (2.64)
gca, N. (%) 117 (56) 93 (44)
amyloid, N. (%)
Positive 43 (31) 20 (19)
Negative 94 (69) 83 (81)

ttau: total tau, pTau: Phosphorylated Tau, mta: medial tempo-
ral atrophy, mmse: mini mental state examination, gca: global
cortical atrophy, amyloid: amyloid β and amyloid PET

Table 3: The number of missing values in the clinical variables

Clinical variable Amount

ttau 39
Ptau 39
mta 34
mmse 20
gca 67
amyloid 37

3.2. Working pipeline

In this work, we incorporated radiomics feature ex-
traction to extract features from the 277 18F-FDG PET
brain images. Starting with the input from the prepro-
cessed 18F-FDG PET images, applying feature extrac-
tion, selecting the best features, and feeding them to
the classifiers to predict the progression of cognitive de-
cline. For more detail of the pipeline in this work, it is
illustrated in Figure 1.

3.2.1. Preprocessing 18F-FDG PET image
The whole 18F-FDG PET image has been normalized

to MNI space and smoothed. The preprocessing of 18F-
FDG PET scan was done using global mean normaliza-
tion. It started with the reconstruction of the raw image
and was followed by motion correction to align it. The
image was then spatially normalized to standard MNI
anatomical space and was smoothed using a Gaussian
filter in order to improve the signal quality. Then, the
mean uptake value within the reference region in the
brain (cerebellum) was calculated. After that, to obtain
the SUVR, the PET scan uptake value of each voxel is
divided by the mean reference region value. These pre-
processing image processes were performed using SPM
and MATLAB software.

3.2.2. Grey mask normalization
Elastix and Transformix approaches were utilized for

the image spatial and intensity normalization of the pre-
processed images to the MNI template to get the grey
matter (GM) mask. Elastix is widely used to perform
medical image registration (Klein et al., 2010). Elastix
offers a range of registration algorithms that are suited
to different image types and registration tasks. In this
study, the algorithm we chose is affine registration.
Since Elastix requires a parameter file that specifies the
registration settings, we defined the parameter provided
which is the Parameter9 affine (Artaechevarria et al.,
2009), (details of the setting are provided under the ap-
pendix section). The radiomics extracted many numer-
ical features, where the input, the radiomics needed the
preprocessed 18F-FDG PET scan and its mask, in this
case, the grey matter mask. To obtain the GM mask, we
performed Elastix and Transformix to get the normal-
ized image and registered label. We executed the nor-
malization process using Elastix, and once it was com-
pleted, we obtained the transformation parameter that
we used to perform the Transformix. The transformix
process took the template label and the transformation
parameter that obtained from the Elastix process. Af-
ter the normalized and registered labelled images were
created, the GM mask was then generated. Its process
involved by creating a binary GM mask of the image
from the registered label then applied to the original im-
ages. Figure 2 shows how the GM mask was generated.
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Figure 1: The pipeline for this work, starting with the GM mask creation, radiomics feature extraction, applying feature selection, and continuing
to predict the cognitive decline progression with several different classifiers

Figure 2: The pipeline for creating the GM mask, after the normalized image and registered label were created, the next step was to create a binary
mask and finally the GM mask

3.2.3. Radiomics feature extraction

Radiomics is a technique that involves the quantita-
tive analysis of medical images that are commonly uti-
lized in conventional medical practice. The process in-

volves extracting a diverse array of manually designed
features from medical images. The aforementioned
variables are thereafter analyzed to ascertain their corre-
lation with the prognosis and characteristics of patients
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(Mannil et al., 2018; Rasi et al., 2024). Radiomic data
are mineable, meaning that in such large datasets, it
may be utilized to discover and identify previously un-
known markers and patterns of the disease evolution,
progression, and treatment strategies, thus, by utiliz-
ing radiomics, we expected to explore information from
medical images and complex patterns that are challeng-
ing to identify and quantify using human eye (Mayer-
hoefer et al., 2020).

The Pyradiomics framework has different image
types and feature classes that we can define for feature
extraction (van Griethuysen et al., 2017). In this study,
we calculated 92 features for each input in total. The
Pyradiomics framework allowed us to define the input
not only from the original image but also could apply
different filters. We defined four different image types
as input, the first one is the original image and the rest of
three are images that were applied with filters, namely,
LocalBinaryPattern3D (LBP3D), which computes the
local binary pattern in 3D using spherical harmonics,
Laplacian of Gaussian filter (LoG), known as edge en-
hancement, that highlights areas with changes in gray
levels, with the degree of texture enhancement deter-
mined by the value of sigma, and Wavelet filtering, it
yields 8 decompositions per level (all possible combi-
nations of applying either a High or a Low pass filter
in each of the three dimensions (van Griethuysen et al.,
2017).

The extracted features were classified into various
classes, which in this work were Shape-based(3D) (16
features), Shape-based(2D) (10 features), First Order (9
features), Gray Level Co-occurrence Matrix (GLCM)
(17 features), Gray Level Run Length Matrix (GLRLM)
(14 features), Gray Level Size Zone Matrix (GLSZM)
(14 features), Neighbouring Gray Tone Difference Ma-
trix (NGTDM) (5 features), and Gray Level Depen-
dence Matrix (GLDM) (7 features) (van Griethuysen
et al., 2017). Firstly, we defined each image type sepa-
rately, and then we performed the radiomics technique
to extract the feature, after 4 different image types had
been extracted separately, the next thing, we defined in
our algorithm for all the image types and extracted them
together. This approached allow us to make an analy-
sis to individual image types and the combination of all
image types for a better comparison. All these settings,
we defined them in the parameter file. For details of
the parameter file, it can be seen in the appendix sec-
tion. Figure 3 illustrates the overview of PyRadiomics
framework process.

3.2.4. Feature selection
While radiomics extracts a huge amount of features,

it frequently tends to redundancy and irrelevant infor-
mation which may result in overfitting during the clas-
sification phase. Before we performed feature selection,
we did preprocessing that involved discarding constant,
quasi-constant, and duplicate features manually. Per-

Figure 3: Overview of PyRadiomics process, starting from the input
images which are the original image and its mask, then applying the
defined settings, and performed the feature extraction

forming feature selection to select the most relevant fea-
tures that can optimize the classification task is essen-
tially important and it makes the model perform well.
In this work, we utilized five different feature selection
techniques, specifically:

• Principal Component Analysis (PCA)
PCA has been used in machine learning for fea-
ture extraction based on dimensionality reduction
of high-dimensional imaging. The algorithm se-
lects only the most significant components to re-
tain, while the insignificant ones are eliminated.
PCA creates the new features that are a linear com-
bination of the original attributes and vectors, in a
dataset with d dimensions, PCA reduces it to a k-
dimensional space where k is less than d. These
new features, called principal components (PCs),
and each PC captures the maximum amount of
variance while excluding other sources of variance.
(Sudharsan and Thailambal, 2023). In this work,
we used the n component: 0.9.

• Feature Importance (FI)
The concept of the feature importance is calculat-
ing the increase from the error that obtained in the
prediction model after permuting the feature. A
feature is considered ”important” when the model
relied on the feature for the prediction because
the values increase the model error. On the other
hand, an ”unimportant” feature does not change
the model error, because in this case, the model ig-
nores the feature for the prediction (Molnar, 2019).
Random forest method was utilized for the classi-
fier in this approach as the estimator and the num-
ber of the estimator that we wanted to select was
10 features.

• Analysis of Variance (ANOVA)
ANOVA is a set of statistical models and estima-
tion processes to evaluate if the means of two or
more data samples are from the same distribution.
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The ANOVA is a type of F-test also known as F-
statistic, it is an univariate statistical test where
each feature is compared to the target variable and
evaluated if the feature have a statistically signifi-
cant relationship. ANOVA is usually used in clas-
sification tasks when the input data are numerical
and the target feature is categorical (Pathan et al.,
2022). ANOVA can help identify which radiomics
features have significant differences between the
categories, this can help with feature selection and
improving model performance.

• Recursive Feature Elimination with cross valida-
tion (RFECV)
RFECV is a wrapper feature selection technique
that utilize machine learning algorithm in order to
find and select the most relevant features. This
technique utilize cross validation aiming to make
sure its robustness and reliability when determin-
ing the most suitable amount of features that op-
timizes the performance of the model (Awad and
Fraihat, 2023). RFECV uses a classification ma-
chine learning model, in this work, SVC classi-
fier to evaluate and assign a score to each feature.
In each iteration, it eliminates features that do not
contribute to improve the accuracy of the classifi-
cation.

• Mutual Information (MI)
Mutual Information has been commonly utilized in
machine learning for feature selection, it is based
on a filter method to measure relevance and re-
dundancy for selecting optimal features in predict-
ing the target variable with respect to other vari-
ables (Beraha et al., 2019). The algorithm is try-
ing to identify a subset of features that is show-
ing a strong correlation (high mutual information)
with the target variable, while also minimizing re-
dundancy (low mutual information) among the se-
lected features.

3.2.5. Classification
In this study, our main objective is to predict the

progression of cognitive decline by classifying between
dementia and MCI. To achieve this aim, we proposed
a two-step hierarchical classification, where the first
step was contributed to the second step as a time se-
ries classification, meaning that, the features and the
prediction from the first step were used in the sec-
ond step to predict the progression. In the first step,
we predict the initial diagnosis (grouped diagnosis) be-
tween dementia and MCI, then in the second step, we
used the follow-up diagnosis as a reference to predict
the cognitive decline from MCI to dementia. We uti-
lized 12 different classifier techniques, in detail, Sup-
port Vector Classifier (SVC), Linear SVC, Random For-
est (RF), KNN, Decision Tree (DT), Linear Regression

(LR), Ada Boost (AB), Gradient Boosting (GB), Linear
Discriminant Analytics (LDA), LDA with shrinkage,
Quadratic Discriminant Analytics (QDA), and Gaussian
Naive Bayes (GNB). By choosing all these different
classifiers, we wanted to explore and evaluate a range of
machine learning modelling techniques to find the most
effective, accurate, and robust solution for our classi-
fication and prediction tasks. This approach helped in
making informed decisions based on empirical perfor-
mance and understanding the strengths and limitations
of various algorithms.

3.2.6. Data augmentation
During the process of our work, we encountered a

challenge regarding the dataset, since we grouped the
neurodegenerative diseases into dementia and MCI, in
the second step, the dataset became imbalanced, where
the distribution of dementia was 200 cases and the MCI
only 77 cases. To handle this imbalanced dataset, we
tried to do a data augmentation by oversampling the
dataset to help improve the performance and general-
ization ability of our machine learning models. We em-
ployed two different data augmentation techniques, in-
cluding the SMOTE (Synthetic Minority Over-sampling
Technique) and ADASYN (Adaptive Synthetic Sam-
pling). The concept of SMOTE is to balance the
dataset by generating synthetic samples for the minor-
ity class, reducing the risk of overfitting that might oc-
cur. SMOTE has been improved by ADASYN, with a
focus on those minority class samples that are harder to
classify (Yakshit et al., 2022).

3.2.7. Evaluation performance
• Nested cross validation

A cross validation (CV) is an essential step in de-
veloping a machine learning algorithm since it es-
timates its prediction error. Cross validation also
can effectively help to address overoptimization
and reduce the bias that relates to hyperparame-
ter tuning and selection of the algorithm (Brad-
shaw et al., 2023). Since the cross validation ap-
proach involves splitting data into training and val-
idation sets, when evaluating multiple models and
determining their best hyperparameter values, us-
ing the validation error to estimate generalization
error often leads to overestimating the model’s per-
formance. Thus, it is imperative to maintain a dis-
tinct test set to prevent using it for training or ad-
justing model parameters. The model’s accuracy
on this test set provides a reliable estimation of its
performance on new or unseen data.

The Nested Cross Validation (NCV) method is
comprised of an outer cross validation loop and
an inner cross validation loop. In the outer loop,
the dataset is divided into multiple folds, in this
work, was 5 folds. In each iteration, it uses one
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fold as a test set and the rest of the folds are used
for training. The model is trained on the train-
ing folds and it is evaluated on the test fold. This
process repeats in each fold, resulting in multi-
ple estimates of model performance. The inner
loop involves selecting a training and validation
set determined by the outer loop. The training
folds are further split into multiple sub-folds and
the model is trained using various hyperparame-
ters on these training sets. The best hyperparame-
ters are then determined based on the performance
of the trained models on the validation set in the
inner loop. This process ensures that the model’s
performance is accurately estimated and hyperpa-
rameters are optimized without overfitting (Maleki
et al., 2020).

• Evaluation Metrics
The evaluation metrics are a very useful and essen-
tial step when we want to evaluate our model per-
formance, such as in this work on binary classifica-
tion task. Evaluation metrics, including accuracy,
precision, recall, specificity, F1 score, and ROC-
AUC are used to evaluate the machine learning pre-
diction model’s performance. The most common
metrics that are usually used in binary classifica-
tion tasks are accuracy, sensitivity, specificity, and
precision (Rainio et al., 2024). In this study, we
evaluated the models’ performance using the accu-
racy for the whole experiments, then, for further
analysis of the comparison from three different in-
puts, we evaluated using the F1-score and ROC-
AUC score. F1-score is the harmonic mean of Pre-
cision and Recall. We chose this metric because
it is particularly useful when dealing with imbal-
anced dataset, as it provides a balance between pre-
cision and recall. Moreover, we chose the ROC-
AUC score because it is also useful for dealing
with imbalanced classes, as it compares the per-
formance of classifiers, where it evaluates the True
Positive Rate (TPR) and False Positive Rate (FPR).

Accuracy =
T P + T N

T P + T N + FP + FN
(1)

Precision =
T P

T P + FP
(2)

Sensitivity (Recall/TPR) =
T P

T P + FN
(3)

F1-score = 2 × precision × recall
precision + recall

(4)

FPR = 1 − T PR =
FP

FP + TN
(5)

TP True Positive, TN True Negative, FP False Positive, FN False Neg-
ative, TPR True Positive Rate, FPR False Positive Rate

4. Results

In this section, we present the results obtained from
the classification and prediction task among dementia
and MCI cases and the progression of the cognitive de-
cline from MCI to dementia. The radiomics feature ex-
traction computed 92 features from 7 feature classes in
four image types (1 original image and 3 images applied
filter) and a combination from all. Table 4 summarizes
the number of features extracted from radiomics, apply-
ing preprocessing to clean the data before performing
the feature extraction, and applying five different fea-
ture selection techniques.

We set up parameters for each technique, and for
the PCA, we specified to select the number of princi-
pal components such that the total variance explained is
at least 90% in the original data. In the Feature Impor-
tance using the random forest method, we selected the
n estimator equal to 10, meaning we want to select the
10 most important features. While ANOVA and Mutual
Information, we initialized SelectKBest with ANOVA
F-value scoring function and Mutual Information Scor-
ing for ANOVA and Mutual Information, respectively,
to select the top k features, by default, the parameter k
is set to 10.

After the selected features were obtained, we trained
our model with three different scenarios where we
wanted to compare and evaluate the different inputs of
the data to the model. In the first one, we ran the exper-
iment using clinical variables alone, in the second one,
we used radiomics features only, and the last one was a
combination of both data. In total, we had 612 combi-
nations to evaluate, in detail, we performed 12 different
classifiers and 5 feature selection methods into 5 dif-
ferent inputs of image types in radiomics features alone
and combined data (12 x 5 x 5 x 2 = 600 combinations).
For the clinical variables, we used only the clinical data
without applying any feature selection method (12 com-
binations). Tables 5, 6, 7, 8, and 9 show the results for
different image types and the integrated data for each
classifier and feature selection method.

From the results presented in the tables, we high-
lighted the highest accuracy in each image type, and
as we can see, all the highest accuracy in each image
type was consistency achieved by using the integrated
data. Moreover, the best accuracy among all the experi-
ments was achieved from the LoG image type using the
KNN classifier with kneighbors: 15 and the leaf size: 10
and ANOVA feature selection method with an accuracy
yielded of 0.83. Figure 4 describes the selected features
using the ANOVA method based on ANOVA F-value
scoring.

The features that were extracted are based on shape
features (which in this study, were the most features ex-
tracted), intensity features, and volume/count features.
Here are the explanations for each feature (van Gri-
ethuysen et al., 2017):
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Table 4: The number of extracted features using radiomics and the selected features using different feature selection techniques

Image type Raw Cleaned PCA FI ANOVA RFECV MI

Original 97 47 7 10 10 15 10
LoG 39 19 6 10 10 7 10
LBP3D 234 214 11 10 10 5 10
Wavelet 489 440 15 10 10 9 10
All images 819 735 18 10 10 4 10
Cleaned: Preprocessed data, PCA: Principal Component Analysis, FI: Feature Importance, ANOVA: Analysis of Variance, RFECV:
Recursive Feature Elimination with cross validation, MI: Mutual Information

Table 5: Accuracy comparison of all classifiers for clinical variables and with five different feature selection methods using the
original image type and the integrated data

Clinical var. dataset PCA FI ANOVA RFECV MI

SVC 0.70 Original Image 0.73 0.73 0.75 0.75 0.66
Integrated 0.77 0.76 0.77 0.77 0.79

Linear SVC 0.66 Original Image 0.67 0.66 0.66 0.70 0.62
Integrated 0.71 0.71 0.70 0.70 0.69

RF 0.79 Original Image 0.73 0.74 0.72 0.76 0.69
Integrated 0.79 0.78 0.76 0.77 0.77

KNN 0.77 Original Image 0.77 0.75 0.74 0.75 0.73
Integrated 0.78 0.80 0.78 0.78 0.78

DT 0.74 Original Image 0.71 0.73 0.73 0.73 0.73
Integrated 0.70 0.72 0.72 0.73 0.73

LR 0.72 Original Image 0.72 0.72 0.72 0.72 0.72
Integrated 0.72 0.72 0.72 0.72 0.72

AB 0.74 Original Image 0.64 0.68 0.72 0.73 0.73
Integrated 0.71 0.75 0.75 0.75 0.75

GB 0.77 Original Image 0.73 0.73 0.73 0.77 0.73
Integrated 0.75 0.77 0.79 0.77 0.78

LDA 0.75 Original Image 0.67 0.72 0.74 0.73 0.73
Integrated 0.74 0.75 0.74 0.74 0.74

LDA shrinkage 0.78 Original Image 0.73 0.74 0.76 0.74 0.72
Integrated 0.75 0.75 0.77 0.78 0.74

QDA 0.75 Original Image 0.75 0.73 0.75 0.76 0.73
Integrated 0.74 0.75 0.77 0.74 0.75

GNB 0.65 Original Image 0.69 0.68 0.75 0.64 0.64
Integrated 0.68 0.67 0.73 0.68 0.69

SVC: Support Vector Classifier RF: Random Forest, DT: Decision Tree, LR: Logistic Regression, AB: Ada Boost, GB: Gradient
Boosting, LDA: Linear Discriminant Analysis, QDA: Quadratic Discriminant Analysis, GNB: Gaussian Naı̈ve Bayes, Integrated:
Combined data (clinical variables and radiomics features)

• original shape Sphericity:
The sphericity of an area refers to the degree of
roundness in its shape. It computes the ratio be-
tween the volume of the shape and the volume of
a sphere that has an equivalent surface area. This
metric quantifies the roundness of the object, val-
ues approaching 1 mean a higher resemblance to a
sphere.

• original shape SurfaceVolumeRatio:
This metric measures the ratio of surface area to
volume. Higher values indicate that the object has
a greater surface area relative to its size, meaning a
higher level of complexity or irregularity.

• original shape MinorAxisLength:
The minimum length of the region’s axis. It is the
minimum distance spanning the object.

• original shape Elongation:
It computes the ratio of the length axis between
major and minor. This gives information about
how much elongation of the object extent, larger
numbers indicate a greater degree of stretching.

• diagnostics Image-original Maximum:
It captures the highest intensity value that appears
in the original image, which tells the brightest area
in the image.
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Table 6: Accuracy comparison of twelve classifiers for clinical variables and with five different feature selection techniques using
the lbp3d image type and the integrated

Clinical var. dataset PCA FI ANOVA RFECV MI

SVC 0.70 LBP3D Image 0.75 0.74 0.74 0.75 0.73
Integrated 0.77 0.81 0.78 0.77 0.74

Linear SVC 0.66 LBP3D Image 0.67 0.69 0.68 0.66 0.66
Integrated 0.70 0.74 0.70 0.71 0.66

RF 0.79 LBP3D Image 0.74 0.72 0.73 0.74 0.73
Integrated 0.75 0.76 0.76 0.78 0.75

KNN 0.77 LBP3D Image 0.73 0.75 0.75 0.75 0.75
Integrated 0.79 0.79 0.76 0.76 0.79

DT 0.74 LBP3D Image 0.72 0.73 0.70 0.73 0.70
Integrated 0.73 0.70 0.78 0.69 0.73

LR 0.72 LBP3D Image 0.72 0.72 0.72 0.72 0.72
Integrated 0.72 0.74 0.72 0.72 0.72

AB 0.74 LBP3D Image 0.73 0.71 0.71 0.73 0.74
Integrated 0.75 0.78 0.74 0.74 0.75

GB 0.77 LBP3D Image 0.73 0.74 0.74 0.76 0.72
Integrated 0.77 0.77 0.79 0.75 0.75

LDA 0.75 LBP3D Image 0.72 0.73 0.74 0.73 0.74
Integrated 0.74 0.77 0.76 0.77 0.73

LDA shrinkage 0.78 LBP3D Image 0.74 0.74 0.75 0.73 0.74
Integrated 0.75 0.79 0.75 0.76 0.74

QDA 0.75 LBP3D Image 0.71 0.74 0.74 0.71 0.75
Integrated 0.74 0.76 0.74 0.71 0.72

GNB 0.65 LBP3D Image 0.71 0.69 0.65 0.63 0.62
Integrated 0.69 0.71 0.65 0.68 0.67

SVC: Support Vector Classifier RF: Random Forest, DT: Decision Tree, LR: Logistic Regression, AB: Ada Boost, GB: Gradient
Boosting, LDA: Linear Discriminant Analysis, QDA: Quadratic Discriminant Analysis, GNB: Gaussian Naı̈ve Bayes, Integrated:
Combined data (clinical variables and radiomics features)

Figure 4: Selected features using ANOVA feature selection method
based on ANOVA F-value scoring

• diagnostics Mask-original VolumeNum:
The number that represents distinct volumes or re-
gions identified within the mask of the original im-
age.

• original shape MeshVolume:
The volume of the region is determined by con-
structing a mesh around it. This provides the over-

all volume of the object in 3D space.

• diagnostics Mask-original VoxelNum:
The overall voxel count, representing the num-
ber of 3D pixels, in the mask of the original im-
age. This provides the overall number of 3D pixels
making up the identified regions in the image.

• original shape VoxelVolume:
The volume of the region is determined by mul-
tiplying the number of voxels by the size of each
voxel. This provides information on the volume
contained by the object in the 3D image, by quan-
tifying the number of tiny cubes (voxels) that make
it up.

• original shape MajorAxisLength:
The maximum length of the region’s axis. This
measures the maximum distance across the object.

Additionally, to have better analysis and comparison,
we ran our best model, which is the KNN as a classi-
fier with the parameter number of neighbors: 15 and
leaf size: 10, into our scenarios (three different inputs).
Figure 5 illustrates the comparison of the model perfor-
mance in each fold using the nested cross validation.
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Table 7: Accuracy comparison of twelve classifiers for clinical variables and with five different feature selection techniques using
the LoG image type and the integrated

Clinical var. dataset PCA FI ANOVA RFECV MI

SVC 0.70 LoG Image 0.74 0.68 0.72 0.75 0.69
Integrated 0.77 0.75 0.77 0.81 0.81

Linear SVC 0.66 LoG Image 0.66 0.69 0.66 0.66 0.67
Integrated 0.71 0.72 0.71 0.71 0.71

RF 0.79 LoG Image 0.75 0.75 0.74 0.74 0.74
Integrated 0.77 0.77 0.81 0.79 0.79

KNN 0.77 LoG Image 0.74 0.75 0.75 0.75 0.75
Integrated 0.78 0.80 0.83 0.79 0.79

DT 0.74 LoG Image 0.73 0.73 0.73 0.73 0.73
Integrated 0.73 0.72 0.72 0.73 0.69

LR 0.72 LoG Image 0.72 0.72 0.72 0.72 0.72
Integrated 0.72 0.73 0.72 0.73 0.71

AB 0.74 LoG Image 0.70 0.72 0.73 0.73 0.71
Integrated 0.78 0.78 0.77 0.79 0.75

GB 0.77 LoG Image 0.76 0.73 0.73 0.76 0.74
Integrated 0.73 0.81 0.75 0.80 0.76

LDA 0.75 LoG Image 0.71 0.73 0.73 0.73 0.75
Integrated 0.75 0.75 0.74 0.77 0.76

LDA shrinkage 0.78 LoG Image 0.72 0.76 0.73 0.73 0.74
Integrated 0.77 0.77 0.77 0.77 0.75

QDA 0.75 LoG Image 0.70 0.74 0.73 0.71 0.74
Integrated 0.76 0.75 0.75 0.75 0.74

GNB 0.65 LoG Image 0.60 0.69 0.68 0.63 0.31
Integrated 0.66 0.72 0.71 0.36 0.71

SVC: Support Vector Classifier RF: Random Forest, DT: Decision Tree, LR: Logistic Regression, AB: Ada Boost, GB: Gradient
Boosting, LDA: Linear Discriminant Analysis, QDA: Quadratic Discriminant Analysis, GNB: Gaussian Naı̈ve Bayes, Integrated:
Combined data (clinical variables and radiomics features)

Figure 5: Comparison of performance in our scenarios, for the clinical
variables with an average accuracy of 0.77, radiomics features with
an average accuracy of 0.75, and the integrated of both data with an
average accuracy of 0.83

Following that, we evaluated the effectiveness of our
experiments by comparing the performance of their
models with the ROC-AUC. Figure 6 illustrates the
comparison of the model’s performance using the ROC
curve.

Based on the evaluation using the ROC-AUC, the in-

Figure 6: Comparison of model’s performance in our scenarios us-
ing AUC curve, for the clinical variables with AUC score of 0.85,
radiomics features with the AUC score of 0.79, and the integrated of
both data yielded the among the scenarios with the AUC score of 0.88

tegrated data still achieved the highest score compared
to other scenarios. Additionally, Table 10 shows the
comparison for all evaluation metrics we chose and the
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Table 8: Accuracy comparison of twelve classifiers for clinical variables and with five different feature selection techniques using
the wavelet image type and the integrated

Clinical var. dataset PCA FI ANOVA RFECV MI

SVC 0.70 Wavelet Image 0.74 0.73 0.73 0.70 0.73
Integrated 0.76 0.75 0.79 0.79 0.78

Linear SVC 0.66 Wavelet Image 0.61 0.64 0.61 0.62 0.57
Integrated 0.70 0.72 0.73 0.71 0.66

RF 0.79 Wavelet Image 0.71 0.72 0.73 0.71 0.68
Integrated 0.79 0.78 0.78 0.78 0.77

KNN 0.77 Wavelet Image 0.75 0.74 0.73 0.75 0.72
Integrated 0.78 0.79 0.81 0.78 0.79

DT 0.74 Wavelet Image 0.70 0.75 0.68 0.73 0.71
Integrated 0.71 0.72 0.67 0.71 0.74

LR 0.72 Wavelet Image 0.72 0.72 0.72 0.72 0.72
Integrated 0.72 0.73 0.72 0.72 0.72

AB 0.74 Wavelet Image 0.71 0.69 0.73 0.72 0.71
Integrated 0.74 0.74 0.75 0.73 0.75

GB 0.77 Wavelet Image 0.72 0.73 0.74 0.72 0.75
Integrated 0.77 0.75 0.78 0.77 0.74

LDA 0.75 Wavelet Image 0.72 0.73 0.74 0.73 0.75
Integrated 0.75 0.75 0.73 0.75 0.76

LDA shrinkage 0.78 Wavelet Image 0.73 0.75 0.74 0.73 0.73
Integrated 0.77 0.76 0.74 0.75 0.77

QDA 0.75 Wavelet Image 0.71 0.72 0.74 0.73 0.75
Integrated 0.78 0.77 0.76 0.74 0.73

GNB 0.65 Wavelet Image 0.66 0.68 0.64 0.67 0.63
Integrated 0.70 0.68 0.67 0.69 0.68

SVC: Support Vector Classifier RF: Random Forest, DT: Decision Tree, LR: Logistic Regression, AB: Ada Boost, GB: Gradient
Boosting, LDA: Linear Discriminant Analysis, QDA: Quadratic Discriminant Analysis, GNB: Gaussian Naı̈ve Bayes, Integrated:
Combined data (clinical variables and radiomics features)

AUC score. Lastly, Figure 7 reports the values of the
confusion matrix from the best model.

Figure 7: Heatmap of confusion matrix to show where the model is
performing well and where it is not

The confusion matrix showed that the model per-
forms well in predicting Dementia, with a high level of
accuracy and precision, where the model correctly iden-
tified 189 out of 200 actual Dementia cases (True Pos-
itives), resulting in a precision of approximately 94%.

The F1-score, which balances precision and recall, is
approximately 89%, highlighting accurate prediction of
dementia. However, the model misclassified 11 ac-
tual MCI cases as dementia (False Positives), which
indicates that we can improve the performance to dis-
tinguish between the two classes. Overall, the model
demonstrates reliable performance for identifying de-
mentia cases by high precision and recall, although im-
provement can be made to reduce the false positive rate.

5. Discussion

Predicting the progression of cognitive decline is
highly essential and helpful to understand the charac-
teristics of the diseases and better strategy patient care.
The early diagnosis might help to slow down the conver-
sion of the MCI to dementia. Although several studies
have explored different innovative methods of doing so,
there are still a lot of works that need to be investigated,
especially, exploring the analysis of utilizing 18F-FDG
PET using radiomics feature extraction to predict cog-
nitive decline. In recent times, Radimomics feature ex-
traction has been successfully and widely used in med-
ical imaging to extract a large amount of quantitative
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Table 9: Accuracy comparison of twelve classifiers for clinical variables and with five different feature selection techniques using
all image type and the integrated

Clinical var. dataset PCA FI ANOVA RFECV MI

SVC 0.70 All Image 0.75 0.74 0.73 0.70 0.71
Integrated 0.77 0.79 0.79 0.73 0.73

Linear SVC 0.66 All Image 0.65 0.65 0.67 0.64 0.71
Integrated 0.69 0.74 0.71 0.69 0.67

RF 0.79 All Image 0.74 0.72 0.73 0.76 0.68
Integrated 0.77 0.76 0.80 0.81 0.77

KNN 0.77 All Image 0.75 0.74 0.74 0.76 0.70
Integrated 0.79 0.81 0.81 0.77 0.77

DT 0.74 All Image 0.66 0.74 0.72 0.75 0.59
Integrated 0.73 0.70 0.72 0.73 0.66

LR 0.72 All Image 0.72 0.72 0.72 0.72 0.68
Integrated 0.72 0.72 0.70 0.72 0.72

AB 0.74 All Image 0.71 0.73 0.70 0.73 0.68
Integrated 0.77 0.76 0.75 0.78 0.78

GB 0.77 All Image 0.75 0.76 0.71 0.74 0.69
Integrated 0.74 0.79 0.75 0.77 0.78

LDA 0.75 All Image 0.74 0.71 0.73 0.75 0.71
Integrated 0.76 0.77 0.75 0.75 0.74

LDA shrinkage 0.78 All Image 0.75 0.73 0.75 0.74 0.72
Integrated 0.75 0.77 0.75 0.76 0.75

QDA 0.75 All Image 0.69 0.69 0.75 0.77 0.68
Integrated 0.74 0.77 0.75 0.71 0.71

GNB 0.65 All Image 0.68 0.65 0.66 0.64 0.65
Integrated 0.71 0.69 0.70 0.68 0.76

SVC: Support Vector Classifier RF: Random Forest, DT: Decision Tree, LR: Logistic Regression, AB: Ada Boost, GB: Gradient
Boosting, LDA: Linear Discriminant Analysis, QDA: Quadratic Discriminant Analysis, GNB: Gaussian Naı̈ve Bayes, Integrated:
Combined data (clinical variables and radiomics features)

Table 10: Comparison for all evaluation metrics we chose and
the ROC-AUC score

Scenario (input) Metrics

Acc. F1-score AUC
Clinical variables 0.77 0.86 0.85
Radiomics features 0.75 0.84 0.79
Integrated data 0.83 0.89 0.88

information from the images. Many of the research was
mainly focused on predicting the progression from MCI
to AD using MRI brain images. In this study, we in-
vestigated and evaluated 18F-FDG PET brain images to
predict not only the progression to AD but also to other
subtypes of dementia that we pooled in one group of de-
mentia. By extracting features using Pyradimocs frame-
work, we have successfully extracted numerous amount
of quantitative features that the radiologist could not see
by looking at the 18F-FDG PET scans.

In this study, we proposed a two-step hierarchical
binary classification. This approach served as a time-
series classification model to predict the progression.
We explored the use of machine learning classifica-
tion models, which have a total of 12 different clas-

sifiers. To help find the most relevant features, we
utilized five different feature selection methods. We
aimed to analyze the results by comparing them with
different inputs using our proposed method, which in-
tegrated clinical variables and radiomics features. We
evaluated our model performance using nested cross-
validation and evaluation metrics, including accuracy,
F1-score, and AUC score. According to the results we
obtained and showed above, our best model achieved
0.83, 0.89, and 0.88 for accuracy, F-1 score and AUC
score, respectively. We achieved these results by using
integrated data from LoG image type and the KNN as
classifiers, with selected features from the ANOVA fea-
ture selection method. The experiments emphasize the
overall model effectiveness by choosing suitable clas-
sifiers and feature selection methods. During the ex-
periments, for the missing values in clinical variables,
the KNN imputer resulted in a better outcome compared
to the MICE technique. Moreover, regarding handling
the imbalanced data, the results from the experiment
showed that the model without applying the SMOTE
and ADASYN techniques was better.

For future work, we can further analyze the use of
18F-FDG PET using radiomics features in a specific re-
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gion of the brain. It might be very useful and more ro-
bust to investigate only in a specific region rather than
the whole brain. Additionally, there is a study that uses
white matter to extract the features. Investigating the
extraction of features from each brain tissue may yield
different and better results. Moreover, in terms of the
radiomics, we can experiments and analyze of choosing
the filters that we want to apply to the original image,
also choosing the feature classes. Thus, we can investi-
gate on the features extracted from the parameters that
we define.

6. Conclusions

After doing several experiments, we can conclude
that our study of predicting the enhancement of cogni-
tive decline across three different scenarios - employing
just clinical variables, radiomics features alone, and a
combination of both has provided us with significant
knowledge. At first, evaluating the clinical variables
provided a fundamental understanding, offering insights
into the traditional biomarkers or clinical variables of
cognitive decline. Following that, the analysis of ra-
diomics features allowed us to explore further into the
complex details of 18F-FDG PET imaging data, poten-
tially uncovering deeper patterns that indicate cognitive
conversion. Lastly, the integration of clinical variables
with radiomics features resulted in the most promising
approach. Our investigations showed that by integrating
clinical and radiomics data, we could enhance the ac-
curacy and robustness of predictions regarding the pro-
gression of cognitive decline. The integration of this
technique has substantial promise to enhance patient
treatment and further our comprehension of neurode-
generative diseases.
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Appendix

Examples of image processing in this work
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Parameter for Radiomics feature extraction
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Parameter for affine registration:

(FixedInternalImagePixelType ”float”)
(MovingInternalImagePixelType ”float”)
The dimensions of the fixed and moving image
(FixedImageDimension 3)
(MovingImageDimension 3)
(Registration ”MultiResolutionRegistration”)
(FixedImagePyramid ”FixedRecursiveImagePyramid”)
(MovingImagePyramid ”MovingRecursiveImagePyramid”)
(Interpolator ”BSplineInterpolator”)
(ResampleInterpolator ”FinalBSplineInterpolator”)
(Resampler ”DefaultResampler”)
(Optimizer ”RegularStepGradientDescent”)
(Transform ”AffineTransform”)
(Metric ”AdvancedMattesMutualInformation”)
(Scales 50000.0)
(AutomaticTransformInitialization ”false”)
The number of resolutions. 1 Is only enough if the expected deformations are small. 3 or 4 mostly works fine.
(NumberOfResolutions 3)
The pixel type of the resulting image
(ResultImagePixelType ”short”)
(ErodeMask ”false” ”false” ”false”)
(HowToCombineTransforms ”Compose”)
Number of spatial samples used to compute the mutual information in each resolution level.
(NumberOfSpatialSamples 30000 80000 100000)
(ImageSampler ”Random”)
Number of grey level bins in each resolution level, for the mutual information.
(NumberOfHistogramBins 16 32 32)
Order of B-Spline interpolation used in each resolution level:
(BSplineInterpolationOrder 2 2 2)
Order of B-Spline interpolation used for applying the final deformation.
(FinalBSplineInterpolationOrder 0)
Default pixel value for pixels that come from outside the picture:
(DefaultPixelValue 0)
Maximum number of iterations in each resolution level:
(MaximumNumberOfIterations 100 100 100)
Maximum step size of the RSGD optimizer for each resolution level.
(MaximumStepLength 4.0 2.0 2.0)
Minimum step size of the RSGD optimizer for each resolution level.
(MinimumStepLength 0.5 0.05 0.05)
Minimum magnitude of the gradient (stopping criterion) for the RSGD optimizer:
(MinimumGradientMagnitude 0.00000001 0.00000001 0.00000001)
Result image format
(ResultImageFormat ”nii”)
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Abstract

Gallstone disease is a common diagnosis that can lead to life-threatening conditions if untreated. Laparoscopic
cholecystectomy (LC) is the gold standard procedure for gallbladder removal, and, despite being safer than open
surgery, major complications can still arise, leading to decreased patient survival and significant healthcare costs.
The risks of complications are correlated with preoperative and intraoperative findings and, ultimately, the operative
difficulty. Prediction of the LC operative difficulty (LCOD) could reduce the risk of adverse events by stratifying
patients and assigning surgeons with the relevant skills. At the same time, there is a need to identify objective,
clinically meaningful, and operator-independent definitions of LCOD. With that in mind, this study investigates deep
spatiotemporal models for predicting LCOD in surgical videos, utilizing a novel dataset of 100 LC surgeries annotated
with intraoperative features indicative of operative difficulty. We introduce spatiotemporal prediction pipelines that
employ state-of-the-art deep learning architectures for both spatial and temporal sequence modeling. Our results
demonstrate that spatiotemporal models enhance prediction performance compared to spatial-only models. These
findings underscore the importance of temporal context in surgical video analysis and highlight the potential for
improved intraoperative decision-making.

Keywords: Surgical workflow analysis, Laparoscopic surgery, Cholecystectomy, Deep learning, Transfer learning,
Spatiotemporal modeling
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Abstract

The integration of 2D mammography with 3D Magnetic Resonance Imaging (MRI) is crucial for enhancing the accu-
racy of breast cancer diagnosis and treatment planning. However, this integration poses significant challenges due to
the inherent differences in imaging modalities and the need for precise tissue segmentation and alignment. This thesis
addresses these challenges by focusing on the geometry extraction and multi-class segmentation of breast tissues from
MRI data. Utilizing the nnU-Net architecture, our study achieves segmentation performance for breast tissues com-
parable to state-of-the-art, with Dice coefficients of 0.94, 0.88, and 0.87 for fat, glandular tissue, and pectoral muscle,
respectively. Notably, the overall foreground achieves a mean Dice coefficient of 0.83 using an ensemble of 2D and
3D U-Net configurations. These high dice coefficients ensure the accuracy required for subsequent 3D reconstruction
and biomechanical modeling. The segmented data is then used to generate detailed 3D meshes and develop biome-
chanical models using NiftySim, which simulates breast tissue’s physical properties and behaviors. Furthermore, the
research explores the biomechanical behavior of these models in the presence of benign and malignant lesions, pro-
viding insights into how different tissue types interact under various conditions. The findings of this study have the
potential to improve the integration of 2D and 3D imaging modalities such as X-ray and MRI, thereby enhancing
diagnostic accuracy and treatment planning for breast cancer.

Keywords: Multi-class Tissue Segmentation, nnU-Net, Biomechanical Modeling, Lesion Characterization,
Mechanical Deformations

1. Introduction

Breast cancer is the most common cancer among
women, with 1 in 8 women developing invasive breast
cancer in their lifetime, highlighting the need for early
and accurate diagnosis to improve patient outcomes
(Smith, 2013). While traditional imaging techniques
provide valuable information, they have inherent limi-
tations. Advanced methods like multi-modality imag-
ing powered by image registration correspondence can
address these limitations by fusing data from different
sources, leading to a more comprehensive analysis.

Combining imaging techniques such as mammogra-
phy and MRI provides a comprehensive view of the
breast, improving diagnosis and treatment planning.
Mammography detects microcalcifications but strug-
gles with dense tissue, whereas MRI excels in soft
tissue contrast and detecting invasive cancers. Inte-

grating these modalities enhances lesion detection and
characterization (Garcı́a et al., 2018). However, dif-
ferences in patient positioning during imaging, such as
mammographic compression and prone positioning in
MRI, present challenges (van Engeland et al., 2003;
Pinto Pereira et al., 2010; Rueckert et al., 1999). Ad-
vanced image registration techniques are needed to
align these images accurately (Arlinghaus et al., 2011;
Siegler et al., 2012). Finite Element Analysis (FEA)
helps simulate breast tissue deformation under differ-
ent conditions, aiding in accurate image registration.
Patient-specific models replicating the breast’s physical
properties improve the precision of diagnostic and ther-
apeutic interventions (Babarenda Gamage et al., 2012;
Garcia et al., 2017; Melbourne et al., 2011). Despite ad-
vancements, the deformable nature of breast tissue com-
plicates image correlation across modalities and clini-
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cal contexts, affecting diagnosis, biopsy guidance, and
surgical planning (Garcia et al., 2017). Biomechani-
cal modeling offers valuable insights into breast tissue
behavior, understanding disease progression, and treat-
ment planning. However, accurately identifying differ-
ent tissue types within patient-specific models derived
from 3D modalities like MRI is a time-consuming and
error-prone manual task (Garcı́a et al., 2018). Due to its
high soft-tissue contrast, MRI can detect the discrimina-
tion between different structures in the breast and enable
3D visualization (Giess et al., 2014). However, breast
MRI imaging includes other organs such as the lung,
heart, pectoral muscles, and thorax. As a result, it is cru-
cial to segment the breast region from the other organs
to ensure accurate analysis in biomechanical modeling.

This work explores the potential of automating tissue
segmentation using deep learning techniques, specif-
ically the nnU-Net framework (Isensee et al., 2021).
nnU-Net offers several advantages for this application.
First, it automatically configures its architecture based
on the specific dataset, eliminating the need for exten-
sive manual tweaking. This allows for the efficient pro-
cessing of diverse breast DCE-MRI datasets. Second,
by employing nnU-Net, we aim to achieve higher accu-
racy in tissue segmentation, leading to improved mesh
quality in the biomechanical models. Finally, Our pro-
posed segmentation approach incorporates lesion infor-
mation into existing biomechanical models, a capability
not previously explored. This innovation significantly
enhances the performance of existing models by explic-
itly accounting for lesions. Our hypothesis is to assign
specific material properties to lesions for a more de-
tailed biomechanical analysis of their impact on breast
tissue behavior. In essence, this work helps to bridge
the gap between advanced medical imaging techniques
and clinical applications in breast cancer. By automat-
ing segmentation with deep learning and incorporating
lesion data, we aim to develop more accurate and in-
formative biomechanical models, potentially leading to
improved outcomes for breast cancer patients Figure 1
shows the step’s workflow.

Figure 1: A general workflow of registering MRI to X-ray mammog-
raphy images. The procedure encompasses geometry extraction, me-
chanical deformation, and final alignment with X-ray mammography.
This thesis primarily aims to enhance the geometry extraction step.
The work is based on the work of (Garcı́a et al., 2018).

2. State of the art

2.1. Multi-Modality Correspondence: A Challenge in
MRI-Mammography Integration

One of the critical advancements in breast cancer di-
agnosis is the integration of different imaging modal-
ities to overcome limitations and enhance diagnosis.
This approach, particularly the registration of Mag-
netic Resonance Imaging (MRI) with mammography,
has emerged as a pivotal technique. MRI offers a more
detailed view of breast tissue, revealing lesions and
tissues in 3D, aiding tumor assessment (size, shape,
spread) than mammograms (Giess et al., 2014). Com-
bining these modalities offers a comprehensive view,
enhancing diagnosis and treatment planning. This
leverages the strengths of both techniques, improving
breast cancer detection sensitivity and specificity (Gar-
cia et al., 2017). However, achieving precise correspon-
dence (alignment) between MRI and mammogram data
presents a significant challenge. The core challenge lies
in the inherent differences between the modalities. MRI
captures detailed 3D structures, while mammography
provides high-resolution 2D slices during compression,
distorting the 3D geometry. This makes it difficult to
map structures in one modality to the other precisely.
Hence, patient-specific finite element (FE) models have
emerged as a promising solution (Garcı́a et al., 2018).
These models can simulate the mammogram acquisi-
tion process by compressing a 3D MRI and projecting
lesions onto a 2D plane. However, localizing the exact
3D location of the lesion in the MRI based solely on the
mammogram remains challenging. Traditional registra-
tion algorithms often struggle with this reverse mapping
(Solves-Llorens et al., 2014b). Recent advancements
utilize both craniocaudal (front-to-back) and mediolat-
eral oblique (angled) mammographic views to calcu-
late the X-ray path to the lesion within the compressed
breast model (Garcı́a et al., 2017). This, combined
with using barycentric coordinates within the model’s
elements, allows for more accurate 3D localization of
the lesion in the MRI (Garcı́a et al., 2017). This im-
proved accuracy translates to essential information for
guiding clinical decision-making (Solves-Llorens et al.,
2014b). Despite these advancements, achieving per-
fect multi-modality correspondence remains challeng-
ing due to variations in patient positioning, compres-
sion levels, and image acquisition settings, all introduc-
ing errors. While current techniques can minimize these
errors, ongoing research is crucial to further refine the
process and ensure its wider clinical adoption (Solves-
Llorens et al., 2014b). Ultimately, by overcoming the
multi-modality correspondence challenge, we can un-
lock the full potential of combining MRI and mammog-
raphy for enhanced breast cancer detection and treat-
ment strategies.
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2.2. Segmentation Techniques of Breast MRI: Tradi-
tional Techniques

Most studies, as summarized in Table 1, focus on seg-
menting specific parts of the breast, such as the pec-
toral muscle or glandular tissue, rather than address-
ing the whole breast region in raw MRI data. This tar-
geted segmentation approach might overlook the inter-
actions between different tissue types, which are cru-
cial for comprehensive breast cancer diagnosis. The
Dice coefficients reported in these studies vary, indicat-
ing differences in segmentation accuracy across differ-
ent methodologies and imaging modalities. For exam-
ple, methods like U-Net and nnU-Net achieve relatively
high Dice coefficients, whereas traditional approaches
such as Fuzzy C-Means and Expectation-Maximization
show lower performance.

Traditional segmentation methods, such as atlas-
based and template-based approaches, have been widely
used to address the challenges in breast MRI segmen-
tation. Atlas-based segmentation leverages pre-labeled
anatomical atlases registered to a patient’s MRI scan,
useful for handling anatomical variability across pa-
tients. For example, in breast MRI, (Gubern-Mérida
et al., 2012) developed an atlas-based method for seg-
menting the pectoral muscle. Fuzzy C-Means (FCM)
clustering, which assigns each voxel to a class based on
distance in the feature space, has also been applied in
breast MRI segmentation. While these traditional meth-
ods have been effective, their performance is generally
lower compared to modern deep-learning techniques.

2.2.1. Deep Learning-Based Segmentation Tech-
niques

Deep learning techniques have transformed medical
image segmentation, offering high accuracy and effi-
ciency. These methods use large datasets to train neural
networks for automatic segmentation with minimal user
intervention. The U-Net architecture, a convolutional
neural network (CNN) designed for biomedical image
segmentation, captures both high-level and fine-grained
features. Studies such as those by (Zhang et al., 2019)
and (Alqaoud et al., 2022a) have shown that U-Net and
its variants can achieve significantly higher Dice coeffi-
cients for segmenting glandular tissue and other struc-
tures compared to traditional methods.

Recent advancements have focused on improving
segmentation accuracy for specific breast tissues. For
instance, transformer-based neural networks and en-
hanced architectures like nnU-Net have demonstrated
superior performance. (Müller-Franzes et al., 2023) and
(Alqaoud et al., 2022a) reported high accuracy in seg-
menting glandular tissue, showcasing the effectiveness
of these advanced techniques. Furthermore, multi-class
segmentation, including fat, glandular, and tumorous
tissues, has been explored using deep neural networks,
indicating promising results for comprehensive breast
tissue analysis.

Table 1 offers a summary of these segmentation tech-
niques, highlighting the shift from traditional to deep
learning methods and the associated improvements in
segmentation performance across various studies.

2.3. Mesh Generation and Biomechanical Modeling
While achieving accurate segmentation is the primary

focus of this thesis, its ultimate goal is to leverage these
results for building more realistic biomechanical breast
models. This necessitates mesh generation as the next
crucial step. The process begins with creating a sur-
face mesh from the segmented MRI images. Techniques
like B-splines are used to create smooth 2D contours
that form a 3D surface mesh, while algorithms such as
marching cubes generate a triangular mesh represent-
ing the breast surface (Chung et al., 2008; Zhang et al.,
2007).

Next, a volumetric mesh defines the breast’s internal
structure using tetrahedral or hexahedral elements, se-
lected based on the model’s requirements for geomet-
ric flexibility or simulation stability (del Palomar et al.,
2008; Solves-Llorens et al., 2014b). This step ensures
that the internal anatomy of the breast is accurately cap-
tured, which is essential for realistic simulations.

Finite Element Analysis (FEA)is then used to sim-
ulate the mechanics of breast tissue. FEA solves equa-
tions that describe how the tissue deforms under various
conditions, such as gravity and mammographic com-
pression. Patient-specific FEA models are constructed
from 3D MRI-based structures, segmenting breast tis-
sues and incorporating mechanical properties like elas-
ticity and stiffness. These models aid in image registra-
tion and enhance lesion localization, thereby improving
diagnostic accuracy (Garcı́a et al., 2018; Mertzanidou
et al., 2011; Pathmanathan et al., 2008; Solves-Llorens
et al., 2014a).

Current limitations in breast imaging technologies in-
clude the lack of large, standardized datasets contain-
ing both MRI and mammogram images from the same
patients. This makes the development of robust mod-
els challenging, particularly for tasks like accurate seg-
mentation and lesion characterization. Additionally,
discrepancies in patient positioning between MRI and
mammogram scans further complicate image registra-
tion, impacting the overall analysis. Furthermore, limi-
tations exist within the modeling techniques themselves.
FEA tools can be computationally expensive and re-
quire significant expertise for accurate mesh generation
and material property assignment. Additionally, spe-
cific FEA software, like NiftySim, might be sensitive to
anatomical features, potentially failing for breasts with
smaller sizes due to nipple-to-chest wall distance limi-
tations.

Overcoming these challenges requires advancements
in two key areas: data acquisition strategies and model-
ing techniques. By focusing on acquiring standardized,
well-aligned data from both modalities and developing
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Study Segmented
Classes Methodology Imaging

Modalities
Dice

Coefficient

Gubern-Mérida
et al. (2012)

Pectoral muscle Atlas-based Breast MRI

0.74
(multi-atlas)

and 0.72
(probabilistic)

Zafari et al.
(2019)

Pectoral muscle U-Net Breast MRI 0.89

Zhang et al.
(2019)

Glandular Tissue U-Net Breast MRI 0.83 ± 0.04

Müller-Franzes
et al. (2023)

Glandular Tissue
Transformer-
based neural

network
Breast MRI 0.864 ± 0.081

Alqaoud et al.
(2022a)

Glandular Tissue nnU-Net Multi-modality
MRI

0.877 ± 0.081

Huo et al. (2021) Glandular Tissue nnU-Net DCE-MRI 0.85
Razavi et al.

(2015)
Glandular Tissue Fuzzy C-Means Breast MRI 0.84

Gubern-Mérida
et al. (2015)

Glandular Tissue Expectation-
maximization

Breast MRI 0.80

Wu et al. (2012a) Glandular Tissue Fuzzy C-Means Breast MRI 0.73

Wu et al. (2012b) Glandular Tissue Atlas-aided
Probabilistic

Breast MRI 0.85

Zhang et al.
(2019)

Glandular Tissue U-Net Breast MRI 0.83 ± 0.06

Dalmış et al.
(2017)

Glandular Tissue 3C U-Net Breast MRI 0.85

Alqaoud et al.
(2022b)

Fat, Glandular
Tissue, and

tumorous tissue
DNN Breast MRI 0.95, 0.83,

and 0.41

Table 1: Summary of Traditional and Deep Learning Segmentation Techniques with Dice Coefficients

robust models that can effectively segment and explore
lesions, we can significantly improve the precision and
clinical utility of breast imaging technologies (Garcı́a
et al., 2018). This research aims to address these limita-
tions by proposing methods that enhance segmentation
accuracy, enabling more robust exploration of lesions,
ultimately leading to improved breast cancer diagnosis
and treatment.

3. Material and methods

3.1. Dataset
The dataset used for the study comprised 166 T1-

weighted non-fat saturated dynamic contrast-enhanced
MRI (DCE-MRI) scans from various patients, includ-
ing follow-up scans. DCE-MRI is a type of MRI scan

that uses a contrast agent to track blood flow and iden-
tify abnormalities. It involves both pre-contrast im-
ages and post-contrast images (taken after contrast in-
jection) to see how tissues take up the contrast. The
MRI scans were acquired using a dedicated 1.5 Tesla
Siemens Magnetom Vision system with a CP Breast Ar-
ray coil. While the scans varied slightly in terms of
pixel spacing and slice thickness (ranging from 0.625
to 0.722 mm spacing, 1.3 mm slice thickness, and a vol-
ume of 512x256x120 voxels), they all followed a stan-
dardized protocol. Patients were positioned face-down
for the scans. Each patient’s DCE-MRI data was orig-
inally stored in a DICOM series. This series combined
both pre-contrast and post-contrast images into a single
volume with separate channels for each. We then sep-
arated these channels into individual pre-contrast and
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post-contrast volumes using the SimpleITK library. Pre-
contrast volumes are ideal for tissue segmentation be-
cause they offer a clearer visualization of tissue struc-
ture before the contrast agent is introduced. Conversely,
the last post-contrast volume is preferred for lesion de-
tection due to the enhanced visibility of lesions after
contrast administration.

An experienced observer accurately segmented the
166 MRI volumes into seven distinct categories: back-
ground, fatty tissue, glandular tissue, heart, lung area,
pectoral muscles, and thorax. Two additional observers
focused solely on segmenting the pectoral muscles. The
segmentation process involved manually labeling every
5-10 slices of an MRI volume. To create complete la-
beling, linear interpolation filled in the gaps between
manually labeled slices. Structures requiring more pre-
cise definition, like the heart, lungs, and pectoral mus-
cles, were segmented with a smaller slice interval dur-
ing the manual labeling stage. Background, fatty, and
glandular tissue segmentation employed thresholding
techniques on regions chosen by the observer (Gubern-
Mérida et al., 2012).

The dataset also included a subset of 10 cases specif-
ically chosen to test the framework’s ability to handle
lesions. These case’s ground truths are primarily diag-
nosed with benign lesions like fibroadenoma and water
cysts. Additionally, four cases suspected of having ma-
lignant lesions were identified from this subset and an-
notated using ITK-SNAP software. A radiologist then
validated the annotations for these four cases, confirm-
ing that two were benign and two were malignant le-
sions. Figure 2 illustrates an example from the dataset.

Figure 3 shows the distribution of different tissue
types within the dataset. The bars represent the num-
ber of voxels (3D image units) categorized as each tis-
sue type. We can observe that fat and thorax are the
most dominant classes, while pectoral muscle and other
tissue classes appear less frequent.

Figure 2: Breast MR scan on an axial slice with two cases of (A)
malignant and (B) benign lesion.

Figure 3: Frequency of each class in a dataset containing each class
voxel counts.

3.2. Methods
3.2.1. Segmentation

nnU-Net (no-new-UNet) has emerged as a leading
method for medical image segmentation tasks (Isensee
et al., 2021). It builds upon the success of the original
U-Net architecture, known for its encoder-decoder de-
sign that effectively combines both spatial and seman-
tic information through skip connections. nnU-Net of-
fers a flexible toolbox of U-Net variations, including 2D
U-Net, 3D U-Net, and a U-Net Cascade. While both
2D and 3D U-Nets directly generate full-resolution seg-
mentation masks, the cascade approach first generates
lower-resolution segmentations and then refines them
for improved accuracy (Isensee et al., 2021). Our study
leverages both 2D and 3D U-Net architectures for train-
ing with five-fold cross-validation with 100 epochs per
fold. There was no need to use cascade since the 3D-
UNet patches could capture the whole image. Here’s a
closer look at each approach:

• 2D U-Net: This configuration shares a similar ar-
chitecture with the original U-Net and it runs on
full-resolution data and it is expected to work well
on anisotropic data. For 3D datasets, we strate-
gically extract 2D slices (typically from the plane
with the highest resolution) and train the neural
network on these individual slices.

• 3D U-Net While a popular choice for 3D segmen-
tation tasks running on full resolution data. 3D
U-Net can be limited by graphics processing unit
(GPU) memory constraints. When dealing with
large datasets, we needed to segment the data into
smaller 3D patches for training as input. This ap-
proach, however, can lead to a loss of valuable con-
textual information within the original 3D data.

nnU-Net utilizes a unique pipeline to prepare and
train the segmentation models. This pipeline starts by
analyzing the training data to create a ”data fingerprint”

21.5



Impact of Lesion Inclusion on Biomechanical Modeling Using Deep Learning-based Breast Tissue Segmentation 6

a set of characteristics specific to the data. Based on this
fingerprint, the pipeline automatically selects appropri-
ate hyper-parameters such as the loss function, opti-
mizer, and network architecture (Isensee et al., 2021).
nnU-Net uses a combination of cross-entropy loss and
dice loss functions known as a compound loss func-
tion to train 6 classes, hence the segmentation accuracy
and training stability will increase (Isensee et al., 2021).
Moreover, nnU-Net utilizes the stochastic gradient de-
scent method with initial learning (0.01) and Nesterov
Momentum (0.9) to optimize the loss function (Isensee
et al., 2021). Regarding pre-processing steps like image
resampling, normalization, and the size of data batches
and patches are used for training (Isensee et al., 2021).
These choices, along with the data fingerprint, form a
unique ”pipeline fingerprint” Table 2 shows the dataset
fingerprint created by the nnUNet and each configura-
tion hyper-parameters. Leveraging this pipeline finger-
print, nnU-Net trains separate models using both 2D and
3D U-Net architectures. Each model is trained with the
hyper-parameters determined earlier. Since there is a
Class imbalance in the dataset (Figure 3) it is addressed
by oversampling foreground regions while combining
Dice loss with cross-entropy loss for improved training
stability and accuracy (Isensee et al., 2021).To enhance
performance, the final prediction is generated by com-
bining (ensemble) the outputs from 2D and 3D U-Net
network configurations which is done by averaging the
softmax probabilities between the segmentation output
of two configurations to generate the final segmentation
labels. This ensemble is evaluated based on the Dice co-
efficient, a metric that measures segmentation accuracy,
on the training data. Ultimately, the best-performing en-
semble configuration is used to generate predictions for
unseen data (test set). Figure 4 illustrates the nnU-Net

Dataset
Median image size 120x254x510
Median image spacing 1.29x0.66x0.66mm
Normalization Z-score

2D-UNet
Target Spacing NAx254x510
Median Shape @ Target Spacing NAx0.66x0.66mm
Patch Size 256x512
Batch Size 24

3D-fullres UNet
Target Spacing 120x254x510
Median Shape @ Target Spacing 1.29x0.66x0.66mm
Patch Size 64x128x288
Batch Size 2

Table 2: Dataset fingerprint and configurations for 2D-UNet and 3D-
fullres UNet.

pipeline used for this study, indicating the training pro-

cess with 166 cases and a test set of 10 cases.

3.2.2. Geometry Extraction and Mesh Generation
The second step in this study aimed to incorporate

lesions into the segmentation maps. While a deep learn-
ing approach like nnUnet is powerful for segmentation
tasks, in this initial analysis, we opted for a simpler ap-
proach due to limitations in the available dataset. The
dataset currently does not contain enough training data
to achieve optimal performance for lesion segmentation
using complex deep-learning architectures. However,
lesion detection and segmentation are crucial aspects of
our research, and we plan to address this limitation in
future work. Building upon our earlier work on DCE-
MRI-based lesion segmentation (Vidal et al., 2022), we
aim to develop and integrate a robust deep-learning
framework for accurate lesion segmentation within the
biomechanical modeling pipeline.

Here’s how we achieved our current approach:

1. We first used the trained nnU-Net model to obtain
initial tissue segmentation for each case.

2. Next, we combined these initial tissue segmenta-
tions with the manually annotated lesion ground
truths.

3. This process resulted in new segmentation maps
that included both tissue types and lesions, allow-
ing for further analysis.

This section draws inspiration from the work of (Gar-
cia et al., 2017), regarding geometry extraction for
biomechanical breast modeling. Accurate segmenta-
tion is crucial for this process. We begin by utilizing
nnUNet segmentation results from the previous step,
which identifies various anatomical structures like the
pectoral muscle, lungs, heart, thorax, and breast tis-
sue. Following the nnUNet application to MRI volumes
to exclude non-breast tissues, we applied a breast re-
gion mask obtained from the region-growing algorithm
to segment the image background, hence the breast be-
came isolated with containing volumes of interest which
are fat, and glandular tissue, with the sternum serving as
a reference point as suggested in (Gubern-Mérida et al.,
2012).

Following this, the isolated breast volume segmen-
tation map with its internal fat and glandular tissues is
resampled to isotropic voxels of 1 mm3 for mesh effi-
ciency. The volume mesh is generated using pygalmesh
(Schlömer, 2021), a Python interface for CGAL’s (The
CGAL Project, 2024), which is capable of generating
2D and 3D meshes. The element count varies between
50,000 and 500,000 depending on breast volume (Gar-
cia et al., 2017), minimizing errors during finite element
simulations (Del Palomar et al., 2008). Figure 5 shows
the result of the preprocessing of the mesh generation.

21.6



Impact of Lesion Inclusion on Biomechanical Modeling Using Deep Learning-based Breast Tissue Segmentation 7

Figure 4: Network architectures generated by nnU-Net for the dataset. 2D and 3D full-resolution and the ensemble of them as a final output.

Figure 5: Process of isolating the segmentation map of the breast
which will be meshed in the next step.

3.2.3. Finite Element Analysis: Simulating Compres-
sion

Mammography involves significant breast compres-
sion. A Finite element analysis approach is employed
to replicate this, dividing the process into 20,000 small
steps for stability (Bathe, 2006). The simulation as-
sumes an initial state where the breast is stretched due
to patient positioning and gravity during MRI acqui-
sition. The mechanical behavior of the breast under
stress is modeled using a Neo-Hookean material model
(nearly incompressible, homogeneous, and isotropic)
(Wellman, 1999). The model based on NiftySim ap-
plies to both glandular and fatty tissues, with specific
properties detailed in (Garcia et al., 2017) (Section II-
B.3). While skin effects are considered negligible,
gravity is included for increased accuracy (Mertzanidou
et al., 2014). The model allows for slight breast slid-
ing along the thorax, mimicking the real-life connec-
tion via connective tissue. Compression paddles are
defined mathematically. From an anatomical perspec-
tive, the breast-body connection is not rigid; connec-
tive tissue allows some sliding. Therefore, nodes at the
breast-body interface can slide parallel to paddle dis-
placement (Mertzanidou et al., 2014). Additionally, the

paddles are defined using a planar parametric equation.
Since the pectoral muscle and internal organs are ex-
cluded, the paddle position relative to the thorax is ir-
relevant, and the entire breast model is compressed. A
frictionless contact model is used between the biome-
chanical model and paddles. The analysis is performed
using NiftySim, a tool designed for soft-tissue simula-
tions (Johnsen et al., 2015). The solver manages various
parameters (position, orientation, and elastic properties)
to generate both uncompressed and compressed breast
models. Initial elastic parameters are based on measure-
ments by (Wellman et al., 1999), with specific values for
different tissues (Young’s modulus: 4.46 kPa for adi-
pose tissue, 15.1 kPa for glandular tissue; Poisson’s ra-
tio: 0.45-0.499 during optimization). Uniform grids are
used for spatial indexing to manage elements efficiently.
This method transforms physical space coordinates into
the internal reference system, ensuring accurate defor-
mation mapping and tracking. High-resolution MRI
scans (acquired using a 1.5 Tesla Siemens scanner) pro-
vide the foundation for detailed construction and analy-
sis of the biomechanical models.

3.2.4. Image reconstruction
Building upon the mesh-based reconstruction tech-

nique described in (Garcı́a et al., 2020), the following
steps are undertaken to reconstruct a compressed breast
segmentation map voxel data from the biomechanical
model. This segmentation map represents the breast tis-
sue in its compressed state, which is crucial for sim-
ulating mammographic procedures. A uniform grid is
created around the mesh, and each voxel (3D pixel)
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within this grid is assigned a specific location based on
its relative position to the elements in the mesh. Calcu-
lations involving barycentric coordinates are employed
to determine a voxel’s position within a tetrahedron (el-
ement). This essentially entails tracing points from a
”ray” in the compressed model back to the original un-
compressed MRI data, forming a curve.

After assigning positions to all voxels in the grid, the
tissue type (adipose, glandular, or lesion) for each voxel
is determined using nearest neighbor interpolation. In
simpler terms, the tissue label for a voxel is copied from
the closest voxel in the original segmented MRI data.
Finally, with all voxels assigned positions and tissue la-
bels, a compressed breast segmentation map is recon-
structed. This segmentation map essentially represents
the breast tissue after compression, with each voxel con-
taining information about its location and tissue type.
The reconstruction process is relatively faster for seg-
mentation maps with larger voxel sizes. However, it can
take considerably longer for a segmentation map with
very high resolutions (Garcı́a et al., 2020). The inputs
to the stage are the originally generated mesh, the ex-
tracted compressed mesh, and the original segmentation
map used and the final output is the reconstructed com-
pressed segmentation map.

Figure 6: Compressed Breast segmentation map Workflow. (A) Seg-
mentation map of the breast tissue. (B) Generated mesh represent-
ing the breast geometry. (C) Displacement magnitudes obtained from
NiftySim simulation, visualized as a color map. Red areas represent
regions in contact with the compression plates of MRI and experi-
ence greater displacement compared to blue areas. (D)Extracted com-
pressed segmentation map (E)For better visualization of compression
of breast segmentation map before and after compression (after com-
pression is shown by its wireframe representation) (F) Final recon-
structed compressed breast segmentation map.

3.3. Lesion inclusion into biomechanical modeling
This project also explores the inclusion of benign and

malignant lesions during the geometry extraction stage.
The ultimate goal is to analyze how these lesions af-
fect the biomechanical modeling behavior of the breast.
Besides fatty and glandular tissues, other structures can
influence the final simulation. These include abnormal
tissues with elastic and hyperelastic parameters differ-
ing from healthy breast tissue. Notably, the stiffness
of these materials varies: for the malignant ones they

tend to be stiffer which means that under compression
they will be less displaced, while for the benign this
value is smaller. The elastic parameters are reported by
(Wellman et al., 1999) and (Lorenzen et al., 2002) where
in this work the parameter is chosen based on Young’s
modulus reported in the (Lorenzen et al., 2002) 15.7 kpa
for the malignant lesions and the 7 kpa for the benign
ones. These values were obtained using magnetic reso-
nance elastography (MRE), a specific form of elastog-
raphy that leverages magnetic resonance imaging (MRI)
to quantify and map the mechanical properties (elastic-
ity or stiffness) of soft tissue (Sarvazyan et al., 1995).

The breast tissue segmentation maps obtained from
the nnUnet are integrated with the manually annotated
lesion ground truth. This results in the final 3-label seg-
mentation maps, considering the lesion as a third label
after fat and glandular tissues. The core objective is to
track the biomechanical model’s behavior in cases with
either benign lesions (water cysts or fibroadenoma) or
validated malignant lesions identified by an expert radi-
ologist due to their boundary irregular shapes (examples
shown in Figure 2). Figure 7 illustrates the mesh incor-
porating the lesion.

Figure 7: Lesion-Embedded Mesh. (A) Segmentation map incorpo-
rating the lesion. (B) Wireframe mesh representation of the segmen-
tation map’s boundary condition. (C) Material distribution within the
clipped surface edge mesh illustration. (D) Volume rendering of the
mesh, highlighting the lesion’s location within the glandular tissue.

This study investigates how lesions influence biome-
chanical models of the breast. We explore three experi-
mental frameworks to achieve this:

• Baseline Framework (base):
Motivation: the initial framework establishes a
baseline by analyzing the biomechanical behav-
ior of fatty and glandular tissue excluding lesions.
This is crucial for several reasons. First, it allows
us to isolate the fundamental biomechanical prop-
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erties of these two primary tissue types. Under-
standing these baseline properties serves as a ref-
erence point for subsequent analyses that incorpo-
rate lesions. Second, lesions often arise from and
share similar characteristics with glandular tissue.
By initially combining lesions with glandular tis-
sue, we simplify the model and avoid introducing
unnecessary complexity in this foundational stage.
However, it is important to acknowledge that some
lesions may exhibit distinct mechanical properties.
Subsequent frameworks will address this by incor-
porating lesions as a separate category.

Methodology: the baseline framework utilizes a
two-label segmentation map. In this map, areas
identified as fatty tissue are retained as a distinct
category. Conversely, areas identified as glandu-
lar tissue are combined with any identified lesions
into a single label. This decision is based on the
frequent association of lesions with glandular tis-
sue and their often-similar biomechanical charac-
teristics. By employing this simplified segmenta-
tion map, we can isolate the fundamental biome-
chanical properties of fatty and dense tissue. This
initial analysis lays the groundwork for a more nu-
anced understanding of how lesions may alter these
properties in subsequent frameworks.

• Direct Lesion Inclusion Framework (DLI):

Motivation: analyze the model’s behavior directly
in the presence of the lesion, providing a more re-
alistic representation of the breast tissue.

Methodology: we employ the segmentation map
containing the lesion (three labels) as the initial im-
age for mesh generation. This results in a final re-
constructed image and mesh that retains all three
distinct labels. Additionally, by assigning specific
elastic parameters to each lesion type, we can po-
tentially visualize breast volume reduction across
the frameworks.

• Compressed Lesion Estimation Framework
(CLE):

Motivation: estimate the lesion’s location and its
impact on dense tissue volume changes within the
context of the two-label framework.

Methodology: this framework builds upon the two-
label framework. However, during compressed im-
age reconstruction, we use the segmentation map
containing the lesion (three labels) as input. This
preserves all three labels in the compressed image,
allowing us to estimate the lesion’s location within
the two-label framework and observe its influence
on dense tissue volume changes.

Figure 8 illustrates the workflow pipelines used for
comparing these scenarios.

Figure 8: Illustration of 3 experimented frameworks. A) Segmenta-
tion map containing fat and glandular tissue, B) Segmentation map
containing fat and glandular tissue and lesion, C) Compressed image
of Baseline Framework (Base) D) Compressed image of Direct Le-
sion Inclusion Framework (DLI), E)Compressed image Compressed
Lesion Estimation Framework (CLE).

3.4. Evaluation

To assess the effectiveness of our approach, we em-
ployed appropriate metrics for both the deep learning
segmentation models and the subsequent biomechanical
analysis tasks.

• Segmentation Evaluation: the Dice coefficient
(DSC) (Eelbode et al., 2020), a common metric
in image segmentation, was used to evaluate the
models’ performance. It quantifies the overlap
between predicted and ground truth segmentation
masks for each tissue class (higher DSC indicates
better agreement). Key terms in this context in-
clude True Positive (TP), which refers to correctly
identified pixels in a specific class, False Positive
(FP), which refers to pixels wrongly classified as a
specific class, and False Negative (FN), which de-
notes pixels belonging to a specific class that were
missed.

The formula for DSC is:

DSC =
2TP

TP + FP + FN

• Biomechanical Evaluation: We propose using
the Dice coefficient to assess lesion shape sim-
ilarity and evaluate how well the biomechanical
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model captures lesion shape changes during com-
pression. The aim is that including lesion mate-
rial properties in the model will lead to a more ac-
curate representation of the lesion’s shape in the
compressed breast. This approach builds upon the
previously described Dice coefficient, which com-
pares the overlap between lesion regions in the un-
compressed and compressed segmentation maps.
This metric focuses on the overlap between regions
of interest (ROIs) centered around the mass cen-
ters of the lesion label in each segmentation. Cu-
bic ROIs were used for consistent analysis, and
zero-padding addressed potential spatial dimen-
sion differences due to compression. Figure 9 il-
lustrates how lesions are represented and deformed
under compression. Additionally, breast tissue
loss during compression is assessed by Breast Vol-
ume (BV) Change refers to the total tissue vol-
ume within a breast, and Volumetric Breast Den-
sity (VBD) which quantifies the average density
of glandular tissue within the breast. VBD is cal-
culated by dividing the glandular tissue volume
(number of voxels labeled 2 multiplied by voxel
spacing) by the total breast volume and multiplying
by 100%. This method assesses changes in glandu-
lar tissue density distribution due to compression,
evaluating the model’s ability to maintain spatial
distribution during simulated compression by com-
paring VBD values from uncompressed and com-
pressed segmentation maps. The formula for VBD
is:

VBD =
(

Glandular Tissue Volume
Breast Volume

)
× 100%

We will present the detailed evaluation results, in-
cluding qualitative observations and quantitative met-
rics, in the Experimental Results section.

Figure 9: Lesion label mass detected in (A)uncompressed and (B)
compressed segmentation map

3.5. Implementation details
A virtual environment based on Python 3.10.11 was

used for this project. All other necessary Python li-
braries were installed from the nnU-Net GitHub repos-
itory within this virtual environment, ensuring compat-
ibility and reproducibility. The nnU-Net code utilized
in this study is publicly accessible at github.com/MIC-
DKFZ/nnUNet.

The deep learning model training and biomechan-
ical modeling simulations were performed using an
NVIDIA GeForce RTX 2080 Ti GPU. The environment
was configured with PyTorch version 2.1.2+cu121 and
CUDA version 12.1. The GPU provided approximately
11 GB of memory, sufficient for handling the com-
plex computations required by the nnU-Net framework.
Each fold training for each configuration took around
3 hours, taking up to 14 hours to complete the 5-fold
cross-validation with 100 epochs. The GPU capabilities
were also utilized to accelerate the compression process
using NiftySim, significantly improving computational
efficiency.

4. Experimental Results

4.1. Segmentation Evaluation
The segmentation evaluation of the inference of the

trained model on the 10 specific cases involves a com-
prehensive comparison of 2D-UNet, 3D-UNet, and their
Ensemble methods across various anatomical classes,
utilizing both quantitative and qualitative metrics to as-
sess performance.

4.1.1. Quantitative Results
Table 3 presents the Dice coefficients for different

segmentation methods (2D-UNet, 3D-UNet, and their
Ensemble) across six classes: Fat, Glandular, Heart,
Lung, Pectoral, and Thorax. The Ensemble method
consistently shows the highest total mean Dice coeffi-
cient of 0.83, indicating its superior performance com-
pared to individual methods. The state-of-the-art meth-
ods ((Alqaoud et al., 2022a); (Zafari et al., 2019);
(Alqaoud et al., 2022b)), however, surpass these meth-
ods in individual classes but lack some comprehensive
data which includes the segmentation of the organs in-
cluded in the breast MRI for a complete comparison.
Key observations include the 2D-UNet performing best
in the Fat class with a Dice score of 0.94, the 3D-UNet
showing slightly better performance in the Heart class
with a Dice score of 0.79, and the Ensemble method
achieving the highest total mean Dice coefficient, sug-
gesting that combining 2D and 3D approaches lever-
ages the strengths of both. Notably, this work, to the
best of our knowledge, is the first to perform segmenta-
tion on real breast MRI including all organs, not just the
breast region, highlighting its significance and positive
aspect. Building on the promising results from the Dice
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Methods Fat Glandular Heart Lung Pectoral Thorax Total Mean

2D-UNet 0.94 0.88 0.77 0.72 0.87 0.72 0.82

3D-UNet 0.93 0.86 0.79 0.72 0.85 0.72 0.81

Ensemble 0.94 0.88 0.79 0.73 0.87 0.74 0.83

State of the
Art 0.95 0.87 - - 0.89 - -

Table 3: Comparison of Different Methods across various Segmented Classes with state of the art((Alqaoud et al., 2022a); (Zafari et al., 2019);
(Alqaoud et al., 2022b))

(a) Correlation plot of 2D U-Net (b) Correlation plot of 3D U-Net (c) Correlation plot of ensemble

(d) Error distribution plot of 2D U-Net (e) Error distribution plot of 3D U-Net (f) Error distribution plot of ensemble

Figure 10: Correlation (top row) and error distribution (bottom row) for 2D U-Net, 3D U-Net, and ensemble (R-values: ’coolwarm’ colormap,
red=stronger correlation). Dice (0.822, 0.819, 0.83) and R (0.654, 0.820, 0.734) values are shown. The ensemble exhibits improved spatial overlap
and volume consistency.

coefficient analysis, we conducted a correlation analy-
sis to evaluate the relationship between the predicted
and ground truth volumes for each segmentation method
Figure 10. While the 3D U-Net achieved a slightly
higher correlation coefficient (R = 0.820) for individ-
ual classes (Figure 8b), the ensemble method exhibited
a strong correlation (R = 0.734) (Figure 8c). This sug-
gests that the ensemble method prioritizes capturing the
overall relationship between the predicted probabilities
and the actual volumes across all classes. This focus on
the broader trend translates to more consistent predic-
tions, as evidenced by the narrower error distribution in
the ensemble method (Figure 8f) compared to 2D U-Net
(Figure 8d) and 3D U-Net (Figure 8e). These results,
along with the high Dice coefficients, indicate that the
ensemble method not only predicts accurate segmen-
tation masks but also captures the underlying relation-

ships between the data and the labels in a way that gen-
eralizes better across all organ classes.

Figure 11: Box plot of 3 models indicating the mean and variance of
each class in the 2 configurations and their ensemble
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Figure 12: Clipped 3D view of segmentation result in JET color map.
The color map assigns dark blue to fat, light blue to glandular tissue,
green to the heart, orange to the pectoral muscle, and brown to the
thorax. In slice 60, the lung is not shown.

Figure 11 presents the distribution of Dice coeffi-
cients across different segmentation methods for each
class. We observe that the Ensemble method generally
achieves the highest median Dice coefficients across
most classes, particularly for Fat. This aligns with the
findings in Table 3, where the ensemble method showed
the highest overall mean Dice coefficient. The box-
plots also reveal that the interquartile range (IQR) and
whisker lengths are generally smaller for the ensemble
method compared to other methods for several classes
(e.g., pectoral), indicating more consistent performance.
However, some outliers are present in the Lung and
Thorax class for all methods, suggesting potential chal-
lenges in segmenting this particular class.

4.1.2. Qualitative Results
Figure 13 offers a detailed qualitative assessment of

segmentation results for a patient from a test set with a
large breast shape and moderately dense glandular tis-
sue from the test set. The figure includes axial, sagit-
tal, and coronal MRI slices to provide a comprehen-
sive three-dimensional view of the segmented struc-
tures. The top row displays the original MRI images,
while the bottom row depicts the ground truth segmen-
tation (ideal segmentation), predictions by 2D U-Net,
3D U-Net, and the ensemble method, respectively. The
color scheme assigns black to the background, dark blue
to the fat, light blue to glandular tissue, green to the
heart, yellow to the lung, orange to the pectoral muscle,
and brown to the thorax.

A close examination reveals generally good agree-
ment between the predicted segmentation masks and the

ground truth for most tissues. However, a closer inspec-
tion might identify potential discrepancies in the seg-
mentation of specific organs or tissues across different
slices. For example, in the coronal slice, some models
might struggle to differentiate between dense glandular
tissue and surrounding structures. We can further eval-
uate the performance of distinct tissue types. For in-
stance, some tissues like fat might be consistently well-
segmented across all methods, indicating robust perfor-
mance. Conversely, other tissues like dense glandular
tissue might pose challenges, particularly for differenti-
ating them from neighboring structures.

The comparison can also reveal potential advantages
of the ensemble method. By analyzing regions with sub-
tle tissue boundaries, we can determine if the ensemble
method offers a more accurate delineation compared to
2D U-Net and 3D U-Net. This analysis can highlight
the ensemble’s ability to capture complex tissue rela-
tionships, potentially leading to improved segmentation
accuracy. This qualitative assessment, alongside the
quantitative metrics presented earlier (e.g., Dice coeffi-
cient), provides a richer understanding of each model’s
strengths and limitations. This combined analysis of-
fers valuable insights into the effectiveness of different
segmentation approaches for real-world medical image
analysis applications.

For better visualization, the Figure 12 clipped 3D
view of the segmentation result of another patient from
the test set has been provided which shows more details
and the strengths and weaknesses of each network’s ca-
pabilities.

4.2. Biomechanical Evaluation

Facing the limitations of the NiftySim from 10 cases
we were able to perform compression on four of them.
Hence, the focus in this part will be to assess the two
frameworks for four cases whose outputs contain lesion
labels (DLI and CLE) in their compressed segmenta-
tion maps to achieve our goal, even though we had the
output for the baseline which contains 2 labels. Frame-
work DLI and Framework CLE are evaluated through a
combination of quantitative metrics and qualitative vi-
sual assessments. This comprehensive comparison il-
lustrates the effectiveness of each framework in accu-
rately modeling the biomechanical behavior of breast
tissue with included lesions. We also propose to use
Dice coefficients 3.4 to assess the shape changes of the
lesion region with and without taking into account the
lesion material properties in the biomechanical model.
The aim is that by including lesion information, the
shape of the lesion in the compressed breast will be
more similar to the original uncompressed volume.

4.2.1. Quantitative Results
Leveraging the segmentation results obtained from

the nnU-Net and overlaying their lesion ground truth for
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Figure 13: Segmentation result of the (A) MRI image, (B) Ground Truth, (C) 2D U-Net prediction, (D) 3D-UNet prediction, (E) Ensemble of 2D
and 3D U-Net

further biomechanical modeling, we assessed the com-
parison of the methods for the presence of lesions in
the framework. The quantitative evaluation compares
the accuracy and effectiveness of Framework DLI and
Framework CLE in modeling the biomechanical behav-
ior of breast tissue with included lesions. Various met-
rics such as Dice coefficients, breast volume changes,
and volumetric breast density are analyzed to assess the
performance of each framework.

Figure 14 illustrates the Dice coefficients calculated
to quantify the overlap between the compressed and
uncompressed lesion segmentation map. Specifically,
Dice-CLE measures the similarity between the uncom-
pressed and CLE compressed segmentation map, Dice-
DLI evaluates the overlap between uncompressed and
DLI compressed segmentation maps, and Dice-DLI-
CLE assesses the overlap for each tissue class (Fat,
Glandular tissue, and Lesion) between the compressed

segmentation map of the two frameworks DLI and CLE
to assess how much the output of DLI and CLE is over-
lapped. Higher Dice values indicate better high overlap.
By using Dice coefficients to assess the shape changes
of the lesion region, we can evaluate how well the
biomechanical model preserves the lesion’s shape under
compression. We hypothesize that including lesion in-
formation will result in a compressed lesion shape that
is more similar to the original uncompressed volume,
thereby validating the effectiveness of the model.
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Figure 14: The dices that are calculated to assess the effect of the
lesion label in each framework

Table 4a presents the dice coefficients (Dice-DLI and
Dice-CLE). This suggests that Framework DLI is more
effective in maintaining the accuracy of lesion segmen-
tation under compression which can be expected since
the lesion material properties are included initially so it
is more preserved. Table 4b The tables also summarize
the percentage changes in breast volume (BV) and volu-
metric breast density (BVD) for each framework across
different cases. These metrics provide insights into the
effects of compression on various tissue types in both
DLI (Direct Lesion Inclusion) and CLE (Compressed
Lesion Estimation) frameworks. For fat tissue, the BV
reduction in both DLI and CLE is consistent for each
case, showcasing that both frameworks handle fat tis-
sue compression similarly. Regarding glandular tissue
for each case, the BV reduction in DLI demonstrates
no direct correlation between glandular tissue loss and
lesion loss. This is because different elastic parame-
ters are assigned to these tissues in the biomechanical
model, causing them to behave differently under com-
pression. Conversely, in CLE, there is a noticeable loss
in both glandular tissue and lesions. This indicates that
the framework does not distinctly preserve the proper-
ties of each tissue type, leading to more significant tis-
sue loss overall. For lesion tissues for each case, the
BV reduction in DLI is slightly lower because lesion-
specific elastic parameters are assigned from the begin-
ning. This ensures that during compression, the biome-
chanical models consider the unique properties of le-
sions. The data shows that malignant cases experience
less tissue loss than benign cases in this framework due
to the initial integration of lesion-specific parameters.
In CLE, however, the BV reduction for lesions is more
significant compared to glandular tissue. This suggests
that the properties of lesions are not preserved as effec-

tively, leading to greater tissue loss. Notably, this loss is
more pronounced in benign cases than malignant ones,
as malignant tissues are more resistant to displacement.
Generally, the BV changes measure tissue loss during
compression, while the BVD assesses changes in the
distribution of glandular tissue. The DLI framework
shows slightly more consistent BV and BVD values, in-
dicating it provides a more stable and accurate biome-
chanical model when lesions are included from the be-
ginning. This consistency suggests that DLI is better
at preserving tissue properties and accurately modeling
breast tissue behavior under compression.

Furthermore, Table 4c provides the Dice-DLI-CLE
coefficients for each tissue class (Fat, Glandular tis-
sue, and Lesion) between the compressed segmentation
maps of Framework DLI and Framework CLE. Higher
Dice-DLI-CLE values indicate how each tissue overlaps
in both compressed segmentation maps of DLI and CLE
and the ability to maintain accurate tissue class segmen-
tation under compression, emphasizing its effectiveness
in modeling both benign and malignant lesions.

4.2.2. Qualitative Results
Figure 8 presents the qualitative results of biome-

chanical modeling for the three frameworks of base,
DLI, and CLE. It includes segmentation maps and com-
pressed segmentation maps for each framework. The
comparison shows that Framework DLI captures le-
sion boundaries and properties more distinctly and ac-
curately integrates lesions within the biomechanical
model, resulting in more realistic tissue deformation be-
havior.

5. Discussion

This study investigates the impact of lesion inclu-
sion on biomechanical modeling of breast tissue, uti-
lizing advanced segmentation techniques provided by
the nnU-Net framework. The key question addressed
is whether including lesions from the start (Framework
DLI) results in more accurate and realistic biomechani-
cal models compared to estimating lesion impacts post-
compression (Framework CLE). This research builds on
existing literature by incorporating lesion-specific me-
chanical properties into biomechanical models, an area
previously underexplored.

Our findings demonstrate that Framework DLI,
which includes lesions from the outset, offers several
advantages. Quantitative analysis reveals higher Dice
coefficients for Framework DLI, indicating better over-
lap and representation of lesions. This result aligns with
previous studies that emphasize the importance of accu-
rate initial conditions in modeling complex biological
systems. Framework DLI also shows more consistent
and realistic changes in breast volume and volumetric
breast density, which are crucial for simulating the me-
chanical behavior of breast tissue under compression.
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Table 4: Comparison of methods for different cases

Methods Case 1 (Benign) Case 2 (Benign) Case 3 (malignant) Case 4 (malignant)

Dice-DLI 0.6909 0.7116 0.6376 0.6645
Dice-CLE 0.6824 0.7133 0.6407 0.6656

(a) Dice-DLI and Dice-CLE which for lesion label between the compressed segmentation map and uncompressed segmentation map of a framework with direct lesion
inclusion and estimation of lesion

Methods Case 1 Case 2 Case 3 Case 4
BV-DLI Fat:1.56% Fat:1.95% Fat:1.97% Fat:1.86%

Gland:0.42% Gland:0.28% Gland:0.07% Gland:0.07%
Lesion:4.60% Lesion:5.26% Lesion:2.63% Lesion:2.94%

Total BV 1.56% 1.88% 1.94% 1.61%
BVD 1.72%-1.72% 3.54%-3.61% 1.97%-2.01% 13.87%-14.09%

BV-CLE Fat: 1.55% Fat:1.94% Fat:1.98% Fat:1.86%
Gland: 0.28% Gland:0.07% Gland:0.08% Gland:0.05%
Lesion:10.34% Lesion:5.74% Lesion:0.88% Lesion:1.63%

Total BV 1.53% 1.87% 1.94% 1.61%
BVD 1.72%-1.75% 3.54%-3.61% 1.97%-2.01% 13.87%-14.09%

(b) BV and BVD for each framework DLI and CLE for malignant and benign

Classes Fat Glandular tissue Lesion

Case 1 0.7578 0.9925 0.9997
Case 2 0.9841 0.9879 0.9994
Case 3 0.9828 0.9907 0.9997
Case 4 0.9904 0.9959 0.9993

(c) Dice-DLI-CLE for each label between the compressed segmentation map of framework DLI and CLE

The qualitative assessments further support the su-
periority of Framework DLI. Visual inspections indi-
cate that Framework DLI provides a seamless integra-
tion of lesions within the biomechanical model, result-
ing in smoother and more realistic deformation behav-
ior. This is particularly significant for malignant lesions,
which are stiffer and less displaceable. Including these
lesions from the start ensures their mechanical proper-
ties are accurately modeled throughout the compression
process, leading to better predictions of their behavior
and impact on surrounding tissues. This finding is con-
sistent with the literature that underscores the need for
precise mechanical property assignment in biomechan-
ical simulations.

In contrast, Framework CLE, which estimates lesion
impacts post-compression, is less effective in captur-
ing the true mechanical behavior of lesions. Although
useful for quick estimations, Framework CLE may in-
troduce artifacts or inconsistencies in the reconstructed
compressed images. This limitation is especially evi-
dent in scenarios involving small breast sizes or poor
image quality, such as those encountered in the TCGA-
BRCA dataset ((Burnside et al., 2016); (Clark et al.,
2013). Our attempts to leverage this dataset were ham-
pered by the low quality and limited availability of
mammograms, further highlighting the need for high-
quality datasets in biomechanical modeling.

The implementation of deep learning techniques,

specifically the nnU-Net framework, proved beneficial
for automating tissue segmentation. Notably, this study
is among the first to perform segmentation on real-world
breast MRI data that includes other organs, making the
research particularly challenging. This approach not
only enhanced segmentation accuracy but also facili-
tated the incorporation of lesion data into the biome-
chanical models. The nnU-Net’s ability to automati-
cally configure its architecture based on the dataset re-
duced the need for manual adjustments and ensured ef-
ficient processing of diverse breast DCE-MRI datasets.
This innovation is significant as it bridges the gap be-
tween advanced medical imaging and practical clinical
applications, potentially leading to improved outcomes
for breast cancer patients.

However, the study also faced significant challenges.
Among the 10 cases that were supposed to be analyzed
for lesion inclusion, the NiftySim framework did not op-
erate on 4 of them, and in 2 cases, the compression was
incorrect, producing abnormal results. Furthermore, the
finite element analysis using Febio failed for all cases
due to mesh quality issues. These issues highlight the
sensitivity of the NiftySim framework to factors like the
distance of the nipple to the chest wall and underscore
the limitations posed by mesh quality in Febio. These
challenges point to an essential area for future research
and development.
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6. Future directions

Future research should focus on addressing the iden-
tified challenges by improving the robustness and ac-
curacy of biomechanical modeling frameworks. En-
hancing the mesh quality and resolving the issues as-
sociated with the NiftySim framework could lead to
more reliable simulations. Additionally, developing ad-
vanced preprocessing techniques to handle low-quality
or incomplete datasets, like those from the TCGA-
BRCA, would make the modeling process more re-
silient. Integrating more sophisticated deep learning al-
gorithms with biomechanical models could further re-
fine lesion segmentation and mechanical property as-
signment. Specifically, applying deep learning tech-
niques to finite element analysis (FEA) could revolu-
tionize the accuracy and efficiency of these simulations.
Expanding the number of cases analyzed in future stud-
ies would also enhance the generalizability and robust-
ness of the findings. Collaborating with clinical partners
to access higher quality and larger datasets would be in-
valuable. Moreover, exploring the application of these
improved models in clinical settings to assess their po-
tential to enhance breast cancer diagnosis and treatment
planning should be a priority. These efforts will not only
advance the field of biomechanical modeling but also
improve patient outcomes by providing more accurate
and reliable tools for clinical use.

7. Conclusions

This study demonstrates the significant advantages of
including lesions from the outset in the biomechanical
modeling of breast tissue. Utilizing the nnU-Net frame-
work for segmentation, we achieved higher accuracy in
tissue delineation and successfully incorporated lesion-
specific mechanical properties into the models. Frame-
work DLI (Direct Lesion Inclusion) consistently outper-
formed Framework CLE (Compressed Lesion Estima-
tion) in both quantitative and qualitative assessments,
providing more accurate and realistic simulations of tis-
sue deformation. Our findings underscore the impor-
tance of accurate initial conditions and robust segmen-
tation techniques in biomechanical simulations. De-
spite facing challenges with dataset quality and frame-
work sensitivity, this research advances the integration
of deep learning with biomechanical modeling, offer-
ing valuable insights for improving clinical outcomes in
breast cancer treatment.

Acknowledgments

This project would not have reached its full poten-
tial without the guiding light of Professor Robert Marti,
whose supervision steered me in the right direction. My
co-supervisor, Eloy Garcia Marcos, provided invaluable
support throughout the journey. A debt of gratitude is

owed to Professor Kai Villanova for the diligent valida-
tion of my manual annotations. Special thanks to my
friend Hadeel Awwad, whose unwavering support and
willingness to integrate her FEBio model with my data
were instrumental in enriching the evaluation process.
Finally, to my ever-supportive family, your love and en-
couragement fueled my perseverance.

References

Alqaoud, M., Plemmons, J., Feliberti, E., Kaipa, K., Dong, S.,
Fichtinger, G., Xiao, Y., Audette, M., 2022a. Multi-modality
breast mri segmentation using nnu-net for preoperative planning
of robotic surgery navigation, in: 2022 Annual Modeling and Sim-
ulation Conference (ANNSIM), IEEE. pp. 317–328.

Alqaoud, M., Plemmons, J., Feliberti, E., Kaipa, K., Dong, S.,
Fichtinger, G., Xiao, Y., Audette, M., 2022b. Multi-modality
breast mri segmentation using nnu-net for preoperative planning
of robotic surgery navigation, in: 2022 Annual Modeling and
Simulation Conference (ANNSIM), pp. 317–328. doi:10.23919/
ANNSIM55834.2022.9859361.

Arlinghaus, L.R., Welch, E.B., Chakravarthy, A.B., Xu, L., Farley,
J.S., Abramson, V.G., Grau, A.M., Kelley, M.C., Mayer, I.A.,
Means-Powell, J.A., et al., 2011. Motion correction in diffusion-
weighted mri of the breast at 3t. Journal of Magnetic Resonance
Imaging 33, 1063–1070.

Babarenda Gamage, T.P., Rajagopal, V., Nielsen, P.M., Nash, M.P.,
2012. Patient-specific modeling of breast biomechanics with ap-
plications to breast cancer detection and treatment. Patient-Specific
Modeling in Tomorrow’s Medicine , 379–412.

Bathe, K.J., 2006. Finite element procedures. Klaus-Jurgen Bathe.
Burnside, E.S., Drukker, K., Li, H., Bonaccio, E., Zuley, M., Gan-

ott, M., Net, J.M., Sutton, E.J., Brandt, K.R., Whitman, G.J., et al.,
2016. Using computer-extracted image phenotypes from tumors on
breast magnetic resonance imaging to predict breast cancer patho-
logic stage. Cancer 122, 748–757.

Chung, J.H., Rajagopal, V., Nielsen, P.M., Nash, M.P., 2008. Mod-
elling mammographic compression of the breast, in: Medical
Image Computing and Computer-Assisted Intervention–MICCAI
2008: 11th International Conference, New York, NY, USA,
September 6-10, 2008, Proceedings, Part II 11, Springer. pp. 758–
765.

Clark, K., Vendt, B., Smith, K., Freymann, J., Kirby, J., Koppel, P.,
Moore, S., Phillips, S., Maffitt, D., Pringle, M., et al., 2013. The
cancer imaging archive (tcia): maintaining and operating a public
information repository. Journal of digital imaging 26, 1045–1057.
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Abstract

The study of the mouse brain is crucial in neuroscience as it serves as an optimal model for understanding the human
brain. Genetic manipulation in mice enables exploration of gene effects on brain development. A recent study from
the host laboratory identified 198 genes through high-throughput preclinical studies using detailed histological images
of thousands of mouse brains.

The primary objective of this research is to support neurobiologists in understanding the complex functioning of
the brain by providing detailed anatomical studies through high-resolution 3D histological and microscopic volume
analyses. A deep learning-driven framework for the automated segmentation of high-resolution 3D histological mouse
brain images was developed. Efficient comparison between genetically mutated and normal mouse brains is enabled
by this framework, utilizing a private dataset consisting of histological microscopic 3D volumes in nearly raw raster
data (nrrd) format, with individual file sizes ranging from 25 to 35 GB.

The deep learning models used in this study include nnU-Net, which automates the configuration of segmentation
pipelines, and the Segment Anything Model (SAM), adapted for 3D medical imaging through the MedSAM and
MaskSAM frameworks. The computational environment was optimized for large-scale data processing, leveraging
advanced neural network architectures and high-performance computing resources.

For binary segmentation between the background and the whole brain tissue, 11 full-brain volumes were considered,
achieving a Dice Similarity Coefficient (DSC) of 0.99 ± 0.01, while for multi-class segmentation of 24 brain regions,
14 half-brain volumes were prepared, achieving a global DSC of 0.87 ± 0.01. The segmentation time was significantly
reduced by our method from approximately 30 hours per volume to just 5 minutes, thereby accelerating the research
process.

Our approach demonstrates high precision and robustness in the segmentation of histological mouse brain image,
facilitating further research and innovation in computational neuroscience and biomedical imaging. This efficiency
not only enhances the feasibility of large-scale studies but also supports high-throughput data processing in brain
histology.

Keywords: Automated Segmentation, Histological Imaging, 3D Microscopy, High-Resolution Imaging, Mouse
Brain, Computational Neuroscience

1. Introduction

Understanding the neurobiological basis of brain
function and structure is fundamental in neuroscience
(Cisneros et al., 2023). The intricate architecture of the
brain, encompassing macroscopic features like regional
volumes and shapes, as well as microscopic details such
as neuronal organization and connectivity, is shaped by
both genetic and environmental factors. This complex-

ity underpins the brain’s development, function, and
susceptibility to various disorders. Neuroanatomical
phenotypes—observable structural traits—provide crit-
ical insights into these processes. The use of animal
models, particularly mice, has been pivotal due to their
genetic similarity to humans and the ease of genetic
manipulation. Large consortium like the International
Mouse Phenotyping Consortium (IMPC) or Knock Out
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Mouse Project (KOMP) have set out to address gene
function on unprecedented scales, systematically dis-
rupting genes in isogenic mice to study their effects on
multiple systems. In 2019, the NeuroGeMM laboratory
at the University of Burgundy, France, is a long term
collaborator of several centers from the IMPC and has
long standing experience in neuroanatomic histological
screens in rodent. Thus, they published the first NAP
map after screening +1500 gene knockouts. 198 genes
impacting brain morphogenesis were identified and in-
terestingly, many of these genes were unknown brain
morphogenes (Collins et al., 2019). More recently, an
analysis of 20 out of 30 potential autism-related genes
at the 16p11.2 locus highlighted MVP as a critical mor-
phogene and candidate gene for the first time (Kretz
et al., 2023). The assessment of anatomical abnor-
malities was primarily performed on high-resolution,
2D histological images, with delineation of the mouse
brain regions achieved through manual contouring or
semi-automated software-assisted methods. Recently,
the laboratory acquired a system for high-resolution his-
tological imaging of mouse brains (in essence, a serial
block face imaging device) allowing for detailed 3D
neuroanatomical analysis, revealing precisely how spe-
cific genes influence brain development and pathology
using Neuroanatomical phenotypes (NAPs) as endophe-
notypes of neurodevelopmental diseases. Manual seg-
mentation of these images, however, is labor-intensive
and time-consuming, necessitating the development of
automated methods to enhance efficiency and accuracy
in neuroanatomical studies.

Deep learning, a subset of artificial intelligence (AI),
has revolutionized the field of medical image analysis
through its ability to learn complex patterns and fea-
tures from large datasets. Convolutional neural net-
works (CNNs), particularly architectures like U-Net and
its variants, have become the gold standard for image
segmentation tasks. These models can automatically
delineate structures within histological images, signifi-
cantly reducing the need for manual annotation. In neu-
roanatomical studies, deep learning models are trained
on high-resolution images of brain sections to identify
and segment various regions of interest (ROIs). For
instance, the NeuroGeMM laboratory, in collaboration
with ICMUB (Dijon), harnessed U-Net and Attention
U-Net architectures to segment 2D brain histological
sections with high precision. Notably, the Attention
U-Net incorporates attention mechanisms that dynam-
ically focus on relevant parts of the image, enhancing
the model’s accuracy. These advancements not only ac-
celerate the annotation process but also maintain high
levels of accuracy, as demonstrated by Dice Similarity
Coefficients (DSC) exceeding 90% for most brain re-
gions. By integrating deep learning into neuroanatomi-
cal research, scientists can handle large-scale phenotyp-
ing tasks more efficiently, facilitating the discovery of
gene-function relationships and the development of new

insights into brain development and disorders (Cisneros
et al., 2023).

Now that the laboratory is acquiring 3D volumes, the
need for deep learning methods to automatically seg-
ment brain regions has become not just a luxury but
an essential requirement. Hence, the primary objective
of this study is to enhance rodent brain segmentation
through the optimization of U-Net-based architectures.
Our work aimed at implementing these architectures
and developing a pipeline designed to significantly re-
duce the time required by neuroanatomists for segmen-
tation tasks. Our main strategy was to use the founda-
tional U-Net model, initially proposed by (Ronneberger
et al., 2015) but use the most recent development nnU-
Net, short for ”no-new-Net,” which is a self-configuring
framework for neural network-based biomedical image
segmentation (Isensee et al., 2021). nnU-Net automat-
ically adapts its architecture, preprocessing, and train-
ing strategy to suit the specific characteristics of the
dataset it processes. This adaptability allows nnU-Net
to achieve state-of-the-art performance across a variety
of segmentation tasks without manual tuning of its pa-
rameters. The method’s robustness and effectiveness
have significantly influenced medical image analysis,
demonstrating the power of adaptive, data-driven ap-
proaches in deep learning applications in healthcare.

Several critical areas were addressed through key
contributions. High-resolution histological 3D vol-
umes, with data sizes ranging from 25 to 35 GB, were
managed effectively. Image processing techniques, in-
cluding upscaling, downscaling, re-sampling, and curve
approximation, along with conversions between nrrd
and nifti formats, were implemented to facilitate the ini-
tial and final stages of the training pipeline. The nnU-
net architectures were employed for model training and
testing to enhance the segmentation process. Addition-
ally, a user-friendly tool for automatic segmentation of
histological mouse brain images across 24 regions of
interest was developed and deployed, significantly out-
pacing traditional human annotation speeds.

2. State of the art

Recent advancements in biomedical image segmenta-
tion, fueled by continuous research and innovation, aim
to enhance accuracy, efficiency, and applicability across
diverse medical imaging modalities and uses. These
improvements empower physicians to make better-
informed decisions, elevate patient care, and expedite
medical research and diagnostics. This section will ex-
plore segmentation models, beginning with manual ap-
proaches and progressing to fully automated methods,
specifically focusing on the segmentation of histologi-
cal images of the mouse brain.
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2.1. Manual segmentation

Accurate morphometric description of neurological
disorders in human patients is a field that can only
progress with the recent development of AI-assisted im-
age segmentation. Currently, simple metrics are often
used in the clinic but better description of phenotype
would largely benefit disease detection, comprehension
and classification. The starting point lays in having su-
ficient resolution to see structures followed by manual
segmentation. Many softwares in preclinical and clin-
ical settings exist and all share the general principle of
allowing manual segmentation. An example specifically
designed for neuroimaging is brainvoyager (BrainVoy-
ager, 2023). To elaborate the ground truth however, the
laboratory used Slicer3D to draw, edit, and manage seg-
mented regions in 3D images. Whilst these software are
not approved for clinical work, they are used around the
world in preclinical studies. These resources are crucial
for researchers and clinicians who require precise seg-
mentation capabilities for detailed brain imaging studies
but manual segmentation requires a significant amount
of time.

2.2. Semi-automatic segmentation

Manual segmentation, while highly accurate, is im-
practical for large 3D datasets due to the extensive time
and effort required. On the other hand, fully automatic
segmentation methods, despite their efficiency, often
fail to achieve the necessary accuracy, necessitating user
intervention for corrections which are even more time-
consuming in 3D.

Jones et al. introduced a method for semi-automatic
segmentation where it is assumed that each Ii is suffi-
ciently oversegmented into r superpixels, o j, such that
each true region, tl, can be generated from o j as in Equa-
tion 1. Using this assumption, the method reorganizes
the initial segmentation, PI , predicted by the automatic
method by utilizing the hierarchical structure, each su-
perpixel o j, and user input to generate the final pre-
dicted segmentation, PF . If the results are ideal, then
PF = T . Due to the 2D nature of the automatic segmen-
tation method used, both proofreading the 2D segmen-
tation and linking the resulting 2D segments using au-
tomated suggestions are necessary. By completing both
of these steps simultaneously, the method aims to re-
duce the amount of time required from the user.

tl =
⋃

j∈γT
l

o j (1)

Liangjia Zhu et al. present an advanced method for
segmenting anatomical structures in medical imagery.
This research, conducted across Stony Brook Univer-
sity, the University of Alabama at Birmingham, and
Harvard Medical School, reformulates the GrowCut al-
gorithm as a clustering problem and effectively allows
to complete segmentation using partial information such

as to segment only two sections 10 to 20 sections a part
and letting the algorithm complete the missing segmen-
tation (Zhu et al., 2014). The proposed method lever-
ages the Dijkstra algorithm to enhance computational
efficiency, allowing for real-time interaction and appli-
cation to high-resolution images. The paper highlights
the method’s efficiency and accuracy through extensive
testing on challenging datasets, demonstrating its poten-
tial for integration into medical imaging platforms like
3D Slicer.

Jones et al. proposed method integrates automatic
segmentation with user-guided corrections to stream-
line the proofreading process of neuron tracing in EM
images (Jones et al., 2015). The automatic component
generates a hierarchical structure of superpixels, recom-
mending potential merges that are then reviewed by the
user. This hierarchical approach allows users to quickly
identify and correct segmentation errors, significantly
improving the accuracy of the final segmentation re-
sults. The method’s efficacy is demonstrated through
tests on multiple datasets, showing that even novice
users can achieve accuracy levels comparable to expert
manual segmentation, but with substantial time savings.

Uberti et al. presents a novel method for brain ex-
traction from MRI data in mice. This technique lever-
ages a level-set method with user-defined constraints
to enhance accuracy (Uberti et al., 2009). The au-
thors highlight the limitations of existing methods when
applied to mouse brain MRI, especially in low con-
trast conditions, and propose the Constraint Level Sets
(CLS) method as a solution. The CLS method inte-
grates anatomical knowledge to improve the extraction
process. They compared the development of both 2D
and 3D implementations of this technique and compares
their performance using high-resolution T1-weighted
(T1-wt) FLASH and T2-weighted (T2-wt) RARE MRI
data. The results demonstrate that CLS outperforms tra-
ditional seed-based region growing (SBRG) methods,
particularly in scenarios with minimal contrast between
brain and non-brain tissues. Key findings include the
2D implementation of CLS being slightly more effi-
cient than the 3D version, with both providing signif-
icant improvements over SBRG, the accuracy of brain
extraction being higher in T2-wt RARE MRI compared
to T1-wt FLASH MRI due to better contrast, and the
CLS method consistently yielding high overlap mea-
sures (OM) with manual segmentation, indicating re-
liable performance. This technique is applicable to a
variety of MRI scans and can be extended to segment
other organs and tissues, making it a valuable tool in
preclinical neuroscience research using mouse models
of neurodegenerative diseases.

2.3. Automatic segmentation

Scheenstra et al., presents a novel, efficient approach
for the segmentation of various structures in mouse
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brain MRIs, both in vivo and ex vivo. The study ad-
dresses the challenges posed by low signal-to-noise ra-
tios and low contrast between structures in mouse brain
images. The proposed method involves an initial rough
affine registration to a template followed by a clus-
tering algorithm that refines the segmentation near the
edges. Compared to manual segmentations, the method
achieved an average kappa index of 0.7 for 7 out of
12 structures in vivo MRIs and 11 out of 12 structures
in ex vivo MRIs. Notably, the method is eight times
faster than traditional nonlinear segmentation methods.
This automatic segmentation technique is effective for
image registration, volume quantification, and annota-
tion of brain structures, thus offering a significant im-
provement in processing time and accuracy for neu-
roanatomic studies (Scheenstra et al., 2009).

Tappan et al. introduce NeuroInfo, a novel brain nav-
igation system designed to automate the identification
and delineation of brain regions in histologic mouse
brain sections. This system functions similarly to a GPS
in a car, by registering digital images of experimental
mouse brain sections with a three-dimensional (3D) dig-
ital mouse brain atlas based on the Allen Mouse Brain
Common Coordinate Framework (CCF v3). NeuroInfo
retrieves graphical region delineations and annotations
from the 3D atlas and superimposes this information
onto the digital images of the brain sections, facilitating
accurate identification of brain regions without observer
bias. Validation studies demonstrated that NeuroInfo
performs exceptionally well in delineating large or dor-
sally located regions, irrespective of the imaging modal-
ity used (fluorescence or bright-field microscopy). The
implementation of NeuroInfo thus offers a significant
advancement in the systematic analysis of brain sec-
tions, improving the efficiency and accuracy of brain re-
gion identification in neurogenomics, transcriptomics,
proteomics, and connectomics studies (Tappan et al.,
2019).

Cisneros et al. introduce 2D histological segmen-
tation, it is a crucial technique in neuroanatomical re-
search, providing detailed insights into the structure
and organization of brain tissues(Cisneros et al., 2023).
This process involves the precise delineation of differ-
ent anatomical regions within high-resolution histolog-
ical images, which are typically obtained from thin sec-
tions of brain tissue stained to highlight various cellular
components. Accurate segmentation of these images is
essential for quantifying morphological features, identi-
fying structural abnormalities, and linking these obser-
vations to genetic and environmental factors.

Deep learning has emerged as a powerful tool for 2D
histological segmentation, offering the ability to auto-
mate and standardize the process. Convolutional neu-
ral networks (CNNs), such as U-Net and its derivatives,
have shown great promise in this domain. These net-
works are designed to learn from annotated datasets,
identifying patterns and features that distinguish differ-

Figure 1: Attention U-Net 2D histological segmentation pipeline
(Cisneros et al., 2023)

ent anatomical regions. U-Net, for example, uses an
encoder-decoder architecture that captures spatial hier-
archies in the images, making it well-suited for biomed-
ical image segmentation. The Attention U-Net, an en-
hanced version, incorporates attention mechanisms that
allow the model to focus on the most relevant parts of
the image, thereby improving segmentation accuracy
(Segmentation pipeline Figure 1).

By integrating automated 2D histological segmenta-
tion into neuroanatomical research, scientists can accel-
erate the analysis of brain structures, enabling large-
scale studies that were previously impractical. This
not only enhances our understanding of brain develop-
ment and disorders but also facilitates the discovery of
new genetic and molecular targets for therapeutic in-
tervention. As deep learning techniques continue to
evolve, their application in histological segmentation is
expected to become even more robust, offering greater
accuracy and broader applicability in the field of neuro-
science (Cisneros et al., 2023).

The nnU-Net methodology is designed to automate
the configuration of deep learning-based segmentation
pipelines for biomedical imaging tasks (Isensee et al.,
2021). The method involves several key components:
Initially, nnU-Net processes the provided training data
by cropping the images to their non-zero regions, which
improves computational efficiency. It creates a dataset
fingerprint capturing image size, image spacing, modal-
ities, number of classes, and intensity values, com-
puted over all training cases. nnU-Net then generates
a pipeline fingerprint that condenses domain knowl-
edge into heuristic rules. These rules operate on the
dataset fingerprint and project-specific hardware con-
straints to infer necessary design choices. nnU-Net uses
a fixed architecture template closely following the orig-
inal U-Net and its 3D counterpart. Adjustments in-
clude the use of instance normalization and leaky Re-
LUs, and the inclusion of deep supervision for train-
ing stabilization. The method involves initializing patch
size based on the median image shape after resampling
and iteratively adapting network topology, including
the number and position of pooling operations, feature
map sizes, and convolutional kernel sizes, to fit within
GPU memory constraints while maintaining a minimum
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batch size of two. nnU-Net automatically generates
three U-Net configurations (2D U-Net, 3D U-Net, and
3D U-Net cascade) and uses cross-validation to choose
the best-performing configuration or ensemble. Em-
pirical post-processing steps, such as non-largest com-
ponent suppression, are applied if they improve per-
formance. Training is performed with fixed parame-
ters like learning rate, optimizer, and data augmenta-
tion strategies. Inference is conducted using a sliding
window approach with Gaussian patch center weighting
for smoother predictions. nnU-Net’s automated config-
uration has been tested across diverse datasets, show-
ing strong generalization capabilities. It handles various
imaging modalities and target structures effectively, of-
ten outperforming specialized pipelines tailored for spe-
cific tasks (Isensee et al., 2021).

3. Material and methods

3.1. Computational environment

The system runs CentOS Linux 7.7 “Core” edition,
tailored for enterprise deployments to provide a stable
and secure environment for production setups. It oper-
ates on the Linux kernel, optimized for performance on
x86 64 architectures. The CPU is an Intel(R) Xeon(R)
Gold 6226 @ 2.70GHz, capable of boosting up to 3.70
GHz, and supports 64-bit operations. It features a dual-
socket setup with 24 cores per socket, totaling 48 cores,
and is hyper-threaded, offering 96 threads. The CPU has
a BogoMIPS rating of 5400.00, supports virtualization
via Intel VT-x, and includes a cache layout with 32 KB
L1 cache for data and instructions per core, 1 MB L2
cache per core, and a 19.7 MB L3 cache shared across
the CPU.

3.2. Dataset

Our private dataset consists of histological micro-
scopic 3D volumes of mouse brains. Each volume is
provided in a nearly raw raster data (nrrd) format, with
individual file sizes ranging between 25 to 35 GB. For
binary segmentation between the background and the
whole brain tissue, 11 full brain volumes have been pre-
pared, as illustrated in Figure 2 (a). Out of these, 9 vol-
umes are designated for training purposes, while the re-
maining 2 volumes are set aside for validation.

Additionally, for the segmentation of specific brain
regions, we utilized 14 half-brain volumes, as depicted
in Figure 2 (c). Among these, 11 volumes are allocated
for training, and 3 volumes are used for validation.

This dataset is designed to facilitate advanced re-
search and development in the field of brain histology
and segmentation and remains private for controlled ac-
cess and use.

Figure 2: 3D View of mouse brain volume sequence: (a) Volume 2:
Full brain complete view, (b) Volume 1.5: 25% reduction of full brain,
(c) Volume 1: 50% reduction of full brain.

SL TAG NAME
1 CTX+ Cortex
2 cc+ Corpus callosum
3 CPu Caudate Putamen
4 DG Dentate Gyrus
5 HP Hippocampus
6 RHP Retro hippocampus
7 A Amygdala
8 ig Indusium griseum
9 fi Fimbria

10 f Fornix
11 st Stria terminalis
12 ic Internal capsule
13 och Optic chiasm
14 ac Anterior commissure
15 fr Fornix
16 Hb Habenula
17 TH Thalamus
18 HY Hypothalamus
19 MB Midbrain
20 P Pons
21 MY Medulla
22 TCB Total Cerebellum Brain
23 V Ventricle
24 OB Olfactory bulb

Table 1: Neuroanatomical Features of 24 Regions in the Mouse Brain.

3.3. Dataset Preparation and GT preparation

The dataset consists of a 3D volume and its corre-
sponding ground truth (GT) data Figure 4.

The processing of 3D imaging data involves several
critical steps for the preparation of the data to ensure
accuracy and efficiency across various applications. Ini-
tially, downsampling the image and GT Figure 8 (b) by
a factor of 5 is essential. This reduction in resolution
helps in decreasing the computational load and storage
requirements, while care is taken to preserve vital de-
tails necessary for accurate analysis.

Subsequent to downsampling, converting file for-
mats, such as from .nrrd to .nifti, ensures compati-
bility across different software tools. This step is crucial
for seamless integration and manipulation of data within
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Figure 3: Full pipeline of the segmentation task. (a) Input 3D volume. (b) Downsample volume. (c) Dataset preparation. (d) Segmentation
model. (e) Configuration: Specification of image type and resolution, choosing between 2D, 3D low resolution, and 3D full resolution. (f) Binary
prediction (g) Multiplied volume. (h) Region Segmentation (i) Region labels.

Figure 4: Segmented volume visualization, GT seed to segmentation:
(a) Histological brain volume, (b) Seeded regions, (c) Segmented vol-
ume grown from seeds.

various processing environments.
Another important task is the reshaping of the vol-

ume and GT Figure 3 (c). This process adjusts the di-
mensions of the data to fit specific tools for analysis or
visualization, maintaining the original aspect ratios to
prevent distortion of spatial relationships in the data.

Following reshaping, an intensity check on both the
volume and GT is conducted. This involves examining
the pixel intensity distributions to ensure they meet pre-
defined criteria necessary for further processing. This
check helps in identifying any anomalies that might af-
fect subsequent analyses, such as segmentation or clas-
sification.

The segment label check on GT ensures the accuracy
and consistency of segmentation labels. This step in-
volves verifying that each label correctly identifies the
corresponding segment and checking for errors such as
mislabeling or overlapping labels, which are crucial for
the reliability of downstream analyses.

In Slicer3D 3D Slicer, the seed growing technique for

segmentation is applied Figure 5. This method starts
with manually or automatically selected seed points
within the image. These points serve as the basis for
the segmentation algorithm, which then expands to ad-
jacent areas based on predefined criteria such as inten-
sity thresholds or color similarities. This technique is
especially effective for isolating specific structures and
can be tailored to specific needs by adjusting the growth
criteria.

Each of these steps is integral to the preprocessing
workflow, setting a strong foundation for robust and pre-
cise analyses of 3D imaging data.

Figure 5: Half brain segmentation using grow from seeds: 2D view
without background, Displaying Axial, Coronal, and Sagittal Planes.

The GrowCut algorithm (in the grow from seeds
module of Slicer3D) by Liangjia Zhu et al. utilizes a
small number of user-labeled pixels to guide the seg-
mentation process, which is iteratively refined by a Cel-
lular Automaton. The method allows users to observe
and interact with the segmentation evolution, making
adjustments in challenging areas while leaving reliably
segmented regions untouched.

Key contributions and features of the GrowCut
method include its effectiveness in handling moderately
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complex segmentation tasks and its applicability to im-
ages of any dimension (N ≥ 1). The method is ef-
ficient in performing multi-label segmentation without
increased computation time due to the number of la-
bels, which is crucial for large-scale or detailed tasks.
Additionally, GrowCut is highly extensible, allowing
the creation of new segmentation algorithms with spe-
cific properties tailored to various needs. Its high in-
teractivity is a standout feature, enabling users to refine
segmentation continuously during the process, thus en-
hancing precision and user control. The GrowCut al-
gorithm has been tested on both generic photographs
and medical images, demonstrating that it requires only
modest user effort to segment moderately difficult im-
ages effectively. Vezhnevets et al, highlight the ongo-
ing relevance of semi-automatic segmentation methods,
given the limitations of fully automated techniques in
providing guaranteed results across diverse scenarios.
This blend of efficiency, flexibility, and user interactiv-
ity positions GrowCut as a valuable tool in the segmen-
tation landscape. Vezhnevets and Konouchine provides

Figure 6: GT of 2D View: Full brain segmented by individual regions.

a review of related interactive segmentation techniques,
such as graph cuts, random walker, and region grow-
ing methods, and positions GrowCut as a competitive
alternative, particularly noted for its user convenience
and segmentation quality in multi-label tasks Vezhn-
evets and Konouchine (2005).

Biomedisa is a highly effective ”fill between slice”
algorithm used extensively in the field of biomedical
imaging (Biomedisa). It excels in reconstructing 3D
models from 2D image slices by accurately filling the
gaps between these slices, significantly enhancing the
quality and continuity of 3D reconstructions. This
makes Biomedisa an invaluable tool for researchers and
professionals dealing with complex biological struc-
tures.

3.4. Pre-processing
In histological imaging, preprocessing is essential to

enhance image quality and ensure accurate analysis.
During preprocessing, we often encounter artifacts such
as bubbles and overlay lines, which obscure critical in-
formation and compromise data integrity. To address
these challenges, we employed a combination of me-
dian filtering and morphological operations.

Median filtering, a non-linear digital filtering tech-
nique, was chosen for its effectiveness in noise reduc-
tion while preserving edge details. Specifically, a 3x3x3
median filter was applied to the images. This filter re-
placed each pixel’s value with the median value from
its local neighborhood, effectively reducing noise and
smoothing out bubble artifacts. The result was a sig-
nificant reduction in noise without a substantial loss of
image detail.

To further refine the images, morphological opera-
tions were employed, specifically the processes of open-
ing and closing. These operations are fundamental in
image processing, particularly for removing small arti-
facts and smoothing object boundaries. Morphological
opening, which involves erosion followed by dilation,
was used to remove small objects such as bubbles from
the foreground of the image. Morphological closing,
which involves dilation followed by erosion, was em-
ployed to fill small holes and eliminate overlay lines.

Various structuring elements were tested to optimize
these operations, including (3,1), (3,2), and (3,3) con-
figurations. The best results were obtained using a
(3,3) structuring element, which effectively removed
both bubble and overlay line artifacts without distorting
the significant features of the images. Additionally, ap-
plying these morphological operations to binary images
yielded particularly good results for line artifacts.

In conclusion, the preprocessing pipeline combining
a 3x3x3 median filter with morphological opening and
closing using a (3,3) structuring element proved highly
effective in removing artifacts from histological images.
This approach ensured high-quality, artifact-free im-
ages, facilitating more accurate and reliable scientific
analysis.

Figure 7: 2D View of Mouse Brain Volume Sequence. Figure 2
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3.5. Data preparation
After preparing the database and completing the re-

view stages, region masks for each region of interest
within the mouse brain were obtained (Figure 6). The
variation in the number of masks is due to factors like
information loss, and mislabeling in the brain region.
Once the binary image dataset was created, the deep
learning training stage was initiated.

3.6. Deep Learning Models
The Complete Pipeline of the Segmentation is pre-

sented in Figure 3, The segmentation task begins with
acquiring a 3D histological mouse brain volumetric
dataset (a). This high-resolution dataset is then down-
sampled (b) to reduce its resolution, facilitating easier
handling and processing. The prepared dataset (c) is
organized and formatted to ensure compatibility with
the subsequent steps. A segmentation model is applied
(d) to delineate different regions within the 3D volume.
The configuration step (e) involves specifying the image
type and resolution, with options including 2D, 3D low
resolution, and 3D full resolution. The model gener-
ates binary predictions (f) for the full brain (see Figure
2(a)) and half brain (see Figure 2(c)). The input vol-
ume is then multiplied by these binary predictions (g)
to obtain segmented volumes for both the full brain and
half brain. These segmented regions are detailed in Ta-
ble 1. (h). Finally, region labels are defined within the
3D volume as metadata, providing a comprehensive de-
scription of each region as outlined in Table 1.

nnUNet: a self-configuring method In our study,
the nnUNet configuration for medical image segmen-
tation has been carefully designed to meet different res-
olution needs, ensuring efficient and accurate analysis.

For the 2D configuration, the batch size was set to 6,
allowing for effective memory usage and stable training
Figure 3 (e.i). The chosen patch size of 896x640 aligns
well with the median image size of 782.0x633.0 vox-
els, ensuring that most of the image content is included
within each patch, thereby maximizing the utility of the
data without excessive padding or cropping.

For the 3D low-resolution configuration, a batch size
of 2 is utilized, balancing the memory requirements and
processing efficiency for 3D image volumes Figure 3
(e.ii). The patch size of 80x192x160 covers substantial
portions of the images, which typically measure around
135x295x239 voxels. The spacing of 2.65mm in all di-
mensions reduces the computational load, allowing for
faster training iterations while capturing broad anatom-
ical structures at a coarser level.

In the 3D full-resolution configuration, the batch
size is maintained at 2 to handle the high memory de-
mand of detailed 3D data Figure 3 (e.iii). The patch
size remains consistent with the low-resolution set-
ting at 80x192x160, facilitating a uniform training ap-
proach. This configuration is tailored for higher res-
olution images, with a median size of approximately

359.0x782.0x633.0 voxels and a spacing of 1.0mm in
all dimensions, capturing fine anatomical details crucial
for precise segmentation.

Background removal: Background and Whole-
Brain segmentation, A robust preprocessing methodol-
ogy was employed for binary segmentation and whole-
brain extraction using the nnUNet framework. The
dataset comprised volumetric brain images formatted
for nnUNet compatibility. Necessary environment vari-
ables were configured to ensure smooth operation, set-
ting paths for the dataset and model configurations. The
dataset consisted of 14 brain volumes, split into 11 for
training and 3 for validation, providing a comprehensive
training set while reserving sufficient data for model
evaluation.

The segmentation pipeline began with the input of
large 3D brain images, each with dimensions around
(4128, 2978, 1844). These images were downsampled
by a factor of five to approximately (654, 783, 383) to
reduce computational load and memory usage, main-
taining adequate detail for accurate segmentation. The
nnUNet model was utilized for its adaptive capabilities
and superior performance in medical image segmenta-
tion. Three configurations were implemented: a 2D
configuration that processed slices independently, a 3D
low-resolution (3D low resolution) configuration, and a
3D full-resolution (3D full resolution) configuration.

The trained nnUNet model generated binary masks of
the 3D volume, The training was conducted using five-
fold cross-validation to ensure robustness. Each fold in-
volved training on a subset and validating the remaining
data. The resulting binary masks were then multiplied
by the downsampled images to extract the segmented
brain regions.

Hippocampus segmentation is an important struc-
ture to analyze in given its role in cognitive functions,
especially memory formation and spatial navigation.

The hippocampus segmentation pipeline begins with
a high-resolution input volume of dimensions (4128,
2978, 1844). To manage computational demands and
memory constraints, this 3D volume is downsampled
by a factor of 5, reducing the dimensions to approxi-
mately (826, 596, 369). The nnUNet model, is then em-
ployed in three configurations: 2D, 3D low-resolution,
and 3D full-resolution. Each configuration leverages
the strengths of both 2D and 3D convolutions, balanc-
ing computational efficiency and spatial context. The
model predicts a binary mask 3D volume, identify-
ing the hippocampus (foreground) from the rest of the
brain (background). This binary mask is then upsam-
pled back to the original high-resolution dimensions,
ensuring precise alignment with the initial input vol-
ume. This pipeline efficiently processes large volumes
while maintaining high segmentation accuracy, leverag-
ing nnUNet’s adaptive configuration capabilities.

Segmentation of 24 Regions including background
25 regions (Figure 13) The multiclass segmentation
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Figure 8: Binary Segmentation Pipeline: (a) Input Volume Dimensions: (4128, 2978, 1844), (b) Downsampled 3D Volume by a Factor of 5, (c)
Deep Learning Model: nnUNet, (d) Prediction Inputs: (i) Full Brain Volume, (ii) Half Brain Volume, (e) Prediction Outputs: Binary Mask 3D
Volume for (i) Full Brain, (ii) Half Brain, (f) Final Results: Segmentation of (i) Full Brain (combining d(i) with e(i)), (ii) Half Brain (combining
d(ii) with e(ii)).

Figure 9: Half Brain Segmentation Pipeline: (a) Input volume, (b)
Deep Learning Model, (c) 24 Region Prediction Volume, (d) Region
Label Definition. The pipeline includes the stages from initial input
of the brain volume through deep learning processing, resulting in the
prediction of 24 segmented regions, and the subsequent definition and
labeling of these regions.

pipeline begins with an original high-resolution image
(Figure 8b) that is downsampled to reduce its dimen-
sions for efficient processing. This downsampled image
is then combined with a binary prediction mask (Fig-
ure 8) generated by a deep learning model. The regions
of interest are isolated by multiplying the downsampled
image with the binary mask. The resulting combined
image is subsequently used as input for region segmen-
tation, where advanced segmentation algorithms clas-
sify each pixel or voxel into multiple classes, represent-
ing different anatomical structures or regions of interest.

During the training phase of the multiclass segmenta-
tion pipeline, the process is divided into multiple folds
to ensure robust model performance and to prevent over-
fitting. Specifically, for the 3D low-resolution configu-
ration, the training is conducted across five folds, la-
beled from 0 to 4. Each fold represents a distinct subset

of the data used for training and validation. The training
times for each fold took 30, 33, 30, 20 and 20 hours, re-
spectively for folds ”0” to ”4”. This distributed training
approach not only enhances the model’s ability to gen-
eralize but also provides a comprehensive evaluation of
its performance across different subsets of the dataset.
The varying training times reflect the computational ef-
fort and complexity associated with each fold, ensuring
that the model is thoroughly trained and validated.

Figure 10: Training and validation performance over epochs. The
graph shows the training loss (loss tr) and validation loss (loss val)
decreasing steadily, indicating the model’s learning process. Ad-
ditionally, the pseudo Dice coefficient (pseudo dice). Pseudo Dice
scores are particularly useful during training to monitor progress and
performance on specific patches, helping to identify areas where the
model may be underperforming and requires more focus Jubair and
R. (2023).
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During the training phase for the 3D full-resolution
configuration of the multiclass segmentation pipeline,
the process is also divided into five folds, labeled from
0 to 4. The training duration for each fold is as follows:
fold 0 takes 36 hours, while folds 1, 2, 3, and 4 each
take 35 hours. This approach ensures thorough training
and validation, leveraging the higher-resolution data to
achieve more precise segmentation results. The slightly
longer training duration for fold 0 indicates the initial
computational effort required, while the consistent 35-
hour training times for the subsequent folds reflect a
stable training process. This comprehensive training
across all folds ensures that the model is robust and ca-
pable of generalizing well across different subsets of the
dataset.

In the final step of the multiclass segmentation
pipeline, after segmenting the regions, the metadata is
updated to include region names. This involves assign-
ing meaningful labels to each segmented region, ensur-
ing that the segmentation results are not only accurate
but also interpretable. Each region, represented by spe-
cific intensity values, is given an anatomical name to
reflect its identity. For example, intensity value 5 might
correspond to the ”hippocampus,” while intensity value
23 might denote the ”ventricle.” Table 1 By renaming
each region in the metadata according to its intensity
value, the segmentation output becomes more informa-
tive and useful for further analysis and clinical applica-
tions. This integration of region names with intensity-
based metadata enhances the overall utility of the seg-
mentation pipeline, providing a clear and contextually
relevant map of the segmented regions, facilitating bet-
ter understanding and communication of the results.

3.7. Deep Learning Framework

The segmentation task workflow involves several crit-
ical steps to accurately process and analyze 3D volumet-
ric data. The process begins with the input of a 3D vol-
ume, which is a detailed dataset representing the struc-
ture to be analyzed. Following this, the volume under-
goes downsampling to reduce its resolution, facilitating
easier handling and processing without significant loss
of critical information. The dataset preparation phase
follows, where the input data is organized and format-
ted appropriately for the subsequent steps.

Once the dataset is ready, it is fed into a segmenta-
tion model, a specialized algorithm designed to delin-
eate different regions within the 3D volume based on the
training it has received. This model’s configuration is
critical and involves specifying the image type and reso-
lution to be used: whether a 2D slice-by-slice approach,
a 3D low-resolution volume, or a 3D full-resolution vol-
ume, depending on the specific requirements and con-
straints of the analysis.

The segmentation model then produces a binary pre-
diction for the entire brain (Figure 2 (a)) and for half

of the brain (Figure 2(c)), effectively differentiating be-
tween the regions of interest and the background. This
prediction is then multiplied with the input volume,
resulting in segmented volumes that visually and nu-
merically represent the areas identified by the model.
These segmented volumes are again illustrated for the
full brain in Figure 2(a) and for half the brain in Figure
2(c).

The segmented regions are further detailed in 1,
which presents the region segmentation results, quan-
tifying the areas identified in the predictions. Addition-
ally, region labels are defined within the 3D volume as
metadata, providing a comprehensive reference for each
segmented part, also tabulated in Table 1. This metic-
ulous process ensures that each segment is correctly la-
beled and can be used for further analysis or compari-
son, maintaining the integrity and accuracy of the seg-
mentation task.

3.8. Evaluation Metrics
3.8.1. The Dice coefficient (DSC)

The Dice coefficient, or Dice similarity coefficient
(DSC), is a metric commonly used to evaluate the ac-
curacy of segmentation results. It measures the over-
lap between the predicted segmentation and the ground
truth by calculating the ratio of twice the intersection of
the two regions to the sum of their sizes:

DS C =
2|X ∩ Y |
|X| + |Y | (2)

3.8.2. Hausdorff Distance (HD)
Hausdorff Distance (HD) measures the dissimilarity

between two sets of points or contours. It quantifies the
maximum distance between any point in one set to the
closest point in the other set:

HD(A, B) = max
(
max
a∈A

(d(a, B)),max
b∈B

(d(b, A))
)

(3)

where d(a, B) represents the minimum distance be-
tween a point a in set A and the closest point in set B,
and d(b, A) represents the minimum distance between a
point b in set B and the closest point in set A.

3.8.3. Relative Absolute Volume Difference (RAVD)
Relative Absolute Volume Difference (RAVD) is a

crucial metric in scientific research for evaluating the
accuracy and reliability of volumetric measurements,
particularly in medical imaging, geospatial studies, and
3D modeling. Defined as

RAVD =
|Vref − Vtarget|

Vref
× 100% (4)

where Vref is the reference volume and Vtarget is the
target volume, RAVD provides a clear measure of dis-
crepancy. It is widely used to assess the precision of au-
tomated segmentation algorithms in medical imaging,
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the accuracy of volumetric measurements in geospatial
applications, and the fidelity of 3D reconstructions. A
lower RAVD indicates higher accuracy, making it es-
sential for comparative analysis, accuracy assessment,
and quality control. However, its effectiveness depends
on the reliability of the reference volume and can be in-
fluenced by the size of the volumes being compared.

4. Results

In this section, the efficiency of our approaches to au-
tomatically segment various components is presented in
order of difficulty. Firstly, background removal is ad-
dressed through background and whole-brain segmen-
tation. Secondly, the segmentation of a single region,
specifically the hippocampus, is demonstrated. Lastly,
the segmentation of 24 regions in histological mouse
brain images is covered.

4.1. Background removal

Binary segmentation background and whole-brain
tissue segmentation, utilizing a 5-fold cross-validation
approach. For the 2D and 3D low-resolution config-
urations, training was conducted up to 1000 epochs,
while for improved results and experiments in 3D
full-resolution, training was extended to 2000 epochs.
The 2D configuration yielded the mean best DSC of
99.48%, with training times ranging from 20 to 55
hours. The 3D low-resolution configuration achieved
the mean best Dice scores of 99.37%, with training
times between 13 and 26 hours. The 3D full-resolution
configuration exhibited the mean best Dice scores of
97.82%, with longer training times ranging from 47 to
79 hours. Our findings indicate that the 2D and 3D
low-resolution models generally achieved higher Dice
scores and required shorter training times compared to
the 3D full-resolution model. The comparative analy-

Figure 11: Comparison of manual and deep learning (nnUNet) seg-
mentation results. (a) A cross-sectional 2D view of the brain used for
segmentation. (b) A 3D rendering of the brain with segmented re-
gions.

sis between manual and deep learning-based (nnUNet)
segmentation results of a full brain 3D volume is Fig-
ure 11.The grayscale image on the left serves as a slice
from the original 3D volume used for both segmenta-
tion processes, highlighting various anatomical struc-
tures. The volume measurements obtained from man-

ual segmentation and deep learning segmentation us-
ing nnUNet, show excellent agreement between the two
methods. The manual segmentation volume is equal to
247.54 mm³ whilst the deep learning segmentation vol-
ume is 247.43 mm³ using nnUNet. This comparison
demonstrates the high accuracy of the nnUNet model,
which closely matches manual segmentation in both
volume and visual representation. The deep learning
model achieves superior smoothing performance, with-
out loosing important details such as vessels at the sur-
face, underscoring its potential for the precise and reli-
able tasks of isolating the brain from the background, a
prerequisite step to improve performance of sub-volume
segmentation but also reducing the physical size of the
volumes for subsequent training tasks.

4.2. Hippocampus segmentation
The single region segmentation has been developed

in our pipeline. This approach is considered crucial due
to the anticipated need for detailed analysis of individ-
ual brain regions in the near future. A best DSC score
of 0.9411 in 3D low-resolution imaging for hippocam-
pus segmentation has been achieved to ensure robust-
ness and effectiveness.

Figure 12: 3D Segmentation Comparison for Different Brain Regions.
The ground truth (left) and the segmented image (right). (a) Hip-
pocampus (b) Fimbria: Segment smaller regions accurately. (c) Hy-
pothalamus.

4.3. Segmentation of 24 Regions
The segmentation of 24 regions in histological mouse

brain images was performed using a 3D full-resolution
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deep learning model with five-fold cross-validation
(Figure 13). The model was trained for 1000 epochs,
with each fold requiring approximately 35 to 40 hours.
This approach achieved precise segmentation results,
with the best DSC scores obtained being 0.87. Vi-
sual representations of the segmentation results offer de-
tailed comparisons between the ground truth and the
model’s segmented images for intricate mouse brain
anatomical structures like the hippocampus, fimbria
(Figure 12 (b)), and hypothalamus. These side-by-side
3D visualizations reveal the model’s accuracy in captur-
ing fine anatomical details.

Small region identification of histological mouse
brain (Table 2) categorizes the data into five quantile-
based categories for better analysis: 1. Micro: 0.66k
to 70.99k, 2. Small: 70.99k to 379.68k, 3. Medium:
379.68k to 1,298.83k, 4. Big: 1,298.83k to 2,440.85k,
5. Large: 2,440.85k to 98,251.43k. Rows 8 to 17 of the
table represent each region with a relatively small size,
identified by pixel counts. The categorization into mi-
cro, small, medium, big, and large regions allows for a
more structured analysis of the histological mouse brain
data. Identifying these small regions is crucial for un-
derstanding the detailed anatomical and functional orga-
nization of the brain. Smaller regions, in particular, can
highlight subtle differences in tissue composition and
structure that may be overlooked in broader analyses.

For a visual representation of these categories and
their corresponding pixel counts in Figure 23.

Figure 13: Segmented half brain 24 distinct regions Table 1.

The analysis of Dice Similarity Coefficient (DSC)

scores for the segmentation of 3D microscopic vol-
umes of mouse brains reveals varying levels of accuracy
across different regions. High-performing regions such
as the Cortex (CTX+), Caudate Putamen (CPu), Hip-
pocampus (HP), Midbrain (MB), and Total Cerebellum
Brain (TCB) demonstrated consistently high accuracy,
with scores approaching 1.0. These results indicate ro-
bust and reliable segmentation performance in these re-
gions. In contrast, regions like the Amygdala (A), Indu-
sium Griseum (ig), Anterior Commissure (ac), Internal
Capsule (ic), and Stria Terminalis (st) exhibited moder-
ate to low accuracy, highlighting significant variability
and inconsistency in segmentation. These findings sug-
gest that further refinement of segmentation algorithms
is needed for these regions. Particularly, the Amygdala
(A) and Indusium Griseum (ig) require substantial im-
provements to achieve higher consistency and accuracy.
The Anterior Commissure (ac) and Internal Capsule (ic)
also demand more robust segmentation methods due to
their considerable variability. The Stria Terminalis (st)
and Medulla (MY), despite some high accuracy scores,
showed inconsistencies and outliers, indicating a need
for algorithm enhancement.

The Dice Similarity Coefficient (DSC) measures the
overlap between segmented regions, with scores closer
to 1 indicating better segmentation accuracy (Figure
14). Regions such as the Cortex (CTX+), Caudate Puta-
men (CPu), Dentate Gyrus (DG), Hippocampus (HP),
and Retro Hippocampus (RHP) show high DSC scores,
close to 1, with small interquartile ranges (IQRs), in-
dicating high segmentation accuracy. Conversely, re-
gions like the Amygdala (A), Fimbria (fi), Internal Cap-
sule (ic), Stria Terminalis (st), and Fornix (f) have more
varied DSC scores with larger IQRs, indicating lower
and more variable segmentation accuracy. Outliers in
regions such as the Fimbria (fi), Internal Capsule (ic),
and Hypothalamus (HY) indicate occasional poor seg-
mentation performance, often due to the smaller size of
these regions.

Hausdorff Distance (HD) measures the maximum
distance between boundary points (Figure 15), and val-
ues vary widely across regions. Regions like the Cor-
tex (CTX+), Corpus Callosum (cc+), Caudate Putamen
(CPu), Dentate Gyrus (DG), Hippocampus (HP), and
Retro Hippocampus (RHP) exhibit lower Hausdorff dis-
tances with smaller IQRs, indicating better boundary
matching and consistency. However, regions such as the
Amygdala (A), Fimbria (fi), Internal Capsule (ic), and
Stria Terminalis (st) exhibit higher and more variable
Hausdorff distances, suggesting less accurate boundary
matching. Outliers are present in several regions, par-
ticularly in the Cortex (CTX+), Corpus Callosum (cc+),
Dentate Gyrus (DG), and Hypothalamus (HY), indicat-
ing occasional large deviations in boundary matching
accuracy.

Relative Absolute Volume Difference (RAVD), the
regions exhibit varying RAVD values Figure 16, indi-
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Table 2: Identification of a small region of a histological mouse brain, with all numerical formats presented in thousands. Volumetric samples are
denoted with the NG prefix, by unique identifiers

S.No Region NG4108 NG4111 NG4116 NG4119 NG4115 NG4120 NG4114 NG4117 NG4109 NG4112 NG4110 NG4113
1 BG 100013.582 52176.648 94258.667 59210.298 70221.045 77420.685 52349.698 55401.809 61268.942 47907.029 98251.432 82188.426
2 CTX+ 13123.790 12031.753 13780.858 11017.591 15015.588 10144.349 9309.837 11340.841 15066.101 13047.163 14989.756 13846.545
3 cc+ 908.045 988.205 999.139 728.859 1061.451 809.458 737.164 901.475 1030.712 1103.185 1130.853 1071.331
4 CPu 5677.092 5888.111 5242.927 4939.545 5739.518 5731.060 5049.717 5393.050 5701.843 5799.002 5882.564 5793.639
5 DG 686.849 721.753 597.888 536.471 671.236 795.151 597.663 590.658 671.340 700.306 652.725 713.284
6 HP 1506.707 1580.086 1460.669 1310.951 1706.985 1362.181 1423.286 1425.295 1611.106 1734.336 1810.564 1818.336
7 RHP 1297.884 1208.729 1594.038 1240.692 1722.468 1143.885 1148.011 1382.542 1603.376 1648.532 1654.333 1435.451
8 A 250.754 182.951 284.201 189.176 300.290 172.005 0.664 224.049 238.222 274.419 274.820 282.921
9 ig 10.214 9.567 11.761 13.625 13.165 7.224 5.478 10.612 10.908 8.309 13.005 10.483
10 fi 272.023 289.190 268.655 168.731 279.582 234.104 250.916 240.480 282.728 288.411 281.690 304.269
11 ac 109.093 93.982 71.913 65.628 77.476 149.950 71.942 118.400 110.986 72.515 136.343 80.568
12 ic 365.518 80.659 80.808 48.385 407.570 470.984 67.236 361.389 414.435 60.174 406.359 72.852
13 st 77.500 397.402 411.726 341.105 66.444 53.237 313.471 65.055 66.817 429.097 72.708 336.290
14 f 66.535 146.450 137.898 131.135 65.727 37.453 104.768 49.852 70.986 100.821 65.740 138.812
15 och 80.672 79.258 60.538 44.736 95.518 77.056 50.204 91.356 99.020 101.268 86.433 70.648
16 fr 19.389 18.241 18.111 19.954 19.267 19.807 22.124 15.584 22.303 23.305 16.784 25.441
17 Hb 86.286 80.434 83.132 37.666 76.835 89.292 71.064 72.663 82.581 78.683 69.167 76.541
18 TH 2087.008 2115.503 1892.110 1447.076 1945.981 1766.101 1620.322 1728.938 1957.220 2002.845 2098.648 2160.638
19 HY 1445.082 1474.367 1543.971 1295.246 1422.002 1784.889 1385.987 1411.380 1567.157 1253.825 1632.031 1431.069
20 MB 3766.019 3812.262 3318.945 3457.845 3460.886 3790.082 3478.057 3424.259 3518.657 3753.363 3649.733 3762.247
21 P 2427.230 2336.754 2262.427 2324.468 2271.670 2440.851 2597.559 2314.373 3791.796 2343.732 2528.145 2522.491
22 MY 3055.420 3278.200 2907.002 2540.666 3225.173 3193.210 2903.537 2630.564 7.674 3417.776 2991.147 3246.510
23 TCB 5527.757 5066.770 4999.864 5434.437 5467.869 5570.270 5255.514 5148.194 7036.126 5481.347 5567.192 5121.827
24 V 428.195 287.618 572.934 1006.373 349.682 500.024 577.988 386.138 385.297 284.353 619.899 368.103
25 OB 392.990 1241.962 2327.788 315.521 361.600 781.872 560.747 901.480 264.595 571.324 804.959 512.054

Figure 14: Box Plot of Dice Similarity (DS) Scores by Region Table 1. The box plot illustrates the distribution of DS scores for different brain
regions, indicating the model’s segmentation accuracy.

cating differences in volume calculation accuracy. Ob-
servations include regions like Cortex (CTX+), Cor-
pus Callosum (cc+), Caudate Putamen (CPu), Den-
tate Gyrus (DG), Hippocampus (HP), and Retro Hip-
pocampus (RHP) showing RAVD values close to 2, with

small interquartile ranges (IQRs), suggesting high con-
sistency. In contrast, regions such as Amygdala (A),
Indusium Griseum (ig), Fimbria (fi), Anterior Commis-
sure (ac), Internal Capsule (ic), Stria Terminalis (st),
and Fornix (f) show more spread-out RAVD values with
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Table 3: Region Segmentation Results. Volumetric samples are denoted with the NG prefix, by unique identifiers
S.No Region NG4108 NG4111 NG4116 NG4115 NG4119 NG4120 NG4114 NG4117 NG4109 NG4112 NG4110 NG4113
1 background 0.998 0.996 0.999 0.999 0.999 0.999 0.997 0.999 0.999 0.994 0.999 0.999
2 CTX+ 0.975 0.966 0.941 0.978 0.957 0.964 0.970 0.977 0.975 0.970 0.979 0.979
3 cc+ 0.908 0.884 0.877 0.875 0.799 0.851 0.882 0.882 0.891 0.868 0.894 0.888
4 CPu 0.965 0.953 0.951 0.958 0.937 0.950 0.957 0.957 0.958 0.957 0.953 0.959
5 DG 0.918 0.935 0.929 0.919 0.900 0.807 0.921 0.913 0.923 0.921 0.900 0.928
6 HP 0.933 0.898 0.927 0.928 0.904 0.916 0.932 0.936 0.927 0.927 0.922 0.925
7 RHP 0.850 0.876 0.894 0.921 0.893 0.865 0.914 0.910 0.895 0.902 0.911 0.892
8 A 0.816 0.665 0.893 0.829 0.877 0.754 0.006 0.887 0.831 0.846 0.877 0.842
9 ig 0.787 0.720 0.762 0.769 0.630 0.767 0.755 0.768 0.825 0.811 0.617 0.810
10 fi 0.923 0.924 0.926 0.911 0.754 0.917 0.919 0.915 0.922 0.914 0.908 0.912
11 ac 0.460 0.751 0.012 0.477 0.124 0.459 0.543 0.831 0.013 0.649 0.729 0.000
12 ic 0.583 0.728 0.024 0.580 0.377 0.592 0.538 0.835 0.232 0.379 0.759 0.129
13 st 0.402 0.817 0.033 0.305 0.699 0.601 0.776 0.689 0.142 0.713 0.477 0.565
14 f 0.310 0.828 0.407 0.372 0.770 0.387 0.495 0.770 0.071 0.778 0.549 0.496
15 och 0.607 0.734 0.111 0.428 0.561 0.751 0.381 0.818 0.273 0.445 0.243 0.214
16 fr 0.802 0.804 0.758 0.795 0.848 0.780 0.791 0.789 0.836 0.787 0.764 0.833
17 Hb 0.887 0.898 0.844 0.896 0.538 0.840 0.856 0.894 0.900 0.922 0.875 0.883
18 TH 0.943 0.939 0.956 0.948 0.902 0.947 0.946 0.942 0.951 0.942 0.942 0.950
19 HY 0.911 0.881 0.905 0.926 0.857 0.874 0.921 0.905 0.909 0.887 0.921 0.906
20 MB 0.960 0.952 0.961 0.962 0.954 0.964 0.963 0.961 0.967 0.954 0.957 0.966
21 P 0.962 0.938 0.947 0.952 0.910 0.931 0.878 0.941 0.771 0.929 0.945 0.946
22 MY 0.975 0.970 0.967 0.969 0.834 0.940 0.927 0.959 0.001 0.955 0.971 0.969
23 TCB 0.989 0.986 0.990 0.986 0.962 0.988 0.985 0.989 0.895 0.975 0.991 0.987
24 V 0.913 0.904 0.937 0.917 0.650 0.950 0.819 0.923 0.924 0.871 0.949 0.880
25 OB 0.900 0.982 0.669 0.947 0.892 0.973 0.968 0.985 0.487 0.946 0.985 0.966

Figure 15: Box Plot of Hausdorff Distance (HD) Scores by Region Table 1.

larger IQRs, indicating more variability in volume dif-
ferences. Additionally, outliers are observed in several
regions, notably in regions like Fimbria (fi), Internal
Capsule (ic), and Fornix (f), suggesting occasional sig-

nificant deviations from the median.
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Figure 16: Box Plot of Relative Absolute Volume Difference (RAVD) by Region Table 1.

Figure 17: 3D full resolution segmentation result of 24 region values of different volume IDs across various samples. The color scale represents
the values, where red indicates values equal to or less than 0.20, orange indicates values between 0.20 and 0.40, yellow indicates values between
0.40 and 0.60, light green indicates values between 0.60 and 0.80, and green indicates values equal to or more than 0.80.

22.15



Deep Learning-Driven Automated Segmentation in High-Resolution 3D Histological Mouse Brain Imaging 16

Figure 18: 3D low-resolution segmentation result of 24 region values of different volume IDs across various samples. The color scale represents
the values, where red indicates values equal to or less than 0.20, orange indicates values between 0.20 and 0.40, yellow indicates values between
0.40 and 0.60, light green indicates values between 0.60 and 0.80, and green indicates values equal to or more than 0.80.

5. Discussion

In our study, the capabilities of several advanced
segmentation models to segment 3D volumes of histo-
logical mouse brain imaging. The widely recognized
U-Net and its derivatives, as well as state-of-the-art
frameworks such as nnU-Net, are included. The im-
portance of selecting appropriate preprocessing tech-
niques tailored to specific artifact types is underscored,
and future work may see the integration of advanced
machine-learning techniques to further enhance artifact
removal and image quality. Comprehensive and accu-
rate segmentation across different levels of image de-
tail is ensured by this multi-resolution strategy, making
the nnU-Net configuration highly effective for histolog-
ical mouse brain image analysis research. The exper-
imentation focuses on comparing these models across
different resolutions and modalities. Exceptional per-
formance in both 2D and 3D contexts has been demon-
strated by nnU-Net. Compelling results were achieved
with nnU-Net in three distinct setups: 2D segmentation,
3D segmentation at low resolution, and 3D segmenta-
tion at full resolution. The robust adaptability and effi-
ciency of nnU-Net in handling diverse data scales and
complexities were highlighted by each of these configu-
rations. The importance of selecting appropriate model
configurations and conducting multi-fold validations to
ensure robust performance is underscored. Future re-
search may see advanced techniques explored to mit-
igate variability and further enhance segmentation ac-
curacy and efficiency. The effectiveness of nnU-Net in
histological mouse brain analysis is validated by these

outcomes, suggesting that it could serve as a benchmark
for future developments in the field. As these models
continue to be refined, the goal is to further enhance
their accuracy and reduce computational demands, po-
tentially leading to faster and more reliable diagnostic
tools.

Working with large volumes of data presents signif-
icant challenges, particularly in terms of computational
time and the analysis of small regions within the dataset.
The sheer size of the data can overwhelm processing ca-
pabilities, leading to extended computing times that can
hinder timely insights and decision-making. Addition-
ally, focusing on small regions within such few number
of 3d histological image datasets can be especially dif-
ficult, as it requires precise and efficient data-handling
techniques to isolate and analyze these areas without
losing context or accuracy. This complexity often de-
mands advanced computational resources and sophisti-
cated algorithms to manage, process, and interpret the
data effectively, ensuring that the detailed insights re-
quired from small regions are not compromised by the
overarching volume.

In general, regions Cortex, Corpus Callosum, Cau-
date Putamen, Dentate Gyrus, Hippocampus, and Retro
Hippocampus consistently show better performance
across all metrics (lower RAVD and Hausdorff dis-
tances, and higher DS Scores), suggesting higher ac-
curacy and reliability in these regions. Regions such as
Amygdala, Fimbria, Internal Capsule, and Stria Termi-
nalis exhibit greater variability and lower performance
across all metrics, indicating areas that may need fur-
ther refinement in volume calculation, boundary match-
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ing, and segmentation processes. The presence of out-
liers across several regions suggests occasional devia-
tions that could be due to specific cases or anomalies in
data. Overall, the box plots provide a comprehensive
view of the performance across different regions, high-
lighting areas of strength and those requiring improve-
ment.

Building on the automatic solution for segmenting 24
regions in 3D microscopic volumes of mouse brains, fu-
ture research can be focused on refining the segmenta-
tion of smaller, intricate regions. Models can be de-
veloped to accurately identify sub-nuclei within larger
structures using high-resolution imaging and integrat-
ing data from modalities like histological images. Ad-
vanced machine learning techniques, such as convolu-
tional neural networks (CNNs) and recurrent neural net-
works (RNNs), will be utilized to enhance segmentation
accuracy. Detailed brain atlases and automated qual-
ity control mechanisms will be created to ensure reli-
ability. Collaborative platforms for data sharing and
the development of user-friendly interfaces will be es-
tablished to facilitate widespread adoption and advance
neuroanatomical and clinical research.

6. Conclusions

In this work, we proposed an automatic solution to
segment 24 regions of interest in 3D volumetric histo-
logical images of mouse brains. The proposed model
delivers excellent results across all regions and pro-
vides a foundation for developing more precise histo-
logical image segmentation systems. The model is user-
friendly and does not require any additional software or
training for laboratory staff. It processes specific types
of histological images and automatically converts them
into landmarks for the regions of interest in the mouse
brain. The system can accurately identify the 24 re-
gions in as little as 5 minutes, primarily due to valida-
tion and correction if needed, compared to an average
of 30 hours for manual segmentation. The final output
consists of .nrrd files with region labels defined for the
analyzed regions, which can be utilized by conventional
medical imaging software for various neuroanatomical
studies.
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Appendix

A. Segment Anything Model (SAM)

Segment Anything in Medical Images (MedSAM)
In the 2D space, MedSAM performs segmentation tasks
by processing 3D medical images such as CT and MRI
scans as a series of 2D slices. This approach simplifies
the segmentation process and allows for the effective
application of 2D segmentation techniques uniformly
across various types of images. Bounding box prompts
are utilized to specify the region of interest (ROI) that
needs to be segmented.

The process involves user interaction where the user
draws a bounding box around the area of interest in
the 2D slice, providing spatial context and helping the
model focus on the specific region. The coordinates of
the bounding box are transformed into a feature rep-
resentation using positional encoding, which is then
fed into the model’s prompt encoder. The image and
the encoded bounding box prompt are passed through
the model, where the image encoder extracts high-
dimensional features from the image, and the prompt
encoder processes the bounding box information. The
mask decoder fuses the image features and the prompt
features using cross-attention mechanisms to gener-
ate the final segmentation mask, highlighting the seg-
mented area within the bounding box.

Figure 19: MesSAM training.

Point prompts involve placing specific points within
the ROI to guide the segmentation process. The user
marks points on the image to indicate areas to include
or exclude in the segmentation, using positive points
(inside the ROI) and negative points (outside the ROI)
to refine the segmentation boundaries. Each point is
encoded into a high-dimensional space, capturing its
position relative to the image, and these encodings
are processed by the prompt encoder. The model re-
ceives the image and the encoded point prompts, with
the image encoder extracting relevant features and the
prompt encoder integrating the point information. The
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mask decoder combines the image features with the
point prompt features using cross-attention mechanisms
to generate a segmentation mask. These points help
the model understand the exact regions to include or
exclude, allowing for fine-tuning of the segmentation
boundaries Ma.

Figure 20: Segmentation Results Using medSAM Box Prompts on 2D
Slice Images.

Figure 21: Comparison of medSAM Point Prompts on 2D Slice Im-
ages: (a) Segmentation results without preprocessing, (b) Segmenta-
tion results with preprocessing. The preprocessing step enhances the
accuracy and clarity of the segmentation.

MaskSAM Framework The MaskSAM framework
introduces several key innovations to adapt SAM from
2D natural images to 3D medical images. The prompt
generator is employed in conjunction with SAM’s im-
age encoder to generate auxiliary classifier tokens, bi-
nary masks, and bounding boxes, thereby eliminat-
ing the need for manual prompts. The 3D Depth-
Convolution Adapter (DConvAdapter) is designed for

image embeddings to enable the extraction of 3D in-
formation, while the 3D Depth-MLP Adapter (DML-
PAdapter) is tailored for prompt embeddings to manage
the additional depth dimension in medical images.

Several modifications were made to SAM’s image en-
coder and mask decoder to cater to the unique require-
ments of 3D medical images. In the image encoder, a
sequence of convolutional layers for channel adaptation
was added, allowing varied modalities of medical im-
ages to be processed in the RGB channels used by SAM.
A learnable depth positional embedding was introduced
to better understand the depth information in medical
images. Additionally, DConvAdapter blocks were in-
serted into each attention block of the image encoder to
enhance the understanding of 3D spatial relationships.

In the mask decoder, learnable global classifier to-
kens were added to predict semantic labels for each bi-
nary mask, along with a learnable depth positional em-
bedding to capture depth information. DMLPAdapter
and DConvAdapter blocks were integrated into appro-
priate locations within the decoder to effectively process
depth information.

Furthermore, a dataset mapping pipeline was devel-
oped to convert multi-class masks into sets of binary
masks with semantic labels. This conversion process
decomposes multi-class masks into binary masks for
each class. Bipartite matching is utilized between the
predicted masks and ground truth segments to select the
best-matching predictions for loss calculation.

In our study, the results obtained from segmenting
2D histological images using the MedSAM model were
not satisfactory. We utilized bounding box prompts
to provide spatial context and point prompts to mark
specific points within regions of interest. Initially, we
tested the model without any preprocessing, which did
not yield satisfactory results. Subsequently, we ap-
plied preprocessing techniques such as normalization
and noise reduction to the images before training the
model. Despite these efforts, the segmentation results
remained unsatisfactory. These challenges highlight the
need for further optimization or alternative methods to
achieve better accuracy in 2D histological image seg-
mentation. The model struggled to accurately delin-
eate the regions of interest, often resulting in imprecise
boundaries and misclassification of anatomical struc-
tures. This suggests that while MedSAM shows poten-
tial, it may require further optimization and fine-tuning
for 2D histological image segmentation tasks. The com-
plexity and variability inherent in histological images
pose significant challenges that the current model iter-
ation could not adequately address. Consequently, our
focus has shifted towards exploring 3D volumetric ap-
proaches and advanced machine learning techniques to
achieve better accuracy and reliability in segmentation
outcomes.
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B. Segmented full brain 24 regions

Figure 22: Segmented full brain 24 regions Table 1.

C. Small region identification of histological mouse
brain by pixel counts
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Figure 23: Small region identification of histological mouse brain by pixel counts
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Abstract

Active learning strategies have emerged as a powerful tool to improve the efficiency and accuracy of segmentation
models in medical imaging, particularly when dealing with limited labeled data. In this study, we explored the ef-
fectiveness of several active learning methods, including variance-based, entropy-based, and learning loss strategies,
in enhancing the performance of a UNETR-based segmentation model for female abdominal organ segmentation.
The dataset comprised CT scans with 24 annotated abdominal organs, including the uterus, which was segmented
using nnU-Net. We then implemented an interactive active learning framework that integrates multiple strategies
and deep learning models for segmentation and automatic/manual label correction. Our findings indicate that ac-
tive learning strategies, especially the learning loss strategy, significantly outperformed random selection. This was
demonstrated by higher Dice scores with fewer iterations. For example, by the second iteration, the learning loss
strategy achieved a Dice score of 0.67, compared to 0.60 for random selection. This early advantage highlights the
efficiency of active learning in quickly improving model performance. Overall, the learning loss strategy maintained
superior performance throughout the iterations, reaching a Dice score of 0.78 by the seventh iteration. The variance
and entropy-based methods also showed notable improvements over random selection, though they tended to plateau
as the model gained confidence. These results emphasize the importance of using advanced active learning techniques
to enhance model performance while reducing annotation costs in abdominal organ segmentation.

Keywords: Monai Label, active learning, variance, entropy, learning loss, deep learning, organ segmentation,
computed tomography

1. Introduction

Segmentation is a technique of partitioning an image
into sub-constituent parts, allowing for the extraction
of useful information. This process is crucial in im-
age analysis (Mazurowski et al., 2023; Ramesh et al.,
2021). In medical imaging, several techniques have
been developed for segmentation (Chen et al., 2022;
Kim et al., 2020; Liang and Huang, 2018; Luo et al.,
2021; Wang et al., 2022; Xiao et al., 2018), particu-
larly organ segmentation which is essential for numer-
ous applications, including computer-aided diagnosis,
computer-aided surgery, and radiation therapy (Shimizu
et al., 2010; Wolz et al., 2013). Segmentation of inter-
nal structures, such as abdominal organs (liver, spleen,
colon, uterus, etc.), presents particular challenges due
to the abdomen’s many soft tissue organs, which of-

ten have low contrast from each other, heterogeneous
shapes, and complexities arising from dynamic range
changes due to air or exogenous contrast material. Thus,
accurate segmentation of these organs is critical for vari-
ous clinical and research applications, including diagno-
sis, treatment planning, and surgical navigation. How-
ever, the manual annotation of these structures is labor-
intensive, time-consuming, and subject to inter-observer
variability, and as a result, a need for automatic or semi-
automatic segmentation methods and that’s where deep
learning (DL) comes into play (Diaz-Pinto et al., 2024;
Hesamian et al., 2019; Razzak et al., 2018).

For automated medical image segmentation, deep
learning with convolutional neural networks (CNNs)
has achieved state-of-the-art results (Litjens et al., 2017;
Wang et al., 2018a,b). Despite intensive studies on deep
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learning approaches for automatic or semi-automatic
segmentation, there remain challenges that need to be
overcome before these methods can be applied to clin-
ical environments. Specifically, the abdominal multi-
organ segmentation of computed tomography (CT) im-
ages is a significant problem in medical image process-
ing since the distribution and shape of the abdominal
organs can vary significantly over time within an in-
dividual as well as throughout the population. While
continuous integration of novel datasets into the training
set provides the potential for better segmentation perfor-
mance, large-scale data collection is not only expensive
but also impractical in some situations because labeled
data are valuable resources that can be very expensive
to obtain (Rajchl et al., 2016; Wang et al., 2018b). Fur-
thermore, it is uncertain what marginal value additional
data have to offer (Xu et al., 2020). To address this prob-
lem, several researchers have leveraged the power of ac-
tive learning techniques, thereby reducing the amount of
data to be annotated by radiologists.

In contrast to passive machine learning, active learn-
ing (AL) is a special abstraction of machine learning ap-
proaches where the model/algorithm could direct users
to a group of data points that would be useful to the
model if annotated (Nath et al., 2020). In compari-
son to ”passive learning,” which is based on random
sampling, AL has been demonstrated to perform bet-
ter in other domains by using fewer annotated examples
to get a comparable level of performance (Xu et al.,
2020). AL, combined with DL, allows for the devel-
opment of a framework in which the deep network ar-
chitecture is coupled with classical techniques to evalu-
ate uncertainty for the selection of samples. Due to its
targeted selection of data points that may be described
as hard instances, active learning data selection for a
model has the potential to accelerate convergence, raise
performance with fewer data, and improve robustness
(Gal and Ghahramani, 2016; Gal et al., 2017; Nath et al.,
2020; Sourati et al., 2018; Yang et al., 2017). Nonethe-
less, as the diversity of the dataset typically affects AL
performance, more research on various AL methodolo-
gies is still necessary. To examine several AL meth-
ods, we implemented AL strategies based on entropy,
variance, and learning losses and compared these tech-
niques with the random selection methods.

2. State of the art

Active learning has gained attention in medical image
segmentation, especially for addressing the challenge of
limited annotated data. Numerous studies have been
conducted on AL across various domains. This section
presents some of the current research in AL strategies.

2.1 Diminishing Uncertainty within the Training Pool
Nath et al. (Nath et al., 2020) proposed a frame-

work that utilizes a query-by-committee approach for

AL, introducing three new strategies: increasing the
frequency of uncertain data, using mutual informa-
tion among input images as a regularizer, and adapt-
ing Dice log-likelihood for Stein variational gradient de-
scent (SVGD). These strategies significantly reduce the
amount of data needed to achieve full accuracy. The
study explores the benefits of active learning specifi-
cally for the segmentation of medical imaging datasets,
using MRI scans of the hippocampus and CT scans of
the pancreas and tumors. Their results indicate an im-
provement in terms of data reduction, achieving full
accuracy while using only 22.69% and 48.85% of the
available data for each dataset, respectively (Nath et al.,
2020; Tharwat and Schenck, 2023). However, the key
limitation of this study is computational cost as the total
training time for a single active learning method with 40
active iterations is approximately 160 and 60 GPU hours
for pancreas and hippocampus datasets, respectively.

2.2 Deep Bayesian Active Learning, and Monte Carlo
Dropout

Deep Bayesian Active Learning, leverages Bayesian
neural networks (BNNs) to model uncertainty in predic-
tions. This approach prioritizes samples with the high-
est uncertainty for labeling, effectively reducing the re-
quired labeled dataset size while maintaining high per-
formance. Utilizing dropout as a Bayesian approxima-
tion, the method employs Monte Carlo (MC) dropout
to estimate model uncertainty by performing multiple
stochastic forward passes through the network and cal-
culating the variance in predictions. This technique
allows for the creation of an ensemble of neural net-
work models, approximating the posterior distribution
of model parameters without significant computational
overhead (Gal and Ghahramani, 2016; Gal et al., 2017).

They demonstrated the efficacy of their approach
on various tasks, including regression and classifica-
tion. For instance, applying their method to the MNIST
dataset for digit classification showed significant im-
provements in predictive performance. The use of MC
dropout allowed the model to identify uncertain predic-
tions, which could then be prioritized for human label-
ing, enhancing accuracy with fewer labeled samples. In
regression tasks, such as predicting atmospheric CO2
concentrations, the Bayesian approach provided more
reliable uncertainty estimates, leading to better general-
ization on unseen data (Gal et al., 2017).

Other methods have used Monte Carlo dropout as
well, Górriz et al., used Monte Carlo dropout to model
uncertainty in the melanoma segmentation task (Gor-
riz et al., 2017), Saidu and Csató applied Monte Carlo
dropout in Bayesian UNet for semantic image seg-
mentation (Saidu and Csató, 2021), Xie et al., de-
veloped Entropy-Guided Contrastive Learning (EGCL-
Net), which combines Monte Carlo dropout with
entropy-based methods to improve semi-supervised im-
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age segmentation performance (Xie et al., 2024). The
major limitation of the Bayesian active learning ap-
proach revolves around the potential to fall into local
optima if the system is not reset and this results in higher
training time. Also, Monte Carlo simulation is generally
very expensive in terms of computation time.

2.3 Active Learning With Entropy
Siddiqui et al., proposed ViewAL, a novel active

learning strategy for semantic segmentation that ex-
ploits viewpoint consistency in multi-view datasets.
The core idea is that inconsistencies in model predic-
tions across different viewpoints provide a reliable mea-
sure of uncertainty. This method introduces a new view-
point entropy formulation to quantify these inconsisten-
cies. Additionally, it incorporates superpixel-level un-
certainty computations, leveraging localized signals in
the segmentation task to reduce annotation costs. By
focusing on areas where model predictions vary sig-
nificantly across viewpoints, ViewAL effectively iden-
tifies the most uncertain and informative samples for
labeling. The experimental results demonstrated that
ViewAL significantly reduces the amount of labeled
data required to achieve high performance. For in-
stance, ViewAL achieved 95% of the maximum achiev-
able performance using only 7% of labeled data on
the SceneNet-RGBD dataset, compared to the 14% re-
quired by the best state-of-the-art method (Siddiqui
et al., 2020). This method is generally dependent on
multi-view datasets and availability of such data is a key
limitation.

Other methods that utilize entropy-based strategies
in active learning include Minimax Active Learning by
Ebrahimi et al., which combines uncertainty and diver-
sity in an adversarial manner to select samples with
high entropy for labeling (Ebrahimi et al., 2020), and
the entropy-based active learning approach for object
detection by Wu et al., which balances computational
complexity with informative sample selection using
an Entropy-based Non-Maximum Suppression (ENMS)
strategy (Wu et al., 2022).

2.4 Active Learning with Stochastic Batches
Gaillochet et al. developed a stochastic batch query-

ing (SBQ) strategy to enhance uncertainty-based active
learning (AL) methods for medical image segmentation.
By computing uncertainty at the batch level, SBQ effec-
tively selects diverse and informative samples, improv-
ing model performance with reduced annotation effort.
Experiments on datasets like PROMISE12 and the Med-
ical Segmentation Decathlon demonstrated that SBQ
consistently outperforms traditional uncertainty-based
methods, improving metrics such as the Dice similar-
ity coefficient and Hausdorff distance. This approach
leverages both random sampling diversity and uncer-
tainty informativeness, reducing redundancy in sample

selection but could be very computationally expensive
(Gaillochet et al., 2023).

2.5 Other Approaches in Active Learning for Medical
Image Segmentation

Zhao et al. proposed DSAL, a deep active semi-
supervised learning framework combining active learn-
ing and semi-supervised strategies to optimize the use of
labeled and unlabeled data (Zhao et al., 2021). Burmeis-
ter et al. conducted a comprehensive comparison of
various AL strategies for 3D medical image segmenta-
tion on the Medical Segmentation Decathlon datasets,
providing valuable insights into the strengths and weak-
nesses of different techniques (Burmeister et al., 2022).
Wu et al. developed COWAL, a correlation-aware ac-
tive learning strategy for surgery video segmentation,
which effectively selects representative images from lo-
cal clusters through a fine-tuned latent space (Wu et al.,
2024). Also, Wang et al. in 2019 developed a two-
step query method for active learning in medical im-
age segmentation, which calculates sample complex-
ity and potential value to improve segmentation tasks
like bladder segmentation (Wang et al., 2019). Yang et
al. presented a suggestive annotation framework com-
bining fully convolutional networks with active learn-
ing to significantly reduce annotation effort by focus-
ing on the most uncertain and representative areas for
annotation (Yang et al., 2017). Additionally, Arikan
et al. proposed a deep active learning framework in-
corporating uncertainty metrics and similarity measures
to enhance AL strategies, achieving faster learning and
improved robustness in biomedical segmentation tasks
(Arikan et al., 2023). These diverse and innovative ap-
proaches highlight the potential of active learning to re-
duce annotation costs and improve model performance
in medical image segmentation, however, there is still
relatively limited literature on AL work for medical im-
age segmentation compared to classification tasks.

2.6 Contributions
The primary contribution of this work is to implement

an interactive active learning framework with uncer-
tainty strategies based on entropy, variance, and learn-
ing loss and compare the results to the traditional ran-
dom selection methods. This framework aims to im-
prove the performance of abdominal organ segmenta-
tion while reducing annotation costs. Specifically, it
demonstrates that a loss function can be trained and in-
tegrated into the training loop of a segmentation task
while also serving as an active learning data selection
strategy to improve the segmentation model. This ap-
proach reduces computation time as compared to other
strategies, as loss is easy and fast to compute. The
proposed framework addresses the high computational
costs associated with other methods by offering a more
efficient way to enhance model performance and reduce
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the amount of labeled data needed for accurate segmen-
tation, thereby making it feasible for practical applica-
tions in medical imaging.

3. Material

This section presents the source of the dataset,
the preprocessing steps, uterus segmentation, and the
methodology for collecting and merging individual la-
bels to form the desired classes for the task.

3.1. Dataset
The dataset comprises 1083 CT whole-body volumes

from patients at Duke Hospital with 248 female cases,
along with individual masks of over 120 organs. These
masks were initially generated using the TotalSegmen-
tator model (Wasserthal et al., 2023) and subsequently
post-processed with various techniques, such as those
described in (Mouheb et al., 2023) for colon refinement,
and verified by a radiologist. For this study, we selected
23 organ masks, focusing on structures within the ab-
domen. Notably, the uterus was missing from these
structures, and as our study focuses on female cases,
the inclusion of the uterus is critical. Table 1 lists the
abdominal organs included in this study with the label
tagged with * not included in the female cases.

Table 1: Full list of the abdominal organ labels used

ID Label ID Labels
0 background 13 iliac vena left
1 seminal vesicles * 14 iliac vena right
2 Rectum * 15 inferior vena cava
3 prostate 16 kidney left
4 adrenal gland left 17 kidney right
5 adrenal gland right 19 liver
6 aorta 19 pancreas
7 colon 20 portal vein and splenic vein
8 duodenum 21 small bowel
9 esophagus 22 spleen
10 gallbladder 23 stomach
11 iliac artery left 24 uterus
12 iliac artery right

3.2. Uterus Segmentation
To incorporate the uterus alongside other available

masks, the radiologist annotated about 50 cases, en-
abling us to train a model for accurate uterus segmen-
tation. Figure 1 shows the pipeline for this process.

3.2.1. Preprocessing
As a starting point, we preprocessed the CT volumes

by removing unnecessary slices along the axial plane.
The slices were bounded by the liver and femur, which
served as our reference points. This range was cho-
sen because slices outside this region do not contain the
uterus and are irrelevant to our task. By excluding these
extraneous slices, we significantly reduced the number

of irrelevant inputs fed into the model. This step was
crucial in ensuring that the training data was more fo-
cused, reducing noise and improving the model’s abil-
ity to distinguish the uterus from other structures. This
reduction not only streamlined the dataset for the model
to learn to segment the uterus more efficiently and accu-
rately but was also important in dataset optimization.

3.2.2. Model Training with nnU-Net
The nnU-Net by (Isensee et al., 2019) is an automated

deep-learning framework designed for biomedical im-
age segmentation. The nnU-Net standardizes the entire
segmentation process, including network architecture,
training, preprocessing, and postprocessing pipelines,
adapting these components based on the dataset’s char-
acteristics. This framework has demonstrated state-of-
the-art performance in various medical imaging tasks,
particularly in abdominal organ segmentation. For these
reasons, we used the nnU-net for segmenting the uterus.

3.2.3. Postprocessing
Following the segmentation, the images were recon-

structed back to their original structure by reversing the
initial preprocessing steps. This postprocessing phase
was essential to prepare the segmented uterus for inte-
gration with other abdominal organ labels and maintain
the integrity of the entire abdominal structure.

3.3. Label Integration
At this stage, we have obtained all the desired 24 la-

bels necessary for training the active learning model.
However, these labels exist as separate masks, each rep-
resenting a different organ or structure. To proceed, it is
essential to combine these individual masks into a sin-
gle multi-class segmentation label. To achieve this, We
selected one of the masks to serve as the reference. This
reference mask provides the spatial properties (such as
origin, spacing, and direction) that all other masks must
align with. Each additional mask was added to the ref-
erence mask one by one. This means that before adding
a mask to the reference, we checked for any discrep-
ancies in spatial properties. If a mask did not match
the reference in terms of origin, spacing, or direction,
it was resampled to align perfectly with the reference
mask. This step ensured consistency across all masks,
facilitating accurate merging. In addition, each organ
mask was assigned a unique label value by multiplying
the binary mask with its corresponding label and this
created a labeled image for each organ. The result of
this process was a single multi-class segmentation im-
age, where each voxel was labeled according to the or-
gan it belonged to. This label integration ensured that
all labels were accurately represented as a unified seg-
mentation mask containing 25 classes (including back-
ground) necessary for the active learning model stage.
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Figure 1: Uterus segmentation workflow

4. Method

Our methodology involves integrating MONAI Label
with the 3D Slicer to provide an interactive segmenta-
tion tool inspired by the authors in (Diaz-Pinto et al.,
2024), enabling radiologists to visualize and refine seg-
mentation results in real time. This enables radiologists
to review segmentation results and make corrections di-
rectly within the 3D Slicer environment during the ac-
tive learning process. This interactivity ensures that any
inaccuracies can be promptly addressed before the next
iteration. The Radiologist has the option to manually
edit segmentations or use automated correction tools.
The DeepEdit and DeepGrow models facilitate this by
allowing users to click on points representing the fore-
ground and background of the organ, thereby refining
the segmentation. All these features are embedded in
the 3D slicer using MONAI Label. Several AL strate-
gies are also implemented on how the data is selected
for the active learning phase. Figure 2 illustrates the
proposed pipeline for this study.

4.1. MONAI Label, and 3D Slicer Integration
MONAI Label is a free and open-source framework

designed to streamline the development of AI-based
applications aimed at reducing the time required to
annotate radiology datasets (Diaz-Pinto et al., 2024).
MONAI Label offers researchers the ability to develop
AI annotation applications focusing on their domain
of expertise. It allows researchers to readily deploy
their apps as services, which can be made available
to clinicians via their preferred user interface. Cur-
rently, MONAI Label has a plugin that can readily be
integrated into the 3D Slicer application. This inte-
gration allows researchers to connect their AI archi-

tectures with 3D Slicer, providing both interactive and
non-interactive segmentation capabilities. Clinicians
can then correct segmentation results either manually
or using the automatic AI correction features offered by
DeepEdit and DeepGrow models. This significantly re-
duces the time radiologists need to annotate cases. For
our research, the Monai Label integrated with 3D slicers
is composed of three models, the segmentation model
which can be used for automatic segmentation, the 3D
DeepGrow model which can be used for automatic an-
notation and correction of our segmentation, and finally
the DeepEdit model which can be used for both auto-
matic segmentation and interactive correction.

4.1.1. Segmentation Model

This is the primary model for automatic segmentation
of the organs which is embedded in the 3D slicer. The
model was trained on 20 cases to offer an initial segmen-
tation which we used as an inference to select unique
cases based on the AL uncertainty strategy during the
active learning phase. For this model, we utilized the
UNETR (UNet TRansformers), which employs a trans-
former as the encoder to learn sequence representations
of the input volume. This approach effectively captures
global multi-scale information, while adhering to the
successful ”U-shaped” network design for the encoder
and decoder. The transformer encoder is directly con-
nected to the decoder via skip connections at different
resolutions, facilitating the computation of the final se-
mantic segmentation output. This architecture was con-
sistently used throughout the active learning stage. Fig-
ure 3 represents the architecture of UNETR as devel-
oped by the authors in (Hatamizadeh et al., 2022).
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Figure 2: Full pipeline of our methodology

Figure 3: Overview of UNETR architecture
(Hatamizadeh et al., 2022)

4.1.2. 3D DeepGrow Model
The 3D DeepGrow model is an interactive segmenta-

tion tool based on fully convolutional neural networks
(FCNNs) (Long et al., 2015), where the user guides the
segmentation process with positive and negative clicks.
This model allows users to annotate one label at a time
across the entire volume (Sakinis et al., 2019). Differ-
ent organs or structures can be delineated based on the
placement of these clicks and the selected label. The
training process for a DeepGrow model differs from tra-
ditional deep learning segmentation due to the inclusion
of positive and negative guidance (clicks) during train-
ing. Positive and negative guidance maps are generated
based on false negatives and false positives, which de-
pend on the predictions made by the model.

The aim of this model in our work is to simplify the
process of annotating or correcting segmentation by au-
tomating it and enabling radiologists to refine the seg-
mentation through interactive clicks. Positive clicks,

known as foreground clicks, are placed within the struc-
ture of interest to guide the network in predicting the
foreground (i.e., the organ to be segmented). If the seg-
mentation result is under-segmented, additional fore-
ground clicks can be placed in areas identified as false
negatives to reduce these errors. Negative clicks, or
background clicks, are placed where the current struc-
ture of interest is over-segmented to correct false posi-
tive errors, thereby guiding the network to reduce incor-
rect foreground predictions.

4.1.3. DeepEdit Model
The DeepEdit model merges the strengths of two ap-

proaches: automatic segmentation using dynamic U-
Net (dynUNet), a variant of nnU-Net implemented in
MONAI, and an interactive segmentation method from
3D DeepGrow, into a single deep learning model. More
specifically, it allows the user to perform inference, as
a standard segmentation method (i.e. dynUNet), and
also to interactively segment part of an image using
clicks as DeepGrow. The architecture of DeepEdit can
utilize any segmentation network backbone, such as
UNET (Ronneberger et al., 2015), nnU-Net (Isensee
et al., 2019), UNETR (Hatamizadeh et al., 2022), Swi-
nUNETR (Hatamizadeh et al., 2021), or dynUNet, al-
lowing it to be tailored to specific needs.

It allows easy integration of uncertainty-based rank-
ing strategies and active learning, making it a powerful
tool for improving segmentation accuracy. The train-
ing process for DeepEdit involves two modes: standard
training for automatic segmentation and training with
user interaction simulation for interactive segmentation.
During training, the input to the network is a concate-
nation of three tensors: the image itself, positive clicks
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indicating the foreground, and negative clicks indicating
the background. The training is divided into two stages.
For half of the iterations, the tensors representing the
foreground and background points are zeros, simulating
a standard automatic segmentation model. For the other
half, positive and negative clicks are simulated, train-
ing the model like 3D DeepGrow. This dual-stage train-
ing approach enables DeepEdit to perform fully auto-
matic segmentation, semi-automatic segmentation with
initial clicks, and refinement of existing segmentations
through user-provided clicks.

Once trained, DeepEdit allows clinicians to ef-
ficiently segment datasets using either the auto-
segmentation mode or by providing clicks via 3D Slicer.
During inference, the radiologist can choose between
automatic segmentation, where the click tensors are
zeroed out, and interactive segmentation, where user-
provided clicks guide the segmentation process. Figure
4 and Figure 5 represent the schematic representation of
DeepEdit for both training and Inference mode. The dif-
ference in the figures is that clicks are simulated during
training while in inference, it is interactive.

Figure 4: Schematic representation of DeepEdit during training mode.

Figure 5: Schematic representation of DeepEdit during inference
mode

4.2. Active Learning Implementation and Strategies
Now that we have all models set up in an interac-

tive working environment that supports active learning,
we can go ahead and carry out the main task i.e. im-
plementing several active learning strategies and testing
them against the random data selection and comparing
the results. For this work, we have implemented three
active learning strategies, upon which two are based on

uncertainty estimation with variance, or entropy using
Monte Carlo Dropout, and the other is based on guiding
the segmentation by strategically training a loss function
and also using this trained function as an active learning
strategy for data selection. The idea is to prove that AL
strategies can be used to improve the performance of
supervised models with a smaller number of annotated
samples compared to random selection.

4.2.1 Monte Carlo Dropout
Monte Carlo Dropout is a technique where dropout

layers, typically used during training to prevent overfit-
ting, are also applied during inference. In our approach,
we used a dropout rate of 0.2 in the UNETR architec-
ture. We then performed 25 forward passes with dif-
ferent dropout masks, and generated a distribution of
predictions for each input. This method allowed us to
estimate the uncertainty of the model’s predictions for
two of the strategies we implemented: variance, and en-
tropy. The variation across these predictions enabled us
to identify and focus on the most uncertain samples for
active learning.

4.2.2. Uncertainty Estimation
Uncertainty estimation in active learning involves de-

termining which data points the model is least confident
about. These data points are then prioritized for annota-
tion, as their inclusion in the training set is expected to
provide the most significant improvement in the model’s
performance. There are two primary types of uncertain-
ties considered in active learning i.e. aleatoric uncer-
tainty and epistemic uncertainty (Seoh, 2020).

Aleatoric uncertainty arises from the inherent noise
in the data. It captures the variability within the data it-
self, which cannot be reduced even with more data. For
example, low-quality images or ambiguous regions in
medical scans contribute to aleatoric uncertainty. This
type of uncertainty is intrinsic to the data and remains
despite the quantity of data available.

Epistemic uncertainty, also known as model uncer-
tainty, arises from the lack of knowledge about the
model parameters. This uncertainty can be reduced by
training the model with more data. Epistemic uncer-
tainty is particularly high in regions where the model
has not seen enough similar examples during training.
Addressing this type of uncertainty is essential for im-
proving the model’s accuracy and robustness. Our ac-
tive learning strategies i.e. variance, entropy, and learn-
ing loss focus on these uncertainties. By implementing
these strategies, we can effectively identify and select
the most uncertain samples for annotation, thereby im-
proving the overall performance of the model.

4.2.3. Variance
We computed the variance as one of the ways to es-

timate the uncertainty of the model’s predictions. This
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process involves running multiple inferences on each in-
put image using Monte Carlo Dropout, which enables
us to capture the variability in the model’s predictions.
These predictions are then analyzed to compute the vari-
ance, which serves as an indicator of the model’s un-
certainty. Mathematically, the variance computation is
performed by first obtaining a set of prediction proba-
bilities for each voxel across the 25 forward passes of
Monte Carlo Simulations. These predictions are accu-
mulated and processed to calculate the variance. The
variance for each voxel is computed using the following
formula:

Variance =
N∑

i=1


1
N

M∑

j=1

(xi, j − µi)2

 (1)

where N is the number of forward passes (25 in our
case), M is the number of classes (excluding back-
ground), xi, j is the prediction probability for voxel i in
class j, and µi is the mean prediction probability for
voxel i across all forward passes.

After implementing this variance-based uncertainty
estimation, we ranked the unlabeled data points based
on their uncertainty scores. The most uncertain sam-
ples, identified by their high variance, are then selected
for annotation. This approach ensures that the model
learns from the most informative data, leading to faster
and more efficient improvements in segmentation per-
formance.

4.2.4. Entropy
To estimate the uncertainty of the model’s predic-

tions, we also computed the entropy. Entropy measures
the uncertainty in the predicted probability distribution
for each voxel, providing insights into how confident
the model is about its predictions. The process involves
running multiple inferences on each input image using
Monte Carlo Dropout, allowing us to capture the vari-
ability in the model’s predictions just as before. These
predictions are then analyzed to compute the entropy,
which serves as an indicator of the model’s uncertainty.
Mathematically, the entropy computation is performed
after obtaining a set of prediction probabilities for each
voxel via Monte Carlo Simulations. The mean probabil-
ity for each class is computed, and the entropy for each
voxel is then calculated with:

Entropy =
M∑

j=1

(pi, j log(pi, j + ϵ)) (2)

where M is the number of classes (excluding back-
ground), pi, j is the mean prediction probability for voxel

i in class j across all forward passes, and ϵ is a small
constant added to avoid the logarithm of zero.

The unlabeled data points was ranked based on their
entropy scores, and the most uncertain samples, identi-
fied by their high entropy, were then selected for anno-
tation.

4.2.5 Learning Loss Function
To implement the learning loss function, we trained

the UNETR model along with a loss function. The ratio-
nale behind this is that we are not only using the learn-
ing loss as a criterion for selecting the most informative
samples for annotation but also to guide the segmenta-
tion process. The loss function employs a global av-
erage pooling layer followed by fully connected layers
to predict a single scalar value representing the loss for
each input. The network’s forward pass generates seg-
mentation outputs, which are then utilized by the loss
predictor to estimate the corresponding loss.

4.2.5.1 Training with Learning Loss
During training, the network is optimized using a

combined loss function that includes both the segmen-
tation loss and the loss prediction error. The segmen-
tation loss is computed using the Dice loss function,
which measures the overlap between the predicted and
true segmentation. The predicted loss, obtained from
the loss predictor, is compared against the actual seg-
mentation loss using mean squared error (MSE). The
total loss function is defined as:

Total Loss = Segmentation Loss+λ·Loss Prediction Error
(3)

where λ is a weighting factor that balances the contribu-
tion of the loss prediction error. In our case, we found
0.05 to be the optimal value for λ.

4.2.5.2 Learning Loss as Active Learning Strategy
For the active learning strategy, we use the predicted

loss to rank and select the most informative samples
from the unlabeled dataset. The process involves run-
ning multiple inferences with Monte Carlo Dropout en-
abled to obtain a distribution of predicted losses. The
mean predicted loss is then computed for each sample,
and the samples with the highest mean predicted loss
are considered the most informative and are selected for
annotation. Mathematically, the mean predicted loss for
each sample is computed as:

Mean Predicted Loss =
1
N

N∑

k=1

L(k) (4)

23.8



Interactive Deep Learning-Based Active Learning Strategies for Abdominal Organ Segmentation 9

where N is the number of Monte Carlo forward passes,
and L(k) is the predicted loss for the k-th pass.

4.3 Iterative Segmentation and Active Learning
With a clear understanding of the models available

on the platform, our approach utilizes the developed ac-
tive learning strategies to select cases for segmentation
in the 3D Slicer. The segmentation models perform the
initial segmentation, and the results are corrected by the
radiologist before proceeding to the next active learning
iteration. We conducted a total of 7 iterations, and after
each iteration, we added 10 of the most uncertain cases
into the active learning process. This iterative process
ensures that the model continuously improves by focus-
ing on the most informative data, thereby enhancing the
overall segmentation results. The model was trained
using each of the strategies i.e. variance, entropy, and
learning loss and the results were compared against the
random selection method. As a whole, integrating in-
teractive segmentation and label correction within each
active learning iteration helped us not only refine the
model’s predictions but also leverage radiologist correc-
tions to guide the learning process effectively.

5. Results

In this section, we present the results of our study, in-
cluding the evaluation metrics, uterus segmentation re-
sults, and the outcomes for each active learning strat-
egy implemented. The performance of each strategy i.e.
variance-based, entropy-based, and learning loss is also
analyzed and compared in this section to show the effec-
tiveness of active learning in improving segmentation
results.

5.1 Evaluation Metrics
The primary evaluation metric for this project is the

Dice Score, which measures the similarity between the
predicted segmentation and the ground truth segmenta-
tion. The Dice Score ranges from 0 to 1, where 0 indi-
cates no overlap and 1 indicates perfect overlap. It is a
widely used evaluation metric for segmentation tasks,
particularly in medical imaging. Mathematically, the
dice score is computed by:

Dice Score =
2 × |A ∩ B|
|A| + |B| (5)

Where:

• A is the set of voxels in the predicted segmentation.

• B is the set of voxels in the ground truth segmenta-
tion.

• |A∩ B| is the number of voxels that are common to
both the predicted and ground truth segmentations
(i.e., the intersection).

• |A| is the number of voxels in the predicted seg-
mentation.

• |B| is the number of voxels in the ground truth seg-
mentation.

This metric provides a balanced measure of both pre-
cision and recall, making it an effective metric for as-
sessing the accuracy of our segmentation model during
active learning. High dice scores indicate a good over-
lap between the predicted and ground truth segmenta-
tions, while low dice scores generally imply poor re-
sults.

5.2 Uterus Segmentation Results
We initially performed the uterus segmentation using

the nnU-Net model to incorporate it into our set of la-
bels. Out of the 50 annotated cases, 40 of these cases
were used for training the nnU-Net model, and the re-
maining 10 cases were reserved for final testing to eval-
uate the model’s performance, the model recorded an
average dice score of 83% across all 10 cases. Figure 6
represents the visualization of the segmentation in pairs
where the first image for each session shows the original
CT scan without any segmentation overlay, providing a
clear view of the anatomical structures, and the second
image displays the same CT scans with the segmented
uterus highlighted in blue.

Figure 6: Results of the Uterus segmentation.

5.3 Label Integration Results
The integration of individual organ labels into a

multi-class segmentation was crucial for our study. This
process allowed us to consolidate 24 distinct organ la-
bels into a single comprehensive dataset, enabling ef-
fective training of the active learning model on female
cases that include the uterus. The integrated labels were
visualized to assess their accuracy and effectiveness as
shown in Figure 7. Additionally, Figure 8 showcases
a 3D visualization of the labels highlighting the spatial
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relationships between the various organs within the ab-
domen. The different colors in the 3D view represent
different organs, showing the effectiveness of the label
integration process in creating a detailed and accurate
multi-class segmentation.

Figure 7: CT images with the integrated labels. The original image is
on the left and the segmented organs are highlighted in different colors
on the right.

Figure 8: Illustration of the 3D view of the integrated labels

5.4 Baseline Results – Random Sampling
The baseline for this work is based on random sam-

pling, as the primary objective of active learning is to
surpass the results achieved through random selection.
This baseline provides a benchmark for evaluating the
effectiveness of each active learning strategy. By com-
paring the results of various strategies to this baseline,
we can determine the extent to which active learning
enhances the performance of the segmentation model.
In this strategy, data points are selected randomly from
the pool of unlabeled data to be included in the training
set. This process does not take into account any measure
of uncertainty, making it a straightforward but essential
point of reference.

5.5 Radiologist Correction
During the active learning process, the radiologist

refines the model’s predictions rather than annotating
from scratch. To expedite this stage, we integrate multi-
ple tools from MONAILabel, including the 3D Deep-
Grow model for automatic corrections and the man-
ual segmentation editor within MONAILabel for pre-
cise adjustments. The advantage of the 3D DeepGrow
tool lies in its ability to propagate corrections across all
slices in a 3D volume, significantly reducing the time
and effort needed for manual edits. Figure 9 illustrates
the application of the 3D DeepGrow tool for correcting
the segmentation of the liver and spleen. The top row
displays the initial segmentation prediction, while the
bottom row shows the refined segmentation after using
the DeepGrow tool. The corrections are applied uni-
formly across the 3D volume, ensuring consistency in
the final segmentation.

a b

c d

Figure 9: 3D DeepGrow tool for automatic correction of liver and
spleen (a. original slice, b. predicted slice, c. corrected prediction
showing liver clicks, d. corrected prediction showing spleen clicks)

5.6 Impact of Active Learning Strategies
In this section, we present the results from the active

learning strategy and explain how the model defines un-
certainties by plotting the uncertainty maps.

5.6.1 Variance-Based Strategy
The variance-based strategy computes the variance to

estimate the uncertainty in the model’s predictions. By
performing multiple forward passes using Monte Carlo
Dropout, we captured the variability in the model’s out-
puts. The variance is then calculated across these pre-
dictions, providing an indicator of uncertainty. The
cases with the highest variance are selected to be in-
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cluded in the training pool.
Figure 10 presents the predicted uncertainty map gen-

erated using variance. Areas with higher uncertainty are
highlighted, indicating regions where the model is less
confident in its predictions. Qualitatively, during itera-
tion 1, the model displays significant uncertainty, par-
ticularly around major organs like the kidneys, while
the liver exhibits less uncertainty. By iteration 4, the
model has learned to identify the kidneys with greater
certainty, reducing the uncertainty significantly. In the
final iteration, the model demonstrates confidence in
identifying both the kidneys and the liver, with minimal
uncertainty remaining. This visualization illustrates the
progression of the model’s learning process, highlight-
ing which parts of the image it initially finds ambiguous
and where additional training data can be most benefi-
cial when using the variance-based strategy.

a. Iteration 1 b. Iteration 4 c. Iteration 7

Figure 10: Variance uncertainty map.

5.6.2 Entropy-Based Strategy
The entropy-based strategy calculates the entropy of

the model’s predictions to estimate uncertainty. In
this method, the entropy for each voxel is calculated
to quantify the uncertainty, and this value represents
the amount of randomness or disorder in the predic-
tions, with higher entropy indicating greater uncertainty.
Cases with the highest entropy are selected to be in-
cluded in the training pool.

Figure 11 demonstrates the predicted uncertainty map
generated using entropy. Through this uncertainty map,
we observed that organs that are easier to segment do
not exhibit high entropy. For example, the liver is rel-
atively the simplest organ to segment compared to oth-
ers, and the figure illustrates that during iteration 1, the
model shows significant uncertainty across many or-
gans, including the liver. By iteration 4, the model be-
comes more certain about the liver, with very little un-
certainty remaining in organs outside the abdominal re-
gion. By iteration 7, the uncertainty further diminishes,
especially in the lower abdominal region, indicating that
the model’s predictions have become more refined and
confident. This progression highlights that entropy as an
uncertainty measure can provide valuable insights into
the model’s confidence at the pixel level and guide the
selection of the most uncertain cases for training.

a. Iteration 1 b. Iteration 4 c. Iteration 7

Figure 11: Entropy uncertainty map.

5.6.3 Learning Loss Strategy
The learning loss strategy predicts the loss directly,

providing a measure of the model’s uncertainty about
its predictions. This approach leverages a loss predic-
tor, trained alongside the segmentation model, to esti-
mate where the model’s predictions are most likely to
be incorrect. Incorporating this predicted loss into the
active learning strategy allows the model to select data
points where it is most uncertain, thus ensuring that the
most informative samples are included in the training
set.

Figure 17 shows the training curve comparing the
random selection with and without the loss function
guiding the segmentation. The results indicate that there
are noticeable improvements when random selection is
augmented with a loss function to guide the segmenta-
tion.

Figure 12: Iterative curve comparing random selection and learning
loss-based strategy.

5.6.4 Comparison of all strategies
This comparison reveals that the learning loss strat-

egy consistently outperforms all other methods, as illus-
trated in Figure 13. This implies that the method’s abil-
ity to predict and leverage loss directly for guiding both
segmentation and data selection provides a more fo-
cused learning process. The entropy and variance-based
methods also demonstrate superior performance com-
pared to random selection, indicating that these strate-
gies can identify and prioritize the most uncertain data
points for training.
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The quantitative analysis presented in Table 2 shows
the Dice scores of all implemented strategies during
each iteration. From the data, we can observe that all
active learning strategies, including random selection,
show significant improvement in Dice scores from it-
eration 1 to iteration 2. This indicates that adding new
training data in the initial iterations greatly enhances the
model’s performance. The learning loss strategy con-
sistently achieves the highest Dice scores across all it-
erations. Starting from 0.5326 in the first iteration, it
reaches 0.7770 by the eighth iteration. This demon-
strates the strategy’s effectiveness in continually im-
proving the performance of the model.

Furthermore, both the variance and entropy-based
strategies also show notable improvements over random
selection. For example, in iteration 2, the Dice scores
for variance and entropy are 0.6370 and 0.6307, respec-
tively, compared to 0.6015 for random selection. How-
ever, their performance tends to plateau after the ini-
tial iterations, indicating that while they are effective,
their impact diminishes as the model becomes more
confident with increasing training data. As the itera-
tions progress, the Dice scores for all strategies begin to
converge, with less pronounced differences in the later
stages. By iteration 7, the gap between random selection
(0.7359) and the best-performing learning loss strategy
(0.7770) is narrower compared to earlier iterations. This
convergence suggests that the greatest benefits of active
learning are realized in the early stages of training.

Figure 13: Result of active learning with all implemented strategies

Table 2: Dice scores of all implemented strategies during each
iteration

Iteration Random Variance Entropy Learning loss
1 0.4670 0.5196 0.5140 0.5326
2 0.6015 0.6370 0.6307 0.6729
3 0.6680 0.6836 0.6875 0.7130
4 0.6950 0.7020 0.7093 0.7464
5 0.7135 0.7260 0.7265 0.7581
6 0.7313 0.7353 0.7405 0.7704
7 0.7359 0.7405 0.7424 0.7770

6. Discussion

From the results, as the iterations progress, all strate-
gies (including random selection) converge towards
similar Dice scores, highlighting that the initial iter-
ations are crucial for maximizing the benefits of ac-
tive learning. The variance and entropy-based methods,
while effective, show a tendency to plateau sooner than
the learning loss strategy. This suggests that while they
are capable of identifying uncertain areas, their effec-
tiveness may diminish as the model becomes more con-
fident with increasing training data.

In contrast, the learning loss strategy’s continued su-
periority suggests it provides a more robust mechanism
for identifying areas where the model’s predictions can
be further refined. This consistency in the learning loss
result can be attributed to its dual role in guiding the
model during training and actively selecting the most
challenging samples for annotation during active learn-
ing iterations.

Additionally, one of the key advantages of the learn-
ing loss strategy is its ability to predict loss directly, pro-
viding a direct measure of how uncertain the model is
about its predictions while reducing the computational
time. In contrast, other methods rely on indirect mea-
sures of uncertainty, such as variance in predictions or
entropy of predicted probabilities, which might not al-
ways correlate perfectly with the model’s actual perfor-
mance on those samples and are computationally expen-
sive. Also, the combination of segmentation with a loss
prediction model allows the model not only to segment
images but also to estimate its performance on the loss
function, creating a self-assessment capability that en-
hances the efficiency of the learning process. This im-
plies that the learning loss model can adapt to various
datasets because it learns to predict loss based on the
specific characteristics of the dataset during training.

Overall, the performance of the learning loss strategy
continues to improve which means that it adapts dynam-
ically as the model learns. Each iteration focuses on
the current weaknesses of the model, ensuring that the
learning process is always targeted at the most benefi-
cial areas regardless of how confident the model is. This
direct alignment of the learning loss strategy with the
model’s weaknesses ensures more targeted and effec-
tive learning, ultimately leading to sustained improve-
ment over multiple iterations. The results demonstrate
that integrating advanced active learning strategies, es-
pecially the learning loss strategy, can significantly en-
hance the performance of medical image segmentation
models, and hence a powerful tool for improving diag-
nostic accuracy in clinical settings.

6.1 Limitation and Future Work
While our studies have demonstrated that active

learning strategies can significantly enhance segmen-
tation models with fewer cases, several potential lim-
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itations warrant further consideration. Active learning
strategies depend heavily on the data, and their perfor-
mance can vary significantly across different types of
datasets. To ensure the robustness and generalizability
of these methods, experiments should be conducted on a
variety of datasets, including those with different imag-
ing modalities (e.g., MRI, ultrasound) and anatomical
regions using the learning loss strategy. By perform-
ing cross-validation and external validation on diverse
datasets, the strategy can be fine-tuned to perform well
across a broad range of scenarios. This approach will
enhance the understanding and applicability of active
learning in various medical imaging contexts.

In addition, the effectiveness of active learning meth-
ods is highly sensitive to the selection of hyperparam-
eters, such as the dropout rate, the number of Monte
Carlo samples, and the weight given to the loss predic-
tion error. Conducting a series of experiments to sys-
tematically explore and optimize these hyperparameters
can help in identifying the most effective configurations.
Techniques like grid search, random search, or Bayesian
optimization can be employed to find the optimal set of
hyperparameters, though these methods could be com-
putationally expensive. Hence, future studies should
also consider developing efficient hyperparameter tun-
ing techniques that balance computational cost and per-
formance gains.

Computational complexity remains a key limitation
of active learning including using entopy and varinace.
Implementing Monte Carlo Dropout and performing
multiple forward passes for variance and entropy cal-
culations are computationally intensive (entropy and
variance). Leveraging high-performance computing re-
sources and parallel processing is essential in manag-
ing the computational load. To address this limitation,
we implemented the learning loss which is faster, how-
ever further experiments can be conducted to explore
other computational techniques, such as using approxi-
mation methods. Addressing these limitations involves
further studies and experimentation focusing on hyper-
parameter tuning, improving generalization, and man-
aging computational complexity.

7. Conclusions

We have demonstrated the potential of active learn-
ing strategies to enhance the performance of segmen-
tation models in medical imaging. By systematically
evaluating variance-based, entropy-based, and learning
loss strategies, we found that these methods can sig-
nificantly improve the efficiency of training segmenta-
tion models, particularly when labeled data is scarce.
The learning loss strategy emerged as the most effective
method, consistently outperforming other strategies, in-
cluding random selection. This strategy’s dual role in
guiding the model during training and actively selecting
the most challenging samples for annotation allowed for

sustained improvement in segmentation performance.
The variance and entropy-based methods also showed
considerable performance, effectively identifying un-
certain areas and prioritizing them for training, though
their performance plateaued as the model became more
confident.

Our findings highlight the importance of incorporat-
ing advanced active learning strategies into the training
process of segmentation models. Doing this will not
only improve the model performance but also enhance
the training efficiency by focusing on the most informa-
tive samples. Future work should aim to validate these
strategies across diverse datasets and imaging modal-
ities, optimize hyperparameters systematically, and ex-
plore computational techniques to manage the complex-
ity of active learning implementations.
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Abstract

Uveitis is a significant cause of visual impairment, affecting 1.3 to 4.1 million people worldwide every year, making
early and accessible screening crucial for reducing blindness. The gold-standard diagnosis involves counting white
blood cells (WBC) in the anterior chamber using a Slit-Lamp examination, which is often inaccessible, difficult, and
uncomfortable. Our novel Neosonics® transfontanellar ultrasound device offers a less invasive alternative. The diag-
nostic process can be further automated by deploying explainable-AI guided convolutional neural networks (CNNs)
and decision mechanisms, easing the burden on clinicians. This study presents an end-to-end framework for uveitis
screening that combines an innovative ultrasound technology with a three-stage deep-learning solution. This con-
volutional neural network (CNN) framework first applies quality control and segmentation of liquid in the anterior
chamber (AC) of the eye. Next, a binary classification using a fine-tuned Resnet50 is deployed to detect white blood
cells, indicating inflammation. A hard voting scheme is applied to decide the final diagnosis of anterior uveitis. Fi-
nally, explainable AI (xAI) techniques are deployed on top of the framework for further inspection. Our framework
has shown promising results in low-resolution quality control with an accuracy of 85 %. Segmentation of cornea
and liquid has reached Dice performance of 0.79 and 0.93, respectively. At the image level, the binary classification
of cells achieved 90.83 % accuracy and 89.32 % F1 score. In a clinical slit-lamp-based study with 26 patients, our
framework achieved a diagnostic accuracy of 25 out of 26 cases at the eye level, demonstrating its efficacy in vivo.
The proposed framework shows potential in aiding the early detection and diagnosis of uveitis.

Keywords: Transfontanellar Ultrasound, Transfer Learning, Uveitis, Non-invasive Imaging, xAI

1. Introduction

Uveitis refers to a family of intraocular inflammatory
conditions in the eye’s middle layer. The worldwide in-
cidence of uveitis is roughly in the range of 1.3 to 4.1
million new cases per year (Miserocchi et al., 2013) and
is unfortunately responsible for vision loss in 5-20 % of
patients in the USA & Europe (Bodaghi et al., 2001; ten
Doesschate, 1982; Krumpaszky and Klauss, 1992) and
probably accounts for 25 % of blindness in the develop-
ing world (Rothova et al., 1996). Numerous recent stud-
ies supported higher prevalence around the globe (Dan-
dona et al., 2000; Seepongphun et al., 2021). Uveitis
causes 2.8 - 10 % of cases of blindness in the working-
age population (Darrell et al., 1962; Suttorp-Schulten
and Rothova, 1996). Moreover, the trend of childhood
uveitis has been reported to rise to 33 % (Päivönsalo-
Hietanen et al., 2000). Children constitute 5-10 % of

cases in tertiary centers (Edelsten et al., 2003). Pedi-
atric uveitis poses a significant threat to vision, result-
ing in more than 20 % of the children experiencing vi-
sion loss in one or both eyes (Abd El Latif et al., 2019).
Pistilli et al. (2021) highlighted risk factors for reduced
vision, particularly among older individuals, Hispanics,
and smokers, emphasizing the importance of special-
ized uveitis management. Al-Ani et al. (2020) showed
moderate vision loss occurs in the follow-up period sig-
nificantly, with a substantial portion resulting in perma-
nent impairment. These findings underscore the need
for specialized care and comprehensive management
strategies in uveitis patients to mitigate visual compli-
cations.

Among all uveitis forms, Bodaghi et al. (2001) show-
cased that anterior uveitis (AU), where the anterior
chamber (AC) has inflammation, was found to be the
second most prevalent. The vast majority of children
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with uveitis were diagnosed with AU (Eser-Ozturk and
Sullu, 2020; Päivönsalo-Hietanen et al., 2000). More-
over, Al-Ani et al. (2020) showed chronic AU carries
a great risk for vision loss. Despite its dominant con-
tribution to vision loss globally (Rothova et al., 1996),
it is not easy to diagnose AU. The current standard di-
agnostic procedure involves counting white blood cells
(WBC) in AC by specialists using a slit lamp (Qian
et al., 2021) and counting the WBC by expert visual
inspection. However, this procedure introduces subjec-
tivity and relies on the human eye, posing challenges
to avoiding human errors and following treatment re-
sponses.

Efforts to define and standardize uveitis seriousness
persist (Trusko et al., 2013). The standardization of the
Uveitis Nomenclature (SUN) grading system, a scale of
0 to 4+, is now the conventional rule for clinical prac-
tice (Liu et al., 2020), yet challenges remain in achiev-
ing consistency. To secure the best clinical outcomes,
ongoing reliable monitoring and involving more than
one specialist in assessing the condition (Kempen et al.,
2008) might be needed. The potential benefits of more
quantitative, visual examination tools to provide objec-
tive assessments aim to reduce medical professionals’
workload and consultation needs.

Patients and hospitals face high costs due to non-
standardized follow-ups (de Parisot et al., 2020). This is
further compounded by the challenge of securing expe-
rienced subspecialists trained in conventional imaging
tools, such as slit-lamp.

In an ideal slit-lamp examination, light beams should
project onto the anterior chamber precisely. The prac-
titioner then focuses on whether the liquid in the ante-
rior chamber appears completely black. If it does not,
WBC will appear as tiny, flake-like white dots, increas-
ing in number as the SUN grade rises. This complex
and time-consuming process requires extensive training
and expertise, making it difficult for many medical pro-
fessionals to master (Deuchler et al., 2023; Kaur and
Gurnani, 2024). Even with this level of mastery, the di-
agnosis and grading of AU are highly subjective (Jabs
et al., 2018; Konstantopoulou et al., 2012) and more un-
reliable than instrument-based technologies or automa-
tized tools (Liu et al., 2020).

Although there are alternatives such as optical co-
herence tomography (OCT) and confocal microscopy,
these technologies are often inaccessible to the target
patient group for uveitis, particularly in developing or
underserved regions (Jennings et al., 2022; Okonkwo
et al., 2023). Moreover, their practical use is subject
to different protocols, and it is often hard to distinguish
inflammatory cells from other cell types smoothly (Mar-
ing et al., 2022; St. Croix et al., 2005). In addition, all
these alternatives require patients to remain stationary
and keep their eyes open for long examinations. This
introduces discomfort and difficulty in screening, espe-
cially for children. Additionally, the World Health Or-

ganization (WHO) has reported the lack of affordability
for medical imaging in about two-thirds of the world
(Anderson et al., 2003; Bélard et al., 2016). This of-
ten prompts medical sectors to use more affordable and
portable tools such as ultrasound (US) to address a giant
global logistical and inaccessibility problem (Dietrich
et al., 2019).

There have been recent advances for the US in uveitis
detection and were solely targeted for emergency and
primary care points (Ortiz-González et al., 2024; Tab-
but et al., 2019; Zur et al., 2016). However, to realize its
full potential, ultrasound should not be regarded solely
as an imaging modality, but also as an interactively in-
tegrated end-to-end clinical assessment tool (Dietrich
et al., 2019; Rix et al., 2018). Artificial intelligence
(AI), specifically convolutional neural networks (CNN)
can aid in building such a framework and enhance US’s
performance in quantitative and preferably automatized
tasks.

Given its deeper penetration capability, usability, and
non-invasiveness, ultrasound (US) has significant po-
tential as a screening tool compared to its competitors:
slit-lamp, confocal microscopy, and OCT. The Neoson-
ics® device, a cutting-edge, non-invasive ultrasound
screening tool, has been used to detect backscattering
signals from WBC in body fluids. The device designed
for high resolution aims to surpass the current diagnos-
tic capabilities of ultrasound technology, focusing on
detecting inflammation in the CSF that arises due to
meningitis in newborns (Ajanovic et al., 2023). Recent
research has shown that automatic cell count-to-grade
diagnosis is possible for 2D US images (Ajanovic et al.,
2023; Sial et al., 2024), utilizing a common CNN archi-
tecture, Resnet50 (He et al., 2016).

Explainable AI (xAI) techniques, which provide
transparency in deep learning models, are gaining re-
search impact and are considered more ethical, espe-
cially in healthcare applications. Additionally, xAI and
high interpretability enhance the understanding of ex-
perts and patients by revealing AI’s ’black-box’ nature’
(Amann et al., 2020; Arrieta et al., 2020; Cinà et al.,
2022; Srinivasu et al., 2022). This approach is in line
with modern AI transparency standards and is crucial
for our work in infant meningitis screening. Under-
standing and visualizing the key patterns from WBC
backscatter signals in the anterior chamber liquid are
critical for advancing the diagnostic process and im-
proving patient care.

In this paper, we deploy a pipeline to achieve end-to-
end automatic screening of Uveitis, and the detection of
WBC in AC in vivo. The first stage includes a quality
control check of processed low-resolution (LR) images,
i.e., using the device in non-focal mode and identify-
ing eye structures in the middle layer, such as cornea
and liquid. In the second stage, high resolution (HR)
deep-learning binary classification of images identifies
the presence of WBC to detect the disease at the image
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level. Finally, a hard voting scheme is applied to inte-
grate the information of a set of eye images to decide the
final diagnosis at eye level. In the last stage, we address
the explainability and interpretability of the framework.
The main contributions of this work include:

1. Proof-of-concept: Presenting a clinic-friendly ex-
plainable deep learning framework on in vivo, i.e.,
human eyes,

2. End-to-End Application: Building an end-to-end
diagnostic screening methodology within Neoson-
ics® US device,

3. Standardization: Enhancing overall screening per-
formance of anterior uveitis integrating info from
several images to ensure maximum performance.

2. State of the art

Artificial Intelligence (AI), particularly, deep learn-
ing techniques, has transformed medical diagnostics, in-
cluding US imaging. This breakthrough has reached a
level where it is now comparable to human-level analy-
sis in medical imaging (Lee et al., 2017). At the center
of these advancements, CNN models such as Resnet50
reside and are often specialized for classification, seg-
mentation, or detection tasks (Krichen, 2023). Medi-
cal domains utilizing US imaging also greatly benefit
from CNN-based technology (Yi et al., 2021). Its incor-
poration in US imaging has shown promise due to fast
screening and diagnostic insights, which benefit from
real-time algorithm deployment (Ajanovic et al., 2023;
Sial et al., 2024). The main drawbacks of the US, e.g.,
clinically confusing scattering noise and artifacts (Ra-
heem, 2021; Wu et al., 2020), might be addressed effi-
ciently by enhancing the US diagnostic capabilities (Di-
etrich et al., 2019).

Ultrasound combined with AI has enabled accurate
diagnoses of various medical conditions. Lung ul-
trasound helped diagnose COVID-19 and pneumonia
(Buda et al., 2020). 3D transrectal ultrasound and deep
learning were used for prostate segmentation (Orlando
et al., 2020). CNN-based techniques identified cancer-
ous tumors (Chi et al., 2017; Liu et al., 2017), and in-
telligent detection tools facilitated breast tumor detec-
tion (Zhang et al., 2020). Transfer learning addressed
data scarcity issues, enhancing performance in liver fi-
brosis classification (Meng et al., 2017; Yi et al., 2021).
AI-powered ultrasound diagnostics graded inflamma-
tion severity (Lin et al., 2020), detected early gastroin-
testinal inflammation (Yang et al., 2021), classified in-
flammatory myopathies (Uçar, 2022), and monitored
fatty liver severity (Chou et al., 2021).

In light of these recent advancements, eye care was
also revolutionized. Wang et al. (2021b) and Zhang
et al. (2020) utilized B-ultrasound images to detect
cataracts using feature extraction and deep learning.
Others used ultrasound biomicroscopy to localize eye

structures and automatically assess AC angle (Shi et al.,
2019; Wang et al., 2021a). Various US applications for
detecting uveitis or inflammation in the eye also exist
(Häring et al., 1998; Zur et al., 2016) and are often des-
ignated for fast primary screening and urgent treatment
(Hoffmann et al., 2020; Ortiz-González et al., 2024;
Tabbut et al., 2019). Although found valuable for diag-
nostics (Fledelius, 1996), none have developed a com-
pletely automated solution using AI as far as our knowl-
edge reaches.

Fortuitously, when addressing the challenge of exam-
ining ’inflamed cells’ within bodily fluids, particularly
the aqueous humor (liquid of AC) in our case, innova-
tive methodologies such as Neosonics® transfontanel-
lar ultrasound (Ajanovic et al., 2023) have emerged to
alleviate concerns regarding inter-observer variability.
This noninvasive portable and accessible device utilizes
backscattering signals from tissues. The backscattering
data from the US was proven effective in estimating the
concentration of various cell suspensions in vitro set-
tings (Elvira et al., 2023; Jimenez et al., 2016; Lee et al.,
2018). Moreover, Ajanovic et al. (2023) and Sial et al.
(2024) classified Meningitis and control groups of in-
fants using this technology in vivo. These methodolo-
gies aim to enhance visualization, streamline the diag-
nostic process, and consequently facilitate automation
using computational intelligence.

In this paper, we demonstrate the in vivo application
of this technology for eye care, specifically for anterior
uveitis, showcasing its potential to revolutionize diag-
nostic approaches in this field.

3. Material and methods

3.1. Dataset

3.1.1. Data Acquisition
We use data recruited in vivo across Hospital Ger-

mans Trias i Pujol in Barcelona, Spain. Ultrasound
screening was performed on each patient’s left and right
eye using the Neosonics® device, while their eyelids
were closed and stretched with a piece of tape. The
Neosonics® device scans the eye top-to-bottom and
collects 2D images of the eye. At the end, images from
all different scans of the eye compose its eye folder. The
initial low resolution dataset has 9781 images from 447
eyes. After a series of quality controls at both frame
and eye levels, a total dataset of 1069 HR 2D ultrasound
images from 26 eyes was used. These quality controls
include the low-resolution stage and post-clinical deci-
sions made by our technicians.

The proposed framework uses existing data in a top-
down approach. Stage 1 begins with the largest database
(N=9781), where a substantial amount of experimen-
tal data is available. In this stage, many scans were in-
tentionally performed incorrectly and randomly to cre-
ate quality-control “bad” cases. However, only those
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Figure 1: Flowchart of the three-stage methodology employed for anterior uveitis diagnostic screening using ultrasound images. Images are
acquired on the patient’s eyelid using novel Neosonics® technology. Stage 1 (Quality Control and Segmentation): VGG-like deep learning
architecture filters out ultrasound images that exhibit bad quality. Then, U-Net is used to segment the cornea and liquid. Stage 2 (Screening)
employs binary classification to distinguish between ”Cells” and ”No Cells” images based on the presence of increased WBC cellularity in the AC
as visualized in ultrasound images and applies hard voting to decide the final diagnosis. Stage 3 (Explainable Artificial Intelligence (xAI): xAI
techniques are applied for model interpretability.

with “good” labels and manually annotated images were
used for segmentation. Subsequently, the best area se-
lection algorithm is tested on these successfully seg-
mented images internally, paving the way for transition-
ing to the high-resolution (HR) setting of the device.

In Stage 2 Uveitis Screening, the selection of eyes
from patients for inclusion in the study adhered to spe-
cific criteria. These criteria primarily focused on the
clinical and technological aspects of inclusion. Clin-
ically, emphasis was placed on the absence of abnor-
mal eye structures and the patient’s ability to undergo
the slit lamp test administered by a doctor. Technolog-
ically, cases were excluded if the data lacked sufficient
HR quality due to issues such as excessive noise, move-
ment, or attenuation. Finally, only 26 eyes from 20 pa-
tients were used in Stage 2. Anatomically, a person’s
left and right eyes may have different uveitis diagnoses
and slightly varying structures. Therefore, in this study,
we refer to each eye as a separate patient case, contrary
to the typical individual perspective.

3.1.2. NeoSonics® Device
Neosonics® is a cutting-edge, non-invasive ultra-

sound technology designed to detect backscatter signals
from white blood cells (WBC) in the anterior cham-
ber, which is the space inside the eye found between
the cornea’s inner surface and the iris. The Neoson-
ics® device is a novel non-commercially available de-
vice that has not yet received any certification clear-
ance. It makes spatial scans with steps smaller than
5 microns, which allows capturing the backscatter sig-
nals of individual cells within the liquid of AC, cru-
cial for analyzing the composition of serous body fluids
in a non-invasive way and at high sensitivity to struc-
tural changes not captured by conventional ultrasound
systems (Ajanovic et al., 2023). For ultrasound imag-
ing data collection, we used the Neosonics® ultrasound
probe positioned over the closed or stretched eyelids of
the patients. Figure 2 shows a mock examination and
the device.

3.1.3. Ground Truth Generation
Low-Resolution. Figure 3 illustrates labels used as
ground truth for LRQC classification. These labels were
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Figure 2: Pictures from our company trip. (left) The Author in mock-
examination (right) Neosonics® US device.

annotated according to the following criteria.

• Bad coupling: Noise, device badly placed or other
coupling artifacts are present.

• No Liquid: Good coupling but the liquid is absent
in the image.

• No Cornea: Good coupling but the cornea is absent
or not well defined.

• Good: The overall image quality is adequate; liq-
uid and cornea are defined.

Moreover, cornea and liquid masks were drawn
manually using basic computer skills. These ground
truths were generated by the team from KRIBA.AI and
double-checked by at least two people.

Figure 3: LRQC ground truths representing Bad Coupling, No Liq-
uid, No Cornea, and Good, left to right respectively. Note that the
proposed algorithm seeks both the cornea and liquid area for the next
step, Low-Resolution Segmentation.

Uveitis Screening. SUN-grading-based ground truth
was used for the dataset. The SUN grading system is
an effort to standardize Uveitis diagnosis, relying on the
count of WBC detected in the anterior chamber. Table 1
depicts each SUN grade’s corresponding cell amount
estimated in liquid (Chang et al., 2008). Considering
the SUN grading scheme, the clinical threshold for a
uveitis diagnosis starts at SUN 0.5. SUN reflects the
severity of inflammation, proportional to the number of
cells that reside in the anterior chamber. In the gold-
standard diagnosis of anterior uveitis, using a slit-lamp,

Figure 4: Bar charts showing the amount of images per LRQC label.

the SUN grade increases as the clinician observes more
cells. Parallel to slit lamp examination, our Neoson-
ics® device can also visualize WBC in this manner, vi-
sualized in Figure 5. However, both of the tools have
challenges when it comes to SUN 0.5 grade (Konstan-
topoulou et al., 2012). This severity of uveitis implies
there is a chance that cells will not appear in the liq-
uid. Quantitative screening such as slit-lamp results in
many patients not being diagnosed correctly, i.e., a high
false negative rate. In the proposed quantitative screen-
ing with ultrasound, clinicians can ensure maximal sen-
sitivity by taking multiple scans and integrating an in-
telligent framework. Therefore, each frame was anno-
tated according to the cells’ visual presence in our pro-
posed framework. These annotations were done by the
team from KRIBA.AI and double-checked by at least
two people.

Figure 5: The SUN grades’ visualization by Neosonics® device. Note
that the number of cells increases as the SUN grade increases. In SUN
0.5, there is a probability of cells not appearing, necessitating multiple
scans of the same eye while examining.

Each eye was graded by the Hospital Universitari
Germans Trias i Pujol (HUGTiP) ophthalmological unit
using a slit-lamp examination, in which the medical spe-
cialist counts the cell with the slit lamp and grades the
eye using SUN. This generated SUN ground truth and
was checked by one medical specialist. Figure 6 shows
the distribution of SUN grades across our dataset.
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Grade Cells in Field AC Flare Concentration (cell/µl) Presence of WBCs
0 <1 None 0 None

0.5 1–5 - 1-50 Possible
1 6–15 Faint 51-150 Definite
2 16–25 Moderate 151-250 Definite
3 26–50 Marked 251-500 Definite
4 >50 Intense >500 Definite

Table 1: The SUN Working Group Grading Scheme for Anterior Chamber Cells. Note that the field size is a 1 mm by 1 mm slit beam.

Figure 6: Bar charts of (left) image level count of SUN grades and (right) images with cell appearance of SUN 0.5 graded eyes.

3.1.4. Preprocessing
Initial ultrasound signals acquired from the eye rep-

resent each vertical row scanned. These row signals
are first denoised with a Butterworth filter, a conven-
tional bandpass filter designed to allow frequencies be-
tween specified low-cut and high-cut values to pass
while attenuating frequencies outside this range. Next,
the Hilbert transform is used to extract the final shape
of the ultrasound signal. After integrating the individual
scans into 2D images, an interval threshold is applied to
eliminate spikes. Finally, 2D images are normalized to
8-bit to appeal visually.

3.2. Pipeline

Figure 1 shows our pipeline in this study.

3.2.1. Stage 1. Low-Resolution
Low-resolution images can identify relevant eye

structures: eyelid, cornea, and lens. However, these im-
ages may not provide useful information on white blood
cells for two reasons: i) They might need some of the
structures, i.e., bad quality, and ii) they need to focus
on AC. Therefore, an internal algorithm needs to be de-
ployed to the Neosonics® device. This algorithm would
be responsible for

1. Quality control at the image level,
2. Segmentation of eye structures, cornea, and liquid

for each frame acquitted in the scan,
3. Selecting frames fulfilling the criteria of having

enough “liquid” area,

4. Selecting the best area coordinates within the
cornea and liquid masks,

5. Proceeding HR mode concerning these coordi-
nates.

Figure 7 illustrates this process clearly. The device
focuses on low-resolution structural details and identi-
fies and recommends the best region to be zoomed in.
The operator accepts the recommendation and a new
zoom-in acquisition is done around the focal area in
high resolution. Finally, that area is cropped according
to the internal purely mathematical algorithm.

Figure 7: Depiction of low-resolution to high-resolution switch. It is
seen that the Anterior Chamber (AC) (left) should be segmented to
decide the focal area, which will be further cropped for cell counting
(right).
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Figure 8: VGG-like custom CNN architecture. We use Dropout with
a 0.5 rate and utilize Batch Normalization to prevent overfitting.

Figure 9: U-Net architecture.

Low-Resolution Quality Control (LRQC). Quality con-
trol is necessary before switching HR to ensure an effi-
cient HR entry point. For this purpose, a larger dataset
was built and annotated with four labels. To accom-
plish LRQC classification, a VGG-like architecture was
deployed. The model consists of 6 convolutional lay-
ers that include batch normalization and LeakyRelu ac-
tivation. Then, a classification head with 3 fully con-
nected (FC) layers was deployed. A dropout function-
ality followed each FC layer with a rate of 0.5. All
these choices were made to avoid overfitting in valida-
tion. The model’s architecture is illustrated in Figure 8.

Low-Resolution Segmentation of Cornea and Liquid.
The main structures to define the target area of AU
are the cornea and liquid. WBC can be found in AC
liquid or between AC liquid and cornea. Therefore,
both are considered for the best area selection algo-
rithm of the device. Two randomly initialized U-Net, a
renowned CNN architecture (Ronneberger et al., 2015),
were trained to specialize in cornea and liquid segmen-
tation. A 4-depth variation of U-Net with double convo-
lutional blocks was adopted. The architecture of U-Net
is shown in Figure 9. The selection of the best area for
the positioning of the acoustic beam focus in the acqui-
sition’s high-resolution phase is based on a calculation
using both predicted cornea and liquid masks obtained
from the segmentation model. The algorithm attempts
to find the area inside the liquid that is found below the
cornea, as the probability of finding WBC at this point
is higher because of the signal transmission. This com-
putation ensures being inside the predicted liquid area
and under the predicted cornea.

3.2.2. Stage 2. Uveitis Screening
Figure 10 describes our workflow at this stage.

Figure 10: Flowchart of the diagnosis methodology using high-
resolution ultrasound images. Step 1 (Image Level): pretrained
Resnet50 is fine-tuned with the Leave-One-Eye-Out strategy, i.e., the
rest of the eyes were in the training set. Probabilities are counted as
predictions to distinguish between ”Cells” and ”No Cells” images ac-
cording to a cut-off threshold of 0.5. This classification is based on
the model’s confidence in seeing an increased WBC cellularity. Step
2 (Eye Level): Hard and soft voting schemes were applied to test re-
call and accuracy performance.

High-Resolution Binary Classification. After acquiring
high-resolution images, our proposed framework iden-
tifies WBCs within the frames using a transfer learning-
based deep learning algorithm. This approach ben-
efits pre-trained weights from models like ResNet50
(He et al., 2016), which are periodically updated us-
ing Python libraries such as PyTorch. These weights,
originally trained on the ImageNet dataset (Deng et al.,
2009), accelerate convergence by avoiding random ini-
tialization and effectively learning basic image features
like edges. In our implementation, we modify the
ResNet50 model’s fully connected layer to have a single
output channel for class probability. Figure 11 describes
the model architecture.

Figure 11: ResNet50 model architecture. The only modification is to
have a single output channel for binary classification.

Training Strategy. In our study, we utilize a dataset
comprising images from the same eye, which naturally
exhibits similar anatomical structures. To maintain the
integrity and validity of our model, it is essential to pre-
vent splitting images from the same eye between the
training and validation sets. Such a split could result
in data leakage, leading to the model being trained on
information overly similar to the validation data, thus
artificially inflating performance metrics. This does not
accurately reflect the model’s real-world performance
in an end-to-end application, where it is expected to
generalize to entirely unseen patient data. To address
this, we implemented a Leave-One-Eye-Out strategy,
where all images from a given patient or group are ex-
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clusively included in the training or validation set. This
method ensures that the validation set remains indepen-
dent, providing a more realistic and reliable assessment
of the model’s generalizability and performance in clin-
ical practice. We utilized the built-in function for the
leave-one-group-out split method in Python’s sklearn li-
brary.

Eye-Level Diagnosis. With class probabilities as out-
put from ResNet50, a decision mechanism is neces-
sary to determine the final diagnosis: Is the SUN
grade greater than 0? This study reported two differ-
ent schemes—hard voting and soft voting—. Hard vot-
ing relies on image-level predictions, requiring a certain
percentage of images to be classified as ’Cells’ to diag-
nose uveitis. Conversely, soft voting considers the aver-
age of probabilities, diagnosing uveitis if the probability
exceeds a specific cut-off threshold. Hard voting was
found favorable in terms of recall performance within
our dataset.

3.2.3. Stage 3. Explainable AI (xAI)
GradCAM. We employ GradCAM (Selvaraju et al.,
2020) to visualize and scrutinize the model’s learned
attributes within images for identifying WBCs. Grad-
CAM (Gradient-weighted Class Activation Mapping)
accentuates significant regions in the image where the
model concentrates, aiding in comprehending its predic-
tive process. This visualization helps in understanding
how the model identifies white blood cells and ensures
that it focuses on relevant features.

Figure 12 illustrates the GradCAM flow. The pro-
cess starts by computing the gradient of the score for a
class concerning the feature maps of the last convolu-
tional layer of Resnet50. These gradients are then glob-
ally averaged to obtain the importance weights for each
feature map. The importance weights are used to per-
form a weighted combination of the forward activation
maps. The resulting map is passed through a ReLU ac-
tivation function to discard negative values. This Grad-
CAM map is finally superimposed onto the original in-
put, providing a visual representation of the areas the
model focuses on for making its predictions.

By overlaying the GradCAM map on the input im-
age, we can visually inspect which patterns in the image
are most influential in the model’s decision-making pro-
cess. This helps in verifying the model’s focus on per-
tinent features such as the morphology and structure of
white blood cells, thereby enhancing the interpretability
and trustworthiness of the model.

UMAP. UMAP (Uniform Manifold Approximation and
Projection) is a dimensionality reduction technique that
preserves global and local data structure when project-
ing from higher to lower dimensions (McInnes et al.,
2018). It typically involves two steps: first, comput-
ing a graph that represents the data, and second, learn-
ing an embedding for that graph using non-parametric

Figure 12: GradCAM flowchart.

clustering via UMAP. These steps facilitate a smooth
reduction, reflecting how easily or difficult raw data
can be clustered. Additionally, the second step can
be replaced by a parametric approach, where the rela-
tionship between the data and neural network feature
maps is learned (Sainburg et al., 2021). This makes
UMAP especially valuable for interpreting neural net-
works, as it helps researchers visualize the complex,
high-dimensional outputs of these networks in a clearer,
two- or three-dimensional form.

Figure 13: UMAP flowchart.

Figure 13 illustrates UMAP’s role in our proposed
framework. Initially, raw data is embedded using a
non-parametric UMAP approach. Additionally, UMAP
is utilized to fit feature maps generated by ResNet50
models. These two plots together illustrate the trans-
formation before and after learning, enhancing the in-
terpretability of the learning process.

4. Results

This section contains the results of each stage of the
proposed framework. All experiments are done in a Py-
Torch environment using Google Colab services and lo-
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cal sources such as NVIDIA GeForce RTX 3050 Laptop
GPU with 11.7 GB memory.

4.1. Stage 1. Low Resolution

4.1.1. Low Resolution Quality Control (LRQC)
Experiments in low-resolution quality control

(LRQC) mainly distinguished between good and bad
labels using our VGG-like custom CNN. Consequently,
two experiments with a different grouping of class
labels were done. First, we test CNN performance in
binary classification: Good and the other three classes.
Second, 4-class classification is accomplished using
all labels shown in Figure 3. Left-to-right flipping
augmentation was applied for both experiments, and
the same hyperparameters were used. These are listed
in Table 2.

Hyperparameters Value
Optimizer Adam

Learning Rate 5 x 10-6
Batch Size 32
Image Size 128x128 px

Loss Cross-Entropy
Loss Reduction Mean

Number of Epochs 10

Table 2: The hyperparameter/settings of LRQC.

LRQC Binary Classification. The subtask of direct bi-
nary classification between good and bad-quality im-
ages was successful. A validation set of 25 % was
held out in training. Figure 14 shows results reaching
96 % validation accuracy in 10 epochs training next to
the confusion matrix figure. These results demonstrated
high performance in LQRC binary classification, en-
couraging further exploration into 4-class classification.

Figure 14: Results of binary LRQC. (left) Accuracy performance
graph, (right) Confusion matrix of the model regarding four classes
(right). 96 % validation accuracy was reached after 10 epochs of train-
ing. The model successfully distinguished classes from each other,
promoting use in application.

LRQC 4-Class Classification. In this experiment,
we ensure CNN’s performance in group-based-4-fold

cross-validation with randomized stratified split fash-
ion. The groups indicate each eye folder to control pos-
sible data leakage, justified in Subsection 3.2.2. Fig-
ure 15 shows the main LRQC task results whereas Ta-
ble 3 summarizes quantitative performance. The confu-
sion matrix reveals that errors primarily occur between
the No Cornea and No Liquid classes, indicating con-
fusion between these classes by the model. Addition-
ally, the recall scores for these classes are lower than
those for Bad Coupling and Good. These findings sug-
gest that improving LRQC classification specialization
may be achievable by increasing the amount of data in
minority classes.

Figure 15: Results of 4-class LRQC. (left) Accuracy performance
graph, (right) Confusion matrix of the model regarding four classes
(right). 85 % validation accuracy was reached after 10 epochs of train-
ing. The model successfully distinguished Good from the other three
labels, promoting use in application.

4.1.2. Low Resolution Segmentation
Segmentation was achieved for two different regions,

the cornea and AC liquid of the eye, using two separate
U-Net models. Left-to-right flipping augmentation was
applied to increase dataset size. Hyperparameters are
listed in Table 4. Figure 16 shows training and valida-
tion of Dice performance throughout the training. Fig-
ure 17 illustrates the resulting masks for the interested
areas. These outcomes demonstrate the efficacy in find-
ing the correct region of interest in AC using U-Net.

Figure 16: Results of LRS stage. 0.79 Dice score was reached after 10
epochs of training on the cornea (left). 0.93 Dice score was reached
after 20 epochs of training on liquid (right).

4.2. Stage 2. Uveitis Screening
The second stage is composed of two steps: (i) image

level and (ii) eye level classifications from HR images
of each eye.
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Class Specificity Sensitivity (Recall) Accuracy
Bad Coupling 0.95 ± 0.05 0.89 ± 0.04 0.93 ± 0.02

No Liquid 0.98 ± 0.01 0.58 ± 0.13 0.95 ± 0.02
No Cornea 0.96 ± 0.02 0.74 ± 0.2 0.93 ± 0.02

Good 0.95 ± 0.01 0.97 ± 0.02 0.96 ± 0.01

Table 3: Qualitative performance results of LRQC 4-class classification.

Hyperparameters Value
Optimizer Adam

Learning Rate 5 x 10-3
Batch Size 32
Image Size 128x128 px

Loss Mean-Squared Error
Loss Reduction Mean

Table 4: The hyperparameter/settings of LRS for Cornea and Liquid
segmentation models.

Figure 17: Visual results of Cornea (left) and AC Liquid (right) seg-
mentation. (red) Ground truth, (orange) Prediction.

4.2.1. High-Resolution Binary Classification
In HR Binary Classification, a Resnet50 pretrained

on ImageNet was downloaded from the PyTorch server
and fine-tuned with the setting described in Table 5.
Left-to-right flipping augmentation was also applied to
increase data size. Note that since we have relatively
limited data and aim to build an end-to-end application,
here the Leave-One-Eye-Out strategy is used to vali-
date performance. This is further justified in Subsection
3.2.2.

Figure 18 shows confusion matrix result depicting
the success in classifying Cells images from No Cells
images despite the high false negative. The source of
these false negatives was mainly SUN 0.5 graded eyes,
which will be addressed in the next step. Moreover,
Table 6 demonstrates validated performance scores for
the fine-tuned models. Our fine-tuned Resnet50 mod-
els achieved high performance with 90.83 % accuracy
and 97.06 % specificity. Figure 19 draws accuracy per
eye-folder, counting how many frames/images matched
correctly. None of the eye-folder had less than 50 %

Hyperparameters Value
Optimizer SGD

Learning Rate 5 x 10-4
Batch Size 16

Weight Decay 0.01
SGD Momentum 0.3

Image Size 224x224 px
Loss Cross Entropy

Loss Reduction Mean
Number of Epochs 40

Table 5: The hyperparameter/settings of HR Binary Classification.

accuracy, showing all 26 folds were better than random
guesses. Finally, Figure 20 shows a histogram of the
probability distribution of the proposed binary classifi-
cation model. This showcases the region/class in which
the model’s confidence accumulates. A potential thresh-
old for class probability was found to be 0.5, as it seems
to separate the two classes well.

Figure 18: Confusion matrices of the High-Resolution Binary Classi-
fication of Cells and No Cells regarding (left) all eyes and (right) only
SUN 0.5 graded eyes. 84 % of false negatives come from SUN 0.5
graded eyes.

4.2.2. Eye Level Diagnosis
In the final diagnostic step, we experimented with two

different voting schemes.

Soft Voting. Figure 21 shows the probability distribu-
tion map at eye level, i.e., average probabilities of eye
folders. Note that colors represent their diagnostic
(SUN-based) ground truth. Figure 22 shows the per-
formance across different threshold operations and the
confusion matrix at the ideal threshold. 0.2 was found
to be the optimal threshold in this scheme, providing
maximum recall. This indicates that for each eye to be
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Specificity Sensitivity (Recall) F1-Score Accuracy
All Eyes 97.06 83.50 89.32 90.83

Only SUN 0.5 graded eyes 95.5 70.4 75.70 85.5

Table 6: Qualitative performance results of HR Binary classification.

Figure 19: Accuracy per eye fold. No eyes’ image-level accuracy is
less than 50 %.

Figure 20: Probability distribution map as output of High-Resolution
Binary Classification task at the image level.

diagnosed as Uveitis (SUN > 0), the average probability
that images belonging to that eye contain WBC should
be higher than 20 %. This voting mechanism resulted in
4 false negatives.

Figure 21: Probability distribution map as the output of Soft-Voting
at the eye level.

Hard Voting. Figure 23 shows the performance across
different threshold operations and the confusion matrix
at the ideal threshold. 0.05 was found to be the optimal

Figure 22: Quantitative results of soft voting scheme: (left) Confu-
sion matrix and (right) Recall and accuracy performance versus cut-
off threshold chosen.

threshold in this scheme, providing 100 % recall. This
indicates that for each eye to be diagnosed as Uveitis
(SUN > 0), 5 % of images belonging to that eye should
be detected as Cells. This voting mechanism resulted in
only 1 false positive, demonstrating the highest recall at
Stage 2.

Figure 23: Quantitative results of the hard voting scheme: (left) Con-
fusion matrix and (right) Recall and accuracy performance versus cut-
off threshold (or percentage) chosen.

4.3. Stage 3. Explainable AI (xAI)

The third and final stage utilizes GradCAM and
UMAP methodologies to enhance the explainability and
interpretability of the model.

GradCAM. The pure GradCAM technique (Selvaraju
et al., 2020) was applied to Resnet50 models utiliz-
ing a Python library, specialized in explaining PyTorch-
framework models (Gildenblat and contributors, 2021).
A total of four cases are reported in this paper to show-
case findings from GradCAM.

Figure 24 encapsulates GradCAM application on
positive class, i.e., the class where WBC presence
should be found. We include success and failure cases,
one from each. The first case depicts that Cells are
found in AC liquid with high confidence, supporting our
hypothesis that WBC morphology appears as trace-like
structures in the ultrasound. Contrarily, the failed case
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shows it is still difficult to distinguish WBC morphol-
ogy from the cornea or other eye structures that can be
captured in the same frame.

Figure 24: White blood cells were seen in an eye with cells with SUN
0.5 (accuracy of 58 %). The lens can lower the model’s confidence in
seeing cells.

Figure 25 illustrates the finding on the No Cells group
in the same fashion. The case in which the model pre-
dicted a false negative shows that artifacts, probably
caused by movement, can be mistaken as WBC pres-
ence.

Figure 25: Anterior chamber visualization of an eye with no cells with
SUN 0.0 (accuracy of 92%). Artifacts due to motion during examina-
tion can mislead the model.

UMAP. A UMAP was fit on (i) raw data and (ii)
Resnet50 feature maps. The number of neighbors was
set to 5. The minimum distance was kept at default, 0.1.
These settings define how widespread the reduction will
be.

Figure 26 shows the first plot colored by both WBC
presence ground truth and SUN-grades of their belong-
ing eye. Despite the control (No Cells) group being
approximately clustered, the positive (Cells) group has
a high outlier percentage. This validates the concern
about achieving high recall, i.e., a low number of false
negatives. This is further supported by the SUN grade-
colored reduction plot, where SUN 0.5 graded eyes are
mashed with the SUN 0 graded eyes. Furthermore, the
impact of learning is shown in Figure 27, where Cells
and No Cells classes are separated better. Note that the
SUN grade-colored plot shows the difficulty of distin-
guishing SUN 0.5 from SUN 0.0, even after learning
the presence of cells. This validates our need for an
eye-level diagnosis scheme.

Figure 26: UMAP embedding on flattened image data colored by
WBC presence (left) and SUN grade (right).

Figure 27: UMAP embedding on Resnet50 feature maps colored by
WBC presence (left) and SUN grade (right).

5. Discussion

This study serves as a milestone in building an in-
telligent, explainable, and accessible end-to-end uveitis
screening utilizing a novel ultrasound imaging technol-
ogy. In this discussion, we will critically analyze the
implications of our results, consider the limitations of
the proposed technology & framework, and suggest di-
rections for future work. By examining these aspects,
we aim to offer a balanced perspective that underscores
the strengths and constraints of our proposed frame-
work. Embarking on this effort ensures that 2D Ultra-
sound technology becomes a cornerstone in enhancing
uveitis diagnostics capabilities within clinics. Thereby
it amplifies accessibility to automated eye care, particu-
larly in the developing world, and for individuals in vul-
nerable demographics such as children and those from
economically disadvantaged backgrounds. Democrati-
zation of access to sufficient uveitis screening with a
Neosonics® device employing a deep learning-based
framework also unlocks the ethical and critical AI ap-
plication in healthcare.

Our framework has shown promising results in every
stage of the study. In Stage 1 Low Resolution, image
level accuracy for LRQC has reached 85 %. Identifying
regions of the cornea and liquid in the eye was also ac-
complished with high Dice scores of 0.79 and 0.93, re-
spectively. In Stage 2 Uveitis Screening, where we deal
with HR images, first a binary classification for WBC
presence at the image level was achieved with 90.83 %
accuracy and 89.32 % F1 score. Second, hard voting-
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based diagnosis was set up with customized thresholds.
This resulted in 25/26 accuracy at the eye level, demon-
strating the proposed framework’s efficacy in vivo. In
the final stage, the HR binary classification model was
subject to xAI. First, GradCAM was deployed to unpack
features learned by the deep learning model. Patterns to
identify WBC were visualized by GradCAM heatmaps.
Furthermore, these heatmaps could point out what was
‘confusing’ for the model as WBC presence. Second,
a dimensionality reduction technique, namely UMAP,
was applied to data and extracted features by deep learn-
ing, showing that the algorithm can efficiently separate
binary classes.

5.1. Limitations

The main limitations of the proposed framework are
listed in this subsection.

1. Noise and artifacts Ultrasound is prone to noise
and clutter. Typically, this positions it more as
a tool for initial screening rather than a method
for definitive diagnosis. Due to the novelty of the
Neosonics® US device, its unique noise-related
problems are yet to be addressed.

2. Imaging protocol. Another constraint is to gener-
ate data in a standardized way. This further gets
complicated as the device is developing and many
scans are being conducted to develop the ideal pro-
tocol.

3. Ground truth generation. During the conduction of
the study, annotation-based ground truths for the
low-resolution stage were done manually and are
prone to human error. Moreover, only one medi-
cal expert examined the eyes to provide a clinical
diagnosis. This further risks the possibility of spe-
cializing in uveitis grading.

4. Data Scarcity. The HR stage was tested on 26 eyes
from 20 participants who visited the same hospital.
Their demographics were not disclosed in this re-
port and the generalizability of this work remains
unexplored due to the limited dataset.

5.2. Future Work

The future steps of this research involve first increas-
ing the dataset size by acquiring in vivo data or includ-
ing in vitro data techniques in the framework. Second,
eye-level diagnosis can be enriched by introducing en-
semble techniques to specialize cell counting, grading
eyes between SUN 0.5 - 4.

Moreover, attention-based training mechanisms can
be useful. These mechanisms would further utilize
GradCAM heatmaps to learn efficiently. Data enhance-
ment techniques such as denoising, morphological pre-
processing, and blur filtering could be experimented
with to see their impacts on each deep learning task sep-
arately.

In summary, the results obtained throughout the vari-
ous stages of our study demonstrate the robustness and
efficacy of our proposed framework in advancing uveitis
screening technology. The high accuracy rates achieved
in image-level classification, coupled with the success-
ful identification of key regions within the eye, under-
score the potential of our approach to enhance diag-
nostic accuracy and efficiency. Furthermore, the de-
ployment of advanced techniques such as GradCAM
and UMAP has provided valuable insights into the in-
ner workings of our deep learning model and its learn-
ing mechanisms. These findings not only contribute to
the field of uveitis diagnostics but also pave the way for
the ethical and effective integration of AI in healthcare.
Moving forward, further validation and refinement of
our framework hold promise for revolutionizing uveitis
screening and improving patient outcomes on a global
scale.
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Abstract

This thesis presents an in-depth analysis of automated segmentation techniques for White Matter Hyperintensities
(WMH) in brain magnetic resonance images (MRIs), which are essential biomarkers in the study of neurodegenerative
diseases such as Alzheimer’s Disease. Utilizing advanced deep learning architectures, specifically Dense U-Net,
FastSurferCNN, and nnU-Net, this work assesses the performance of these models on multimodal MRI data in two
significant cohorts, the Rhineland Study and the UK Biobank. The rationale for evaluating different architectures
lies in their unique design principles and capabilities. Dense U-Net utilizes densely connected layers to enhance
feature learning, critical for the detailed and varied imaging characteristics of WMH. FastSurferCNN, designed for
speed and efficiency, enables rapid processing that is vital for clinical application and large dataset analysis. nnU-
Net, with its self-configuring networks, provides flexibility in handling diverse imaging conditions without extensive
manual tuning, ensuring robustness across different data types. These diverse strengths necessitate a comparative
analysis to identify the most effective model for accurate and efficient WMH segmentation. The research methodology
employs a rigorous, comparative analysis of the three deep learning models using a variety of input configurations
and kernel sizes to determine the most effective approaches for WMH detection and quantification. Transfer learning
techniques are employed, leveraging pseudo-labeled data from a large independent cohort to enhance the models’
learning efficacy and adaptability. This approach enables a detailed examination of the models’ abilities to process
diverse and intricate imaging datasets. The outcomes of this work suggest that all benchmarked methods can detect
WMHs in scans that follow the distribution of the training data. However, all methods struggle with segmenting out-
of-domain scans. These results indicate that there is still a need to further develop WMH detection methods that can
generalize better and support a wider range of input scans.

Keywords: White Matter Hyperintensities, Deep Learning, MRI Segmentation, Dense U-Net, FastSurferCNN,
nnU-Net, Neuroimaging, Alzheimer’s Disease, Comparative Analysis, Multi-planar MRI Data, Automated
Segmentation, Neurodegenerative Diseases, Image Processing

1 Introduction

1.1 Motivation

The role of neuropathology in the study of
Alzheimer’s Disease mainly consisted of the analysis of
postmortem diagnosis; however, advances in clinical di-
agnosis and pathophysiology redefine the importance of
neuropathologic evaluation of the brain. At the same,
a massive shift in the importance of the pathological
mechanism underlying Alzheimer’s Disease develops

decades before the significant symptoms of the disease
are evident (Trejo-Lopez et al., 2022). Hence, the early
detection of lesions in the brain’s structure influences
the diagnosis of AD. According to recent research, neu-
ropathological changes such as amyloid plaques and
neurofibrillary tangles begin to form long before clini-
cal symptoms appear (Scheltens et al., 1992). The white
matter hyperintensities (WMH) of presumed vascular
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origin, commonly refer as leukoaraiosis1, are heavily
linked to MRI of older subjects and patients with neu-
rodegenerative diseases. These lesions consist of de-
myelination and axonal degeneration with high interac-
tion with other pathological features, such as secondary
cortical and long tract damage, and contribute to ac-
cumulating brain damage (Debette and Markus, 2010;
Scheltens et al., 1992). Therefore, the early detection of
this lesion provides a significant opportunity to prevent
or reverse brain damage and mitigate cognitive deteri-
oration (Scheltens et al., 1992). The lack of pathology
studies compared with the number of WMH captured in
imaging studies is related to the difficulty in matching
up the individual small lesions on imaging with their
pathological counterpart since the end stages of the dis-
ease obliterate the earliest stages.

Historically, WMH were associated primarily with
demyelination and axonal loss. However, more recent
studies utilizing MRI have demonstrated that WMH
are also linked to microglial and endothelial activa-
tion. This suggests that periventricular and deep WMH
are part of a continuous pathological process rather
than distinct conditions (Scheltens et al., 1992). In the
broadly used imaging method, MRI structural changes
in the integrity of the brain’s white matter. The im-
ages demonstrate the heterogeneity of the WMH as the
amounts of damage it shows in Figure 1, easily recog-
nized by the degree of ”whiteness” related to the in-
creased water content and mobility, demyelination, and
axonal loss (Wardlaw et al., 2015).

(a) (b)

Figure 1: a) a normal Flair image with intense and low WMH damage
b) damage segmentation in blue and red respectively

The relevance of this lesion, since it can be mea-
sured quantitatively in a non-invasive manner was pro-
posed by Debette and Markus (2010) as an intermedi-
ated marker to identify a new risk factor for clinical tri-
als. The high clinical importance of this lesion caused
the development of computational methods for quanti-
fying the WMH volume. This has led many research
groups to develop their own scanning protocols and seg-
menting algorithms. Despite these advances, there re-
mains a critical need for more comprehensive validation
to ensure that these protocols and algorithms remain ac-
curate, reliable, and generalized across contexts and ap-

1a particular abnormal change in the appearance of white matter
near the lateral ventricles

plications. The manual measurement of the WMH vol-
ume requires a huge investment of time, hence the need
for automated approaches (Scheltens et al., 1992; Ward-
law et al., 2015).

One significant limitation of contemporary segmen-
tation techniques is their lack of accessibility via open-
source software. This restricts the ability of researchers
and practitioners to replicate and validate findings in-
dependently and may result in the propagation of inac-
curate results. Furthermore, numerous available tech-
niques require extensive tuning of their hyperparame-
ters, a process that can be complex and time-consuming.
Moreover, the open-source software must exhibit more
generalizability across diverse datasets, impeding its
practical utility and resilience in real-world settings.
Therefore, it is critical to develop a validated tool that is
open-source and capable of generalizing across various
datasets, ensuring reliability and ease of use in various
applications.

1.2 Related work
Early methods for automated segmentation utilized

features related to intensity and shape, such as k-
nearest neighbor classification with tissue type priors
(Steenwijk et al., 2013), Lesion-TOpology-preserving
Anatomical Segmentation atlas-based (Shiee et al.,
2014), the Lesion Segmentation Prediction Algorithm
based on pixel density (Shiee et al., 2010), and the
Lesion Segmentation Tool Lesion Growth Algorithm
(Schmidt et al., 2012) a deformation field segmentation
method. These techniques, achieved reasonable results
as described in Heinen et al. (2019). However, these
algorithms tend to operate slowly, necessitate building
models from the ground up for each new dataset.

Conversely, Tran et al. (2022) conducted an analy-
sis of various methodologies employed in the segmen-
tation process. The first is an advanced version of the
White matter Hyperintensities Automated Segmentation
Algorithm (WHASA) (Tran et al., 2022), which com-
bines non-linear diffusion and watershed segmentation
to delineate regions suspected them to be merged based
on intensity similarities, and candidate regions are iden-
tified using both intensity and spatial rules. Also, a
k-nearest neighbors approach within the FSL frame-
work, the Brain Intensity AbNormality Classification
Algorithm (BIANCA) by Griffanti et al. (2016), clas-
sified the voxel based on the intensity and spatial fea-
tures to produce a probability map of the lesion pres-
ence. Finally, nicMLesion (Valverde et al., 2019) is a
two-cascading convolutional neural network (CNN) de-
signed to be sensitive to lesions and specific to false pos-
itives (Tran et al., 2022).

In contrast, Park et al. (2021) presented the use of
a variant a U-Net with the inclusion of the multi-scale
highlighting foregrounds in a 2D network with data
augmentation and ensemble consisting of 5-fold cross-
validation resulting in 5 models during training with a

25.2



Automated Segmentation of White Matter Hyperintensities using Deep Learning 3

majority voting output. Furthermore, Isensee et al.
(2021) developed a 2D generic UNet, commonly used
as a benchmark in medical segmentation. This bench-
mark method relies on the easy adaptation of the Net to
every new dataset, using domain knowledge such as the
fixed design of non-dataset related dataset inputs and the
use of a selection of parameters to optimize the Net from
the dataset fingerprint. At last, Henschel et al. (2020)
presented a fully automated pipeline for neuroimaging.
This open-source project used the advantage of dense
modules as feature extractors and the CNN configura-
tion for a faster training process. The contributions of
this work are the use of max out instead of stacking the
outputs of previous layers and the use of 3 pipelines for
the analysis in the different planes. The SHIVA method
from the Early detection of white matter hyperinten-
sities using SHIVA-WMH detector by Tsuchida et al.
(2023) featured a 3D U-Net architecture with the inclu-
sion of the dropout rates in order to optimize the perfor-
mance.

The Medical Image Computing and Computer-
Assisted Intervention Society (MICCAI) is at the fore-
front of promoting innovation in medical imaging
through its annual challenges. The specific inclusion
of tasks for WMH segmentation in recent challenges
highlights the critical need for advancements in this
area. The MICCAI 2017 challenge on Brain Lesions
(BrainLes) focused on various brain lesions. It em-
phasized white matter hyperintensities, driving the cre-
ation of algorithms that improve the accuracy and re-
liability of segmentation methods. Critical contribu-
tions from these challenges include the development of
deep learning models that significantly outperform tra-
ditional segmentation methods. Innovations such as ap-
plying convolutional neural networks (CNNs), transfer
learning, and ensemble methods have enhanced the sen-
sitivity and specificity of WMH detection (Crimi and
Bakas, 2017; Medical Image Computing and Computer
Assisted Intervention Society (MICCAI), 2017; Smith
and Doe, 2018).

Despite the wide range of proposed solutions, accu-
rate and efficient segmentation of medical images re-
mains a significant problem. While traditional meth-
ods are diverse and innovative, they often fail to gen-
eralize across different datasets and conditions, primar-
ily due to their reliance on specific intensity and shape
features. One significant challenge with current meth-
ods, particularly those employing deep learning, is that
they are frequently trained on anisotropic data. This
type of data, which has different resolutions along dif-
ferent axes, may lead to the development of models
that perform well on similar data but struggle with
more generalized or heterogeneous datasets. This re-
sults in models that exhibit poor generalization capabil-
ities, which makes them less effective in real-world ap-
plications where data variability is high. Furthermore,
many deep learning models depend on a single data

modality, such as MRI, without integrating additional
types of medical imaging data that could provide com-
plementary information. This limitation diminishes the
reliability and precision of segmentation, as the models
cannot fully utilize the comprehensive range of diag-
nostic information available. While deep learning has
markedly advanced medical image segmentation, train-
ing on anisotropic data, poor generalization, and re-
liance on a single data modality continues to present
considerable obstacles.

1.3 Contributions

This thesis provides a comprehensive analysis of
medical image analysis for White Matter Hyperinten-
sities (WMH), evaluating the performance of Dense
UNet, FastSurferCNN, and nn-UNet. It investigates
the effects of multimodal information and varying in-
put types and kernel sizes on these models. Addition-
ally, the research explores the impact of transfer learn-
ing, using pseudo-labeled data from a large independent
cohort to boost model performance. Overall, the thesis
not only assesses the capabilities of deep learning ar-
chitectures in WMH segmentation but also underscores
the benefits of integrating multimodal data and applying
transfer learning in medical image analysis, focusing on
the models’ generalizability.

2 Material and Methods

2.1 Datasets

In this work, the training and validation datasets are
sourced from two population studies: the Rhineland
Study (RS)2 (Breteler et al., 2014; Stöcker, 2016)
and the UK Biobank (UKB)3 (Alfaro-Almagro et al.,
2018; Miller et al., 2016), both featuring high-resolution
imaging of 1.0 mm.

The first cohort is an ongoing population study from
Bonn, Germany, with subjects from 30 years old and
above. The study used MR scans recollected by 3 T
Siemens MAGNETOM Prisma MRI scanners equipped
with 64-channel coils. The core MRI acquisition proto-
col for every participant in the Rhineland Study includes
the following MR contrast: T1w, T2w, Flair, diffusion-
weighted, susceptibility-weighted, resting-state func-
tional, and abdominal Dixon MRI with a total net scan
time of around 45 minutes. We used the 1 mm Flair,
0.8 mm T1w, and T2w MR scans in this work (Breteler
et al., 2014; Stöcker, 2016).

From the Rhineland study using a stratified selection,
a random subset ( n = 53 ) consisting of a sex distribu-
tion of 70 % of female, 30 % male subjects, minimum
age of 32, maximum age of 89, and the average age of

2www.rheinland-studie.de
3www.ukbiobank.ac.uk
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Table 1: Demographics of the stratified selection from Rhineland
Study and UK-BioBank participants.

Rhineland Study UK-BioBank

( n=53 ) ( n=623 )

Sex
Women 37 (70%) 330 (53%)
Men 16 (30%) 293 (47%)

Age
Mean (SD) 64.8 (13.5) 64.0 (7.75)
Range 32.0 - 89.0 45.0 - 83.0

64. The UK-Biobank dataset consisted of 49,582 sub-
jects, in Figure 2 shows the white matter hyper-intensity
load distribution against the age distribution. In this dis-
tribution, we encounter a minimum age of 45, a maxi-
mum age of 83, an average age of 64, a female popula-
tion of 53 %, and a male population of 43 %. To pre-
serve the original balanced distribution of the data was
divided into three zones as delimited in Figure 2. After-
ward, a sample of a randomized algorithm takes 60 % of
the middle area and 20 % of the outer regions. The se-
lection of the data for training ( n = 449 ), validation ( n
= 83 ), and test ( n = 91 ). This procedure aims to main-
tain the same distribution as the original data; the result
distribution is shown in Figure 3 maintain the identical
distributions as shown in Figure 2.
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Figure 2: Gaussian Distribution of the UK Biobank dataset with the
Age and white matter hyperintensity load against the healthy white
matter.
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Figure 3: Gaussian distribution of our train, test, and validation data
split maintain the same distribution as the whole dataset

To validate the generalizability of the model, sam-
ples will be obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) dataset ( n=5 )

(Alzheimer’s Disease Neuroimaging Initiative, 2024)
and the whole dataset from MICCAI WMH Challenges
of 2017 ( n=52 ) (Kuijf et al., 2022) and 2016 ( n=15 )
(Commowick et al., 2021).

2.2 Manual Reference
This work relies on manual references from five dif-

ferent datasets. In the Rhineland Study, manual anno-
tations were performed on (unprocessed) Flair images
by an experienced rater using Freeview, a visualization
tool of FreeSurfer (Fischl, 2012; Fischl et al., 2002). For
the UK Biobank, utilized the output of the Brain Inten-
sity AbNormality Classification Algorithm (BIANCA)
(Griffanti et al., 2016) as the manual reference. Despite
being an automated method, this output was quality-
checked by an expert user (Sundaresan et al., 2022).

The ground truth for the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) (Alzheimer’s Disease Neu-
roimaging Initiative, 2024) dataset and the MICCAI
WMH Challenges from 2016 (Commowick et al., 2021)
and 2017 (Kuijf et al., 2022) was generated through
meticulous manual annotation by expert radiologists.
For the ADNI dataset, experts followed standardized
procedures to label brain regions and pathologies. In
the MICCAI WMH Challenges, multiple experts per-
formed manual segmentations of MRI scans. In cases
of discrepancies, consensus methods were employed to
ensure reliable ground truth annotations, providing a ro-
bust basis for evaluating segmentation algorithms.

2.3 Segmentation Networks
In this work, we used three reliable architectures

for segmentation: nn-UNet, Dense UNET, and Fast-
SurferCNN. These architectures were chosen due to
their proven effectiveness and reliability in medical im-
age segmentation tasks. Each architecture is com-
posed of four encoder-decoder layers with upsampling
and downsampling paths. Their primary difference lies
in the feature extractor block, significantly impacting
their performance and efficiency. The nn-UNet uses a
more traditional UNet structure with optimized hyper-
parameters, Dense UNET incorporates dense connec-
tivity for improved feature propagation, and FastSurfer-
CNN leverages a streamlined architecture optimized for
speed and accuracy. These distinctions and their impli-
cations will be discussed in detail in this section.

The Dense UNet incorporates the use of a Dense
Block, denoted as DB in Figure 4. This block consists
of four layers connected sequentially, where the input
to each layer includes the feature maps from all pre-
ceding layers as shown in equation 1. This connectiv-
ity is achieved through convolutions, commonly known
as dense connections. Each layer in the dense block is
represented by the operation H, which includes batch
normalization, Parametric ReLU, and a 3x3 convolu-
tion. After extensive experimentation with different ker-
nel sizes, including 5x5, the 3x3 convolution provided
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Figure 4: From top to bottom: Fast-Surfer CNN, nn-UNet and Dense UNet architectures. Input modalities are processed before being ingested into
the models. Note: Competitive Dense Block (CDB), Dense Block (DB) and Convolutional Blocks (CB).

better performance, as documented in Table 3. These
dense connections facilitate better gradient flow during
training, which helps mitigate the vanishing gradient
problem. Additionally, they promote feature reuse by
allowing layers to access features from earlier layers,
and they enhance parameter efficiency by reducing the
need for redundant filters. These advantages contribute
to the Dense UNet’s improved performance in segmen-
tation task (Jégou et al., 2017; Safarov and Whangbo,
2021).

x3 = H3([x3, x2, x1, x0]) (1)

The FastSurferCNN (Henschel et al., 2020) introduces a
variation of the Dense Block with a max-out operation
to select the most relevant features. This new block,
called the Competitive Dense Block (CDB), is depicted
in Figure 6. The maxout function reduces computa-
tional complexity and prevents the network from being
overwhelmed by redundant information, thereby prop-

agating only the most significant features through the
network. This architecture enhances efficiency and per-
formance by optimizing the model’s capacity to learn
meaningful representations (Estrada et al., 2018).

The nnU-Net (Isensee et al., 2021) architecture em-
ploys Convolutional Blocks (CB) with batch normal-
ization and activation functions, using max-pooling for
downsampling and transposed convolutions for upsam-
pling. This combination of elements ensures that the
network can handle various segmentation tasks with
high accuracy and efficiency. nnU-Net’s automatic con-
figuration process, which covers the entire segmentation
pipeline from preprocessing to post-processing, allows
it to adapt to new datasets with minimal manual inter-
vention, making it an ideal foundation for developing
advanced segmentation models.

The nnU-Net framework is particularly valuable due
to its holistic approach to segmentation pipeline con-
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Figure 5: Proposed pipeline for WMH segmentation. The pipeline is divided into three stages: First, preprocessing and data reorganization. Then,
WMH tissue segmentation within each volume plane, and finally, an ensemble of predicted label maps.

figuration. It systematically addresses the challenges
of designing and optimizing deep learning-based seg-
mentation methods by using a set of fixed, rule-based,
and empirical parameters. This automated configura-
tion process enables nnU-Net to generalize well across
diverse datasets, outperforming many specialized meth-
ods. As an out-of-the-box tool, nnU-Net simplifies the
deployment of state-of-the-art segmentation techniques,
making them accessible to a broader audience with-
out the need for extensive expertise in deep learning or
computational resources beyond standard network train-
ing (Isensee et al., 2021).

2.4 Model learning

The harmonization of data is ensured through the im-
plementation of specific pre-processing steps. This is
necessary given that the data in question has different
specifications. Initially, the images are interpolated to a
1 mm spatial resolution, after which they are aligned to
the RAS4 orientation. The objective of this standardiza-
tion process is to guarantee consistency in the physical
space and orientation of the MRI scans. Subsequently,
the images are formatted in accordance with the speci-
fications of the deep learning algorithm, which requires
an input size of 256x256x256. Rather than applying the
conventional MinMax rescaling method, we employ a
percentile method for scaling MRI intensities, which ef-
fectively redistributes the intensities between 0 and 255.

Furthermore, our preprocessing procedure entails ap-
pending a data package of three slices, both before and
after the target image. This enhances the spatial context
and intensity information, which are critical for accu-
rate segmentation. To mitigate the creation of numerous

4Right - Anterior - Superior

zero maps from our lesion segmentation map, a strategy
was implemented whereby only 10 % of the total non-
lesion samples of the MRI volume were selected. Our
labels exhibited a significant imbalance in the number of
instances per class due to the limited number of lesions
relative to the volume.

As a result, a corrective mechanism is needed. Roy
et al. (2017) suggested calculating weights for each la-
bel map with the aim of improving the propagation
of losses. This approach specifically aims to increase
the emphasis on detecting small lesions by assigning
greater weight to them in the loss propagation process.

ω(x) =
∑

l

I(S (x) = l)
median( f )

fl
+ ω0 · I(∥∇S (x)∥ > 0)

(2)
Equation 2 tailors the loss function to challenges aris-
ing from the unbalanced label map and the error in
the anatomical boundaries. The first term models the
median frequency balancing and compensates for the
class imbalance problem by highlighting classes with
low probability. The second term puts higher weight on
anatomical boundary regions to emphasize the correct
contour segmentation; at last, the term ω0 balances the
two terms (Roy et al., 2017).

In magnetic resonance imaging, the three-
dimensional representation of lesions significantly
influences segmentation outcomes due to varying
characteristics across different reference planes. The
voxel size exerts a significant influence on the data
volume for each plane. Moreover, the computational
demands for 3D segmentation are considerably more
substantial than those for 2D segmentation. Our
approach, inspired by the ensemble method of three
networks trained on three anatomical representations
(Park et al., 2021), is illustrated in our pipeline in Figure
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5. The pipeline employs three networks to generate
a view-aggregation, whereby the probability maps
generated by each network’s predictions are reoriented
to the sagittal plane. A new model is then generated by
selecting the maximum value from the 2D projections
predictions. A final segmentation is then produced by
applying a threshold of 0.9. This method effectively
converts two-dimensional data into a comprehensive
three-dimensional representation, capitalizing on the
strengths of multi-plane analysis.

Throughout the training phase, these configurations
are selected: an Adam optimizer with a Base Learning
Rate of 0.01, a weight decay of 1 × 10−4, betas between
0.9 - 0.999, and an eps of 1 × 10−8. On the other hand,
we decided to use a multistep configuration with a mile-
stone of 70 and a gamma of 0.1. The scheduler helps
us to apply a decay on the learning rate at milestone
70, maintaining a stable learning rate after this hap-
pens. Since we are limited in resources, a super epoch
methodology was implemented, assuring that every 16
epochs, the backpropagation occurred; this ensures the
same behavior no matter the hardware constraints.

The work from Yeung et al. (2022) explores the
impact of different losses on class imbalance med-
ical image segmentation. In which, a combination
of Distribution-based and Region-based losses reach
above-average results on the testing data set; therefore,
we intend to recreate a similar loss in this work. Cross-
entropy loss was chosen in the distribution part due to
the ability to measure the difference between two prob-
ability distributions for a given random variable, mini-
mize pixel-wise error, and use weights to influence the
prediction area. Given a binary classification of our
problem of lesion and background c ∈ {1, 2}, the loss
function for a single sample is defined as:

LCCE = −
2∑

c=1

wcyn,c log


exp(xn,c)
∑2

i=1 exp(xn,i)

 (3)

In which xn,i represents the raw output (logit) of the
model for the nth sample and class i, yn,c is one of the
nth sample is of class c and 0 otherwise and wc is the
weight associated with class c, used to give more or less
importance to the class in the loss computation.

The Region-based loss to use is the Dice Loss, which
measures the intersection of pixels with a sample we are
evaluating. This loss can be adapted to handle class im-
balance. However, this loss is inherently unstable where
there is highly class-imbalanced data. The formula used
in this project is shown below:

LDSC = 1 − 2T P
2T P + FP + FN

(4)

The combo loss is simple a combination of the two
losses, but we added some weights to play around the
influence of each of the losses during our training.

Ltotal = ωDSC · LDSC + ωCCE · LCCE (5)

In order to create more diversity from our data in-
gested into the model, a data augmentation pipeline was
implemented into the data loader. Table 2 summarizes
the complete augmentation list with the principal pa-
rameter used in each augmentation. In order to achieve
this pipeline, we used torchio 5 library since we can ap-
ply the data augmentation on the fly, which decreases
the use of memory. The use of this augmentation serves
to mimic real scenarios while acquiring images from
real-world data. The data usually does not have the
same visual point. In order to surpass this, we change
the zooming of the images, the direction of the images,
and move the center of the image. The Gaussian noise
and Bias Field add external distortions such as those
produced by the MRI or pixel-wise noises from the sen-
sors.

Table 2: Summary of Image Transformations. Note: The percentage
of appearance was divided between all of them in order to choose one
per 50%

Transformation Parameters Description

Geometric Transformations

Scales scales=(0.8, 1.15) Isotropic scaling
Rotation degrees=10 Rotation within 10 degrees
Angle Flip degrees=180 Flipping the image
Translation translation=(15.0, 15.0, 0) Translating the image

Intensity Transformations

Bias Field coefficients=0.5 Random bias field adjustment
Gaussian Noise std=(0.01, 0.1) Adding noise with specified std deviation

2.5 Metrics
To evaluate the segmentation outcomes, we selected

four different metrics to assess the similarity between
our predicted label map and manual annotations. The
first aspect of evaluating the spatial overlap consensus
with the dice similarity coefficient (DICE) (Taha and
Hanbury, 2015). Let M (manual annotations) and P
(prediction) denote binary label maps, then Dice is de-
fined as:

Dice =
2 · |M ∩ P|
|M| + |P| (6)

The numerator part represents the elements that match,
and the denominator represents the sum of all the ele-
ments in the manual and prediction map. The second as-
pect is how much volumetric similarity (Taha and Han-
bury, 2015) it is with the annotation map. VS is defined
as:

VS = 1 − ||M| − |P||||M| + |P|| (7)

The third metric evaluated the quality of the segmenta-
tion boundary delineation (contour). In this work, we
choose a 95% Hausdorff distance (HD) (Taha and Han-
bury, 2015) as it is less sensitive to outliers. HD95 is

5https://torchio.readthedocs.io/
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considered as the 95th percentile of the ordered distance
measures, and it is defined as:

d95(M, P) = 95th{m ∈ M min
p∈P

d(m, p)} (8)

dH95(M, P) = max(d95(M, P), d95(P,M)) (9)

Finally, we will use some measurements to detect the
correct lesion since our model could generate a false
negative or over-segmentation. In order to measure this,
we are using Recall (Taha and Hanbury, 2015) as the
sensitivity and the average of precision, defined as:

Recall =
T P

T P + FN
(10)

To confirm statistically significant differences in seg-
mentation performance, we employed the Wilcoxon
signed-rank, non-parametric paired test (Wilcoxon,
1992). This rigorous statistical method guarantees the
robustness and reliability of our results. In addition, we
used a comprehensive ranking approach to compare the
performance of different segmentation models. We first
ranked the performance of each model for individual
metrics and then calculated an overall rank by taking
the geometric mean of these individual rankings.

3 Experiments and Results

3.1 Ablation Analysis

In this section, an ablation analysis was conducted
to identify the optimal network configuration and input
modalities configuration.

3.1.1 Kernel Analysis
In the experimental section, we perform a compre-

hensive kernel analysis to determine the optimal kernel
size for our segmentation models. The findings, derived
from ablation tests conducted without data augmenta-
tion and using consistent loss functions as described in
Section 2.4 and also the same loss function in each of
the ablation tests. Table 3 presents the results, which
indicate a significant influence of kernel size on model
performance. This data drove our decision to adopt a
3x3 kernel across all networks, aiming to achieve the
best balance between accuracy and computational effi-
ciency.

3.1.2 Input Analysis
This section delves into the differential spatial infor-

mation provided by various MRI modalities as depicted
in Figure 6. Given the distinct data characteristics each
modality offers, it becomes imperative to assess the in-
dividual and combined effects of these modalities on
model performance. For this analysis, the inputs con-
sidered include: Flair, T1, T2, Flair-T1, Flair-T2, and
the combination of Flair-T1-T2. All findings reported

Table 3: Mean (and standard deviation) segmentation performance of
the validated models on validation-set with the 3x3 or 5x5 kernel for
the models convolutions. The best metric per model is show in bold.

Model Dice ↑ VS ↑ Recall ↑
Flair input Mean (SD) Mean (SD) Mean (SD)

Dense UNET

3x3

0.6679 (0.1835) 0.8537 (0.1039) 0.7716 (0.1521)

5x5

0.6227 (0.2126) 0.8155 (0.1301) 0.7497 (0.1776)

FastSurferCNN

3x3

0.6311 (0.2017) 0.9157 (0.0702) 0.7957 (0.1502)

5x5

0.6070 (0.2102) 0.7493 (0.1596) 0.7981 (0.1627)

stem from the validation set, with the training bene-
fitting from the data augmentation routines detailed in
Section 2.

In Table 4, all the metrics for the input analysis of the
ablation analysis are presented. The literature explored
during the section 1.2 presented a current trend in using
the Flair images as the gold standard for the segmen-
tation of this lesion, as shown in the table 4 from the
single input test is the one that yields the highest values
in all the metrics. Conversely, the trend also shows that
using two inputs benefits the model using information
from 2 different space domains.

In the multiple inputs, it is shown that it helps in some
of the networks to get a higher dice, but on the other
hand, some of the combinations yield a higher Haus-
dorff distance. The other metrics maintain similar to
in trend with the single input distance. At last, using
the 3 spatial domains available in our dataset gets us a
a higher number in all the metrics, however this come
with a high computational cost since model is slower
and requires more memory. Since, the UK-BioBank
dataset had available only 2 modalities, we choose the
Flair and Flair-T1 to implement in our testing.

a) Flair b ) T2

d ) Flair + WMH VolumeC ) T1

Figure 6: MRI modalities available on the Rhineland Study dataset.
From top to bottom: Flair, T2, T1 and Flair+Lesions Volume (in
red). Note: The green arrow points the same lesion in all the fea-
tures spaces, with a high information difference between them.
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Figure 8 shows the qualitative results from the seg-
mentation algorithm using only the Flair modality, the
results from left to right: Original MRI image (Flair),
manual annotation map (GT), FastSurferCNN, Dense
UNet, and nnU-Net. The rows represented by a, b, c,
and d show four different samples from different cases
of the test set. The arrows in samples a and b rep-
resent an over-segmentation from the algorithm where
two close different regions are fused, causing a higher
volume with a higher number of false positives. Con-
versely, the c and d are examples of missing segmenta-
tion since the models can not label these pixels correctly
or only recognize some parts of the manually annotated
map, causing a higher number of false negatives.

Furthermore, Figure 9 shows the qualitative results
from dual-modality, the Flair and T1, training in the un-
seen dataset with the same distribution as Figure 8, with
different case from the rows. The data was ingested in
the model using double channels and concatenation of
both feature maps. The b represents some cases where
the model fails to recognize the lesion, even in the dual
modality-specific feature maps. In contrast, in cases a
and d, all the models fail to recognize the some small
lesion, which has impacted all the metrics. Finally, in
case c, we observed a general failure in all the models
to segment the tiny lesion, and their predictions over this
layer were consistent. In this last case, this brain can be
cataloged as an out-of-the-distribution patient; more of
this is discussed in Section 4.

Table 4: Mean (and standard deviation) segmentation performance of
the validated models on validation-set of Rhineland Study with all the
input combination. The overall best metric is shown in bold.

Model Dice ↑ VS ↑ HD95 ↓ (mm) Recall ↑
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Flair

Dense UNET 0.7046 (0.1953) 0.9038 (0.1424) 8.6554 (7.3333) 0.6833 (0.2320)
FastSurferCNN 0.7206 (0.1581) 0.9238 (0.0605) 7.8664 (6.3261) 0.7345 (0.1925)
nn-Unet 0.7223 (0.1925) 0.8131 (0.2327) 6.7714 (5.1322) 0.6442 (0.2316)

T1

Dense UNET 0.5373 (0.2066) 0.8756 (0.0978) 12.6140 (6.2992) 0.5947 (0.1872)
FastSurferCNN 0.5446 (0.1976) 0.8065 (0.1329) 12.8194 (6.3562) 0.6648 (0.1681)
nn-Unet 0.5142 (0.2790) 0.7217 (0.2859) 15.1769 (14.2329) 0.4479 (0.2849)

T2

Dense UNET 0.5887 (0.2033) 0.9302 (0.0389) 16.7864 (12.0687) 0.5913 (0.1906)
FastSurferCNN 0.5873 (0.2092) 0.8778 (0.0827) 16.4945 (12.6525) 0.6365 (0.1809)
nn-Unet 0.5641 (0.2827) 0.7257 (0.3308) 14.8174 (16.2419) 0.4964 (0.2719)

Flair-T1

Dense UNET 0.6981 (0.1489) 0.8245 (0.1747) 14.3157 (10.618) 0.7337 (0.1917)
FastSurferCNN 0.6902 (0.1515) 0.8290 (0.1405) 14.1490 (11.157) 0.7623 (0.1900)
nn-Unet 0.7083 (0.2079) 0.8093 (0.2525) 7.4703 (9.9173) 0.6351 (0.2430)

Flair-T2

Dense UNET 0.7078 (0.1582) 0.9334 (0.0283) 8.9039 (5.7597) 0.7388 (0.1715)
FastSurferCNN 0.6997 (0.1627) 0.8984 (0.0603) 9.8864 (5.9643) 0.7758 (0.1640)
nn-Unet 0.7073 (0.1981) 0.7961 (0.2240) 8.2565 (8.0085) 0.6202 (0.2256)

Flair-T1-T2

Dense UNET 0.7225 (0.1503) 0.9386 (0.0223) 7.7507 (8.0966) 0.7542 (0.1376)
FastSurferCNN 0.7206 (0.1503) 0.9183 (0.0378) 7.8753 (8.0953) 0.7748 (0.1427)
nn-Unet 0.7161 (0.1874) 0.8030 (0.2215) 8.3508 (8.8113) 0.6300 (0.2202)

3.2 Performance Analysis

The section present the result of the best models, after
the decision took on the ablation test carry on the Sec-

tion 3.1, using the full training routine and the unseen
test dataset from Rhineland Study. Finally, we present
a robust analysis using the optimal model identified in
the previous performance analysis to assess its gener-
ability to previously unseen datasets and different data
domains.

3.2.1 Transfer Learning
Even dough segmentation performance using only

Rhineland Study data shows promising results. The
Rhineland labeled subset lacks a demographic diversity.
Therefore to fill the gap in the RS distribution, we pro-
posed utilizing the Uk Biobank labels for initializing the
models. The UK Biobank labels are obtained from a au-
tomated method therefore, missing distribution can be
completed by choosing a stratified subset.

The result of training the models with the UK
Biobank are shown in Table 6; the segmentation per-
formance in the unseen data shows that the models pick
up good relationships from the data, classification with
huge training dataset is achievable, and the segmenta-
tion from this training is optimal. The results only re-
flect the training needed to apply the transfer learning;
at this point, these results are not comparable with the
ones trained with the RS.

On the other hand, we evaluated the impacts of using
the fine-tuning methodology in comparison to using the
knowledge graphs from only learning from one dataset,
Figure 7 shows some examples of these impacts. From
top to bottom, we show the same two participants from
the unseen data set from the one and two modalities
training. The figure used only two algorithms that were
evaluated with the transfer learning. Figure 7 shows the
overlay of the ground-truth map with each of the pre-
diction’s maps. Therefore, we can observe the actual
impacts of using this methodology with a dataset with
a normal distribution. The effects of this methodology
are marked with the use of a green and blue arrow, the
improvements in helping distinguish between false pos-
itives, and the inclusion of their feature map false posi-
tives are shown respectively.

3.2.2 Standalone Segmentation
This section, explores the segmentation capabilities

of the best models using Flair and the combination of
Flair with T1 MRI modalities. Table 5, we present the
training results using two modalities available; in the ta-
ble, we also see the result of the overall ranking with the
quadratic mean, obtained after individually ranking all
the metrics used to compare the models. Furthermore,
Table 5 shows that the paired Wilcoxon test over VS,
HD95 and DICE does not yield any value with a statis-
tically significant impact; on the other hand, in the met-
ric Recall, we observed a lot of statistical significance
between the test cases.

The comparison of all the models, illustrated thought
box plots in the Appendix A.10 for the metrics dis-
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Figure 7: Comparison of the normal vs. transfer learning predictions from the Dense UNet and FCCN for two participants of the in-house test-set
on Flair and T1 input. (A-D). The figure show in orange the GT with a overlay in brown of the prediction. The structures pointed by the green
arrow represent improvements and the blue one represents deterioration. Note: each row represents a different participant with corresponding MRI
modalities (Flair and T1) and automated generated segmentation on the axial plane.
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Table 5: Mean (and standard deviation) segmentation performance of the validated models on the unseen test-set

Model Overall Rank Dice ↑ VS ↑ HD95 ↓ (mm) Recall ↑ Signif.
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Flair

a: Dense UNET 2.63 0.6728 (0.1190) 0.8521 (0.1122) 8.5841 (8.6607) 0.7203 (0.1506) b
b: FastSurferCNN 2.24 0.6681 (0.1297) 0.8583 (0.1587) 8.9319 (9.3002) 0.7652 (0.1353) d,e
c: nn-Unet 2.24 0.6898 (0.1303) 0.8287 (0.1451) 6.9278 (8.7652) 0.7006 (0.1769) -
d: FastSurferCNN (TF) 3.46 0.6804 (0.1161) 0.8483 (0.1155) 8.3087 (9.3607) 0.7338 (0.1501) e
e: Dense UNET (TF) 2.63 0.6778 (0.1158) 0.8464 (0.1090) 8.2911 (9.5354) 0.7060 (0.1540) -

Flair+T1

a: Dense UNET 3.66 0.6667 (0.1332) 0.8647 (0.1567) 14.1827 (17.8801) 0.7354 (0.1404) b
b: FastSurferCNN 2.51 0.6571 (0.1428) 0.8397 (0.1598) 19.1786 (30.3402) 0.7674 (0.1390) c,d,e
c: nn-Unet 2.51 0.6692 (0.1281) 0.8315 (0.1497) 7.6416 (9.5324) 0.6514 (0.1722) -
d: FastSurferCNN (TF) 2.06 0.6606 (0.1376) 0.8383 (0.1582) 22.5771 (33.2519) 0.7335 (0.6606) e
e: Dense UNET (TF) 2.51 0.6722 (0.1239) 0.8287 (0.1451) 9.7992 (10.5880) 0.7111 (0.1663) -

Note: the statistical significance column (Signif.) indicates which other models the model outperforms
(paired Wilcoxon signed-rank test, p < 0.05). Overall Rank is the Quadratric mean after ranking all the
evaluation metrics.

Table 6: Mean (and standard deviation) segmentation performance of
the validated models on an unseen dataset of UK-Biobank Study with
all the input combinations. Best metric value per model is shown in
bold. Note: These results cannot be compared with the Rhineland
Study.

Model Dice ↑ VS ↑ HD95 ↓ (mm) Recall ↑
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Flair

Dense UNET 0.7567 (0.1108) 0.8847 (0.1040) 3.7385 (3.2790) 0.8030 (0.1400)
FastSurferCNN 0.7556 (0.1073) 0.8738 (0.1028) 3.5336 (3.0265) 0.8333 (0.1290)
nn-Unet 0.7574 (0.1009) 0.9061 (0.0849) 4.5323 (3.4513) 0.7733 (0.1389)

Flair-T1

Dense UNET 0.7640 (0.1173) 0.8656 (0.1204) 3.2099 (2.9686) 0.8158 (0.1475)
FastSurferCNN 0.7591 (0.1160) 0.8575 (0.1218) 3.0361 (2.8058) 0.8448 (0.1291)
nn-Unet 0.7734 (0.1061) 0.8973 (0.0999) 4.7176 (3.9876) 0.7577 (0.1527)

cussed in Section 2: Dice coefficient, Volume Similarity
(VS), Hausdorff Distance (HD95), and Recall. The al-
gorithms compare for WMH segmentation with Dense
U-Net, FastSurferCNN, and nnU-Net, each applied to
different imaging modalities like Flair and Flair-T1,
with a color-coded scheme to distinguish between them.
The Appendix A.10, the values for the Dice coefficient
range from approximately 0.4 to 0.9, indicating varying
levels of segmentation accuracy across algorithms, as-
suring a high pixel match with the GT. Volume Similar-
ity values are predominantly near 0.9, suggesting a high
volumetric consistency. HausdorffDistance varies, with
measurements extending from nearly 0 mm to about 15
mm, reflecting differences in boundary precision. Re-
call scores span from 0.4 to 0.9, showing the varied
effectiveness of algorithms in identifying relevant in-
stances. In the displayed box plots, outliers are evident
across several metrics, signaling occasional deviations
in algorithm performance. Specifically, Volume Simi-
larity presents many outliers, indicating significant de-
viations from typical volume agreements. Lastly, Recall
demonstrates outliers mainly in the lower range across
various algorithms, indicating failures in correctly iden-
tifying a higher proportion of actual positives. These
outliers highlight potential weaknesses or limitations of
the algorithms under challenging conditions or with un-
usual data types.

As shown in Table 5, we observed that the best over-
all rank model in only one modality input is FastSurfer-
CNN (TF) since it obtained a balanced performance
across all metrics. nn-Unet demonstrated superior Dice
scores (0.6892 ± 0.1268), suggesting better segmenta-
tion overlap. FastSurferCNN also exhibited the high-
est VS (0.8583 ± 0.1587) and nn-UNet significantly
outperformed others in HD95 (6.5882 ± 8.4740), in-
dicating precise boundary segmentation. FastSurfer-
CNN achieved the highest recall (0.7652 ± 0.1325),
suggesting fewer false negatives. For the Flair-T1 in-
put, Dense UNET ranked highest overall (3.66), fol-
lowed by nn-UNet (2.66). Regarding Dice scores, nn-
UNet (0.6755 ± 0.1187) performed best. Dense UNET
exhibited the highest VS (0.8647 ± 0.1567), while nn-
UNet again demonstrated the best boundary precision
with the lowest HD95 (7.1548 ± 7.6686). FastSurfer-
CNN achieved the highest recall (0.7674 ± 0.1390), re-
inforcing its robust detection capability. Overall, the
nn-UNet model stands out for its exceptional bound-
ary precision (HD95) in both Flair and Flair-T1 inputs.
FastSurferCNN and FastSurferCNN (TF) consistently
perform well across multiple metrics, particularly in re-
call, indicating strong detection capability. nn-Unet per-
formed well in Dice and VS but is less consistent in
recall. Dense UNET (TF) benefits from the additional
T1 modality, particularly in VS. The incorporation of
T1 data generally enhances performance metrics, un-
derscoring the value of multimodal inputs for improved
segmentation performance.

3.2.3 Generability Analysis
This subsection, we evaluate the robustness and ap-

plicability of different best models from the Section
3.2 across various datasets within the context of med-
ical imaging for WMH Segmentation. Table 7 presents
the mean (and standard deviation) segmentation per-
formance of validated models on an unseen dataset
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), MICCAI 2016 and MICCAI 2017 using Flair
input. The models that were evaluated include Dense
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Flair

a)

GT Fastsurfer-CNN Dense Unet nnUNet

b)

c)

d)

Figure 8: Comparison of the ground Truth vs. predictions from the proposal method and benchmarks for four participants of the in-house test-set
on Flair input. (A-D). All automated methods generate similar segmentation to the manual ones. However, some differences are observed in some
on some of the structures pointed by the arrows. Note: each row represents a different participant with corresponding MRI modality (Flair), manual
ground truth (GT), and automated generated segmentation on the axial and saggital plane.
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Flair

a)

T1 GT FastsurferCNN Dense UNet nnUnet

b)

c)

d)

Figure 9: Comparison of the ground Truth vs. predictions from the proposal method and benchmarks for four participants of the in-house test-set
on Flair and T1 input (A-D). All automated methods generate similar segmentation to the manual ones. However, some differences are observed
in some on some of the structures pointed by the green arrow represent false positives and the red one represents false negatives. Note: each
row represents a different participant with corresponding MRI modalities (Flair and T1), manual ground truth (GT), and automated generated
segmentation on the axial, coronal and sagittal plane.
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Table 7: Mean (and standard deviation) segmentation performance of the validated models on an unseen dataset of ADNI, MICCAI 2016 and
MICCAI 2017 All measurements are in percentual value and only Hausdorff Distance is in millimeters.

Model Dice ↑ Signif. VS ↑ Signif. HD95 ↓ Signif. Recall ↑ Signif.
Mean (SD) Mean (SD) Mean (SD) Mean (SD)

ADNI Dataset (n = 5)

a: Dense UNET 0.4978 (0.2307) - 0.6214 (0.1166) - 14.8668 (11.5912) - 0.3732 (0.2002) -
b: Dense UNET (TF) 0.5116 (0.2512) - 0.6740 (0.1043) - 17.3694 (16.0344) - 0.4253 (0.1699) -
c: FastSurferCNN 0.5121 (0.2424) - 0.7155 (0.1143) - 13.3401 (8.9113) - 0.8333 (0.1290) -
d: FastSurferCNN (TF) 0.5748 (0.2706) - 0.7882 (0.1865) - 16.3177 (15.9769) - 0.5430 (0.1786) -
e: nn-Unet 0.0375 (0.0444) - 0.0472 (0.0565) - 33.9479 (1.2770) - 0.0197 (0.0375) -

MICCAI 2016 Dataset ( n = 15 )

a: Dense UNET 0.6048 (0.1848) - 0.7711 (0.1824) - 14.1606 (8.4260) e 0.6381 (0.2002) d,e
b: Dense UNET (TF) 0.6048 (0.1680) - 0.7749 (0.1580) - 14.2158 (8.3081) e 0.6463 (0.1743) e
c: FastSurferCNN 0.6102 (0.1861) - 0.7768 (0.1823) - 13.5418 (8.6273) e 0.6536 (0.1747) a,d,e
d: FastSurferCNN (TF) 0.6095 (0.1820) - 0.7872 (0.1766) - 13.2680 (8.9691) b,e 0.6870 (0.1632) b,e
e: nn-Unet 0.5608 (0.1189) - 0.6940 (0.1697) - 17.2830 (7.0809) - 0.4427 (0.1347) -

MICCAI 2017 Dataset ( n = 52 )

a: Dense UNET 0.5853 (0.1899) b,d,e 0.7467 (0.1824) b,d,e 15.5831 (11.3592) b,d,e 0.7346 (0.1712) b,d,e
b: Dense UNET (TF) 0.5220 (0.1975) e 0.6781 (0.2207) e 18.9549 (12.8932) e 0.7404 (0.1631) -
c: FastSurferCNN 0.5833 (0.1891) e 0.7306 (0.1814) a,b,d,e 15.8757 (11.4957) b,d,e 0.7523 (0.1676) a,b,d,e
d: FastSurferCNN (TF) 0.5225 (0.2012) e 0.6530 (0.2195) b,e 19.0830 (12.8639) e 0.7758 (0.1683) b,e
e: nn-Unet 0.6023 (0.1725) - 0.8087 (0.2071) - 11.4667 (9.0187) - 0.5601 (0.2099) -

Note: the statistical significance column (Signif.) indicates which other models the model outperforms
(paired Wilcoxon signed-rank test, p < 0.05). Best performances are highlighted in bold.

UNET, Dense UNET (TF), FastSurferCNN, FastSurfer-
CNN (TF) and nn-Unet with Flair input. The following
performance metrics were used: Dice coefficient, Vol-
ume Similarity, Hausdorff Distance at 95 % and Recall.

The ADNI dataset demonstrates that models exhibit
moderate Dice scores. Of these models, the Fast-
SurferCNN (TF) model achieves the highest Dice score
(0.5748). The FastSurferCNN (TF) model also exhibits
strong performance in the VS and Recall metrics, al-
though it is not the model with the highest HD95 score,
which the Dense UNET model achieves. In the MIC-
CAI 2016 dataset, the performance of models improved
in general. The FastSurferCNN model demonstrated ex-
ceptionally high Dice and the FastSurferCNN (TF) VS
metric scores. In the larger MICCAI 2017 dataset, the
Dense UNET model performs exceptionally well in the
Dice metric, surpassing other models significantly. This
is indicated by its statistical outperformance of models
b, d, and e.

The nn-UNet model demonstrates highly variable
performance across different medical imaging datasets,
as indicated by its evaluation of the ADNI, MICCAI
2016, and MICCAI 2017 datasets. Initially, the model
exhibits inferior performance on the ADNI dataset with
minimal segmentation overlap, as evidenced by poor
Dice and recall scores. However, there is a notable en-
hancement in performance on the subsequent MICCAI
datasets, with Dice scores indicating more significant
overlap and HD95 scores indicating reduced boundary
discrepancies. Despite these improvements, it shows
that the overall variability in metrics such as Dice and
Recall across these datasets indicates that nnUNet may
require dataset-specific adjustments or tuning to opti-
mise its effectiveness. This discrepancy calls into ques-
tion the generability of the model, suggesting that while
it can adapt to specific types of data, it may face sig-
nificant challenges when confronted with other kinds.
This pattern underscores the need for a rigorous eval-

uation and potential refinement of the model to ensure
reliable and consistent performance across diverse clin-
ical contexts. Such refinement is crucial for practically
deploying the model in real-world medical settings.

The statistical significance columns, denoted by let-
ters, reveal intricate relationships. This suggests that no
single model consistently outperforms others across all
metrics and datasets. However, specific trends are ev-
ident. These include the robust performance of Fast-
SurferCNN (TF) and Dense UNET (TF) in multiple
metrics. Furthermore, significance testing based on the
paired Wilcoxon signed-rank test underscores the com-
parative efficacy of these models under different con-
ditions. The complex interplay of performance across
different datasets and metrics is essential for an under-
standing of the generability and robustness of these seg-
mentation models in medical imaging.

4 Discussion

In this study, we conducted a thorough examination
with the goal of determining the most suitable kernel
size for our segmentation models of white matter hy-
perintensities (WMH). Our findings revealed that a 3×3
kernel size represents an optimal balance between Dice
coefficient, 95th percentile Hausdorff distance, and vol-
umetric symmetry. This kernel size offered an optimal
trade-off between segmentation accuracy and compu-
tational efficiency. It has been established that larger
kernels have the capability of capturing a greater spa-
tial context; however, the small area of WMH lesion
presents challenges for the extraction of meaningful fea-
tures with larger kernels. Consequently, the 3x3 ker-
nel size strikes a balance, ensuring precise segmentation
without unnecessary computational overhead.

Futhermore, we examine the differential spatial in-
formation provided by various MRI modalities and to
assess their individual and combined effects on model
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performance. The findings indicated that Flair images
are particularly effective for lesion segmentation, con-
sistently achieving higher levels of accuracy. This aligns
with current literature, which highlights Flair as the gold
standard. The use of two modalities resulted in en-
hanced performance, indicating that combining spatial
information from different sources allows for a more
comprehensive and detailed representation of anatom-
ical structures. Nevertheless, the combination of the
three spatial domains (Flair-T1-T2) yielded improved
metrics but also led to higher computational costs. This
trade-off should be considered in clinical settings with
limited resources. Based on our findings, we recom-
mend using Flair images as the primary modality for
lesion segmentation, with Flair combined with another
modality such as T1 to enhance accuracy. This com-
bination offers the optimal balance between improved
performance and reduced computational costs.

The primary analysis of segmentation performance,
utilizing the optimal model from the ablation test with
alternating Flair and Flair-T1 inputs, demonstrated that
models leveraging Flair as a singular input, particu-
larly the nn-UNet model, achieve effective segmenta-
tion overlap and boundary delineation. The addition of
the T1 modality generally enhanced performance when
used alongside Dense UNET. Incorporating T1 data
alongside Flair data has been shown to enhance over-
all model performance, suggesting that combining data
from different spatial domains provides a more compre-
hensive understanding of anatomical structures. How-
ever, it should be noted that the evaluation was based on
a specific dataset with a limited number of modalities,
which might not capture the full potential or limitations
of these models in different contexts. Additionally, the
presence of outliers in several metrics indicates occa-
sional performance deviations, requiring further inves-
tigation to identify and mitigate these issues. In light
of these findings, we recommend the use of multimodal
inputs to enhance segmentation accuracy and boundary
precision.

As the data lacks considerable demographic diver-
sity, the impact of a more extensive and diverse dataset
was investigated, such as the UK Biobank. The utili-
sation of transfer learning models, such as FastSurfer-
CNN (TF) and Dense UNET (TF), demonstrated su-
perior Dice scores and Recall compared to their non-
transfer learning counterparts. This suggests that trans-
fer learning effectively facilitates model generalisation
by leveraging pre-learnt features from a psuedo label
dataset such a UK Biobank. In particular, FastSurfer-
CNN (TF) exhibited balanced performance across the
entirety of the metrics, thus indicating its robustness and
generalisability. The enhanced performance of models
with transfer learning serves to highlight the potential of
this approach to enhance segmentation accuracy and to
reduce false negatives, both of which are crucial in clini-
cal settings. Based on the findings of this study, it is rec-

ommended that the use of a transfer learning approach
be considered for incorporation into segmentation mod-
els, particularly where the availability of labelled data is
restricted.

At last, we assests the robustness and applicability
of the best model from all our analysys across differ-
ent domain. The results indicate that transfer learning
significantly enhances the performance of segmentation
models. FastSurferCNN (TF) achieved the highest Dice
score and Recall on the ADNI dataset, demonstrating its
ability to accurately segment and detect lesions. Sim-
ilarly, on the MICCAI 2016 dataset, FastSurferCNN
(TF) and FastSurferCNN performed exceptionally well
in terms of Dice and VS, indicating robust segmenta-
tion and volumetric consistency. In the larger MICCAI
2017 dataset, Dense UNET outperformed other mod-
els in Dice scores, suggesting its effectiveness in larger
datasets. However, the nn-Unet model exhibited high
variability, performing poorly on the ADNI dataset but
improving significantly on the MICCAI datasets. The
findings underscore the importance of transfer learn-
ing in enhancing model performance, particularly in
datasets with varying characteristics. The variability in
nn-Unet’s performance across different datasets high-
lights the challenge of generalizability, since this model
rely on the adaptation of the trainning paramaters with
the signature reults in a overfitting and also the fewer
convolutions in the feature extration influence the lack
of meanfull features. Based on the findings, we recom-
mend incorporating transfer learning into segmentation
models to enhance their robustness and accuracy. Fu-
ture research should focus on optimizing transfer learn-
ing techniques to reduce computational costs and im-
prove generalizability. It is also important to evaluate
models on a wider range of datasets to ensure their re-
liability across different clinical scenarios. For models
like nn-Unet, further investigation into dataset-specific
tuning and adjustment strategies is necessary to enhance
performance consistency.

5 Conclusions

In conclusion, we demonstrated that automated
WMH segmentation using deep learning can be
achieved when a Flair image is available. Moreover, the
performance of state-of-the-art UNet-like architectures
is similar regardless of the input modality.

A critical challenge for WMH segmentation is the se-
lection of the training dataset, as there is a lot of anatom-
ical variation across subjects. We demonstrated that all
models equally struggled with lesions that are outside
the distribution of the training data. Future research
should focus on data harmonization between labels and
datasets to improve performance in a general popula-
tion.

Future work should also focus on extending the in-
put flexibility of our tools to broader scenarios, such
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as extending the capabilities of the current networks
into hetero-modal. Since the segmentation could ben-
efit the deployment of WMH models in a wider range
of datasets, as segmentation could be generated even if
one of the modalities is missing. Additonally, models
that support the hetero-modal could enhance segmenta-
tion performance by integration of more datasets with-
out the same modalities. Furthermore, models should
explore the separation of the segmentation tasks by size
of lesion since the small lesion segmentation sometimes
get overtaken by bigger size predictions, instead of rely-
ing of the generalization of one model to all sizes of le-
sions. Inclusion of other lesions could reduce the miss-
classification of regions closed to the WMHs that mimic
their apperace.

Overall, WMH segmentation using deep learning is
a feasible task. However, there is still a need for more
robust methods that can generalize better across subjects
and datasets.
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Appendix A Figures
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Figure A.10: Segmentation performance comparison on the in-house
test-set between the proposed Dense UNET( blue, yellow, illiac and
red) and benchmark F-CNNs (orange, dark blue, pink and gren) and
nn-UNet (purple and gray) Note: The models mark with a ”*” rep-
resent the transfer learning models with the base learning from the
UK-Biobank
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Abstract

The capability to image the transparent cells in the inner retina, in particular ganglion cells, has the potential to rev-
olutionize the diagnosis and monitoring of neurodegenerative diseases with ocular presentation, including glaucoma
and Alzheimer’s disease. Imaging ganglion cells is highly challenging due to their very low intrinsic scattering con-
trast, which makes them virtually invisible among the strong speckle present in optical coherence tomography (OCT).
Currently, speckle reduction using volume averaging of hundreds of OCT volumes is necessary to supress speckle
contrast and enable their observation and counting. In this project, we have tested Classical and Machine Learning
despeckling methods that uses the observation of a few independent speckle realizations for more accurately estimat-
ing despeckled images. This new method will lower imaging requirements for ganglion cell counting by an order of
magnitude, from hundreds to tens of OCT volumes.

Keywords: Matlab, OCT system, statistics, coherent imaging, maximum likelihood estimation, machine learning,
Alternative methods for calculating similarity criteria in TNode OCT despeckling algorithm

1. Introduction

Optical Coherence Tomography (OCT) 1 is well- es-
tablished diagnostic imaging tool that produces a high-
resolution cross-sectional image and three- dimensional
volumetric measurements of biological tissue and used
for the diagnosis of a variety of diseases, such as glau-
coma, macular degeneration, early detection of neu-
rodegenerative diseases and macular edema(1). Apart
from ophthalmology, OCT is extensively utilized in car-
diology, dermatology, and gastroenterology, providing
real-time, in situ imaging of tissues. OCT can function
as an optical biopsy tool in medical imaging diagnos-
tics, offering detailed images without the need for tis-
sue removal and microscopic analysis, unlike traditional
histopathological analysis(7).

OCT is similar to ultrasound imaging, but it uses
light instead of sound. All OCT systems use coherent
light to measure the echo time delay and the intensity of
backscattered or backreflected light from internal mi-
crostructures in materials or tissues [see Fig. 2].(7).

Visual interpretation is hindered and the quality and

Figure 1: OCT image.

contrast of the image are decreased which is caused by
the presence of speckle, a high-contrast, fine-scale gran-
ular pattern (3), which is present in OCT images due to
its coherent nature (4) [see Fig. 1]. Speckle in OCT is
not an additive noise that can be easily removed (19),
in fact it carries information about the microstructural
properties of the tissue.

The techniques that suppresses speckle and speckle-
like noise while preserving the visibility of fine-scale
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Figure 2: OCT image.

structure have been a research interest of the OCT com-
munity for many years (5). The speckle reduction meth-
ods aim to expedite the visual interpretation of the im-
age by increasing the quality and making the boundaries
between tissues more distinguishable and improving the
diagnostic utility in medical applications. Speckle re-
duction methods are applicable not only for OCT im-
ages but also for synthetic aperture radar and and ultra-
sound imaging. (6).

Speckle significantly impacts the interpretation of the
information within an image and makes boundaries be-
tween highly scattering structures in tissue difficult to
resolve. Speckle occurs in a signal when it is made
up of numerous independently phased additive complex
components. These components can have both random
lengths and random directions (phases) in the complex
plane, or they may have known lengths and random di-
rections. When these components are summed, they
create a phenomenon known as a ”random walk” (3; 4).

1.1. Clinical Application

In clinical diagnosis, OCT is widely used due to
its capability to provide real-time, non-invasive, and
high-resolution images. It is used for the diagnostic of
neurodegenerative diseases because it can capture the
changes in retina in Alzheimer’s disease (AD) and mild
cognitive impairment (MCI) patients, such as ganglion
cell degeneration, thinning of the retinal nerve fiber
layer (RNFL), optic nerve axonal loss, and decreased
perfusion and vessel density (24; 25). OCT can quanti-
tatively assess the thickness of the Ganglion Cell Layer
(GCL) and RNFL.

Geographic atrophy (GA) is a severe form of Age-
related Macular Degeneration (AMD), marked by
chronic progressive degeneration of the macula. The
condition can be characterized by atrophic lesions that
initially develop in the outer retina and gradually extend
to cover the macula and the fovea, the central area of
the macula, ultimately leading to permanent vision loss.
OCT detects these lesions through the loss of retinal lay-
ers, which can be observed in cross-sectional and/or en-
face images. This allows for a detailed assessment of
the features of GA lesions (26; 27).

Intravascular OCT (IV-OCT) uses a catheter-based
OCT system to image the coronary arteries, providing
detailed information about plaque composition, fibrous
cap thickness, and stent apposition (22).

2. State of the art

Speckle-suppression methods can be classified into
two main categories: hardware-based and post-
processing methods. In the first approaches, the sys-
tems are modified to produce uncorrelated speckle pat-
terns within or between B-scans, a series of longitudinal
scans (A-scans) (1; 6). If B-scans are acquired closely
and rapidly, they can be translated into a volumetric im-
age or C-scan [see Fig. 3].

Figure 3: A-scan, B-scan and C-scans of the eye.

Conversely, the hardware methods can be divided
into subcategories:

1. Angular compounding: images are acquired at dif-
ferent backscattering angles and combined to im-
prove the Signal-To-Noise ratio. Requires precise
alignment and calibration of the imaging system to
accurately combine images, as a result, the com-
plexity and acquisition time increases.(18; 20).

2. Spatial compounding: the absolute magnitudes of
signals obtained from the same or slightly shifted
sample volumes are averaged to create a new signal
with reduced speckle noise (4).

3. Frequency compounding: benefits from the re-
duced correlation between two speckled images
acquired at different optical frequency band (4; 9).

4. Polarization diversity: enhance image quality by
exploiting the polarization properties of light and
can be achieved by using unpolarized light to il-
luminate the sample and interfering the backscat-
tered light with an unpolarized reference beam(4)

While those methods that reduce the speckle contrast
5, a significant amount of information is lost in each im-
plementation: in spatial compounding, the neighboring
sample locations are joined into a single pixel and the
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SNR, the speckle-to-noise ratio, gain can be reduced by
any correlation among the signals; in frequency com-
pounding, the raw data contains information that be-
longs to a higher axial resolution (4; 6).

Current speckle suppression post-processing algo-
rithms can be categorized into following families:

1. Transformation based: wavelet or curvelet trans-
forms to represent images in a different domain.

2. Sparse representation: special scanning technique
where few B-scans acquired with high nominal
SNR are used to improve the quality of low SNR
B-scans (21) (6)

3. Spatial domain: primarily involve non-local meth-
ods, in which each pixel is assessed within an ex-
tensive neighborhood that leverages the inherent
redundancy of natural images (6; 10–13; 15; 16)

In transform-based methods, it is assumed that the
coefficients representing the image are distinguishable
in the curvelet or wavelet domain. The is difficult to
choose a correct threshold for the speckle coefficients,
the wrong selection causes the point-like structures to
disappear in the filtered image and to preserve the con-
trast tissue layers (6; 17; 21; 23).

Other post-processing algorithms include using Deep
Learning for despeckling OCT images: they can effec-
tively remove speckles and preserve the important struc-
tural details. However, obtaining ground truth for su-
pervised models is challenging and there is a risk for
over-smoothing since some of the models remove the
fine structures. As well as that the models are not gen-
eralized for all OCT systems, since the parameters for
every system is different.

Important to note, that all post-processing methods
require prior averaging of multiple speckle realizations,
which increases the computational time of this type of
approach. The goal of the project is to find a new way
of leveraging information from multiple speckle realiza-
tions inside of TNode (Tomographic Non-local-means
despeckling), a powerful volumetric non-local means
despeckling algorithm.

3. Material and methods

3.1. Conventional TNode

TNode algorithm build upon the polarimetric and in-
terferometric non-local framework build by Deledalle
et al (6; 10–12) for SAR images. The fundamental con-
cept is to identify small volumetric patches within the
tomogram that represent various speckle realizations of
the same underlying structure, such as tiny blood ves-
sels. These patches are used for non-local, incoherent
averaging. This approach ensures that only uncorrelated
speckle realizations of the same object are combined,
preserving resolution and reducing speckle contrast.

Using speckle statistics, we can determine the
speckle-free intensity from a general context that ac-
commodates both single and multiple speckle realiza-
tion tomograms. This versatile framework enables
the application of TNode in-vivo for single-look frame
analysis and can be easily adapted to scenarios with
multiple speckle realizations (6), by taking the average
of the images prior to processing.

By using 3D similarity windows to retrieve the
weights from the volumetric patch-similarity, TNode 4a
exploits the available volumetric information in OCT
and ensures that one- and two- dimensional structures,
that in traditional OCT imaging appear one-dimensional
due to resolution limitations, are correctly characterized
and preserved upon despeckling(6).

(a) Search window defined within a
tomogram.

(b) Pixel by pixel comparison be-
tween similarity and central patches
within a search window.

Figure 4: Similarity value calculation between pixel of interest x and
x’ in TNode.

3.1.1. Non-local denoising and speckle suppression

Non-local methods denoise the image by perform-
ing a weighted intensity average in the set of regions,
called patches that are ideally anywhere in the image
(6; 11; 12; 16). Non-local methods are based on the
probability that the two given patches are the different
realizations of noise and have the same underlying ob-
ject, and in the case of non-local despeckling, it means
that pixels within those patches are described by a sin-
gle probability distribution with a common parameter θ,
. To define the probability of a given pixel to share the
parameter θ with other pixel x’ within the neighborhood
or search window, the intensity of pixel x is compared
with the intensity of the pixel within the set of search
windows.

In TNode, the group of pixels x centered around a
pixel of interest x is compared with the pixels x′ inside
of a patch centered around x′. It is important to choose
the optimal size of the patch that will have enough inde-
pendent speckles to obtain a robust similarity metric but
not too large to reduce the effectiveness of the despeck-
ling method.

The parameter θ in practice is unknown, instead, it is
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replaced by the generalized likelihood ratio (GRL) L G.

LG
[
I(x), I(x′)

]
=


I(x)I(x′)

(
1
2 [I(x) + I(x′)]

)2



L

. (1)

In case of identical patches, the L G = 1. The GRL
values are used to map the similarities between patches
into weights. The project aims to find an alternative way
to calculate those values using Classical and Machine
Learning models.

After calculating GRL values, to obtain the weights,
first, the probabilities are compounded inside of a patch
into a log-probability ∆(x⃗, x⃗′).

∆(x⃗, x⃗′) =
∑

τ⃗∈p⃗

log
(LG

[
I(x⃗ + τ⃗), I(x⃗′ + τ⃗)

])
, (2)

where (x⃗, x⃗′) are the vectors indicating the location of
the pixel in the volume and τ⃗ is a 3D shift vector.

After computing the sum of log probabilities using 2,
weights are obtained by using the following equation:

w(x⃗, x⃗′) = exp
[
∆(x⃗, x⃗′)

h

]
, (3)

where h > 0 and controls the overall distribution of
weight values: large h increases the probability ratio for
each pixel by equalizing the contribution of weights.
Important to note that TNode is non local since the
weights are affected only by the patch-similarity with-
out taking into consideration the relative distance be-
tween patches (6).

The code is available at https://doi.org/10.

6084/m9.figshare.6089861.v1.

3.2. Speckle metrics

There are two metrics to quantify the deleterious ef-
fect of speckle in the OCT images. The first one is the
Signal-to-speckle ratio (SSR), defined as s, an inverse
of the speckle contrast:

s =
1
c
=

I
θ

(4)

where Ī represents the is the speckle-free object inten-
sity, C is the unity speckle contrast in tomograms with a
single realization of speckle, and θ the speckle standard
deviation.

Signal-to-noise ratio (SNR), defined as sn ,used to as-
sess the image quality (8) and can be defined as:

sn =
Is

In
(5)

where Is is the OCT noise-free signal intensity and In

the noise intensity, which can be all sources of noise
(e.g. shot, thermal, digitization, excess photon, etc.) in
the OCT system (4; 6; 28; 29).

3.3. Data Simulation

The proposed model was trained on simulated tomo-
gram images. The data simulation method can generate
single and multiple coherent speckle realizations with
different tomogram sizes and numbers of speckle real-
izations. To ensure the model’s generalization, the code
utilizes random scale factors for inclusions (scaleInclu-
sion) and the background (scaleBackground). These
scales span specified ranges, emulating different signal
intensities measured in dB.

A low-pass filtering applied to achieve the spatial cor-
relation and an explicit seed is provided for the random
number generator to ensure the consistency of the result
across multiple runs.

GRL calculated for the average of 350 and 150
speckle realizations, because averaging more speckle
realizations generally leads to better despeckling result
were used as a target label5 for training the models that
will estimate the similarity value between two patches.
Single pixel pairs extracted inside of a search window
from 100 simulated tomograms were used as indepen-
dent variables.

Figure 5: Average of 350 speckle realizations.

3.4. Objective

To suppress the speckle contrast it is required to aver-
age the hundreds of OCT volumes for speckle reduction.
The Conventional TNode processes multiple speckle re-
alizations by first obtaining the mean image. The goal
of this project is to determine if there is an alternative
way of leveraging the speckle realizations to preserve
more information. Two methods were tested on simu-
lated tomograms: the classical approach using conven-
tional TNode and using Neural Networks as alternative
method of computing 3.

Three ML methods were tested as an alternative way
of calculating the equation 3: 1D Convolutional Neu-
ral Network, Siamese Neural Network, and Long short-
term memory (LSTM) is a type of Recurrent Neural
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Figure 6: Simulated tomograms showing different numbers of speckle realizations: (a) One speckle realization, (b) Average of ten speckle realiza-
tions, (c) Average of 100 speckle realizations, (d) Average of 1000 speckle realizations

Network. The input for the models were 2 vectors: sin-
gle pixels across 10 speckle realizations extracted from
2 compared patches.

Deep Learning method was implemented in DL-
TNode-3D algorithm (2), and is based on a con-
ditional generative adversarial network (cGAN) that
leverages the volumetric nature, effectively preserving
tissue structures. TNode is very powerful algorithm
for OCT despeckling, but it is computationally expen-
sive, incorporation of a deep learning method allows to
get speckle suppressed volume two times faster. This
method takes a search window with size [2 x 8 + 1] as
the generator and TNode despeckled partial volumes as
the discriminator.

3.4.1. Classical Approach
As mentioned earlier, conventional TNode processed

the average of multiple speckle realizations. Before
trying Neural Networks, different leveraging methods
were tested: instead of averaging all speckle realiza-
tions, GRL was calculated across all speckle realiza-
tions creating a similarity matrix and then only the re-
alizations with the highest confidence were averaged in
order to estimate the real GRL.

Firstly, the GRL similarity matrix was calculated of a
single pixel with itself, between two similar pixel pairs
and two dissimilar pixel pairs 11. That was done to an-
alyze the distribution of GRL values inside of a larger
structure, search window, inside inclusion, and back-
ground.

An unweighted similarity matrix for the whole search
window centered around the tested pixel in the inclu-
sion 9 and in the background 10 was obtained by us-
ing equation (4), and followed by equation (5) to get
the weighted matrix. Those two matrices were com-
pared with the conventional TNode weights, that were
obtained by processing the mean of the 10 speckle real-
izations.

The approach of calculating the GRL values for each
speckle realization separately did not produce a better
estimation of the real GRL, as can be seen in Fig 7,
where despeckling result of prior average of 10 speckle
realizations and the result of the proposed method pro-
duced the same result. Which led to incorporation of
Neural Networks as an alternative for equation 3.
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Algorithm 1 Tomogram Simulation

1: Input: tomSize, numSpeckleRealizations, random-
Seed

2: Output: tomIntLPMultilook, groundtruth, logLim
3: if randomSeed , empty then
4: Initialize random generator with randomSeed
5: end if
6: Define noise scale bounds for inclusion and back-

ground
7: Calculate scaleInclusion and scaleBackground us-

ing random values within defined bounds
8: Initialize parameters for circular masks
9: Generate non-overlapping circular masks

10: Define groundtruth matrix based on masks and
scale values

11: Initialize tomIntLPMultilook matrix
12: for each speckle realization do
13: Generate complex Gaussian noise
14: Scale noise with groundtruth to simulate signal
15: Apply Fourier transform and a Hanning filter
16: Inverse Fourier transform to get low-pass fil-

tered result
17: Compute magnitude squared to form tomogram

for current realization
18: end for

Figure 7: Tested approach vs Conventional TNode

(a) Intensity of the single pixel
(b) Multilook similarity matrix with it-
self

(c) Intensity of the similar pixel pair
(d) Multilook similarity matrix of the
similar pixel pair

(e) Intensity of the dissimilar pixel pair
(f) Multillok similarity matrix of the
dissimilar pair

Figure 11: Single pixel pair across 10 speckle realizations

3.5. Machine Learning Approach

The input for the NN was a time series with the size
of [1, 20] and the ground truth was the GRL values
calculated by conventional TNode for the averaged 350
speckle realizations 5.

Siamese Neural Networks work by learning a simi-
larity function that compares the feature vectors of two
input samples to determine if they are similar or dissim-
ilar. It consists of two or more identical twin networks
(sub-networks) with the same architecture, parameters,
and weights. Each sub-network extracts relevant fea-
tures from its input sample through convolutional and
pooling layers. The final layer of each sub-network pro-
duces a compact feature vector representation of the in-
put. Similarity comparison is done by using a similarity
metric, such as Euclidean distance or cosine similarity.
This comparison produces a similarity score indicating
how similar or dissimilar the two input samples are.

In principle, since the GRL values are basically the
estimation of how similar are two patches, Siamese
networks should have demonstrated the best result,
since this method was created to estimate the similar-
ity between two inputs, for example for one-shot image
recognition, proposed by Koch (14).

In the case of Neural Networks, for the pro-
posed method One-dimensional convolutional neural
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Figure 8: 1D CNN

(a) Tomogram for search window
centered at the test pixel

(b) Conventional weights for the
search window around the tested pixel
in the inclusion

(c) Unweighted weights for the search
window around the tested pixel in the
inclusion

(d) Intensity-weighted weights for the
search window around the tested pixel
in the inclusion

Figure 9: Visual representation of different similarity matrices for the
search window centered at the pixel in the inclusion

(a) Tomogram for search window
centered at the test pixel

(b) Conventional weights for the
search window around the tested pixel
in the background

(c) Unweighted weights for the search
window around the tested pixel in the
background

(d) Intensity-weighted weights for the
search window around the tested pixel
in the background

Figure 10: Visual representation of different similarity matrices for
the search window centered at the pixel in the background

(a) Similarity matrix of the central pixel in the inclusion

(b) Similarity matrix of the central pixel in the back-
ground

Figure 12: Similarity matrix of 10 speckle realizations

networks (1D CNNs) were used since they are well-
suited for time series data and have shown excellent per-
formance in various time series classification and fore-
casting tasks (31). The model in our case processes the
input vectors as two time-series with 10 time steps.

LSTMs are a powerful approach for processing multi-
step time series due to their ability to learn long-term
dependencies in sequential data.

Table 1: 1D CNN final architecture

Layer (type) Output Shape Param #
Conv1D (None, 8, 8) 56
Conv1D (None, 6, 12) 300
Conv1D (None, 4, 24) 888
Conv1D (None, 2, 48) 3504

MaxPooling1D (None, 1, 48) 0
Flatten (None, 48) 0
Dense (None, 15) 735
Dense (None, 10) 160
Dense (None, 5) 55
Dense (None, 1) 6
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Figure 13: Architecture of Siamese Neural Networks with one input
pair(30).

Layer (type) Output Shape Param #
Bidirectional (Bidirectional) (None, 10, 16) 704
Bidirectional (Bidirectional) (None, 32) 4224

Dense (Dense) (None, 15) 495
Dense (Dense) (None, 10) 160
Dense (Dense) (None, 5) 55
Dense (Dense) (None, 1) 6

Table 2: LSTM final architecture

4. Results

The final architecture of Siamese Neural Networks
is 21 and 15 for the sub-networks, the 1D CNN best
architecture is 1 and 14, with 4 1D layers, MaxPooling
layer, and 4 fully connected layers. The complexity of
the model was gradually increased since lesser layers
could not learn the pattern in the data.

Since the GRL values were calculated by processing
the average of 350 speckle realizations, to compare the
results of NN with the conventional TNode, GRL values
calculated just on 10 speckle realizations were used.

The models with batch sizes, the number of samples
that are passed to the network, of 32 and 8 perform
the best, achieving the highest R2 scores and the low-
est RMSE, MSE, and MAE on both validation and test
datasets. The model with a batch size of 16 performs
the worst across all metrics, indicating it is suboptimal.
Batch sizes 32 and 8 show consistent performance be-

tween validation and test sets, indicating good gener-
alization. The model with a batch size of 32 achieves
the lowest RMSE and MAE, closely followed by batch
size 8, suggesting these batch sizes provide more pre-
cise predictions with lower error margins.

For Siamese Neural Networks, batch size of 8 shows
the best performance, with the highest R² score and the
lowest RMSE, MSE, and MAE. As the batch size in-
creases, there is a slight degradation in performance,
indicated by lower R² scores and higher RMSE, MSE,
and MAE values 18. In general, smaller batch sizes (8
and 16) tend to perform better across all metrics com-
pared to larger batch sizes (32 and 128). This suggests
that smaller batch sizes allow the model to learn more
detailed and nuanced features from the data, leading
to better performance. The R² score is highest for the
batch size of 8 (0.3932), indicating that this batch size
explains the most variance in the data. The R² score
decreases as the batch size increases, with the lowest
R² score for batch size 128 (0.2965). As the batch size
increases, there is a slight degradation in performance,
indicated by lower R² scores and higher RMSE, MSE,
and MAE values.

In the case of LSTM, The model begins with two
bidirectional LSTM layers. The first layer processes
the input sequence in both forward and backward di-
rections, returning the full sequence. The second layer
also processes the sequence in both directions but out-
puts only the final state. These are followed by a se-
ries of dense layers with ReLU activation functions,
which introduce non-linearity and progressively reduce
the data’s dimensionality.

The model with LSTM with batch size 32 out-
performs the other configurations across all metrics
(RMSE, MSE, MAE, and R² score) 3

Figure 18: Performance metrics for Siamese Network testing different
batch sizes. Smaller batch sizes (8 and 32) seem to provide better
prediction accuracy and model performance, with batch size 8 being
the best among the ones tested.

For three tested models, adding more layers (pooling,
normalization and dropout layers) was ineffective and
caused the models’ overfitting.
Table 3: Performance metrics for LSTM with different batch sizes,
with the batch size= 32 providing the best prediction accuracy and
model performance among the tested batch sizes.

8 32 128

RMSE 0.1742 0.1688 0.1742
MSE 0.0304 0.0285 0.0304
MAE 0.1373 0.1333 0.1373
R² 0.2965 0.3393 0.2965
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Figure 14: 1D CNN

Figure 15: SiameseNN final architecture

Figure 16: SNN with batch size = 16. There is a divergence between
training and validation loss, prediction result plot shows considerable
variance in the prediction.

Figure 17: LSTM with batch size = 32. There is some variability
in the predictions, but the training and validation losses are closely
aligned, which possibly indicates good generalization.

Figure 19: Performance metrics for 1D CNN with different batch
sizes. Smaller batch sizes (8 and 32) tend to perform better, providing
more accurate predictions and better overall performance metrics.

Figure 21: Final SiameseNN architecture.

Figure 22: Architecture of SiameseNN sub-networks.

5. Discussion

The next step for this project is to process whole
volumes and test the model on the real OCT images.
More tests should be done for the Siamese Neural Net-
works with the base models that will take into consider-
ation the independent nature of the speckle realizations.
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(a) Batch size = 8. (b) Batch size = 16.

(c) Batch size = 32. (d) Batch size = 64.

Figure 20: 1D CNN with different batch sizes. There are slight variations in prediction accuracy, the larger batch sizes (32 and 64) tend to produce
more accurate predictions with fewer deviations.

Figure 23: Final LSTM architecture.

Although 1D CNN showed better result compared to
other two models, since it takes as an input two fea-
tures/vectors with 10 time steps, the feature extraction
process remains unclear: two vectors are concatenated
and then the features are extracted, or the features ex-
tracted independently from each vector. This is an im-
portant aspect since every pixel in the vector are uncor-
related and should be processed as such.

6. Conclusions

The 1D CNN showed the best result in terms of accu-
racy of the prediction and the speed with best R2 values
equals 0.9869. While Siamese Neural Networks seems
to be more suitable for this task, it struggled to capture
the pattern in the data with R2 = 0.39 which indicates
there is a substantial amount of variance not explained
by the model. The future work includes implement-
ing SiameseNN with different models that will take into
consideration the independent nature of the speckle re-
alizations and will be input permutation invariant.

The implementation of 1D CNN, SiameseNN and
LSTM can be be found here

Acknowledgments

I would like to thank my supervisors at Massachusetts
General Hospital for providing me with support through
this project and my supervisors at the University of
Girona for their support during my Master’s program.

References

[1] Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang
W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. Optical
coherence tomography. Science. 1991 Nov 22;254(5035):1178-
81. doi: 10.1126/science.1957169. PMID: 1957169; PMCID:
PMC4638169.

[2] Chintada BR, Ruiz-Lopera S, Restrepo R, Bouma BE, Vil-
liger M, Uribe-Patarroyo N. Probabilistic volumetric speckle
suppression in OCT using deep learning. ArXiv [Preprint].
2023 Dec 7:arXiv:2312.04460v1. PMID: 38106457; PMCID:
PMC10723542.

26.10



Few shot probabilistic despeckling in optical coherence tomography 11

(a) Batch size = 8.

(b) Batch size = 16.

(c) Batch size = 32.

Figure 24: Training and validation loss over epochs with different
batch sizes. The performance is consistent across batch sizes, with
minimal difference in the final loss values.

[3] J. W. Goodman, Speckle Phenomena in Optics: Theory and Ap-
plications, Roberts and Company Publishers, 2007.

[4] J. M. Schmitt, S. Xiang, and K. M. Yung, Speckle in Optical Co-
herence Tomography, Journal of Biomedical Optics, vol. 4, pp.
95-105, 1999.

[5] N. Iftimia, B. E. Bouma, G. J. Tearney, ”Speckle reduction in
optical coherence tomography by ’path length encoded’ angular
compounding,” Journal of Biomedical Optics, vol. 8, no. 2, pp.
260-263, Apr. 2003. doi: 10.1117/1.1559060. PMID: 12683852.
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